Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
1/16

Organization (S): EDF-R & D/AMA, SINETICS
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
D4.06.05 document

Structures of Données CARTE, CHAM_NO,
CHAM_ELEM and RESUELEM

Summary:

Description of the data-processing objects allowing to represent the fields of sizes on a MAILLAGE or
a MODELE.
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
2/16

1 General information

The 4 structures of data card, cham_no, cham_elem and resuelem represent the fields of
sizes discretized on the meshs or the nodes of a grid or on the elements of a ligrel.

We call “size” a “vector” of components (CMP) of the field. For example, for one
field of displacement: (“DX”, “DY”, “DZ”). A discretized field is a whole of sizes
located on nodes, points of Gauss or meshs. All the sizes of a field do not have
not inevitably same components: for example, on certain parts of the grid, the nodes
can have 6 CMPS of displacement (elements of beam) whereas on other parts, the nodes
only 3 CMPS (voluminal elements) have. The components of a size are a subset
CMPS declared in the catalog of the sizes [D4.04.01]. To describe a size, in addition to its
numerical values, it is necessary to know of which CMPS it act; for that, one uses the concept of
“descripteur_grandor” who describes the presence (or not) of the whole of the CMPS of the catalog. This
concept is described with [§3.1].

·
The cards are fields discretized on the meshs of a grid (or the meshs
late of a ligrel). There exists 1 size by mesh,
·
the cham_no are fields discretized on the nodes of a grid (or the nodes
late of a ligrel). There exists 1 size by node,
·
the cham_elem are fields discretized on the elements of a ligrel. It can exist
several sizes by element (for example a size by point of Gauss or by
node). The points of dicretisation (nodes or not of Gauss) can have under-points
; if it is the case, all the points have the same number of under-points [§3.4.1],
·
the resuelem are fields discretized on the elements of a ligrel. Sizes
associated such fields are the sizes known as “elementary”: elementary matrices
or elementary vectors. The whole of the values of a resuelem can be bulky, it is
why the object containing these values (.RESL) has a structure of dispersed collection.

Important remark:

The structures of data described here are not easy use. They are SD
normally used in operations of low levels: elementary calculations, assemblies,
resolutions…
When one wants to read or write in such SD, it is often preferable to transform them
in more convenient SD to use beforehand (cham_no_S or cham_elem_S). Routines of
ad hoc transformation are [D6.00.01]: CNOCNS, CNSCNO, CELCES, CARCES
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
3/16

2 Tree structures

card (K19)::=record


“.NOMA”
:

OJB

S.E.K8


“.NOLI”
:

OJB

S V K24


“.DESC”
:

OJB

S V I


“.LIMA”
:

OJB

TESTSTEMXÇ V I


“.VALE”
:

/

OJB

S V R








/OJB
S V C








/OJB
S V K8

cham_no (K19)::=record


“.DESC”
:

OJB

S V I


“.REFE”
:

OJB

S V K24


“.VALE”
:

/

OJB

S V R








/OJB
S V C








/OJB
S V K8








/…
% if solvor FETI (REFE (3) = ' FETI') and CHAM_NO representing a second member or a vector
solution

“.FETC”:
OJB

S V Indirect K24 (*) dim=nbsd
(a number of under-fields)
(*): CHAM_NO not FETI (i.e. FETC (K) .REFE (3) “FETI” and for the moment imposed on
“MULT_FRONT”)

cham_elem (K19)::=record


“.CELK”
:

OJB

S V K24


“.CELD”
:

OJB

S V I


“.CELV”
:

/

OJB

S V R








/OJB
S V C








/OJB
S V K8








/…

resuelem (K19)::=record


“.NOLI”
:

OJB

S V K24


“.DESC”
:

OJB

S V I


“.RESL”
:

/

OJB

XD V R








/OJB
XD V C








/…
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
4/16

3
Contents of objects JEVEUX

3.1
DESCRIPTEUR_GRANDEUR

It is a vector of entireties. It describes the CMPS present indeed in a size.

All the possible CMPS of a size are described in the catalog of the GRANDEURS. They y
are ordered. To describe the CMPS indeed present in a size one decides
to keep a vector of Boolean which answers the following question: the ième CMP (in the order of
sizes) is it catalogs presents in the size which one wants to describe? To save
place memory (and disc), one decides “to code” this vector of Boolean on a vector
entireties: on each entirety (called entier_codé), one codes 30 Boolean.

Example:

If size “DEPL_R” were described in the catalog by:


DX DY DZ DRX
DRY
DRZ
LAGR

On an element of the beam type the descripteur_grandor is worth 126. Indeed:


DX DY DEZ DRX DRY DRZ LAGR
1 1 1 1 1 1 0
126 =
21 +
22 +
23 +
24 +
25 +
26


On element of a voluminal type the descripteur_grandor is worth 14. Indeed:


DX DY DZ DRX
DRY
DRZ
LAGR
1 1 1 0 0 0 0
14 =
21 +
22 +
23





On an additional node creates for the kinematic introduction of condition by dualisation, it
descripteur_grandor is worth 128. Indeed:


DX DY DZ DERX
DRY
DRZ
LAGR
0 0 0 0 0 0 1
128
=
27

A descripteur_grandor is a vector of entier_codés: V of dimension n_ec where n_ec is it
numbers the entier_codés necessary ones to the description of the size described in the catalog.

n_ec
a number of CMPS in the catalog
1
1 to 30
2
31 to 60
… …

Ième entier_codé informs about the presence (or not)
numbered CMPS of 30 * (i-1) +1 ---> 30 * I.
V is of dimension
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
5/16

3.2 SD
card

3.2.1 General

A card is a field discretized by mesh. Each mesh can be “affected” of a size (with
more). The cards are in general SD create starting from the data of the user. Its structure is
made to store (with less possible volume) information concerning the assignment of
sizes on “pieces” of the grid.

Note:

The selected structure is economic spaces some but it does not answer the question quickly
: which size is affected on the M1 mesh? To answer this question, it is necessary “to extend”
card (that to create bulkier temporary objects); it is the object of routine ETENCA
called by CALCUL.
A card is thus an ordered list of couples (size, zone_affectée). The command of the couples
is important because it is used to take into account the principle of overload of the assignments: the last
assignment takes precedence over the preceding ones.

One zone_affectée can be:

·
the whole of the meshs of grid (TOUT: “OUI”),
·
the whole of the late meshs of a ligrel,
·
a GROUP_MA of the grid,
·
a list of meshs of the grid,
·
a list of late meshs of a ligrel.

3.2.2 Object
.NOMA

Name of the grid associated with the card.

3.2.3 Object
.DESC

“.DESC”
S V I DIM= 3 + (2+n_ec) * n_gd_max

Field “DOCU” of object .DESC contains: “CART”

DESC (1)
Gd (number of the size associated with the card)
DESC (2)
n_gd_max (raising number of zone_affectée)
DESC (3)
n_gd_edit (a real number of zone_affectée)
DESC (3+1)
code_1er_zone (“code” of the zone_affectée first)
DESC (3+2)
number of the zone_affectée 1ère
.....

DESC (3+2 * n_gd_max-1)
code_der_ent (code of the zone_affectée last)
DESC (3+2 * n_gd_max)
number of the zone_affectée last

The “code” of one zone_affectée can be worth:

code =
1
-->
the whole of the meshs of grid (TOUT: “OUI”),
code =
­ 1
-->
the whole of the late meshs of a ligrel,
code =
2
-->
a GROUP_MA of the grid,
code =
3
-->
a list of meshs of the grid,
code =
­ 3
-->
a list of late meshs of a ligrel.

If code = 1 (or ­ 1)
the number of zone_affectée corresponding is not used for nothing.
If code = 2
the number of zone_affectée corresponding is the number of the group_ma in the collection
mailla.GROUPEMA
If code = 3 (or ­ 3)
the number of zone_affectée corresponding is the number of the object of collection .LIMA
[§3.2.5] which contains the numbers of the meshs composing zone_affectée.
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
6/16

In object .DESC a continuation comes then from descripteur_grandor [§3.1] describing them
various affected sizes. That is to say n_ec the number of entier_codé necessary to describe the CMPS of
the size Gd:

DESC (3+2 * n_gd_max+1)
beginning of the first descripteur_grandor
….

DESC (3+2 * n_gd_max
beginning of the last descripteur_grandor
+ (n_gd_max-1) * n_ec +1)

Note:

For a field constant (1 only size assigned to all the meshs of the grid). One has then:
DESC (2) = 1
DESC (3) = 1
DESC (4) = 1
DESC (5) = it does not matter
DESC (6) = beginning of the descripteur_grandor of zone_affectée (the TOUT: “OUI”)

In this case .LIMA and .NOLI are not allocated (saving of space).

3.2.4 Object
.NOLI

This object is present only if the card relates to late meshs.

It is a vector of K24 of dimension nb_gd_max. En face of izone one finds, if this
zone_affectée is a list of late meshs, the name of the ligrel or are defined these meshs.

izone
--->
nom_ligrel

3.2.5 Object
.LIMA

It is a numbered contiguous family of vectors of entireties.

.LIMA (izone)
:
V (I)

V contains (if the code of zone_affectée the izone is worth 3 or ­ 3) the numbers of the meshs constituting
zone_affectée.

The numbers of meshs of the list are numbers relating to the ligrel referred in
.NOLI (izone).

if a number of mesh is > 0, it is a mesh of the grid associated with the card.
if a number of mesh is < 0, it is a mesh of additional ligrel.

3.2.6 Object
.VALE

It is a vector of scalars dimensioned with nb_gd_max * nb_cmp_max, if nb_cmp_max is it
a number of CMPS in the catalog for the size associated with the card.

The size associated with zone_affectée the izone starts in .VALE with the index:



izone --> .VALE ((izone-1) * nb_cmp_max + 1)

Caution:

Only the affected CMPS are stored (consecutively and in the order of the catalog) in
object .VALE
For example, for a card of DEPL_R, if the 1ère zone is affected by: (DX=2. and DZ=4.)
.VALE (1) = 2.
.VALE (2) = 4.
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
7/16

3.3 SD
cham_no

3.3.1 Object
.DESC

Field “DOCU” of object .DESC contains: “CHNO”

DESC (1)
Gd (size associated with the cham_no)
DESC (2)
num
DESC (3),…,
descripteur_grandor of the size if
DESC (3 + n_ec - 1)
num is < 0

If num is negative num = “-” nb_cmp

If num is < 0, its absolute value is the number of CMP of the size for TOUS the nodes of
grid (e.g. the field of geometry). In this case the field relates to only the nodes of
grid (not of late nodes) and one suppose that all the nodes have the same representation of
size.

The descripteur_grandor is then stored DESC (3) with DESC (3 + n_ec - 1).
If num is positive, there is then a structure of the prof_chno type referred in object .REFE.

3.3.2 Object
.REFE

REFE (1) name of the MAILLAGE.
REFE (2) name of a prof_chno [D4.06.07] (if DESC (2) >0)
The SD prof_chno describes the CMPS carried by the nodes of the cham_no.
It is used to point in the object .VALE which contains the values.
If FETI, it acts of the prof_chno of the total field, then for each
under-field, it is of course that local with the under-field.
REFE (3)
If solvor FETI: “FETI”
REFE (4)
If solvor FETI:
name of the structure of data of the type SD_FETI (information coming
NUME_DDL.NUME.REFN (4)).

3.3.3 Object
.VALE

This object contains the “values” of the field to the nodes on the nodes of the grid or the nodes
late of the ligrel used in the prof_chno.

The description of object .VALE if the cham_no is not with “constant representation” is
made in [D4.06.07 §3].

If the cham_no is with “constant representation”:

That is to say
nb_no:
the number of nodes of the grid.

ncmp:
the number of CMPS carried by all the nodes of the grid.

LONG (.VALE) = nb_no * ncmp

VALE (1)
value of 1ère CMP carried by the 1st node
VALE (2)
value of the 2nd CMP carried by the 1st node


VALE (ncmp)
value of the last CMP carried by the 1st node
VALE (ncmp+1)
value of 1ère CMP carried by the 2nd node



The command of the CMPS is that of the catalog of the sizes (object “&CATA.GD.NOMGD” [D4.04.01]).
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
8/16

3.3.4 Object
.FETC

S V Indirect K24 (*) DIM = nbsd (a number of under-fields)
(*): CHAM_NO not FETI
(i.e. FETC (K) .REFE (3) “FETI” and for the moment imposed on “MULT_FRONT”)
Optional Objet JEVEUX (present only for total field if FETI, then absent for each
under-field) listing specific SD CHAM_NO to each under-field.

3.3.5 Complements for FETI

In the case of method FETI, the structure of data CHAM_NO is recursive on two levels. One
“Main” SD CHAM_NO, concerning the total field (.REFE (3) = ' FETI'), comprises the objects
Usual JEVEUX supplemented by a specific object of the decomposition of fields: the .FETC.
It is in fact a pointer indicating SD CHAM_NO “slaves” associated with each under-fields
buildings. These local SD CHAM_NO are consisted of same objects JEVEUX as a CHAM_NO
usual mono-field.
For the moment, the implementation of FETI in Code_Aster presupposes that these under-fields use
all the same linear solvor mono-field (.REFE (3) = `MULT_FRONT' imposed by defect). This
homogeneity facilitates handling of the vectors solution and second members local.

under-field 1

SD CHAM_NO

“main”

(total field)


.FETC

under-field I
SD

CHAM_NO
“slaves”

(under-fields)



Appear 3.3.5-a: Structure of recursive data CHAM_NO if solvor FETI

In the case of a solvor FETI, one arbitrarily chose the following rule of naming for the SD
CHAM_NO slave related to a under-field J:
nom_de_la_SD_CHAM_NO_maître (1:11)//“F”//chaîne_de_caractères_libre (2:8)
The character string is generated by a call to routine GCNCON.

Example: The series of following commands (resulting from case-test FETI002A)

BEGINNING (CODE=_F (NAME = ' FETI002A', NIV_PUB_WEB=' INTRANET'))
MATER=DEFI_MATERIAU (
ELAS=_F (E = 180000., NAKED = 0.30, ALPHA = 15.E-6, RHO = 7700.,))
MAIL=LIRE_MAILLAGE ()
MODM=AFFE_MODELE (MAILLAGE=MAIL,
AFFE= (_F (GROUP_MA = “STRU”, PHENOMENON = “MECHANICAL”,
MODELING = “D_PLAN”,),
_F (GROUP_MA = “POISCR”,
MODELING = “2D_DIS_T', PHENOMENE=' MECANIQUE'),
_F (GROUP_MA = “POIACR”,
MODELING = “2D_DIS_T', PHENOMENE=' MECANIQUE'),))
CHCAR=AFFE_CARA_ELEM (MODELE=MODM,
DISCRET= (
_F (GROUP_MA=' POIACR', CARA = “K_T_N', VALE = (0., 0., 0.,),),
_F (GROUP_MA=' POISCR', CARA = “K_T_N', VALE =
(180000., 0., 180000.,),),))
CHMAT=AFFE_MATERIAU (MAILLAGE=MAIL,
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
9/16

AFFE= (_F (TOUT=' OUI', MATER=MATER, TEMP_REF=20.,),))
CH1=AFFE_CHAR_MECA (MODELE=MODM,
PRES_REP= (_F (GROUP_MA=' DDLI', CLOSE = 1000.,),
_F (GROUP_MA=' DDLI1', CLOSE = 2000.,),),)
SDFETI=DEFI_PART_OPS (NOM=' SD',
MODELE=MODM,
INFO=1,
DEFI= (_F (GROUP_MA = “FETI1”, GROUP_MA_BORD = “B1”,),
_F (GROUP_MA = “FETI2”, GROUP_MA_BORD = “B2”,),
_F (GROUP_MA = “FETI3”, GROUP_MA_BORD = “B3”,),
_F (GROUP_MA = “FETI4”, GROUP_MA_BORD = “B4”,),),);
RESU=MECA_STATIQUE (MODELE=MODM,
CARA_ELEM=CHCAR,
CHAM_MATER=CHMAT,
SOLVEUR=_F (METHODE=' FETI',
PARTITION=SDFETI),
EXCIT= (_F (CHARGE=CH1,),),)

Built a “main” SD CHAM_NO “&&MESTAT.2NDMBR_ASS”…

====> IMPR_CO OF THE STRUCTURE OF DATA: &&MESTAT.2NDMBR_ASS?????
ATTRIBUT: F CONTENTS: T BASE: > <
A NUMBER Of OBJECTS (OR COLLECTIONS) FIND: 4
================================================================================
IMPRESSION OF THE CONTENTS OF THE OBJECTS FIND:
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >&&MESTAT.2NDMBR_ASS.DESC <
1 - 36 1
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >&&MESTAT.2NDMBR_ASS.FETC <
1 - >&&MESTAT.2.F0000022 <>&&MESTAT.2.F0000026 <
3 - >&&MESTAT.2.F0000028 <>&&MESTAT.2.F0000032 <
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >&&MESTAT.2NDMBR_ASS.REFE <
1 - >MAIL <>RESU .00000.NUME <
3 - >FETI <>SDFETI <
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >&&MESTAT.2NDMBR_ASS.VALE <
1 - 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
6 - 0.00000D+00 0.00000D+00 0.00000D+00 1.50000D+03 1.12500D+03
11 - 1.00000D+03 7.50000D+02 5.00000D+02 3.75000D+02 0.00000D+00
16 - 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
21 - 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
26 - 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
31 - 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 1.00000D+03
36 - 7.50000D+02 2.00000D+03 1.50000D+03

and of SD CHAM_NO “slaves” “&&MESTAT.2.F00000…” of type


====> IMPR_CO OF THE STRUCTURE OF DATA: &&MESTAT.2.F0000022?????
ATTRIBUT: F CONTENTS: T BASE: > <
A NUMBER Of OBJECTS (OR COLLECTIONS) FIND: 3
================================================================================
IMPRESSION OF THE CONTENTS OF THE OBJECTS FIND:
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >&&MESTAT.2.F0000022.DESC <
1 - 36 1
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >&&MESTAT.2.F0000022.REFE <
1 - >MAIL <>RESU .F0000007.NUME <
3 - <
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >&&MESTAT.2.F0000022.VALE <
1 - 0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00 1.00000D+03
6 - 7.50000D+02 1.00000D+03 7.50000D+02 0.00000D+00 0.00000D+00
11 - 0.00000D+00 0.00000D+00 2.00000D+03 1.50000D+03

During an execution in parallel mode MPI, a processor sees itself allotting a certain number of
under-fields (cf objects annex “&FETI.LISTE…” structure of data SD_FETI
[D4.06.21]). “Main” SD CHAM_NO is always built, but its pointer .FETC does not go
to indicate that under-fields concerned with the processor running: .FETC (jk) will be valid K24
that if the jk under-field is in the perimeter of the processor J.
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
10/16

For the processor J

vacuum

SD CHAM_NO
j1 under-field

“main”

(total field)

.FETC

under-field J
SD CHAM_NO “slaves”
2

(under-fields concerned with


the processor J)

Appear 3.3.5-b: Structure of recursive data CHAM_NO if solvor FETI and parallelism MPI

3.4 SD
cham_elem

3.4.1 cases

cham_elem having under-points

The number of points of discretization (node, not of Gauss,…) of a cham_elem on a mesh is
determined a priori by the number of points defined in the catalog of the type_elem associated the mesh
(see .NOLI (1) and .NOLI (2)). For the elements of the type “structure”, one can want to store more
sizes that points defined in the catalog.

During a non-linear calculation on a hull (for example), the integration chosen for the behavior
non-linear requires to store the state of stresses in several points in the thickness: it is necessary
to discretize the thickness of the hull. For that, one will say that each point of Gauss positioned on
surface element (their number is fixed in the catalog of the type_elem), is composed of N
under-points representing the discretization of the normal to the element in this point.

In the same way, a non-linear element of pipe, will be able to discretize its section (circular ring)
by cutting out it in sectors and layers.

On a given element, all the points of discretization have obligatorily the same number of
under-points.

For creating a cham_elem with under-points, it is necessary to say for all the elements the number of
under-points desired. For that, it is necessary to use a cham_elem_s size DCEL_I (argument
DCELZ of routine ALCHML). When one calls the routine of elementary calculations (CALCUL), it
passage of this argument is underground: the cham_elem_s must have the same name as it
cham_elem (OUT) which it is used to dimension.

3.4.2 Case

cham_elem not having under-points

By means of computer, all the cham_elem have under-points. A cham_elem which does not need
this concept is in fact a cham_elem for which each point of discretization has one
under-point; one then confuses the point and his under-point.

3.4.3 Case

cham_elem of size VARI_R

Size VARI_R is the special size reserved to represent a size of which the number
components (CMP) is unspecified on the level of the catalogs of type_elem.

One is useful oneself for example of this size to represent the internal variables of the laws of
behavior, because each law can have a number different from such variables.

In the catalog of the sizes, this size has only one CMP: VARI.
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
11/16

At the time of the creation of a cham_elem_VARI_R, one must say for each element, how much
components will have size VARI_R. Ces components will be called then: “V1”, “V2”,…,
“Vn. For that, one uses the same mechanism as to declare the number of the under-points [§3.4.1]”

3.4.4 Object
.CELK

CELK (1)
name of the ligrel associated the cham_elem.
CELK (2)
name of the option of calculation associated with the cham_elem.
CELK (3)
/“ELNO”: CHAM_ELEM with the nodes
/“ELGA”: CHAM_ELEM at the points of Gauss
/“ELEM”: Constant CHAM_ELEM by element
CELK (4)
nume_couche: number of the layer (tallied on the left) for a calculated CHAM_ELEM
on a layer of element of hull.
CELK (5)
nive_couche: position in the layer for a CHAM_ELEM calculated on one
lay down element of hull:
/“INF”/“MOY”/“SUP”
CELK (6)
Name of the parameter of the option associated with the cham_elem (CELK (2))

3.4.5 Object
.CELD

.CELD: vector of entireties. Field “DOCU” of object .CELD contains: “CHML”

This object is the descriptor of the object containing the values of the cham_elem (.CELV).

CELD (1)
Gd:
size associated with the cham_elem.
CELD (2)
nb_gr: numbers grel associated ligrel.
CELD (3) mxsp
:
maximum of the number of under-points for
elements of the ligrel
CELD (4) mxcmp
:
maximum of the number of CMP (size VARI_R)
for the elements of the ligrel.
0 if size different of VARI_R
CELD (4+1) debu_grel_1:
address in .CELD of the beginning of information
concerning the 1st GREL


CELD (4+nb_gr) debu_grel_n:
address in .CELD of the beginning of information
concerning the last GREL

then one stores end to end the description of the field for each GREL of the ligrel

CELD (debu_grel +1)
nel:
element of the GREL numbers
CELD (debu_grel +2)
modelo:
mode_local associated the local field
(or 0 if non-existent field on the GREL)
CELD (debu_grel +3)
lgcata:
length of the local field within sight of the catalog. it is
with saying without taking account of the under-points and of
multiple components of VARI_R.
(or 0 if non-existent field on the GREL)
CELD (debu_grel +4)
lggrel:
length total of the segment containing all them
values of the field on the GREL
then
C iel = 1, nel

CELD (debu_grel +4 +4 * (iel-1) +1)
nbsp: sous_points for the element numbers
iel
CELD (debu_grel +4 +4 * (iel-1) +2)
ncdyn: a number of CMP (VARI_R) for
the element iel
CELD (debu_grel +4 +4 * (iel-1) +3)
lgchel: a number of values of the local field
for the element iel
lgchel= lgcata * nbsp * ncdyn
CELD (debu_grel +4 +4 * (iel-1) +4)
adiel: address in object .CELV of
1ere value of the element iel
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
12/16

3.4.6 Object
.CELV

It is a vector containing end to end the values of the local fields of the various elements.

The description of the segment concerning an element is given by the definite mode_local for
type_elem. This description is éventuellemnt supplemented by the data of the number of under-points
and of the number of CMPS (VARI_R).

For a field of size (different from VARI_R) not having under-points, all the elements of one
even grel having same the type_elem, their local fields have all the same length and the same one
organization.

One moves in object .CELV thanks to object .CELD.

One can describe the organization of object .CELV by these definitions:

CELV (ligrel) =
continuation of CELV (GREL) put end to end
CELV (GREL) =
continuation of CELV (element) put end to end
CELV (element) =
continuation of CELV (not) put end to end
CELV (not) =
continuation of CELV (under-point) put end to end
CELV (under-point) =
continuation of CMP (scalar) put end to end

3.4.7 Some “formulas” frequently used in the programming

3.4.7.1 LIGREL

number of the size associated with the CHAM_ELEM:
NUMGD=ZI (JCELD-1+1)
a number of GREL of the LIGREL associated with the CHAM_ELEM:
NGREL=ZI (JCELD-1+2)
a maximum number. under-points of the elements of a CHAM_ELEM: (perhaps = 0)
MXSP=ZI (JCELD-1+3)
a maximum number. CMPS (VARI_R) of the elements of a CHAM_ELEM:
(/=0 <=> VARI_R)
MXCDY=ZI (JCELD-1+4)

3.4.7.2 GREL: IGR

a number of elements of a GREL (IGR):
NEL=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +1)

mode_local of a GREL (IGR):
IMOLO=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +2)

cumulated length of the elements of a GREL (IGR):
LGGREL=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +4)

address (in .CELV) beginning of GREL IGR:
DEBUGR=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +8)
then: ZR (JCELV - 1 +DEBUGR) =…

length (CATALOG) of an element of a GREL (IGR):
LGCATA=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +3)
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
13/16

3.4.7.3 Element
IEL of GREL IGR

address (in .CELV) beginning of element IEL of GREL IGR:
ADIEL=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +4 +4 * (IEL-1) +4)
then: ZR (JCELV - 1 +ADIEL) =…

length of element IEL of GREL IGR:
LGIEL=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +4 +4 * (IEL-1) +3)

a number of under-points of element IEL of GREL IGR:
returns: 0 if there are no under-points
NBSPT=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +4 +4 * (IEL-1) +1)

a number of CMPS (VARI_R) of element IEL of GREL IGR:
returns: 0 if the size is not VARI_R
NCDYN=ZI (JCELD-1+ZI (JCELD-1+4+IGR) +4 +4 * (IEL-1) +2)

3.5 SD
resuelem

3.5.1 Object
.NOLI

NOLI (1)
name of the ligrel associated the resuelem.
NOLI (2)
name of the option of calculation having given birth to the resuelem.

3.5.2 Object
.DESC

Field “DOCU” of object .DESC contains: “RESL”

DESC (1)
Gd (size associated with the resuelem)
DESC (2)
nb_gr (a number of GREL of .NOLI (1))
DESC (2+1)
mode_1er_gr (mode_local of the local fields of the first
GREL)


DESC (2+nb_gr)
mode_der_gr (mode_local of the last GREL)

3.5.3 Object
.RESL

It is a dispersed collection of vectors of R (or C or K8,…).
The access to this collection is done by the number of GREL: .RESL (IGREL) - > V

If ncmpel is the number of scalars representing the local field for an element of the GREL,

V (1,…, ncmpel)
: values of the field on the 1st element of the GREL
V (ncmpel+1,…, 2 * ncmpel)
: values of the field on the 2nd element of the GREL

Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
14/16

4 Examples

4.1 SD
card

CARD = CREA_CHAMP (TYPE_CHAMP: “CART_META_R”, OPERATION: “AFFE”,
MAILLAGE: MAILLA
AFFE: (TOUT: “OUI”
NOM_CMP: (“ZF” “ZP” “ZB” “ZM” “P”)
VALE: (0.0.0.0.0.0 0.0.0.0))
AFFE: (GROUP_MA: GM2
NOM_CMP: (“ZF” “ZP”)
VALE: (0.2.0.3))
AFFE: (MAILLE: T2
NOM_CMP: (“ZP” “ZM” “P”)
VALE: (0.4.0.5.0.6))
);
IMPR_CO (CO:CARTE);

Note:

The contents of the objects printed below can surprise: it does not correspond to what
is known as with [§3.2]. Indeed this card “was finished” by a call to routine TECART this
optional the purpose of action is to allow a “fine” overload of the values affected in
order CREA_CHAMP (Cf. [D6.10.01]).

SEGMENT IMPRESSION OF VALUES >CARTE .DESC <
1 - 64 3 3 3 1
6 - 3 2 3 3 254
11 - 254 254
--------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: CARTE .LIMA
OBJECT IMPRESSION OF COLLECTION CONTIGUE>CARTE .LIMA< OC: 1
1 - 1 3
OBJECT IMPRESSION OF COLLECTION CONTIGUE>CARTE .LIMA< OC: 2
1 - 2
OBJECT IMPRESSION OF COLLECTION CONTIGUE>CARTE .LIMA< OC: 3
1 - 4 5
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >CARTE .NOLI <
1 - > <> <
3 - > <
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >CARTE .NOMA <
1 - >MAILLA <
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >CARTE .VALE <
1 - 2.00000E-01 3.00000E-01 0.00000E+00 0.00000E+00 0.00000E+00
6 - 0.00000E+00 0.00000E+00 2.00000E-01 4.00000E-01 0.00000E+00
11 - 5.00000E-01 0.00000E+00 0.00000E+00 6.00000E-01 0.00000E+00
16 - 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
21 - 0.00000E+00

4.2 SD
cham_no

cham_no = CREA_CHAMP (MAILLAGE: netted, TYPE_CHAMP: “NOEU_DEPL_R”,
OPERATION: “AFFE”,
AFFE:(GROUP_NO:gn1
nom_cmp: “DX” VALE_R: 1.0)
AFFE:(NOEUD:(N2, n7)
NOM_CMP: (“DX”, “DZ”) vale_r: (2. , 4.) )
);
IMPR_CO (CO:cham_no);

SEGMENT IMPRESSION OF VALUES >CHAM_NO. DESC <
1 - 32 6
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >CHAM_NO. REFE <
1 - >MAILLA <>cham_no <
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >CHAM_NO. VALE <
1 - 2.00000E+00 4.00000E+00 1.00000E+00 1.00000E+00 2.00000E+00
6 - 4.00000E+00

Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
15/16

4.3 SD
cham_elem

FLUXN=CALC_CHAM_ELEM (MODELE=MOTH, TEMP=T2,
CHAM_MATER=CHMAT, OPTION=' FLUX_ELNO_TEMP')

IMPR_CO (CO=FLUXN)

--------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >FLUXN .CELD <
>>>>>
1 - 47 2 1 0 6
6 - 18 2 6520 8 16
11 - 1 0 8 1 1
16 - 0 8 9 3 6857
21 - 6 18 1 0 6
26 - 17 1 0 6 23
31 - 1 0 6 29

SEGMENT IMPRESSION OF VALUES >FLUXN .CELV <
>>>>>
1 - - 8.78595D-12 - 4.27645D-12 - 8.78595D-12 - 4.08919D-12 6.96696D-12
6 - - 4.07954D-12 6.96696D-12 - 4.77838D-12 4.96957D-12 - 4.15161D-12
11 - 4.96957D-12 - 4.26679D-12 - 1.33159D-12 - 4.54543D-12 - 1.33159D-12
16 - - 3.57760D-12 7.27596D-12 - 8.41283D-12 7.27596D-12 - 8.41283D-12
21 - 7.27596D-12 - 8.41283D-12 0.00000D+00 - 8.86757D-12 0.00000D+00
26 - - 8.86757D-12 0.00000D+00 - 8.86757D-12 0.00000D+00 - 8.86757D-12
31 - 0.00000D+00 - 8.86757D-12 0.00000D+00 - 8.86757D-12

SEGMENT IMPRESSION OF VALUES >FLUXN .CELK <
>>>>>
1 - >MOTH .MODELE <>FLUX_ELNO_TEMP <
3 - >ELNO <> <
5 - > <>PFLUX_R
--------------------------------------------------------------------------

4.4 SD
resuelem

CHTH= AFFE_CHAR_THER (MODEL:MODEL TEMP_IMPO:(NOEUD:N8 TEMP:3.4)
SOURCE:(TOUT:“YES” SOUR: 7.) );
VECTEL=CALC_VECT_ELEM (LOAD:CHTH OPTION:“CHAR_THER”);
IMPR_CO (CO:VECTEL);

The resuelem is extracted from VECT_ELEM VECTEL: “VECTEL .VE001”

SEGMENT IMPRESSION OF VALUES >VECTEL .VE001 .DESC <
1 - 105 3 5781 5648 0
--------------------------------------------------------------------------------
SEGMENT IMPRESSION OF VALUES >VECTEL .VE001 .NOLI <
1 - >MODEL .MODELE <>CHAR_THER_SOUR_R <
--------------------------------------------------------------------------------
IMPRESSION OF THE COLLECTION: VECTEL .VE001 .RESL
OBJECT IMPRESSION OF COLLECTION >VECTEL .VE001 .RESL< OC: 1
1 - 3.50000E+00 3.50000E+00 3.50000E+00 4.66667E+00 4.66667E+00
6 - 4.66667E+00
OBJECT IMPRESSION OF COLLECTION >VECTEL .VE001 .RESL< OC: 2
1 - 4.08333E+00 4.66667E+00 4.66667E+00 4.08333E+00

Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Code_Aster ®
Version
8.1

Titrate:
Structure of Données CARTE, CHAM_NO, CHAM_ELEM and RESUELEM Date
:
06/10/05
Author (S):
J. PELLET, O.BOITEAU
Key: D4.06.05-D Page:
16/16

Intentionally white left page.
Handbook of Descriptif Informatique
D4.06 booklet: Structures related to the finite elements
HT-66/05/003/A

Outline document