Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 1/18
Department Mécanique and Modèles Numériques
Index:
With
Diffusion:
Users - Developers
Handbook of Descriptif Informatique
D4.02 booklet:
D4.02.03 document
Structures of curved Données and surface
Summary:
This document described:
·
the structure of data curves produced by the operator INTE_MAIL_2D. A curve is is
a whole of meshs segment, is a meeting of segments of straight line and/or arcs of
ring,
·
the structure of data surfaces produced by the operator INTE_MAIL_3D. Currently, one
object of the surface type can contain only segments of straight line among the meshs of one
grid 3D.
EDF
Direction of Etudes and Recherches
Electricity of France
Project Code de Mécanique
Copyright EDF/DER 1997

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 2/18
Contents
Contents .......................................................................................................
2
1 SD Courbe: general information .............................................................................................
3
2 Relations between the curved SD and the other SD ............................................................
3
3 Tree structure of the SD curves ...................................................................................
3
4 Contents of the objects of the SD curve ..........................................................................
4
4.1. Common articles ............................................................................................
4
4.2. SD courbe_LM ................................................................................................
4
4.3 SD courbe_SA .................................................................................................
5
4.3.1 Substructure of description of the segments and arcs brought into play ......
5
4.3.2 Substructure of location on the curves ...................................
6
4.3.3 Substructure of location in ..............................................
6
4.3.4 Substructure of connexity ...........................................................
7
4.3.5 Length of the collections and objects of collection of courbe_SA ......
7
5 Examples of SD curves ............................................................................................
8
6 SD Surface: general information ............................................................................................
12
7 Relations between the SD surfaces and the other SD ...........................................................
12
8 Tree structure of the SD surfaces ..................................................................................
12
9 Location of a segment in a grid 3D ............................................................
13
9.1 Location of a point on S ................................................................................
13
9.2 Decomposition of S ................................................................................
13
9.3 Location of an elementary segment in ..................................................
13
10 Contents of the objects of the SD surface .......................................................................
14
11 Example of SD surfaces ...........................................................................................
16
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 3/18
1
SD Courbe: general
Object of a curved type follows a curve on a geometry 2D. This curve is one of both
following types:
·
a meeting of segments of straight line and/or arcs of circle,
·
a whole of meshs SEG2 or preexistent SEG3.
This concept is produced by the operator INTE_MAIL_2D.
2
Relations between the curved SD and the other SD
No if it is not that a curve is located compared to a grid.
3
Tree structure of the curved SD
curve (K8):: = record
“.NOMMAIL”: S.E.K8
“.TYPCOURBE”: S.E.K8/“LISTMAIL”: courbe_LM
/“SGTDARCC”: courbe_SA
courbe_LM:: = record
“.CHEMIN”: TESTSTEMXÇ V I numbered
“.MAIL1”: TESTSTEMXÇ V I numbered
“.MAIL2”: TESTSTEMXÇ V I numbered
courbe_SA:: = record
“.XYASGT”:
S V R8
“.XYBSGT”:
S V R8
“.XYCARC”:
S V R8
“.XSARC”:
S V R8
“.XRARC”:
S V R8
“.EXSGT”:
TESTSTEMXÇ V R8
“.ORSGT”:
TESTSTEMXÇ V R8
“.MAIL1”:
TESTSTEMXÇ V I
“.MAIL2”:
TESTSTEMXÇ V I
“.CNXEX”:
TESTSTEMXÇ V I
“.CNXOR”:
TESTSTEMXÇ V I
“.FACEX”:
TESTSTEMXÇ V I
“.FACOR”:
TESTSTEMXÇ V I
“.PAREX”:
TESTSTEMXÇ V R8
“.PAROR”:
TESTSTEMXÇ V R8
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 4/18
4
Contents of the objects of the curved SD
4.1.
Common articles
“.NOMMAIL”: S.E.K8: the name of the concept of the grid type contains
4.2.
SD courbe_LM
Collections CHEMIN, MAIL1 and MAIL2 have the same number of objects of collection. This number is
the number of disjoined paths subjacent with the list of meshs obtained starting from the operands of
key word factor DEFI_CHEMIN.
Structure of the objects of collection:
One is interested in Ième OC and one notes:
CHM = PATH (I)
M1 = MAIL1 (I)
M2 = MAIL2 (I)
If CHM consists of NR meshs 1-D, then:
length (CHM) = NR + 1
CHM (J), J = 1,…, NR gives the numbers of the meshs 1D describing the path
CHM (N+1) {0, CHM (1)}
If CHM (N+1) = 0
then the path is simple
if not the path is cyclic
By convention: length (M1) = long (m2) = long (CHM)
As follows:
·
M1 (NR + 1) = M2 (NR + 1) = 0
·
M1 (J), J = 1,…, NR gives the number of the first mesh 2D which admits the mesh 1D
CHM (J) for face. Thus M1 (J) _ 0 for J = 1,…, NR
·
If m2 (J) = 0, then the mesh 1D CHM (J) is face of only one mesh 2D, if not m2 (J)
the number of the 2nd mesh 2D admitting contains the mesh 1D CHM (J) for face.
Example 1:
CHM:
37
11
23
0
39
11
M1:
23
48
21
63
0
37
21
48
63
M2:
0
39
0
0
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 5/18
Example 2:
13
24
CHM:
3
24
13
9
3
151
169
9
M1:
169.169.151 137
0
137
3
180
121
M2:
180
0
0
151
0
4.3
SD courbe_SA
4.3.1
Substructure of description of the segments and arcs brought into play
One notes:
·
Nb_sgt the number of segments of straight line,
·
Nb_arc the number of arcs of circle.
XYASGT S V R8:
contains the co-ordinates of the points origin of the segments of straight lines
XYBSGT S V R8:
contains the co-ordinates of the points end of the segments of straight lines
length (XYASGT) = long (XYBSGT) = 2 * (Nb_sgt + 1)
fictitious co-ordinates
2 co-ordinates
XYASGT:
0 0 x1 1
2
2….
With y
X
With
With teststemyà
1
XYBSGT:
0 0
y1 x2
X
2….
B
B
B yB
One represents the absence of segments in the curve by a vector XYASGT (and thus XYBSGT) of
length 2 initialized to 0.
If there is at least a segment, then the co-ordinates of the point origin Have of Ième segment and of
not end Bi of Ième segment are:
I
XYASGT (2 * I+1) <-- X With
I
XYASGT (2 * I+2) <-- teststemyà
idem for B (with XYBSGT)
XYCARC, XSARC, XRARC: S V R8
Contain, respectively, the co-ordinates of the centers, terminals of the angular sectors and value
radii.
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 6/18
length (XYCARC) = long (XSARC) = 2 * (Nb-arc + 1)
length (XRARC) = Nb_arc + 1
If no arc is used at the time of the call, then:
length (XYCARC) = long (XSARC) = 2
length (XRARC) = 1
and the 3 vectors are initialized to 0.
If not:
I
XYCARC (2 * I+1) <-- teststemxç
I
XYCARC (2 * I+2) <-- teststemyç
I
XRARC (I+1) <-- R
I
XSARC (2 * I+1) <-- inf
I
XSARC (2 * I+2) <-- sup
4.3.2
Substructure of location on the curves
Collections ORSGT and EXSGT
The curve (segment or arc) is parameterized according to:
X (S)
C (has, B
=

)
{M (S);
where
S
[has, B]}
M (S) y (S)
then:
I = NR
C = (
C sor, sex
I
I
)
I =1
where NR is the number of meshs intersected by the curve:
C (sor sex
however
ex
,
=




I
)
{M (S) C; S [S, S
I
I
I
]}
Then
length (ORSGT) = long (EXSGT) = NR
however
S
ORSGT (I) <--
I
ex
S
EXSGT (I) <--
I
4.3.3
Substructure of location in
Collections MAIL1, MAIL2, FACOR, FACEX, PAROR, PAREX
however
ex
If C (S, S
I
I) is the contribution of a Ki mesh to the intersection C, then:
K C {M (sor), M (sex

I
I
)}
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 7/18
however
ex
The 2 points M (S
1
I) and M (if) can be located in the Ki mesh by the data of the faces
containing each point and by the curvilinear X-coordinate (variable between 0. and 1.) on the faces.
however
ex
Moreover, one second mesh K 2
I can give C (S, S
I
I).
Example:
N3
Face=3
Face=2
M sor
(I)
Piece I
M sex
(I
ror
)
I
rex
K1
I
N1
Face=1
N2
MAIL1 (I)
<
number of the K1 mesh
MAIL2 (I)
<
0 if piece I is obtained only for the mesh 2D K1
K 2 if K2 is the 2nd mesh 2D giving piece I
FACOR (I)
<
3 (as a face of K1)
FACEX (I)
<
2 (as a face of K1)
PAROR (I)
<
however
R

I
PAREX (I)
<
ex
R

I
4.3.4
Substructure of connexity
Collections CNXOR and CNXEX
A OC of collections CNXOR and CNXEX is a vector of entireties dimensioned with the numbers of
related components of C.
For the curve C corresponding to the OC, if C is composed of NR elementary pieces, then:
the related component number I of C is consisted of the meeting of the new numbers:
CNXOR (I), CNXOR (I) +1,…, CNXEX (I)
4.3.5
Length of the collections and objects of collection of courbe_SA
ORSGT
EXSGT
PAROR
PAREX
Nb_OC = Nb_sgt + Nb_arc
FACOR

FAXE
length of a OC: unknown factor a priori
MAIL1
but all identical
MAIL2

CNXOR
Nb_OC = Nb_sgt + Nb_arc
CNXEX

length of a OC: unknown factor a priori
but all identical
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 8/18
5
Examples of curved SD
DEBUT ();
m = LIRE_MAILLAGE ();
%
%
% CREATION Of a CURVE OF the SEGMENT TYPE
%
segment=INTE_MAIL_2D (MAILLAGE: m
DEFI_SEGMENT:(ORIGINE: (0., 0.)
EXTREMITE: (10., 0.)));
IMPR_CO (CO:segment);
%
%
% CREATION Of a CURVE OF the PATH TYPE (LIST OF MESHS)
%
chemin=INTE_MAIL_2D (MAILLAGE: m
DEFI_CHEMIN:(GROUP_MA:GRMA2));
IMPR_CO (CO:path);
%
%
% CREATION Of a CURVE OF the ARC TYPE
%
arc =INTE_MAIL_2D (MAILLAGE: m
DEFI_ARC:(CENTER:(0. 0.) RAYON:1. SECTEUR:(0. 90.)));
IMPR_CO (CO:arc);
end ();
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 9/18
====> IMPR_CO OF THE STRUCTURE OF DATA: SEGMENT????????????????
ATTRIBUT: F CONTENTS: T BASE: >G<
A NUMBER Of OBJECTS (OR COLLECTIONS) FIND:17
===============================================================================
IMPRESSION OF THE CONTENTS OF THE OBJECTS FIND:
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .CNXEX
OBJECT IMPRESSION OF COLLECTION >SEGMENT .CNXEX < OC: 1
1 - 14
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .CNXOR
OBJECT IMPRESSION OF COLLECTION >SEGMENT .CNXOR < OC: 1
1 - 1
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .EXSGT
OBJECT IMPRESSION OF COLLECTION >SEGMENT .EXSGT < OC: 1
1 - 1.90901E-02 5.39950E-02 9.91951E-02 1.52721E-01 2.13434E-01
6 - 2.80566E-01 3.53553E-01 4.31959E-01 5.15432E-01 6.03682E-01
11 - 6.96461E-01 7.93560E-01 8.94794E-01 1.00000E+00
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .FACEX
OBJECT IMPRESSION OF COLLECTION >SEGMENT .FACEX < OC: 1
1 - 1 1 1 1 1
6 - 1 1 1 1 1
11 - 1 1 1 1
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .FACOR
OBJECT IMPRESSION OF COLLECTION >SEGMENT .FACOR < OC: 1
1 - 1 1 1 1 1
6 - 1 1 1 1 1
11 - 1 1 1 1
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .MAIL1
OBJECT IMPRESSION OF COLLECTION >SEGMENT .MAIL1 < OC: 1
1 - 1 9 17 25 33
6 - 41 49 57 65 73
11 - 81 89 97 105
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .MAIL2
OBJECT IMPRESSION OF COLLECTION >SEGMENT .MAIL2 < OC: 1
1 - 113.121.129 137 145
6 - 153.161.169 177 185
11 - 193.201.209 217
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEGMENT .NOMMAIL <
1 - >M <
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .ORSGT
OBJECT IMPRESSION OF COLLECTION >SEGMENT .ORSGT < OC: 1
1 - 0.00000E+00 1.90901E-02 5.39950E-02 9.91951E-02 1.52721E-01
6 - 2.13434E-01 2.80566E-01 3.53553E-01 4.31959E-01 5.15432E-01
11 - 6.03682E-01 6.96461E-01 7.93560E-01 8.94794E-01
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .PAREX
OBJECT IMPRESSION OF COLLECTION >SEGMENT .PAREX < OC: 1
1 - 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00
6 - 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00
11 - 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEGMENT .PAROR
OBJECT IMPRESSION OF COLLECTION >SEGMENT .PAROR < OC: 1
1 - 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
6 - 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
11 - 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEGMENT .TYPCOURBE <
1 - >SGTDARCC<
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEGMENT .XRARC <
1 - 0.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEGMENT .XSARC <
1 - 0.00000E+00 0.00000E+00
-------------------------------------------------------------------------------
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 10/18
SEGMENT IMPRESSION OF VALUES >SEGMENT .XYASGT <
1 - 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEGMENT .XYBSGT <
1 - 0.00000E+00 0.00000E+00 1.00000E+01 0.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEGMENT .XYCARC <
1 - 0.00000E+00 0.00000E+00
====> FINE IMPR_CO OF STRUCTURE OF DATA: SEGMENT????????????????
====> IMPR_CO OF THE STRUCTURE OF DATA: CHEMIN????????????????
ATTRIBUT: F CONTENTS: T BASE: >G<
A NUMBER Of OBJECTS (OR COLLECTIONS) FIND:5
===============================================================================
IMPRESSION OF THE CONTENTS OF THE OBJECTS FIND:
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: CHEMIN .CHEMIN
OBJECT IMPRESSION OF COLLECTION >CHEMIN .CHEMIN < OC: 1
1 - 483.482.481 480 516
6 - 517.518.520 0
OBJECT IMPRESSION OF COLLECTION >CHEMIN .CHEMIN < OC: 2
1 - 556.554.553 552 588
6 - 589.590.591 0
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: CHEMIN .MAIL1
OBJECT IMPRESSION OF COLLECTION >CHEMIN .MAIL1 < OC: 1
1 - 112.110.108 106 218
6 - 220.222.224 0
OBJECT IMPRESSION OF COLLECTION >CHEMIN .MAIL1 < OC: 2
1 - 336.334.332 330 442
6 - 444.446.448 0
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: CHEMIN .MAIL2
OBJECT IMPRESSION OF COLLECTION >CHEMIN .MAIL2 < OC: 1
1 - 0 0 0 0 0
6 - 0 0 0 0
OBJECT IMPRESSION OF COLLECTION >CHEMIN .MAIL2 < OC: 2
1 - 0 0 0 0 0
6 - 0 0 0 0
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >CHEMIN .NOMMAIL <
1 - >M <
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >CHEMIN .TYPCOURBE <
1 - >LISTMAIL<
====> FINE IMPR_CO OF STRUCTURE OF DATA: CHEMIN????????????????
====> IMPR_CO OF THE STRUCTURE OF DATA: ARC????????????????
ATTRIBUT: F CONTENTS: T BASE: >G<
A NUMBER Of OBJECTS (OR COLLECTIONS) FIND:17
===============================================================================
IMPRESSION OF THE CONTENTS OF THE OBJECTS FIND:
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .CNXEX
OBJECT IMPRESSION OF COLLECTION >ARC .CNXEX < OC: 1
1 - 10
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .CNXOR
OBJECT IMPRESSION OF COLLECTION >ARC .CNXOR < OC: 1
1 - 1
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .EXSGT
OBJECT IMPRESSION OF COLLECTION >ARC .EXSGT < OC: 1
1 - 1.26966E-01 2.52680E-01 2.68597E-01 5.23599E-01 6.56873E-01
6 - 8.48061E-01 1.00042E+00 1.34127E+00 1.37872E+00 1.57080E+00
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .FACEX
OBJECT IMPRESSION OF COLLECTION >ARC .FACEX < OC: 1
1 - 3 2 2 2 2
6 - 2 3 3 3 2
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .FACOR
OBJECT IMPRESSION OF COLLECTION >ARC .FACOR < OC: 1
1 - 1 1 1 3 1
6 - 3 1 1 2 1
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 11/18
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .MAIL1
OBJECT IMPRESSION OF COLLECTION >ARC .MAIL1 < OC: 1
1 - 25 18 19 20 21
6 - 22 23 16 15 8
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .MAIL2
OBJECT IMPRESSION OF COLLECTION >ARC .MAIL2 < OC: 1
1 - 0 0 0 0 0
6 - 0 0 0 0 0
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >ARC .NOMMAIL <
1 - >M <
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .ORSGT
OBJECT IMPRESSION OF COLLECTION >ARC .ORSGT < OC: 1
1 - 0.00000E+00 1.26966E-01 2.52680E-01 2.68597E-01 5.23599E-01
6 - 6.56873E-01 8.48061E-01 1.00042E+00 1.34127E+00 1.37872E+00
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .PAREX
OBJECT IMPRESSION OF COLLECTION >ARC .PAREX < OC: 1
1 - 4.93501E-01 5.24427E-02 6.15174E-02 2.78594E-01 4.42575E-01
6 - 7.31218E-01 6.33209E-01 1.04904E-01 7.35628E-02 1.00000E+00
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: ARC .PAROR
OBJECT IMPRESSION OF COLLECTION >ARC .PAROR < OC: 1
1 - 1.50369E-02 5.06499E-01 9.47557E-01 9.38483E-01 7.21406E-01
6 - 5.57425E-01 2.68782E-01 3.66791E-01 8.95096E-01 9.26437E-01
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >ARC .TYPCOURBE <
1 - >SGTDARCC<
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >ARC .XRARC <
1 - 0.00000E+00 1.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >ARC .XSARC <
1 - 0.00000E+00 0.00000E+00 0.00000E+00 1.57080E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >ARC .XYASGT <
1 - 0.00000E+00 0.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >ARC .XYBSGT <
1 - 0.00000E+00 0.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >ARC .XYCARC <
1 - 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
====> FINE IMPR_CO OF STRUCTURE OF DATA: ARC????????????????
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 12/18
6
SD Surface: general
An object of the surface type contains segments of straight line among the meshs 3D of a grid.
This concept is produced by the operator INTE_MAIL_3D.
7
Relations between the SD surfaces and the other SD
No if it is not that a surface is located compared to a grid.
8
Tree structure of the SD surfaces
Surface (K8)::= record
“.NOMA”: Indirect OJB (1) S.E.K24
(1): MAILLAGE
“.NSDS”: Indirect OJB (*) S V K24 DOCU (“SGT3”)
(*) (1:13): SURFACE_1D
/* dimension: a number of segments: Nbseg */
/* NSDS (I):= nom_surface//“K1S'//Codent (K4Segi) */
K8 (with more the 9999 segments)
-----------------
K13
SURFACE_1D (K13)::= record
“.DESC”: OJB S V R LONG (6) DOCU (“SGT3”)
“.SGTEL”: REPERAGE_1D
$vide: REPERAGE_
“.CONEX.ORIG”: OJB S V I
“.CONEX.EXTR”: OJB S V I
REPERAGE_1D (K19)::= record
“.ORIG”: OJB S V R8
“.EXTR”: OJB S V R8
“.TYPE”: OJB S V I
REPERAGE_ (K13)::= record
“.MAIL”: OJB TESTSTEMXÇ V I
“.FACE.ORIG”: OJB S V I
“.FACE.EXTR”: OJB S V I
“.CREFM.ORIG”: OJB S V R8
“.CREFM.EXTR”: OJB S V R8
“.ARETE.ORIG”: OJB S V I
“.ARETE.EXTR”: OJB S V I
“.CREFF.ORIG”: OJB S V R8
“.CREFF.EXTR”: OJB S V R8
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 13/18
9
Location of a segment in a grid 3D
One notes:
·
the field with a grid,
·
T H the whole of the meshs 3D,
·
K a mesh 3D,
·
K the border of K; K is a union of faces F. A face is a triangle or one
quadrangle,
·
K the border of F; K is a union of rectilinear edges,
·
S = [A,]
B the segment to be located.
In fact, one seeks to locate S in
K
.
K T K
9.1
Location of a point on S


Line AB admits the parametric representation AM = T AB
T R.
The segment S corresponds to the interval T
[
0]
1
.
9.2
Decomposition of S
S
1
2
is broken up into elementary segments S = {A, A
I
I
I} so that:
N
S =
S
I
U =1
The family (If)
is ordered with the direction:
I =1,…, N
J


AA
J
I
= T AB
I = 1,…, N
J =
I
1,2
with:
0
1
2
1
2
1
2
1
2
T < T T < T T < T T < T1
1
1
2
2
I
I
N
N
9.3
Location of an elementary segment in
That is to say E = {K T; S K
I
H
I
}
If is located in by the data of I.E.(internal excitation).
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 14/18
3 situations are possible:
1)
S K
=
I
I then E
{K
I
I
.
1}
1
2)
S K

=
I
I and S
K (S
), then E
{K, K
I
I
I
. K
1
2}
1
I
i1
I is included in a face of Ki1
i2
is the mesh 3D which admits for face the face of Ki containing S
1
I.
3)
S K

=
I
I and S
K
(S
), then
1
I
i1
I is included in an edge of Ki1
E = {K, K, K
I
I
I
I
is the whole of the meshs 3D which admit for common edge
1
2
p}
the edge of Ki containing S
1
I.
Thus, an elementary segment can be obtained starting from several meshs.
10
Contents of the objects of the SD surface
N
S = [A,]
B
S
= [A1, A2]
K [A1, A2
I
I




I
I]
K
{K, K
I
I
1
pi}
I =1
SURFACE_1D
Name
OJB
Type
Length
Contents
14 19
20 24
.DESC
S V R
6
X
y
Z
X
y Z
With
With
With
B
B
B, co-ordinates of
ends of the segment
REPERAGE_1D
Name
OJB
Type
Length
Contents
14 19
20 24
.SGTEL
.ORIG
S V R
N
T1, T1, T1, T1
1
2
I
N, coordinated
parametric of the A1 points
I (origin)
.EXTR
S V R
N
t2, t2, t2, t2
1
2
I
N, coordinated
parametric of the A2 points
I (end)
.TYPE
S V I
N
1
2
1 --> [A, A
I
I] is a sgt_arête
2 --> sgt_face
3 --> sgt_intern
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 15/18
REPERAGE_
Name
OJB
Type
Length
Contents
14 19
20 24
.MAIL
TESTSTEMXÇ V I
variable for
1
2
list meshs 3D containing [A, A
I
I]:
OC NMAX
OC = N
K1,
, Ki
I
Pi
.FACE
.ORIG
S V I
N
list numbers of face of K1
I containing
A1
1
1
I - 1 if Have is interior in Ki
.EXTR
S V I
N
idem
2
.ORIG for Have
.CREFM
.ORIG
S V R
3n
co-ordinates of reference of A1
1
I in Ki:
(r1, r2, r3) I =1,…, N rj
I
I
I
I
1.
If A1
3
I is contained in a face, laughed is not
not used (see .CREFF)
.EXTR
S V R
3n
idem
2
.ORIG for Have
.ARETE
.ORIG
S V I
N
list numbers of edge of K i1 container
A1
1
I - 1 if Have is interior with K I
1
.EXTR
S V I
N
idem
2
.ORIG for Have
.CREFF
.ORIG
S V R
2n
co-ordinates of reference of A1
I on the face
1
2
of K1
=
I the container: (R, R) I
1,…, N
I
I
.
.EXTR
S V R
2n
idem
2
.ORIG for Have
Name
OJB
Type
Length
Contents
14 19
20 24
.CONEX
.ORIG
S V I
variable
pointer of related beginning of part in
REPERAGE_1D
.EXTR
S V I
variable
pointer of related end of part in
REPERAGE_1D
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 16/18
11
Example of SD surfaces
%
% CONCEPT OF TYPE surfaces
%
DEBUT ();
PRE_GIBI ();
MAIL =LIRE_MAILLAGE ();
&MAIL =DEFI_GROUP (MAILLAGE:MALL CREA_GROUP_NO:(TOUT_GROUP_MA:“OUI”));
SEG1 = INTE_MAIL_3D (MAILLAGE: MAIL
DEFI_SEGMENT:(ORIGINE: (.015 .02 0.)
EXTREMITE: (.055 .05 0.)));
impr_co (Co:seg1);
FIN ();
====> IMPR_CO OF THE STRUCTURE OF DATA: SEG1????????????????
ATTRIBUT: F CONTENTS: T BASE: >G<
A NUMBER Of OBJECTS (OR COLLECTIONS) FIND:17
===============================================================================
IMPRESSION OF THE CONTENTS OF THE OBJECTS FIND:
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 .NOMA <
1 - >MAIL <
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 .NSDS <
1 - >SEG1 S1 <
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .ARETE.EXTR <
1 - 1 1
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .ARETE.ORIG <
1 - 1 1
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .CONEX.EXTR <
1 - 2
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .CONEX.ORIG <
1 - 1
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .CREFF.EXTR <
1 - 1.00000E+00 - 1.00000E+00 1.00000E+00 - 1.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .CREFF.ORIG <
1 - - 1.00000E+00 - 1.00000E+00 - 1.00000E+00 - 1.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .CREFM.EXTR <
1 - - 1.00000E+00 - 1.00000E+00 1.00000E+00 - 1.00000E+00 - 1.00000E+00
6 - 1.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .CREFM.ORIG <
1 - - 1.00000E+00 - 1.00000E+00 - 1.00000E+00 - 1.00000E+00 - 1.00000E+00
6 - - 1.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .DESC <
1 - 1.50000E-02 2.00000E-02 0.00000E+00 5.50000E-02 5.00000E-02
6 - 0.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .FACE .EXTR <
1 - 2 2
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .FACE .ORIG <
1 - 2 2
-------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: SEG1 S1 .MAIL
OBJECT IMPRESSION OF COLLECTION >SEG1 S1 .MAIL < OC: 1
1 - 2 1
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 17/18
OBJECT IMPRESSION OF COLLECTION >SEG1 S1 .MAIL < OC: 2
1 - 4 3
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .SGTEL.EXTR <
1 - 5.00000E-01 1.00000E+00
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .SGTEL.ORIG <
1 - 0.00000E+00 5.00000E-01
-------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >SEG1 S1 .SGTEL.TYPE <
1 - 1 1
====> FINE IMPR_CO OF STRUCTURE OF DATA: SEG1????????????????
Handbook of Descriptif Informatique
D4.02 booklet:

Index A

Code_Aster ®
Version
4
Titrate:
Structures of curved Données and surface
Date:
28/01/1999
Author (S):
X. DESROCHES
Key:
D4.02.03
Page: 18/18
Intentionally white left page.
Handbook of Descriptif Informatique
D4.02 booklet:

Index A