Contrib:KeesWouters/bc/pythonlist

From CAELinuxWiki
Revision as of 16:18, 14 November 2010 by Keeswouters (Talk | contribs) (''The boundary conditions in detail'')

Jump to: navigation, search
  1. Applying cylinder boundary conditions
    Applied on a simple block with a cylindrical hole the use of LIAISON_DLL is used to show the simulation of a cylindrical coordinate system
    Contrib:KeesWouters/bc/cylinder
    • key words
      • LIAISON_DDL


Geometry and mesh of the block with cylindrical hole

This contribution depends on the construction defined here. So please this contribution to find out the general behaviour of the construction: geometry, material properties and boundary conditions are given there.


This construction shows the use of LIAISON_DDL to simulate boundary condition on a cylindrical hole. It just shows the use of it: -the code is far from general. This may be improved in future versions.

Some images of the construction:

Kw bcylgeom.jpg * Kw spring bcylmesh.jpg

A number of groups has been defined (P for plane, L for line segments):

  • Ptop (not used)
  • Pbot (not used)
  • Pcyl (could be used to define nodes on this surface)
  • Lcyl (not used in final version) and
  • Ltop, used to apply boundary conditions in x and y direction.

The boundary conditions in detail

  • The first boundary condition on the line segment Ltop is easy to define:
    • bcforce=AFFE_CHAR_MECA(MODELE=Cmod,DDL_IMPO=(_F(GROUP_MA='Ltop',DY=0.5,DX=0.0000),),);
  • The cylindrical boundary condition on the nodes of the cylindrical hole are defined by the LIAISON_DDL keyword in stead of DDL_IMPO:
    • ... LIAISON_DDL=(_F(NOEUD=('Ni','Ni'),DDL=('DY','DZ'),COEF_MULT=(alpha1,alpha2),COEF_IMPO=beta),
      Using this keyword and selecting all the nodes for Ni can simulate a tangential boundary condition.

Now remember that the part in the _F(...) operator can be replaced by a Python script that has the following list, dictionary, or tuple, eg:

_F(NOEUD=('N1','N1','N1'),DDL=('DX','DY','DZ'),COEF_MULT=(0.00,0.00,0.45),COEF_IMPO=0.00)
:::::::
_F(NOEUD=('N808','N808','N808'),DDL=('DX','DY','DZ'),COEF_MULT=(0.0, -0.36, -0.26),COEF_IMPO=0.00)

can be replaced by:

{'NOEUD': ['N1',  'N1',  'N1'  ],'COEF_MULT':[0.00,0.00, 0.45], 'COEF_IMPO':0.0,'DDL':['DX', 'DY', 'DZ']}
:::::
{'NOEUD': ['N808','N808','N808'],'COEF_MULT':[0.0,-0.36,-0.26], 'COEF_IMPO':0.0,'DDL':['DX','DY','DZ']}

Alright, this took me several days to find out just this. But once you know, it is easy.
Now just an image to recall why we need to restrict these degrees of freedom:

Kw bcylhole1.jpg

Remarks

  • the selection of the cylindrical coordinate system is severly restricted here. It should be relatively easy to implement a general cylindrical coordinate system by selecting two points that define the centre axis and a radius. But I really need to activate Numpy first before I try. Although it should work on Salome5.1.4 ...
  • the output by the Python script needs to be improved. That I will call work in progress.
  • In stead of looping through all the nodes, preselecting the nodes on the cylinder by a filter (already done) is possible. But at the moment I cannot access the selected nodes (again that means I donot know how to, see also Python script at the end).

Selection of the nodes (Salome)

As usual, the geometry and mesh is defined by a Python script. This makes it relatively easy to select the nodes on the cylinder face. The following snippet of the code selects the nodes and writes the keyword and corresponding LIAISON_DDL part to the Python output window:

...
y1 = 2
z1 = 3
...
Rcylinder = 0.45
Lcylinder = 2.00
...
countall=0
countcyl=0
node_oncyl = []
Rcyl2 = Rcylinder**2
eps = 1e-4
print "\ncopy and paste next part into command file",
print "\n******************************************\n"
print "cylco2=AFFE_CHAR_MECA(MODELE=Cmod,\n     LIAISON_DDL = (",
for allnode in Mbcyl.GetNodesId():
   countall+=1
   q1, q2, q3 = Mbcyl.GetNodeXYZ(allnode)
   # on cylinder yes/no:
   dy2 = (q2-y1)**2
   dz2 = (q3-z1)**2
   if abs(dy2+dz2-Rcyl2)<eps:
      countcyl+=1
      cnode = to_string(allnode)
      node_oncyl.append(allnode)
      #ss = []
      ss = "\n          _F(NOEUD=('N"+cnode+"','N"+cnode+"'),DDL=('DY','DZ'),COEF_MULT=("
      print ss,
      print (q2-y1),
      print ",",
      print (q3-z1),
      print "),COEF_IMPO=0.00),",
   pass
pass
print "),);"
print "\nend of copy and past",
print "\n********************\n\n\n"


the main part of the code print output to the Python console in a suitable formatted way.
Copy and paste the indicated output from the Python console into the C-A command file:

All should run fine. Well, it did here after more than a few tries. It looks like:

cylco2=AFFE_CHAR_MECA(MODELE=Cmod,
     LIAISON_DDL = 
       _F(NOEUD=('N162 ','N162 '),DDL=('DY','DZ'),COEF_MULT=( 0.312402110475 , -10.3238902922 ),COEF_IMPO=0.00),
       _F(NOEUD=('N12  ','N12  '),DDL=('DY','DZ'),COEF_MULT=( 0.0            , -9.55          ),COEF_IMPO=0.00),
       _F(NOEUD=('N695 ','N695 '),DDL=('DY','DZ'),COEF_MULT=(-0.443605677987 , -9.92440897899 ),COEF_IMPO=0.00),
       ...
       _F(NOEUD=('N765 ','N765 '),DDL=('DY','DZ'),COEF_MULT=(-0.162737538758 , -10.4195431962 ),COEF_IMPO=0.00),
       _F(NOEUD=('N551 ','N551 '),DDL=('DY','DZ'),COEF_MULT=( 0.107926195474 , -9.56313396066 ),COEF_IMPO=0.00),),);

The results of the calculation

The following picture show the rotation of the block around the cylindrical hole:

Kw bcyldisp1a.jpg
  • The left part of the picture displays the von Mises stresses in the construction: they are zero to the working precision as we expect. The rotation around the cylinder is controlled by the displacement at the top edge and can be performed by a rigid body movement.
  • The right part shows the displacement in y direction: the construction nicely rotates around the cylindrical hole.

A bit of fooling around ...

Selecting the same nodes around the cylindrical hole but choosing the rotating point with an offset of 10 in z direction yields the following displacement:

* Kw bcyldisp2.jpg


The code to generate this during the Salome session:

...
zoffset = 10.0  ## change to 10.0 for second picture
...
for allnode in Mbcyl.GetNodesId():
   countall+=1
   q1, q2, q3 = Mbcyl.GetNodeXYZ(allnode)
   # on cylinder yes/no:
   dy2 = (q2-y1)**2
   dz2 = (q3-z1)**2
   if abs(dy2+dz2-Rcyl2)<eps:
      countcyl+=1
      cnode = to_string(allnode)
      node_oncyl.append(allnode)
      #ss = []
      ss = "\n          _F(NOEUD=('N"+cnode+"','N"+cnode+"'),DDL=('DY','DZ'),COEF_MULT=("
      print ss,
      print (q2-y1),
      print ",",
      print (q3-z1-zoffset),
      print "),COEF_IMPO=0.00),",
   pass
pass

Input files for the FE Analysis and references

Input files:

  • Python script for defining the geometry and mesh (blockrot4.py), load by File --> load script (cntrl T in the object browser), refresh (F5) after running
    • Save the mesh file by right clicking in the object browser by right clicking on the mesh name Mbcyl; select Export to MED and accept or change the default values
  • ASTK file (cylrot.astk, you need to edit the path to your requirements ...)
  • command file (blockb.comm)

Download the files here:

  • blockrot4.py and blockrot6.py basicly perform the same operation: selecting nodes on the cylinder. Though the way it is implemented is quite different: blockrot4 depends on the measures of the geometry whereas blockrot6 directly selects the nodes on the cylinder area by filters. See also [Salome] for more reference (and thank you JMB for the question asked there).
  • blockrot7.py writes the liaison_ddl information to a file. Remember to change the path at line 109 to a suitable value for your system.

Reference:
[AFFE_CHAR_MECA, page 20/109]