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Abstract

This paper describes the finite volume method implemented in
Code_Saturne®, Electricité de France general-purpose computational fluid
dynamic code for laminar and turbulent flows in complex two- and three-
dimensional geometries. The code is used for industrial applications
and research activities in several fields related to energy production (nu-
clear power thermal-hydraulics, gas and coal combustion, turbomachinery,
heating, ventilation and air conditioning...).

The set of equations considered consists of the Navier-Stokes equations
for incompressible flows completed with equations for turbulence mod-
elling (eddy-viscosity model and second moment closure) and for addi-
tional scalars (temperature, enthalpy, concentration of species, ...). The
time-marching scheme is based on a prediction of velocity followed by
a pressure correction step. Equations for turbulence and scalars are re-
solved separately afterwards. The discretization in space is based on the
fully conservative, unstructured finite volume framework, with a fully co-
located arrangement for all variables. Specific effort has been put into the
computation of gradients at cell centres.

Industrial applications illustrate important aspects of physical modelling
such as turbulence (using Reynolds-Averaged Navier-Stokes equations or
Large Eddy Simulation), combustion, conjugate heat transfer (coupled
with the thermal code SYRTHES ) and fluid-particle coupling with a
lagrangian approach. These examples also demonstrate the capability of
the code to tackle a large variety of meshes and cell geometries, including
hybrid meshes with arbitrary interfaces.

Key words : Navier-Stokes, finite volume, unstructured mesh,
co-located arrangement, gradient calculation, turbulent flows, incom-
pressible flows, Reynolds-Averaged Navier-Stokes equations, Large Eddy
Simulation, parallel computing, nuclear power, gas and coal combustion,
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1 Introduction

Over the past decade, Computational Fluid Dynamics (C.F.D.) has become an in-
creasingly standard industrial simulation tool for design, performance improvement
and analysis of operating conditions for environmental and safety reasons. Such an
evolution has been made possible by factors such as the massive increase in com-
puter capacities and the improvement of in-house and commercial C.F.D. software.

At Electricité de France (EDF), development of in-house codes has been a resolute
strategic choice for more than fifteen years. In particular, for problems requiring lo-
cal three-dimensional analyses with refined flow modelling, specific effort had been
put into in-house “general purpose C.F.D. codes” such as N3S-EF [CHA 92| and
ESTET-ASTRID [MAT 92]. In 1996, EDF initiated a program to unify the po-
tentialities of these two products within the same software, Code_Saturne®. Indeed,
N3S-EF, an unstructured finite element code, could tackle complex geometries, while
ESTET-ASTRID, a structured finite volume code, provided refined physical mod-
elling. In addition to making available to users the most advanced capabilities of
these two complementary products, it was also a convenient way to benefit from the
recent advances in design, software development, programming and meshing tech-
niques, numerical schemes and physical modelling.

Code_Saturne is well suited for two- and three-dimensional calculations of steady or
transient single-phase, incompressible, laminar or turbulent flows. It supports two
Reynolds-Averaged Navier-Stokes (R.A.N.S.) models: a standard k — e and a second
moment closure [LRR 75]. The flow-solver is based on a finite volume approach, with
a fully co-located arrangement for all variables. The time discretization is based on
a predictor-corrector scheme for the Navier-Stokes equations. An important asset
of Code_Saturne relies in its ability to deal with any kind of mesh (hybrid, contain-
ing arbitrary interfaces' and any type of cell). Data management is ensured by an
?Envelope module” that also allows communications with different mesh-generators,
post-processors and other software when coupling is required (for example, conju-
gate heat transfer is routine calculation through coupling with the thermal code
SYRTHES [PEN 97] [RUP 99)).

Code_Saturne is developed by EDF under quality assurance and is used at EDF in
various industrial fields such as nuclear applications, process engineering (plasma,
electric arcs, glass furnace), aeraulics (heating, ventilation and air conditioning, pol-
lutant dispersion, contamination in medical premises...), and combustion (gas and
coal furnaces). Code_Saturne 1.0 has been validated and released early in 2001. Ef-
forts were then invested during one year into a qualification? process for nuclear

» Arbitrary interfaces” refers to meshes in which two neighbouring control volumes do not nec-
essarily share a whole face and may not have common edges or vertices.

2«“Qualification” is employed here in the sense of validation on a narrow and specific range of real-
life industrial applications with attention devoted to the method employed to conduct studies, to the
quality of the results obtained and to their limitations with respect to the anticipated engineering
use.
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single-phase thermal-hydraulics. The next release of Code_Saturne is due by 2004.

This article presents the continuous equations, their discretization in time and space
and the associated boundary conditions. An overview of several studies is proposed
to illustrate some industrial applications that are being carried out with the code
(ventilation study in hospitals, slagging in a coal furnace, pollutant prediction in
a gas turbine, qualification for thermal schock in a pressure water reactor vessel,
Large Eddy Simulation applied to thermal fatigue). Eventually, perspectives for
future development are briefly put forward.

2 Nomenclature

2.1 Preliminary remarks

Let u and v be vectors and ¢ a second order tensor. Their respective components
are denoted u;, v; and 0. In this paper, the following notations will be used:

Bu,-
dul.. =
. i 1)
d ) - 7Y (
aviel], = G
ueuvl,, = wv;
With these notations, we have:
) O0(u; v;)
[diviu®v)]; = —53—
¢ a.’L'j

The cross product of vectors v and v is noted u X v.

2.2 Subscripts

1,7,k refers either to vector/tensor components or to a cell number

2.3 Superscripts

t transpose
(n) n time step

2.4 List of symbols

Cp specific heat

Id identity matrix

Neibrs(i) set of cells j sharing at least an interface (7, 7) with cell ¢
P pressure

R Reynolds stress tensor

R;; ij"™ component for R
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Sij surface of interface (¢, 7) common to cells ¢ and j (positive value)

S source term related to transported quantity ¢

a scalar quantity

a; discrete value of a associated with cell 4

k turbulent kinetic energy

Ny unit vector normal to interface (i,j) common to cells 7 and j
and oriented from cell i towards cell j

t time

U velocity vector

U ith component for u

r mass source term

Q; volume of cell ¢ (of measure [€;])

0sj Kronecker delta

€ dissipation rate of turbulent kinetic energy

A thermal conductivity

1 dynamic molecular viscosity

v kinematic molecular viscosity

p density

o molecular Prandtl-Schmidt number

a stress tensor

o turbulent Prandtl-Schmidt number

T viscous stress tensor

¢ Reynolds average of quantity ¢

é Favre average of quantity ¢

¢ fluctuating part related to the Reynolds decomposition of ¢

@" fluctuating part related to the Favre decomposition of ¢

3 Continuous equations

3.1 Conservation laws

We consider the following system of continuous equations for mass and momentum
[FER 99]:

op .. _

o +div(pu) =T

5 (2)
a(p@) +div(pu ® u) = div(g) + S,

In the above equations (2), p is the fluid density and u the velocity. T and S,
represent source terms (S, also includes the momentum source issuing from the
mass source term I'). g stands for the stress tensor, containing the effect of pressure
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P, and viscous stress 7. Assuming ¢ is a symmetric tensor, we have, for Newtonian
fluids (to which we restrict the present considerations):

g=1-PL

with 7=2u D —X"tr(D)L (3)
1 t
and D = (grad u + “grad u)

2
In equation (3), p represents the dynamic molecular viscosity and AV = §M is the

bulk viscosity. Id is the identity matrix.

In addition to mass and momentum equations, we consider the following equation
for any intensive scalar property a:

0 . .

5;(P0) +div ((pw) @) = div(Z,) + Sa (4)
where J, is the vector flux of scalar, which, using the Fick-Fourier law can usually
be expressed as:

J, = Kqgrad a (5)

with K, standing for the molecular diffusivity pertaining to a.

3.2 Favre averaged equations

In case of turbulence, the equations have to be averaged (ensemble average). For a
quantity ¢, the Favre average [FAV 76] will be denoted ¢ and the Reynolds average
¢. Fluctuating parts will be denoted ¢” and ¢’ respectively. We have the following
relation:

p$ = Do (6)

The Favre decomposition of variables in mean and fluctuating parts is applied to
velocity u and scalars a. With ¢ standing for any of these variables, we have:

p=¢+¢" (7)
the Reynolds decomposition is applied to density and pressure:
P=P+P and p=p+p (8)

With these notations, the statistical approach to turbulence applied to (2) and (4)
produces equations formally identical to their parents, except for the appearance of

the turbulence correlations pR = pu” ® u" = pu” ® u” and ﬁ@ = pa'"u. With
constant molecular fluid properties (K, p) and omitting the overline for brevity,
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except for turbulent scalar flux, the following system is obtained:

( Op
E‘l‘dlv( )ZF

$ 2 (pu) + div(pu @) = ~grad (P) +divlz — pB) + 8, (9

gt(/’a) +div ((pu) a) = div(J, — pa"u") + Sa

\

The mass equation is used to exhibit the time derivative of the variables u and a.
With ¢ standing for any of these variables, we have:

0 (9(}5
a(ﬂ(b) = + <i5
(10)
345 .
-T
PSP — Bldiv(ow) - T)
The second term on the right-hand side can be included in Sy as:
Siy = Sy + ¢(div(pu) — T) (11)
System (9) becomes:
( ap
E + le( ) T
ou . y
| Po Tdiv(pu®u) = —grad (P) +div(z — pR) + 5, (12)
Oa . 1
| g +div((ew) a) = div(J, — pa"u”) + S,

3.3 Turbulence modelling

To close system (12), turbulent correlations need to be modelled. The first model
that has been implemented in Code_Saturne is the “standard” high-Reynolds-number
k — ¢ model of Launder and Spalding [LAU 74]. Nevertheless, no eddy-viscosity
model, however elaborate, can account for anisotropy of turbulence, which might
prove of major importance in many applications including curvature, density strati-
fication or swirl. For those types of flows, a second moment closure (Reynolds Stress
Model) can yield decisive benefits: we have adopted the proposal by Launder, Reece
and Rodi [LRR 75].

The continuous equations of the eddy-viscosity model and of the second moment
closure implemented in Code_Saturne are simply recalled hereafter (equations (17)
and (18)). Both models are operated with log-law-based wall functions. Details can
be found in the appendix (section 11).
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3.4 Large Eddy Simulation

Apart from the methods previously presented, to which one refers to as Reynolds
Average Navier-Stokes methods (R.A.N.S. methods), Code_Saturne may also deal
with turbulent flows using Large Eddy Simulation (L.E.S.) [LES 97], [POP 00]. The
instantaneous Navier-Stokes equations are not averaged anymore, but are spatially
filtered and therefore represent only the larger scales of the turbulent motion. As a
result, the dissipation due to the smaller scales has to be modelled. This is achieved
using a subgrid viscosity ¢, in a similar way as for the turbulent viscosity of the k—¢
model, but with the essential difference that, in the latter approach, y; represents the
turbulent dissipation over the whole spectrum of the fluctuating movement, whereas
the L.E.S. subgrid viscosity only accounts for the dissipation due to the non-resolved
scales. Figure 1 shows the graph of a common energy spectrum for Homogeneous
Isotropic Turbulence, separating the simulated zone (explicitly calculated by solving
the 3D instantaneous filtered equations) and the zone modelled through a subgrid
viscosity.

simmulated

% modelled
E(k)
production B

<—\l— VISCOUS Zone

k

inertial zone

Figure 1: Graph of a common energy spectrum for Homogeneous Isotropic Turbu-
lence: resolved and modelled zones in L.E.S.

One of the key features in L.E.S. is the determination of the subgrid viscosity pu;.
The Smagorinsky model provides a basic approach:

Mt = p(CSA)Q\/QDijDij (13)

where C; is a constant (0.18 for Homogeneous Isotropic Turbulence), A is the length
scale of the filter (usually A = 2(|€2|)'/3 where || is the volume of the cell). More
advanced models for y; are also available in Code_Saturne (so-called “dynamic mod-
els”, that allow an automatic computation of a local value for Cs).

Specific algorithms have also been implemented in Code_Saturne to reach the numer-
ical accuracy needed for L.E.S. computations.
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3.5 Complete set of continuous equations

Finally, equations for mass, momentum and scalar read:

r % +div(pu) =T (14.a)
$ pz—% + div(pu ® u) = —grad (P) + div(z — pR) + S, (14.b)
| o5+ div (w) o) = div ((Ka + L )gra ) s, (1.

The present considerations are restricted to ”incompressible flows”, defined as flows
for which it is possible to drop the time derivative in the mass equation (14.a) which
is then replaced by:

div(pu) =T (15)

Theoretically this restricts the use of the algorithm hereafter to configurations with a
density constant in time and space. Still, by extension, it is also applied to situations
when p is a function of scalars a (such as temperature or species mass fraction) but
does not depend on the pressure. Hence, the general (user-defined) equation of state
will be denoted:

p=Fl(a) (16)
The equations for the two additional variables of the & — € model are:
p%—i—div puk — ([,L—Fﬂ) grad k] = P+G—pe+ S,
Ok
o2y div|pue— (p+ ) gmde| = LS+ -CL)G) (17)
ot O k
g2 )
_pC€2? + SE

The equations for the seven additional variables of the second moment closure
(R.S.M.) read:

¢

OR;; .
7+ div(pu Rij — pgrad Rij) = Pij+Gij + ij + dij — peij + S

P ot
0 ) 18
< p8—i+dW(pu6—ug@6) = ds+CE1%[P+gs] 18)
2
(3
L _pcszz + Sé

The different terms on the right-hand side of equations (17) and (18) are explicited
in the appendix, section 11.

International Journal on Finite Volumes 8



Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible
Flows - Industrial Applications

4 Time discretization

Time discretization of the incompressible Navier-Stokes equations is achieved through
a fractional step scheme ([BRE 91] [CHO 68] [TEM 79]), that can be associated with
the SIMPLEC algorithm [VER 95]. Because of the dependence of the fluid density
on temperature in many problems treated by Code_Saturne, the resolution of the
scalar equations is treated as a third step in the algorithm. For the sake of clarity,
turbulent terms are not taken into account in the algorithm detailed hereafter.

Let us consider time step n, extending from t = (") to ¢ = ¢(n+1),
o $™ denotes the value of a variable ¢(t) at time ¢ = ("),
o At =1+ _ () is the (predetermined or user-defined) time step value.
e The momentum is Q(") = (pu)™.
e The pressure is P(™).
e Additional scalars are denoted a(™ (for example, temperature is T(").

e The density is p™ = F(a(™); it has been predetermined using the equation
of state (16).

e Similarly, the other physical properties of the fluid (dynamic viscosity, con-
ductivity and specific heat) have been calculated beforehand and are treated
explicitly (hence, the (n) superscript referring to time step will be dropped for
these properties).

STEP 1

The first step consists in a prediction of the velocity, solving equation (14.b), with an
explicit pressure gradient. All the source terms (including in particular the viscous
terms depending on g@t u) have been collected into S!,. This composite source
term is written S!, = A+ B.u, so that it can partially be made implicit. To make it
possible to solve the equations for the three components of velocity separately, B is
diagonal and the convective mass flux is treated explicitly. N
The value of any variable ¢ obtained at the end of this first step is denoted ¢*.
Hence, the system finally reads:

( O* — Q)
! p*=pm 19)
a,* = a(n)
\ p* p(”)
STEP 2

The second step consists in a correction of the predicted velocity to take into account
the pressure variation in (14.b). At this stage, the variation of the convection and
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diffusion terms is neglected. To enforce mass conservation, equation (15) is taken
into account. The system is therefore:

Q" — Q" = —Atgrad (P*™ — P¥) (20.a)
div(Q™) =T (20.)
a** = a* (20.c)

In practice, to derive a system for pressure variation, one takes the divergence of
equation (20.a) and uses equation (20.b) to eliminate Q**, which yields the following
Poisson equation: -

div [Atgrad (P™ — P*)] =div(Q*) - T (21)

STEP 3

The third step consists in the resolution of equation (14.c) for additional scalars
(such as temperature for example). Following the same approach as for the velocity,
the source term is written S, as A, + Bga so that it can be partially implicited.
Hence one gets:

( Q(n—H) _ Q**

P(n+1) — p** (22)
(n)a(n—H) — a**

[ P At

1 div [a(n-l—l)Q** _ K,grad a(n—l—l)] _ A((ln) _i_B((Ln)a(n-{—l)

Once this step has been completed, the equation of state (16) can be used to update
density. The other physical properties of the fluid may also be updated and the
whole process can then start again.

When turbulence models are used, the resolution of the turbulent equations takes
place between step 2 and step 3. The equations for the R.S.M. model are treated in
a similar way as the equations for the scalars (equation of convection, diffusion and
source terms). The dependence on the other turbulent variables is fully explicit, so
that each equation is solved independently. For the k — ¢ model however, equations
for £ and ¢ are solved simultaneously in order to partially take into account the
equilibrium between these two variables. Details of the algorithm are provided in
the appendix, section 12.

5 Discretization in space

5.1 Introduction

Discretization in space is achieved using a finite volume approach for a co-located
arrangement of all variables. It is applied to the systems of equations resulting
from the discretization in time presented in section 4. The methodology is detailed
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hereafter for the first two steps (momentum and pressure correction). The extension
to the last one (equations for scalars) is straightforward. Therefore, we only consider
the following equations:
(@ - Q™

o +div |u © Q) — ugrad | = —grad P + AT 4

(n) 4*

[isy

div[At grad (P** — P*)] = div(Q*) - T

| @™ = Q" — Atgrad (P* — P*)

5.2 Definitions

e For the sake of clarity, the present considerations are restricted to cells for
which no face is located on the domain boundary. Figure 2 represents entities
related to face (4,7). Fj; is the centre of face (i,j). The cell “centres” I and
J of neighbouring cells 7 and j are their respective mass centres. The point
O;j is defined as the intersection between the face (i,j) and the straight line
(IJ). I' and J', defined on figure 2, are the points obtained by projecting I
and J orthogonally on the line normal to face (4,) and containing F;;. We

also define coefficient «;; for linear interpolations as a;; = T )

| Faceij

Figure 2: Notations for geometric entities related to face (3, 7).

e For any continuous variable b(z,t), bl(-") represents the mean value computed
over cell i at time ¢ = t("). Hence, assuming the definition of the cells is not

time-dependent, we have:

n 1
B = b(z, t™)dQ (24)

When Taylor expansions are required for higher order schemes, the value for

b

is associated with the cell centre I.

For density, the equation of state (16) is used to determine p(n) =F (a(n)).

% 7
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bl(.,") represents the approximate value of b(z,t) at time t = t™ at point I'.
Assuming (grad (b));, the discrete gradient of variable b, is known at cell 4,

bz(-,") is determined as follows, using a first order approximation:
b = b\ + II' (grad b); (25)

e Assuming grad b exists and is continuous, we define G, as the operator pro-
viding the discrete gradient of b at cell i:

G;(b) = (grad b); (26)

Two methods are available in Code_Saturne to calculate G;(b). They are de-
scribed hereafter, section 5.3.

e We define the operator G, ;;, providing the normal gradient at face (i, j):

by — by

Gn,ij(b) = m

(27)

e We finally define the interpolation operator Z;;, providing values at face (i, j):
1
Lij(b) = aijbi + (1 — )by + 5045 Fyj - ((g@ b); + (grad b)j) (28)

5.3 Gradient calculation
5.3.1 Introduction

We describe here the computation of the discrete gradient of b at cell i: G;(b). Two
methods are available in Code_Saturne: a ”standard” one and a ”least square” one3.
Some numerical experiments related to the order of convergence in space of these

methods are also presented in the appendix, section 13.

5.3.2 Standard method in Code_Saturne
The standard method follows [MUS 96]. Starting from equation:

def 1
grad b), =
( )i 192 Jo,

grad bdQ (29)

Gauss theorem implies:

(grad b), = / bny;ds (30)

JENezbrs

3Users may choose which method shall be used. Once they have made this decision, the selected
method is applied to all discrete gradients that are required at cell centres.
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Assuming n,; is constant across interface (i, ) and denoting:

1
bij=— [ bdS (31)
Sij Jsy;
equation (30) reads:
1
' je Neibrs(i)

A second order approximation is obtained for b;; using the mid-point rule for inte-
gration:

b,’j ~ bFij (33)

Using notations defined on figure 2, a Taylor expansion is then applied to write the
following second order approximation:

br,; = boy; + O Fyj. (grad b) o, + O(|| 0y Fyj||) (34)

With a linear interpolation for bp,; and a mere average for (grad b)oij in equa-
tion (34), system (30) finally reads:

€% | (grad b), =

_ sz; o {az‘jbz‘ + (1 — i) bj + 3045 F; - ((g@ b); + (grad b)j)} - Sijngg (35
JeENerrs(e

In (35), (grad b) 03 has been evaluated as % (grad b), + 3 (grad b) j» & mere average.

Indeed, this is sufficient to obtain a second order approximation for bp; (the lin-
ear interpolation a;; (grad b); + (1 — ;) (grad b); would not increase the order in
space). Moreover, numerical experiments carried out on complex industrial cases
indicated that evaluating (grad b) 0;; 38 % (grad b); + & (grad b) ; seemed to provide
more robustness than using the linear interpolation.

For two-dimensional problems, on equilateral meshes (and also on triangular meshes
for which the cell centres are the circumcentres), this method degenerates to the
scheme studied in [BCH 00] and applied in [BCH 01] since, in these conditions, one
has Oijﬂj == Q

5.3.3 Least squares method

However, solving system (35) remains costly. Hence, a more direct method has been
implemented. It is based on the least squares approach described in [MUS 96]. As-
suming ||IJ|| # 0, the rationale is to determine the value for (grad b), that minimizes
J?(grad b, grad b), with:

1
J?(grad b,grad b) = ) TEE (bj — b; — (grad b), - LJ)? (36)
jENeibrs(i) '~
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Contrary to system (35), the least squares method does not require solving an im-
plicit set of equations and is therefore much faster.

It is pointed out that if, for a given cell 4, there exist at least three faces (two in two-
dimensional problems) for which the related vectors IJ are linearly independent,
the minimization of (36) has a unique solution.

Moreover, let us consider system (36) on a (two-dimensional) triangular cell ;. Neigh-

bouring cells are denoted j, k and [. We also define the unit vectors m;, = mi
by, — b;
ILP]|
associated cell centres). With these notations, the minimum of 7 (grad b, grad b)

reaches zero under the following condition:

and the scalar quantity g, = (with p standing for j, k or [ and P for the

gj(mg, X my) + ge(my X m;;) + gi(my; X mye) =0 (37)

5.4 Discretization in space of the momentum equation

The momentum equation is integrated over cell ¢ as follows, using the Gauss theorem
for divergence terms and pressure gradient:

Q; * n * n *
%(Qi —QM)+ Y @)y@™ n)ySi;— Y (pgrad ut-n)ySi;
JENeibrs(i) JENeibrs(i)
= —4[Gi(P™) + 2| AT + |94 B uf
(38)
with: . ,
u; = P_* = p(n) (39)

Terms Agn) and é(zn) may require the gradient of any variable ¢. It is evaluated at

cell centres as G;(¢). The method is the same for the pressure gradient G;(P™).

Face values for (Q(™ - n);; (mass flux through face (i, 7)) are obtained directly from
the previous pressure correction step. Their computation is described in the next
section.

Several convection schemes are available for the determination of face values for the
velocity (u*);;. With a first-order donor-cell scheme, we have:

(g*)ij i u %f (Q(n) ﬂ)w >0 (40)

A centred scheme and a second-order linear upwind scheme can also be used: (u*);;
is then determined from (u*);, (u*); and gradients G;(u*) and G;(u*) computed at
cells 7 and j.
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For the diffusion term, (ugrad u* - n);; is defined as follows:

(ngrad w* - n)ij = pij Gn,ij(u”) (41)

for historical reasons, two options have been implemented for the face value of u.
The first one simply relies on a linear interpolation, while the second one ensures
the continuity of the normal flux at interfaces:

ifs
pij = cijpi + (1 —agj)p;  or  pij = P (Zl - P (42)

5.5 Pressure correction
The equation for pressure increment § P = P** — P* is integrated as follows:

At Y (grad (OP)-m)iiSy = Y (@ -m)ySy— |l (43)

JjENeibrs(i) j€Neibrs(i)

The normal gradient on the left-hand side is evaluated as:
(grad (6 P) - n)ij = Gn,ij(6 P) (44)

On the right-hand side, the "Rhie and Chow” interpolation [RHI 84] is used to
compute face values for (Q*-n);;. We first define Q*’P at cell centres as the solution
of the momentum equation without pressure gradient:

QrF =Q + AtGy(P™) (45)
With this notation, we compute (Q* - n);; at interface (4, 7) as:
(@ - n)ij = Tij(Q"F) — AtGn(P™) (46)

Once the equation for pressure increment has been solved, the mass flux through
faces has to be updated to obtain (Q™* - n);;:

(@™ - n)ij = (Q" - n)ij — AtGn;;(6 P) (47)
It is pointed out that this mass flux naturally satisfies the discrete mass equation:
D> (@ n)iSi; = |l (48)
JjENeibrs(i)

It remains unchanged until the next time step (i.e. (Q(”‘H) ‘n)ij = (@™ - n)i;) and
is then used for the momentum equation, as previously stated in section 5.4.

The momentum at cell centres Q;k also needs to be corrected for the next time step.
This is achieved as follows:

Q" =Q; - AtG;(0P) (49)

The momentum then remains unchanged until the next time step (Q (nt+1) — Q**)
Finally, pressure also needs to be corrected for the next time step:

International Journal on Finite Volumes 15



Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible
Flows - Industrial Applications

6 Boundary conditions

6.1 Introduction

We focus here on the description of boundary conditions for the discrete momen-
tum equation (38), for the Poisson equation (43) and for the associated momentum
correction at cell centres (49). The approach described for the momentum equation
can be easily extended to the discrete equation for scalars.

We refer to notations defined on figure 3, n standing for the outwards normal unit
vector at boundary faces. On figure 3, I is the mass centre of cell ¢, F' is the centre
of the boundary face and I’ is the point obtained by projecting I orthogonally on
the line normal to the boundary face and containing F. Variable ¢ denotes any
velocity component or scalar variable except pressure.

>

Figure 3: Geometrical entities related to a boundary face.

In the discrete momentum equation (38), conditions at boundaries essentially have
to be specified for three types of terms:

o div(Q(”) ¢): for these ”convection” terms, the finite volume integration re-

quires a boundary value for (Q(") - n)g;

e div(Kgrad (¢)): for these ”diffusion” terms, a boundary value is necessary for
K(grad (¢) - n) (where K stands for the fluid viscosity u or for the scalar
diffusivity K,);

e Sy: for the ”source” terms depending on grad (¢), a boundary value for ¢
is required to compute the gradient at cell centres. The pressure gradient
appearing on the right-hand side of the momentum equation also falls into
this category of source terms.

To solve the Poisson equation (43) for pressure correction ¢ P, boundary values for
At (grad (0P) - n) (left-hand side) and (Q* - n) (right-hand side) are required. These
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boundary conditions have to be prescribed in a coherent way since the mass flow
rate at the end of the time step will result from the summation of these terms:

Q"' - n=Q" - n— At(grad (5P) - n) (51)

Eventually, to update the momentum at cell centres (equation (49)), a boundary
treatment needs to be prescribed to compute the cell values of the gradient of the
pressure variation.

The boundary treatment for the different terms identified above is detailed hereafer
for inlets, outlets, walls and symmetry planes. At last, a subsection is devoted to a
specific wall boundary condition applied to temperature in conjugate heat transfer
simulations. Considerations related to turbulence modelling (equations (17) and
(18)) have not been included here: details can be found in the appendix, section 14.

6.2 Inlet

Boundary conditions for all discrete terms are built under the following assumptions:

(n+1) (n+1) (n+1)

- inlet quantities ¢y ..~ such as momentum @ .. and scalars ag

scribed as Dirichlet conditions at the beginning of time step n;

are pre-

- pressure gradient normal to inlet (grad (P™*1) . n)ine is given (usually zero,
but an explicit extrapolation of the normal pressure gradient previously ob-
tained in the boundary cell ((grad (P™)); - n) may also be used).

For convection terms, the boundary value for Qgi) = (Q(") : @) ¢ is:

(be@)inlet = (Qi(r?l)et ' ﬂ) Do (52)

For diffusion terms, the boundary value for D} = K(grad (¢*) - n) is:

(D%)intet :KM (53)
¢1ne 7 (I’_F'ﬂ)

For source terms requiring the computation of the gradient of any variable ¢*, the

value ¢("+1)

inlet . 15 used as a boundary face value. For computation of pressure gradi-

ent, a boundary value for pressure P-(ng;l) is obtained from the prescribed value of
(grad (P(+1)) . @)inlet and from the pressure value at the boundary cell ¢ (using a

first order approximation in space).

To solve the Poisson equation for pressure correction, the boundary value for the
quantity At (grad (0P) - n) is set to zero, while (Q* - n) is computed at inlet as

( (n+1) (n+1)

Pintet~ Yinlet . * 1) SO that the final inlet mass flow rate have the expected value.

Finally, the momentum correction at cell centres require the computation of the
cell value for grad (6P). The boundary value for §P is extrapolated (first or-
der approximation in space) from the cell value (6P); under the assumption that
At (grad (0P) - n) = 0 (coherent with the fact that (grad (P("+1) . n). .. has been
used to predict Q).
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6.3 Outlet

Boundary conditions for all discrete terms are build under the following assumptions:
- homogeneous Neumann conditions apply to velocity and scalars;

- a Dirichlet condition Pé:,jl_elt) applies to pressure (pressure is set to zero at an
arbitrary outlet face and the pressure profile across outlet(s) is supposed to

reproduce the pressure obtained upstream at the previous time step).

For convection terms, the mass flow rate (Q(") - M)outlet 1S the value previously com-

puted at outlet as a result of the pressure correction step. Using the homogeneous
Neumann condition for ¢, the boundary value for Qgﬁ) = (Q(”) . ﬂ) ¢* is calculated
at first order in space as:

(Qg}«))outlet = (Q(n) : ﬂ) QZS:(/ (54)

outlet

For diffusion terms, the boundary value for D} = K (grad (¢*) - n) is set to zero.

For source terms requiring the computation of the gradient of any variable ¢, the
boundary value for ¢ is set to ¢y, (first order approximation in space of the ho-
mogeneous Neumann condition). For computation of the pressure gradient in the
momentum equation, the Dirichlet condition for pressure immediately provides a
boundary value.

To solve the Poisson equation for pressure correction, a homogeneous Dirichlet condi-
)

tion is applied to 6 P (since a Dirichlet condition P has been applied to pressure)

outlet
while (Q* - n) is computed as (pgﬁlet ul - n)t.
Finally, the momentum correction at cell centres require the computation of the cell

value for grad (0P). The boundary value for 6P is set to zero.

6.4 Walls and symmetry planes

The present considerations are limited to laminar flows (considerations related to
turbulence can be found in the appendix, section 14). Boundary conditions for all
discrete terms are built under the following assumptions:

- zero mass flow rate normal to the boundary;

- for tangential velocity, the boundary conditions are homogeneous Dirichlet
conditions at walls and homogeneous Neumann conditions at symmetry planes;

- for scalars, Dirichlet conditions may be used (for exemple, in case of a wall
kept at a given temperature) but Neumann conditions can also be applied (for
example at walls where a thermal flux is imposed or at symmetry planes where
the normal gradient is zero);

4 (n+1)
Poutlet

boundary condition on a, a

(n+1)

« . .
cannot be used for (Q* - n) because it is a function of a,, ;.. -

1) . 1
gﬁ:{ez is equal to a§7+ )

Indeed, due to the Neumann

, which will only be calculated later.
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- pressure gradient normal to boundary ((grad (P))p - n) is given (usually
zero, but an explicit extrapolation the value obtained in the boundary cell
((grad (P)); - n) may also be used).

For convection terms, the boundary value for pr’i) = (u(? . n)¢* is simply set to zero.

For diffusion terms, if a Neumann condition applies to variable ¢, it can be used in
a straighforward way to evaluate the boundary value for D} = K(grad (¢*) - n). If
a Dirichlet condition applies, the boundary value for D(’; is computed following the
same approach as for inlets (equation 53).

For source terms requiring the computation of the gradient of any variable ¢, a
boundary face value ¢y, is necessary:

- if a Dirichlet condition is applied to ¢, it provides immediately a value for ¢y;

- for the velocity component normal to the boundary, ¢y, is set to zero (coherent
with the zero mass flux assumption);

- if a Neumann condition applies to ¢, the boundary value is extrapolated from
the boundary cell value using a first order approximation in space. The same
treatment is used for the pressure gradient appearing in the momentum equa-
tion. Hence, if (grad (¢) - n), is provided at the boundary, we have:

¢p = ¢ + I'F (grad (¢) - n), (55)

To solve the Poisson equation for pressure correction, the boundary values for
At (grad (6P) - n) and (Q* - n) are set to zero.

Finally, the momentum correction at cell centres require the computation of the cell
value for grad (6P). The boundary value for §P is obtained from the cell value
under the assumption that At (grad (0P) - n) = 0 using a first order approximation
in space.

6.5 Coupling with thermal code SYRTHES

This section describes the method used to apply a specific Dirichlet condition Ty, to
temperature at solid walls.

Indeed, in many applications, the effect of walls has to be taken into account pre-
cisely, especially with regards to thermal inertia. Therefore, Code_Saturne can be
coupled to the EDF thermal code SYRTHES ([PEN 97|, [RUP 99]) which solves
the temperature in a specified solid domain. SYRTHES relies on a finite element
technique to solve the general heat equation (56) where all properties can be time,
space or temperature dependent.

— =div(ksgrad T) + @, (56)
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T is the temperature, ¢ the time, ®, a volumic source or sink, p and Cp, respectively
the density and the specific heat. ks (a tensor when the material is anisotropic)
designates the conductive behaviour of the medium. Radiation phenomena from
wall to wall can also be taken into account. For optimization reasons, only P1-isoP1
elements have been retained (6 nodes per triangle in 2D, 10 nodes per tetrahedron
in 3D). More details on the possibilities of the finite element code SYRTHES can
be found in [PEN 97], [PEN 98] and [RUP 99|. Like Code_Saturne, SYRTHES has
been checked thoroughly against experimental and analytical test cases.

The thermal coupling between both codes is explicit and is performed every time
step. Let T, be the temperature of the solid at a solid node belonging to the interface
between the fluid and the solid, and T the fluid temperature at the centre of the
fluid cell adjacent to the wall. At time t(®), SYRTHES sends to Code_Saturne the
value of qu,n). Code_Saturne then calculates the local heat exchange coefficient h(™)
(coherent with the temperature difference T}") — qu,")) and sends the information

(h(”),TJSn)) to SYRTHES. Using qu,”) and k(™) Code_Saturne processes another time

step and calculates Tj"*"). In parallel, with 7{" and h(), SYRTHES updates the

qun—l—l)

solid temperature and calculates . The procedure can then go on.

7 Practical use : mesh management

7.1 Introduction

Industrial problems encountered in power generation industry are quite often char-
acterized by a complex geometry that needs to be accounted for in computations.
This prerequisite has been kept in mind from the outset of Code_Saturne project.
It has undoubtedly been one of the reasons that induced the choice for a fully co-
located arrangement (previous experience had shown that staggered arrangements
made the generation of complex grids quite tedious). But above all, it has been the
very motivation for devoting specific attention to geometrical data management.
The ”Envelope” module of Code_Saturne has been developed and continuously en-
riched to serve this purpose. It has become one key asset of the code, allowing for
example:

- the treatment of arbitrary interfaces that facilitates mesh generation without
distorting elements or demanding too many cells;

- the domain partitioning for parallel computing.

A Dbrief illustration is proposed in the following sections.

7.2 Arbitrary interfaces

Since Code_Saturne does not provide any build-in mesh generator, users usually
produce their grids using various commercial software (as I-DEAS, ICEM-CFD or
SIMAIL) that are employed depending on the user’s expertise and on his specific as-
sets. Hence, it is important to be able to import, connect and use grids produced by
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any of these packages without being subjected to stringent constraints at interfaces.
The use of ”arbitrary interfaces” is a possible solution. ” Arbitrary interfaces” refers
to interfaces for which two neighbouring control volumes do not necessarily share a
whole face and may not have common edges or vertices, as illustrated on figure 4.

Finite volume techniques based on face fluxes are quite naturally applicable to poly-
hedral cells with arbitrary interfaces. Indeed, on figure 4, the initial rectangular
cells that have been connected are actually treated as if they had five faces, so that
no modification of the discrete method is required and the basic coding remains
practically unchanged, provided gradients are correctly evaluated.

First sub—face

I~

N

Second sub-face

Figure 4: Sketch of an arbitrary interface.

A more important effort has been put into data management and underlying struc-
tures (specified using object-oriented analysis). The definition of local tolerance
parameters has also been necessary to decide whether vertices needed to be col-
lapsed, edges intersected and faces merged. This task demanded specific attention,
especially because the arbitrary interfaces are not always plane and do not neces-
sarily match perfectly for industrial three-dimensional grids.

The construction of the geometrical data structure is carried out in a pre-processing
phase automatically chained to the flow solver itself. The key idea consists in con-
structing structures that are based on the face-to-cell connectivity. Since a face is
always defined as a surfacic entity that has two neighbouring cells, this technique
makes arbitrary interfaces quite straighforward to deal with. Detailed information
are given in the code manuals [FO1 03] and [FO2 03].

As an illustration, figure 5 shows a computation (second moment closure, parallel)
on a hybrid mesh. It has been generated by connecting ”arbitrarily” to an initial
mesh (consisting of tetrahedra) a simple additional part (prisms) so as to displace
the boundary condition further downstream.

A second example is shown on figure 6. It represents the mesh used for a thermal-
hydraulic nuclear study in the upper plenum of a pressure water reactor. Here, the
use of arbitrary interfaces made cell size and mesh quality control much easier for
the 10 separate parts of the computational domain. It has also been possible to test
different grid refinements for a given part of the mesh without modifing the others.
Eventually, additional flexibility has been provided by the fact that the 10 parts of
the mesh could be generated independently and stored in separate files.
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Domain partitioning (METIS)

Airbitrary interface with 5.00-03
hanging nodes 25603

= e T e B DAt G e A
= —

Figure 5: Helium-CO» injection in COq: second moment closure, hybrid mesh with
arbitrary interfaces, parallel computation. Top-Left: detailed view of the arbitrary
interface. Top-Right: colours identify the 3 sub-domains defined by MeTiS for
parallel computing. Bottom: symmetry plane of the computational domain coloured
by Helium mass fraction.

Figure 6: Upper plenum of a nuclear pressure water reactor (1.4 million cells). Faces
connected to arbitrary interfaces are marked in red and green.
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7.3 Parallel computing

Code_Saturne 1.1 is parallel and runs on distributed memory architectures. In-
deed, industrial applications are more and more memory and CPU-time demanding.
Hence, for a growing number of users, making the best out of PC clusters might be a
way to retain reasonable performance without having access to relatively expensive
supercomputers.

The techniques employed in Code_Saturne rely on a ” Single Program - Multiple Data”
approach. The first step consists in partitioning the mesh. To do so, the cells are
first arranged into separate “sub-domains” (groups of cells) so that each cell belong
to one and only one sub-domain. Each sub-domain is then associated with a unique
process of the parallel virtual machine. For this purpose, the widespread MeTiS
library [KAR 98], is applied to the (cell—+cell) connectivity graph. We found that
the sub-domains generated this way were quite well balanced and provided good
performance.

The sequential algorithm requires minor changes to be parallelized. This task is
achieved by defining “halo” cells to duplicate easily necessary data pertaining to
“neighbouring” processes® as illustrated on figure 7. The communication required
for this purpose is achieved with an MPI library. In particular, data needs to
be exchanged when neighbouring cell values are required (flux calculation, matrix-
product...) or when global quantities are necessary (dot product, minimum and
maximum values...).

Initial domain 1 3 5 7

Halo cell

8 | Sub-domain
on second process

Sub-domain 2 |4
on first process

Data exchange

Figure 7: Sketch of halo structure for a fictitious domain mapped on two processes.
Data fluxes between sub-domains are represented.

More efforts in defining data structures have been required for some specific capabil-
ities such as periodic boundary conditions: figure 8 illustrates a 4-processor parallel
computation of a centrifugal pump (the number of cells has been voluntarily kept
small for this demonstration case).

5 “Neighbouring” processes are defined from the mapping generated at domain partitioning as
processes hosting neighbouring cells.
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Periodic computational domain
Domain partitioning
(4 processes)

- Velocity field on complete physical domain

Figure 8: Centrifugal pump. Left: velocity field on the complete physical domain -
Right: computational domain partitioning generated by MeTiS with periodic bound-
ary conditions.

8 Application examples

8.1 Example of use of Code_Saturne as an open platform

Although the algorithm of Code_Saturne has been derived for incompressible flows,
the code is also used as an open research and development platform for other types
of applications involving numerical systems very different in nature.

For example, work has been carried out on a multidimensional non conservative
method for compressible flows with a second moment closure for turbulence [PAH 00].

Indeed, the standard k — € model suffers limitations for a number of flows, espe-
cially those encountered in turbomachinery applications, which also tend to include
compressibility effects. Second moment closures provide some improvement but ro-
bustness of the algorithm might be limited by realizability conditions and by the
prominant hyperbolic nature of the system.

Within the scope of this work, a simplified second moment closure has been consid-
ered, dropping source terms that were expected to have a stabilizing effect:

( Op . _
ET div(pu) =0
0 .
a(pg)ﬁLdlv(pg@g—l-Pg—FE) =0

X (57)

OF .
N + div (Eu + [PId + Rlu) =0

L BZ” + div (Riju) + NCT =0
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with
au] auz M 13 3 3 7
NCT;j = Rika— + Rk 3 non conservative “production-destruction” term
Tk Tk
1 1
R=pR and E=—+ = R
K = ph an 7_1+2P’Mkuk+2 kk

(58)
With W denoting the conservative m-variables vector (W = (p, pu, E,R)"), C the
m X m matrix related to non conservative terms, system (57) can be written as:

aa_v;/ +div (F(W)) +C(W) - grad (W) = 0 (59)

Non conservative terms are approximated following [BRU 00]:

/ C(W) - grad (W) dQ ~ C(W;) - / grad (W) (60)
Q; Q;

Conservative terms are computed using the Rusanov scheme. It is very easy to im-
plement in a three-dimensional environment [BER 02] and ensures the positivity of
the density. However, it turns out to be quite diffusive, at least more diffusive than
the approximate Godunov scheme denoted VFRoe-ncv [BUF 00] [GAL 02] [GAL 03].

The method used to solve the hyperbolic set of equations introduces a coupling
between turbulence, mass, momentum and energy which provides an enhanced sta-
bility as compared to methods decoupling equations for turbulence, especially for
flows at high turbulence levels in impingement regions or afterbodies, as those often
encountered in turbomachinery. Application to the flow over ascending steps and
around a turbine blade have been carried out to illustrate the method.

More details can be found in the appendix, section 15.

8.2 The Euler/Lagrange approach to turbulent polydispersed two-
phase flows

8.2.1 Introduction

Two-phase flows are ubiquitous in many industrial processes or environmental con-
cerns. A very important regime of two-phase flows is characterized by the presence
of one phase, either solid, liquid or vapour, as separate inclusions embedded in the
other phase. These flows are called dispersed turbulent two-phase flows and the
two phases are referred to as the dispersed and the continuous phase respectively.
The dispersed regime is always met when the dispersed phase is made up by solid
particles (solid particles in a gas or a liquid turbulent flow). It is often found for
liquid dispersed as separate droplets in a gas flow (sprays for example) or for two
immiscible liquids.

In the Euler/Lagrange approach, the dispersed phase is simulated by tracking a
large number of representative particules through the previously computed flow field
[MIN 01] [MIP 01]. The objective is to follow the individual and instantaneous
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history of each particle present in the carrying flow. However, the history of a given
particle is a restrictive information, and generally one wishes to obtain data on the
whole of the particle cloud and thus of the dispersed phase; these information are
determined by statistical average on the entire or on a part of the particle cloud.
The applicability domain of the Euler/Lagrange approach is wide. However, there
is a growing interest in the particle deposit thematic. Therefore, in this section, we
focus on ash deposit in an industrial pulverized coal furnace, in the scope of power
generation industry.

8.2.2 Pulverized coal furnace slagging

Ash deposit in Q600-type pulverized coal-fired boilers leads in particular to lower
efficiency. It is due to deposit of coal particles on shell plates and exchangers. Two
types of ash deposits are observed, depending on physical and chemical mechanisms:
“slagging” occurs in the radiative zone of the boiler, (i.e. the burner region and the
hopper), while “fouling” occurs in the convective zone, (i.e. essentially at exchanger
level).

In the present study, only slagging is investigated [DAL 01]. Indeed, it was beyond
reach to represent with sufficient refinement the exchangers, the burners and the
burner region within the same three-dimensional calculation. Moreover, deposit due
to inertial impact is the only factor taken into account (phenomena such as ther-
mophoresis are neglected).

Calculation with Code_Saturne proceeds in two stages. The first one consists in car-
rying out a simulation of the burner region with an Eulerian approach applied to the
equations of the mixture of gas and particles (homogeneous approach). Temperature
and flowfield obtained by this way define the carrying phase into which pulverized
coal particles are injected and tracked individually with a high accuracy Lagrangian
approach (figure 9).

The Lagrangian approach takes into account wall-interactions. Particles following
trajectories that lead to a wall become potential candidates to slagging. When a
particle collides with the wall, its probability for remaining attached depends, among
other things, on the particle speed and angle of incidence, on its viscosity, temper-
ature, size and surface tension as well as on the surface condition of the existing
deposit on the wall.

Figure 10 represents the distribution of the slagging mass flux density calculated on
the furnace inner walls. The distribution is rather heterogeneous, with areas where
slagging is particularly high (up to 50 g.s '.m 2). These areas correspond to priv-
ileged regions of impact of coal particles. They are located:

- at the burners, where particles directly emitted from some burners are form-
ing quasi-horizontal spots,

- at the top of the burners zone, under the exchanger system, where wider
spots can be observed.
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Examples of particle trajectories

Gas Temperature
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1157H
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Figure 9: Gas Temperature (Kelvin) - Particles trajectories

This study illustrates the use of the Lagrangian approach as a predictive tool to
investigate boiler design with respect to slagging.

8.3 Pollutant emission prediction for gas turbine

Facing more and more stringent environmental requirements and the will to opti-
mize performance of thermal power stations, EDF decided to equip themselves with
a simple prediction tool for gas turbine pollutant emissions. However, modelling
pollutant formation requires data which are very difficult to obtain from gas tur-
bine operators or constructors. That is why it has proved particularly useful to go
through a three-dimensional computation stage in order to obtain relevant data in
gas turbine pots and to formulate assumptions better adapted with the study of the
formation of pollutant emissions.

In the present study, the capabilities of Code_Saturne have been used to model a gas
turbine pot similar to the one installed in the thermal power plant of Rio Bravo in
Mexico. The three-dimensional results have then been used to run a chemistry code
in order to obtain NOx rate emitted by the turbine.

Meshing was the first step to go through. The commercial mesh generator SIMAIL
has been used to create four separate meshes, without imposing particular con-
straints at interfaces. Code_Saturne has connected the four parts, dealing automat-
ically with arbitrary interfaces and computations have been carried out using the
composite mesh illustrated on figure 11.

Using the same technique, a second mesh representing one eighth of the geometry
has been generated with periodic boundary conditions. Satisfactory results have
been obtained at a much lower cost than with the complete domain.
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Figure 10: Distribution of the slagging mass flux density

Computations with Code_Saturne have been carried out with the basic Eddy Break
Up combustion model (an adapted version dealing with variable gas composition
at the inlets). Inlet swirl and film cooling have been taken into account in the
boundary conditions. Figure 12 presents a snapshot with cutting planes coloured
by mass fraction of combustion products.

In the last step of this study, the physical domain has been partitioned into a net-
work of homogeneous reactors, using criteria based on temperature and fuel-air ratio.
Some development directly implemented into Code_Saturne structure made this task
relatively straightforward and allowed to extract from the three-dimensional com-
putation the necessary data for a chemistry code to finally obtain the rate of NOx.
This application is a typical illustration of the capabilities of Code_Saturne for tur-
bulent reacting flows in complex geometry. It also points out the importance of
connecting together different levels of modelling: a major asset of the approach has
been the complementarity of the three-dimensional computations for reacting flows
and of the refined chemistry analyses on simple networks of homogeneous reactors.

International Journal on Finite Volumes 28



Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible
Flows - Industrial Applications

Figure 11: Composite mesh of the gas turbine pot (colours represent different bound-
ary conditions)

Figure 12: Mass fraction of combustion product (left) - Physical domain partitioning
for chemistry analysis (right).
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8.4 Ventilation and air conditioning in hospitals

In hospitals and more particularly in operating theaters, air quality is crucial since
many infections might be transmitted via the airborne route. C.F.D. allows to anal-
yse the air flow pattern (recirculations, particles trajectories...) and can prove an
efficient tool to determine zones where contamination risks are potentially high.

The computational domain illustrated in figure 13 represents an operating theater
with the medical staff and the patient. The advanced unstructured mesh capabili-
ties of Code_Saturne allow to handle the complexity of the geometry (see the details
of the operating lamp arm in figure 13). Heating, ventilation and air conditioning
effects (HVAC) are accounted for in the simulations: heat is emitted by people and
equipment, clean air is introduced through inlets located at the ceiling while con-
taminated air is extracted at ground level.

Simulations indicate the significant influence of operating lamps on the air flow
pattern above the operating table. Indeed, several recirculations are bound to draw
to the patient air that has already circulated in the room (figure 14).

The effects of opening the door to the operating theater have also been simulated.
Calculations show that the contamination level in the vicinity of the patient remains
limited. On the one hand, the fact that the pressure in the operating theater is kept
slightly higher than in the corridor naturally limits the quantity of contaminant in-
troduced in the room. More interesting is the fact that the computations, permitting
to determine the local flow pattern, show that the “clean” air flow originating from
the inlets located at the ceiling is sufficient to protect the operating zone. Hence,
this methodology provides a way of evaluating the efficiency of the ceiling ventilation
device in terms of safety for the patient.

Figure 13: HVAC in operating theater. Computational domain, mesh and detail of
the operating lamp arm.

International Journal on Finite Volumes 30



Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible
Flows - Industrial Applications

Figure 14: HVAC in operating theater : temperature field and particles trajectories
originating from air inlets under the ceiling.

8.5 A thermal shock analysis for nuclear pressure water reactor
vessel

8.5.1 Introduction

This section illustrates part of the qualification process of Code_Saturne for nuclear
single phase thermal-hydraulics studies. [MAR 02] provides a more extensive anal-
ysis of the configuration.

To increase Reactor Pressure Vessel (RPV) life time, it is of major importance to
assess the integrity of the vessel structure submitted to a particular type of thermal
shock that would occur during a “small break” loss of coolant accident (SBLOCA)
as a result from the necessary cold water safety injection. Up to now, the assessment
of the French reactor vessel integrity has been performed with a specific approach
derived from the codified fast fracture analysis (RCCM code) based on a selection
of subclad defects and a set of loading transients. A three-dimensional approach for
determining the temperature and heat transfer coefficient distributions is a route to
a better knowledge and a more refined description of the transient cooling of the
vessel. Before starting reactor computations, a preliminary qualification phase was
necessary to demonstrate the capabilities of Code_Saturne to simulate the physical
characteristics encountered in this kind of scenarii. To reach this objective, a well
documented experimental set-up has been simulated, namely the CREARE 1/5 scale
mixing facility: the geometry, including a cold leg and a plane downcomer, is suffi-
ciently close to that of a RPV for the present application. The numerical simulation
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takes into account the transport and mixing of cold water in the -relatively- hot
environment through the admission leg (or “cold” leg) and the downcomer. Tem-
perature transient is compared to experiments at several probe locations on the walls
representative of the core barrel and of the vessel structure.

8.5.2 Geometry, initial and boundary conditions, fluid properties

The experimental CREARE 1/5 scale facility [ROT 82] consists of a horizontal leg
(representative of the reactor “cold” leg) connected to a vertical plane section (rep-
resentative of one third of a developed downcomer section). The safety injection
pipe is connected to the cold leg at an angle of 60 degrees (figure 15).

Initially, the temperature of the fluid contained in the computational domain is 65.5
degrees Celsius. Mass flow rate is zero.

To model the experimental conditions, the far end of the cold leg is represented ob-
turated and a transient fluid temperature is imposed. Constant temperature (17.8
degrees Celsius) and velocity (0.125 m/s) are prescribed at the safety injection in-
let. The only outlet of the computational domain is located at the bottom of the
downcomer. The other boundaries of the domain are treated as insulated walls.

Water properties are determined at a pressure of 1 bar. Dynamic viscosity, conduc-
tivity and specific heat are assumed to be constants while density is a function of
temperature only.

8.5.3 Numerical model

The grid, shown in figure 15, has been produced as a result of previous grid sen-
sitivity analyses. It contains 190 000 control volumes. To better adapt the size
and orientation of cells, Code_Saturne capability to deal with arbitrary interfaces has
been employed. The mesh has been generated in a multibloc-unstructured way, with
specific refinement close to the injection and at the connection between the cold leg
and the downcomer. The use of “O-grids” in the pipes allowed to control the mesh
quality close to the walls.

Time marching computations have been carried out using the k& — ¢ model. The
temperature transients obtained at different probe locations have been used to assess
the time step influence: very little variation has been observed on computational
results produced with a time step reduced by a factor of 2.

8.5.4 Qualitative results analysis

As expected, the cold injection creates a stratification in the cold leg. The interface
between cold and hot fluid extends towards the downcomer and towards the far end
of the leg (figure 16). As it reaches the downcomer, a separation occurs: the cold
water jet is driven against the core barrel and does not remain attached to the vessel
side. Lateral oscillations can be observed in the downcomer, straight under the cold
leg (figure 17). They originate in unsteady detachment, recirculations and buoyancy

International Journal on Finite Volumes 32



Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible

Flows - Industrial Applications

View from above (mid-pipe plane cut)

A
N
A
Ak

W
\
N

N

R

N
\

Safety injection
location,

o

N
S
R
ot
Sy

L0
Vit
Vs

Mesh junction
with hanging nodes

T
R
TR
R
R
N

Figure 15: CREARE: views of the geometry and grid.

effects.

Anticipating over future reactor simulations for evaluating thermal loading, it must
be noted that flow separation driving cold water jet away from the vessel wall and
oscillations of large structures improving water mixing are two important phenomena
that shall tend to reduce the severity of the thermal shock undergone by the vessel.
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Figure 16: Stratification transient progress in cold leg and flow separation in down-
comer (domain is coloured by temperature in Celsius, snapshots have been taken at
5 and 25 seconds after injection started).

8.5.5 Quantitative results analysis

So as to add a quantitative side to the qualification of Code_Saturne, temperature
transients have been compared to experimental data obtained on the CREARE fa-
cility. We will concentrate here on a few probes only ([MAR 02] provides a more
detailed analysis and comparisons to other C.F.D. codes). The subsequent consid-
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Figure 17: Oscillations in the downcomer (domain is coloured by temperature in
Celsius, snapshots have been taken at 45, 70 and 100 seconds after injection started).

erations will be based on graphs presenting fluid temperature (Celsius) against time
(seconds) obtained at the locations shown on figure 18.

Probes locations

Figure 18: Location of some probes (thermocouples).

At probe 1, figure 19 indicates that the transient progress of the stratification in
the cold leg is well reproduced. At probe 8, the transient is in good agreement
with experiments: the cold fluid impact on the core barell, below the cold leg, is
captured. At probes 15 and 20, (located at a lower position in the downcomer), the
temperature decrease is also well predicted.

8.5.6 Conclusions

The calculations presented here illustrate the integration of a C.F.D. tool in an
industrial approach with nuclear safety at stake. To complete the qualification of
Code_Saturne for this configuration, additional sensitivity tests have been carried out
and results have been compared to those produced by other commercial codes for
many more probe locations. This work has finally demonstrated the capability of
Code_Saturne to represent some important phenomena that need to be accounted
for to evaluate accurately transient thermal loading on RPV in small break loss of
coolant accident conditions.
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Figure 19: CREARE facility simulation. Fluid temperature transient at selected
probes locations.

International Journal on Finite Volumes

35



Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible
Flows - Industrial Applications

8.6 Large Eddy Simulation applied to thermal fatigue
8.6.1 Introduction

Thermal fatigue of the coolant circuits of pressure water reactor (P.W.R.) plants is a
major issue for nuclear safety. The problem is especially acute in mixing zones, like
T-junctions, where a large difference of water temperature between the two entry
branches and the high level of turbulence can lead to large temperature fluctuations
at the wall. Until recently, studies on the matter had been tackled at EDF using
steady R.A.N.S. methods: the fluid flow is solved with a C.F.D. code using an aver-
aged model, which leads to the knowledge of the mean temperature and temperature
variance at each point of the wall. Based on these results, thermomechanic compu-
tations are performed to obtain the usage factor. However, these methods obliterate
any fluid unsteady effects (like phase lag in the temperature oscillations between
two points, which can generate important stresses, or the high frequency filtering
effect of wall thermal inertia, which noticeably changes fluid-wall heat transfer).
Hence, a new methodology of chained computations has been proposed, that allows
to take into account these unsteady and three-dimensional effects. It has been ap-
plied to a Residual Heat Removal (RHR) system where cracks have been found and
identified as originating from thermal fatigue. Code_Saturne is used to compute the
fluid flow with a L.E.S. model, which gives access to the instantaneous temperature
fluctuations. Code_Saturne is coupled to the thermal code SYRTHES, which propa-
gates the temperature fluctuations into the wall thickness. Then, the instantaneous
temperature field inside the wall is transfered to Code_Aster, EDF thermomechanic
code, to perform mechanical computations and yield the instantaneous mechanical
stresses undergone by the T-junction and the following elbow. The results of this
first study are promising, although this method is still largely under development
and validation. See paper [PEN 03] for full details.

8.6.2 Configuration

The global geometry of the RHR circuit is presented in figure 20. Due to the
difficulty and the cost of a C.F.D. approach using Large Eddy Simulation, only the
small portion surrounding the location where cracks have occured has been simulated
(red rectangle in figure 20).

In this specific study, the horizontal hot branch and the vertical cold branch are set
respectively at a temperature of 168 degrees Celsius and 41 degrees Celsius. The
total flow rate is set to be 1000 m3/h and the velocity ratio between the cold flow
branch and the total flow rate is 20%. For the whole study, two meshes have to
be designed: one for the fluid domain, and the other for the solid domain. The
fluid mesh contains 401472 hexaedric cells, while the solid mesh contains 688 320
tetrahedra, with a very fine discretization near the inner wall, in order to properly
capture the instantaneous temperature variations.

8.6.3 Computational results

This calculation gives access to unsteady results on the entire solid and fluid domains.
10 seconds of physical time have been simulated, which already corresponds to a very
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Modelled zone

Figure 20: Sketch of the RHR at Civaux 1 (former configuration) and modelled zone

large computational effort (around 1200 hours of CPU on a Fujitsu VPP5000 vector
machine). All thermal results are presented in non-dimensional variables; let T,qq
and Tj,; be the cold and hot temperatures in the branches, the non-dimensional
temperature is calculated as T,gi, (varying between 0 and 1):

T - Tcold

Tadim = ——
Thot - Tcold

Figure 21 gives a snapshot of the fluid instantaneous temperature field in the sym-
metry plane at the physical time ¢t = 4 s. One may notice the very complex hot
and cold structures, and especially those created at the the junction of the two jets,
and convected further away. Figure 22 shows the instantaneous temperature in the
solid, also at time ¢ = 4 s. It is clear that the field is much smoother than in the
fluid, because of the strong attenuation due to the thermal inertia of the wall.

Instantaneous non-dimensional temperature

=

Plane y=0

Figure 21: Instantaneous fluid temperature field in the symmetry plane (¢t =4 s)

In the study on thermal fatigue, the heat transfer from the fluid to the wall is a
critical issue. Therefore, we shall now focus on points located at the fluid/solid
interface. Figure 23 compares the fluid and solid temperature profiles at interface
point C12 (cf. figure 22). It reveals the strong attenuation of the wall temperature
signal compared to the very fluctuating temperature signal of the fluid in the near
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Figure 22: Instantaneous solid temperature field (¢t = 4 s)

wall region. This attenuation is due to the thermal inertia of the wall and is strongly
dependent on the frequency of the fluctuations. This dependence is naturally re-
produced by our unsteady simulations, whereas it is totally unreachable through
approaches based on Reynolds-averaged Navier-Stokes equations (R.A.N.S.).

Section C1 : Fluid and solid temperature (internal side) upper elbow

Tl c12'd1a  +
"flu_C12" u 1.4

0.8

0.6

0.4

W%

Non dimensionnal fluid and solid temperature on the upper side (section C1)

3 AN £
0.2 Y + ¥ F
o L ¥ T ™ i Ny,
W 2 o ’MMM
3 ) w%««t T g T,
% ¥ %
o = S () R TN . 5 )
25 255 2.6 2,65 27 275 2.8 2.85 29 2.95 3

Time in secondes

Figure 23: Fluid (green) and solid (red) temperature evolution at fluid/solide inter-
face at point C12

The results of these simulations can also be compared to experimental data taken
from on-site measurements. It should yet be underlined that on-site recording of
the temperature inside the pipe is not possible. Hence, the measurements of tem-
perature in the pipe at the fluid/solid interface are in fact obtained indirectly from
deformation probes on the outside part of the wall. Also, the characteristics of the
on-site configuration differ slightly from the simulation (22.2% on-site velocity ratio
instead of 20% and 1025 m3/h on-site flow instead of 1000 m?/h). Moreover the
locations of the probes differ slightly, since it is impossible on-site to install probes

International Journal on Finite Volumes 38



Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible
Flows - Industrial Applications

on the symmetry plane. Figures 24 shows temperature profiles (over 3 seconds of
physical time) taken from experimental data and from the simulation, at point C12.
It appears that the turbulent fluctuating phenomena seem to be well captured, that
fluctuation amplitude seems to be of the right order and that the experimental and
simulated signals seem to have similar frequencies. Similar results are obtained on
the other measurement points.

Section C1 : Computed and experimental temperature (internal side) upper elbow
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Figure 24: Experimental (green) and simulated (red) solid temperature profiles at
fluid/solid interface, at point C12

Eventually, since the approach gives access to the instantaneous temperature evo-
lution, one may also apply usual spectral analysis. Figure 25 presents the Spectral
Density Power obtained from experimental signals (on-site and a mock-up) and from
the L.E.S. approach for the probe located at the solid/fluid interface at point EX1
(cf. figure 22). The experimental spectrum seems slightly smoother. This is due
to the fact that the experimental SDP has been done on a 600 s period while the
L.E.S one is based only on a 3 s time interval, which forbids the use of any averaging
spectral technique. Nevertheless, the different profiles seem in good agreement, and
none of them shows any specific frequency peak.

8.6.4 Conclusion and perspectives

In the study presented here, Code_Saturne has been used to predict the three-
dimensional unsteady temperature fluctuations in a T-junction using Large Eddy
Simulation for the fluid domain and a full coupling with thermal code SYRTHES
to propagate the temperature in the wall thickness. These solid thermal fields will
then be exploited with a mechanical tool to obtain thermally induced stresses. The
L.E.S. approach seems very promising when compared to experimental data, to get
a better understanding and knowledge of the instantaneous thermal loads seen by
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Figure 25: Experimental and L.E.S. solid temperature SDP at point EX1

pipeworks, although it is still very costly in terms of CPU and computing memory.
Further studies are planned at EDF to improve CPU aspects and confirm on other
industrial configurations the ability and the high interest of the thermally coupled
approach presented here.

9 General conclusions and perspectives for Code_Saturne

We have described the finite volume method implemented in Code_Saturne for lami-
nar and turbulent flows in complex two- and three-dimensional geometries. In time, a
predictor-corrector method is used for the Navier-Stokes equations. The spatial dis-
cretization is based on the fully conservative, unstructured finite volume framework,
with a fully co-located arrangement for all variables. To meet the requirements
of the industrial target applications, algorithms for mesh management have been
developed that allow to use hybrid meshes containing arbitrary interfaces and any
kind of cells. Hence, specific effort has also been devoted to implement satisfactory
schemes to compute gradients at cell centres on a wide range of unstructured meshes.

Since 2000, the code is being used for industrial applications and research activi-
ties in several fields related to energy production (nuclear power thermal-hydraulics,
gas and coal combustion, turbomachinery, heating, ventilation and air condition-
ing). The requirement for improving robustness and precision of numerical schemes
becomes all the more apparent as the complexity of physical modelling increases.
Apart from fundamental work on robustness and precision (for example for gra-
dient calculation on arbitrary meshes), future developments will focus on Large
Eddy Simulation, especially for unsteady thermal effects on structures (thermal fa-
tigue, crackling). Nevertheless, R.A.N.S. modelling will receive further attention
(v2f [DUR 93] [LID 96], £ — w [MEN 94], SSG [SSG 91], ...). Model and code
coupling are also domains of interest that will require attention (0D-3D coupling,
dynamic and thermal fluid-structure interaction, zonal modelling coupled to refined
simulation, L.E.S./R.A.N.S. coupling, Euler/Lagrange coupling).

Eventually, the use of Code_Saturne as a general-purpose C.F.D. code for production
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and as a development platform will be further extended to a community of indus-
trial partners and universities determined to participate in R&D work on numerical
schemes and physical modelling.

To supplement the panorama, it is pointed out that for historical reasons, the do-
main of application addressed by Code_Saturne is essentially limited to single-phase
flows, with extensions to multiphase problems where homogeneous approaches are
valid (pulverized coal for example) or for which a Lagrangian method is indicated
(particle deposition for example). Nevertheless, Code_Saturne is also the basis for
Mercure_Saturne, EDF software for atmospheric simulations. Moreover, the struc-
ture of Code Saturne and the key features of the algorithm have been used as a
starting point for an Eulerian multiphase version, Saturne_Polyphasique. The lat-
ter has since then benefited from a sustained development effort. At the present
time, Saturne_Polyphasique constitutes the basis for the refined three-dimensional
thermal-hydraulic steam-water flow simulations within EDF-CEA joint development
programme “NEPTUNE” [DEL03] [CHA03] [MECO03]. The code also contributes to
the research work carried out at the Institut de Mécanique des Fluides de Toulouse
on various multiphase flows, with gas or solid inclusions [SSV 04] [FPS 04].
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11 Appendix A: continuous equations for turbulence
modelling

11.1 Introduction

To close system (12), turbulent correlations need to be modelled. A fairly simple
but widely used approach for industrial applications relies on eddy-viscosity models.
We describe hereafter the “standard” high-Reynolds-number k£ — ¢ model of Launder
and Spalding [LAU 74]. Nevertheless, no eddy-viscosity model, however elaborate,
can account for anisotropy of turbulence, which might prove of major importance
in many applications including curvature, density stratification or swirl. For those
types of flows, a second moment closure can yield decisive benefits and the second
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model presented hereafter is based on the proposal by Launder, Reece and Rodi
[LRR 75]. Both models are operated with log-law-based wall functions.

11.2 Two-equation model

With the k—e model proposed by Launder and Spalding [LAU 74] (see also [MOP 94)),
k denoting the turbulent kinetic energy and € the dissipation rate of turbulent kinetic
energy, the velocity correlations are modelled in 3D as follows:

2 2
—PE=2p D= Spu tr(D) Id — 3Pkld (61)

Thus, the turbulent kinetic energy k is defined as:

1 1

The turbulent viscosity u; appearing in (61) is modelled as:
k.?
The two equations of the model read:

(
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In system (64), P accounts for production of kinetic energy through mean shear
stress. In a three-dimensional context, we have:
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Table 1: Constants used for the k£ — ¢ model.

G is the turbulent kinetic energy production-destruction term related to density
effects [ROD 84]. With g denoting the gravity, the exact expression for G is then
G = p"u" - g. Under the assumption that p is a function of the intensive scalar a
only (that is: p = F(a)), the following approximation might be used:

d
G — a d_’;g,,_ g (65)

dF
Assuming Ta constant, denoting o,; the turbulent Prandtl-Schmidt number and
a

using a gradient hypothesis for scalar flux modelling (equation (82)), we have:

dF 1
G = - M grad (a) - g
?apo'a,t - (66)
=~ graq () g
POat

Sk and S. are additional source terms for k£ and e respectively (they also include
sources originating from the mass source term T').

The constants pertaining to the model are given in table 1. The value for C,, de-
pends on the nature of the stratified configuration: C.; = 0 if G > 0 (unstable
stratification) and C.; = 1 if G < 0 (stable stratification). The rationale for con-
sidering gravity effects in the equation for ¢ only for positive values of G (unstable
stratification) is inherited from proposals by Gibson and Launder [GIB 76], also
applied later by Viollet [VIO 80].

11.3 Second moment closure

The second moment closure implemented in Code_Saturne is based on the following
equations for each component of the symmetric Reynolds stress tensor and for the
dissipation rate of turbulent kinetic energy ¢ (see [DPR 01]):

0 i
57 (PRij) + div(pu Rij — pgrad Rij) = Pij +Gij + @ij + dij — peyj + 5

2
[P+G:) = pCe,—— + .
(67)
P is the kinetic energy production-destruction tensor related to mean shear stress.
It does not requires any modelling:

0 .
a(pe) + div(pue — pgrad ¢) = d.+ C;, %

ou; ou;
i =—p |Rik 2 + Rjp—
sz p ik + ]ka’Ek

r (68)
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g is the production-destruction tensor related to gravity effects [ROD 84]:
1
Gij = |Gij — C3(Gij — §5ilel) (69)

With the same assumptions as those made to derive equation (66), denoting g; the
gravity components, we have:

3C, k
Gij = —3 EZ(rigj +rjgi)
Tate, (70)
Wlth r; = Rzk—p
3£Ck

The pressure-strain term @ and the dissipation tensor pg are modelled as follows:

2
Qij — peij = Gij1 + dij2 + bijw — 3P dije (71)
The first term ¢;;1 is often referred to as the “return-to-isotropy” term, since its
major role seems to promote a return to isotropy of the Reynolds stress tensor. The
following modelling has been adopted [ROT 51]:

€ 2
$ij1 = —p 1o (Rij — Skdij) (72)
Although the “rapid term” ¢;;2 has received considerable attention over the years,
the rather simple modelling proposed by Naot et al. [NAO 70] (“isotropisation of
production”) has generally been found to provide good results over a wide range of
flows. This is the modelling adopted here:

2
bijo = —p Ca(Pij — 57’%) (73)

with: 1
P = Epll (74)

The last term ¢;j,, is often referred to as a wall-echo term. In a channel flow, it
tends to diminish the autocorrelation of the fluctuations of the velocity component

normal to the wall. By default, this term is not activated in Code_Saturne. With
3

2
l= @ turbulent lenght scale and y the distance to the nearest wall, ¢;; ,, reads:

k 3 3 !

, 3 3 (75)
+p Cy | Pkm2nkNmdij — §¢ki,2nknj - §¢kj,2nknz’] f(;)
The damping function f is unity at the wall and vanishes away from it:
Lo 075 k2
f(=) =min(1, C>® —) (76)

Y €KY
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C, |C. |C, [C, [Ci]C, [Cs [Cs [CT[C
0,09 | 0,18 | 1,44 | 1,92 [ 1,8 | 0,6 | 0,55 | 0,22 | 0,5 | 0,3

Table 2: Constants used for the second moment closure.

The turbulent diffusion term dj; is modelled according to Daly and Harlow [DAL 70]:

o, k OR;;
dii = Cs—(p~ Ry —2 7
The equation for the dissipation rate ¢ is similar to that derived for the & — ¢ model.
The only modifications are related to turbulent diffusion and gravity effects:

0 k Oe
de = 058—:1216 (pngm%> (78)
1
Ge = max(0, §Gu) (79)

For the same reasons as those invoked for the k — € model, G, vanishes for negative
values of Gy; (stable stratification).

Si; and S, are additional source terms for R;; and € respectively (they also include
sources originating from the mass source term T').

The constants pertaining to the model are given in table 2.

11.4 Sets of equations for turbulence: summary

For both models, the mass equation is used to exhibit the time derivative of the
variables k, € and R;; (equation (10)). The source term is modified as indicated
in equation (11). The final equations for the k¥ — ¢ model and the second moment
closure are the following:

Ok . Mt _ '
pa-l-dlv[pgk— (u+—)gradk] = P+G—pc+ S,

Ok
Oe ) I € g2
Po T div [pus - (u + o_:-) grad 6] = CSIE [P+ (1-C,)G] — pCQ? + 5.
(80)

OR;; .
—> +div(pu Rij — pgrad Ri;) = Pij+ Gij + ®ij + dij — peyj + 5

ot
85 . € 52 ,
P T divleue —pgrad o) = de+ Gy [P+Ge] = pCe,— + !

(81)
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11.5 Scalar flux modelling
Turbulent scalar flux is modelled in Code_Saturne by a simple gradient hypothesis:

—pa'u’ = —grad a (82)

where o0, is the turbulent Prandtl-Schmidt number.

12 Appendix B: simultaneous resolution of turbulence
equations for the k£ — ¢ model

For the k — ¢ model, equations for k and ¢ are solved simultaneously in order to par-
tially take into account the equilibrium between these two variables. The algorithm
is divided in three steps.

Let us rewrite the system (17) as follows:

pO% = D(k) + Sulk, )
, (83)
pa; = D(e) + Su(k.e)

D is the convection/diffusion operator. Sy (resp. S¢) are the source terms for k
(resp. €), including production and dissipation terms.

STEP 1: explicit resolution

The system is solved explicitly, yielding k. and e.:

_ k)
pmEe =Y by 4 s, (6™ ™)

At
. (84)
pmEE"  pe®) 15 (6™, ™)
At
STEP 2: coupling of the equations through the source terms
The source terms in each equation are written as follows:
kg — k™
P(n)StT = D(K™) + Sg(kst, £51)
» (85)
Egt —
W8S = D) + 8.l
which yields, subtracting (84) from (85):
kst =k oy ke = K (n)_ o)
p A P Al + Sk(kst, est) — Sp(k™, ™)
(86)

(€t — )

— _ (n) (n)
At P At +Ss(kstaest) Ss(k , € )
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Then, one can write (for ¢ =k or ¢):

(n) (n)
Sk ) S, 00) = o —K) (T2 )+ (e =) (F52) 81

where

S\ ™ 88, v m S N\N™ 88, v m
(5¢) - Grooen m (G2) -G

Which leads to a 2 x 2 linear system to be solved in each cell:

P (08N (08" (ny e — K
At~ \ ok de (kst =k™)\ _ [ P A
8s.\™  pm  ras.\™ (st — ™) (ny Ee — €™
~ ok At \ e P A
STEP 3: implicit treatment of convection and diffusion

The following system corresponds to equations (17), where the convection/diffusion
operator is fully implicited, and the source terms partially implicited:

(88)

(n+1) _ 1.(n)
M TR D™D 4 Syl £4)

P At )
(n) 6(n+1) . E(n) (nt1)
1% T = D(5 ) + Se(kstaest)
which gives:
EL(nt1) _ f(n) ko — kM
(my "~ =™ _ (n+1)y _ (n) (n)lst — N 7
p A7 D) = D(E™) +p Az
(n+1) (n) (n) (%0)
n-+ n n
mé& ~—&7 _ (n+1)y _ (n) (n)Est — &~
p Az D(""V) = D(e™) +p Az

These last equations are solved separately and using the same algorithms as for the
equation for scalars.

13 Appendix C: numerical experiments for determina-
tion of order in space

13.1 Introduction

The order of convergence in space of the gradient calculation methods described in
section 5.3 is evaluated for a Poisson equation on elementary computational domains.
A more detailed description of this work may be found in [DAH 00).
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13.2 Numerical test cases definition

The equation considered here is the following Poisson problem, in a two-dimensional

context:
Dirichlet conditions for b at boundaries

Using notations defined in section 5.2, the discrete form of (91) is the following (for
the sake of clarity, boundary faces are not considered):

D> Gnii(0)Sij = [9ul fi (92)

JjENeibrs(i)

As indicated section 5.2, the expression for G, ;;(b) involves G;(b) (gradient at cell
centres). The numerical tests presented here have been carried out with the two
methods available in Code_Saturne for computing G;(b) (these methods are described
in section 5.3 and referred to as “standard” and “least squares” methods.)
However, for triangular meshes®, if the cell centres are the circumcentres, the ex-
pression for the gradient at cell faces adopted here degenerates to:

b=

Gn,ij(b) = ) (93)

This is a particularly interesting property since for strictly Delaunay meshes’, it has
been demonstrated theoretically that the convergence of the solution obtained with
this scheme is first order and, for equilateral triangles, second order because the
approximation of the diffusion flux is then second order (see [EYM 00], [EYM 01],
[HER 95]). Moreover, for C? solutions, numerical experiments in [BCH 00] also ex-
hibited second order convergence on non-Delaunay meshes.

The computational domains selected for the Poisson problem are an equilateral and
a scalene triangle, shown on figure 26. Each grid consists of triangular cells obtained
by applying a scaling factor to the triangle representing the computational domain.
The numerical tests have been carried out on grids containing 4, 16, 64, 256, 1024
an 4096 triangles (the associated scaling factors are 2, 4, 8, 16, 32 and 64). The
coarser grids are shown on figure 26 for the two computational domains. The three
first grids are shown on figure 27 for the equilateral domain.

The cell centres used in Code_Saturne being the mass centres they are also the cir-
cumcentres for the equilateral mesh. Moreover, it is pointed out that the equilateral
mesh is a particular case of stricly Delaunay mesh. Therefore, on the equilateral
mesh, second order convergence must be reached.

Four different functions have been used for the right-hand side f of equation (91).
They are listed in table 3 as well as the corresponding analytical solutions b.

SFor general quadrangular meshes, see [COU 96], [FA1 92] and [FA2 92] for example.
™ Strictly Delaunay” refers to meshes consisting of triangles for which all angles are strictly lower
than 90°.
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Figure 26: Computational domains and coarser meshes.
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Figure 27: Three first grids used for the equilateral domain.

case f b
1 0 TY — Y
2 4 z? + 92
3 0 32y — o°
4 || =2sin(z+vy) | sin(z +y)

Table 3: Expression of the four right-hand sides f and of the associated analytical
solutions b to the Poisson equation.
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Dirichlet conditions® have been applied as boundary conditions for b. Their values
have been evaluated at the centres of the boundary faces using the analytical ex-
pressions for the solution b.

To summarize, the numerical tests presented here for the Poisson problem have been
carried out:

- on equilateral and scalene meshes;

- with six refinement levels;

- with four right-hand sides regular functions;

- with the standard and the least squares methods for computing gradients at
cell centres.

13.3 Convergence results

Errors have been evaluated for cell-centre values of the solution, for the gradient
computed at cell centres and for the gradient normal to faces. With ®; representing
the values of these quantities computed on their associated geometrical entities E;
(cells or faces) and with ®(L) standing for the corresponding analytical expression,
error eg g is defined as:

> (2 - 8(1)

E;
> o(L)?
E;

cop — (94)

A global summary to the different computations is, as expected, that the convergence
order is approximately 2 for the solution b, 1 for the gradient grad b and 1 for
the gradient normal to faces. With the method used, these convergence orders
are the best that can be expected (second order spatial approximations have been
employed).

More precisely, with the “standard” gradient calculation, the order of convergence
(computed on the results obtained on the four finest grids) is between 1.84 and 2.00
for the solution b and between 0.96 and 0.99 for the gradient at the cell centres®.
The order of convergence obtained for the normal gradient is always strictly superior
to 1 (between 1.88 and 2.24 on the equilateral domain) and between 1.58 and 1.70
on the scalene domain. Similar observations have been reported in [BCH 00]. First
order is theoretically proven in [EYM 00], second order on equilateral meshes is due
to the second order consistency error of the fluxes.

8The same conclusions for convergence orders have been obtained with boundary conditions con-
sisting of exact Dirichlet conditions at y = 0,z € [0;0.5] and exact Neumann conditions elsewhere.

9There are some exceptions, which might be due to the regularity of the mesh and of the solution.
For example, the order of convergence is 2 for the gradient obtained on the equilateral domain for
the second right-hand side function (Table 3).
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Solution

Standard method Least squares method
Case Equilateral ‘ Scalene Equilateral ‘ Scalene
1 1.97 1.84 1.98 1.86
2 2.00 1.96 2.00 1.95
3 1.99 1.84 1.99 1.91
4 1.99 1.88 1.99 1.84

Gradient

Standard method Least squares method
Case Equilateral ‘ Scalene Equilateral ‘ Scalene
1 0.99 0.99 0.99 0.99
2 2.00 0.99 2.00 1.87
3 0.99 0.96 0.99 0.96
4 0.99 0.96 0.99 0.98

Normal gradient

Standard method Least squares method
Case Equilateral ‘ Scalene Equilateral ‘ Scalene
1 1.89 1.70 1.89 1.68
2 2.24 1.60 2.25 1.88
3 1.88 1.65 1.88 1.75
4 1.91 1.58 1.91 1.71

Table 4: Orders of convergence obtained for the solution, the gradient and the
normal gradient, with the standard and the least squares methods, four different
right-hand sides (cases 1 to 4 in table 3) and two different domains (equilateral and
scalene).

Finally, it is pointed out that the least squares method exhibits the same orders
of convergence as the “standard” gradient calculation. But naturally, this does not
imply that the accuracy is the same on a given mesh (especially on a quite “coarse”
one, as industrial meshes often tend to be). The order of convergence is between 1.84
and 2.00 for the solution b and between 0.96 and 0.99 for the gradient'?. The order
of convergence for the normal gradient is between 1.88 and 2.25 on the equilateral
domain and between 1.68 and 1.88 on the scalene domain.

14 Appendix D: boundary conditions for turbulence

14.1 Introduction

The high-Reynolds approach presented here is based on the use of wall functions
to bridge the viscous sublayer and determine shear stress [LAU 74]. The default

0There are some exceptions, as for the “standard” method: the order of convergence of the
gradient obtained with the second right-hand side function is 2.00 on the equilateral domain and
1.87 on the scalene domain
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approach is based on a so-called “two-scale modelling”, with a logarithmic law'! for
the tangential components of the velocity. Similar wall functions are used for the
scalars (the approach proposed by Arpaci and Larsen [ARP 84] has been adopted
for temperature).

Hence, to account for the physical phenomena related to the wall layer, it is necessary
to modify the wall boundary condition to compute:

e div(z,) = div(z — pR) for the components of the velocity tangent to the wall
(momentum equation (14.b))

Mt

e div(®) = div ((Ka + )grad a) for scalars (equation (14.c))

Oa,t
The approach is presented for div(z ) only. Its extension to div(®) is natural since
the formulation for ® is similar to that for T, with the k¥ — € model.

Moreover, boundary treatment also need to be specified at inlets and at walls for
the terms appearing in equations for variables k, € and R;;. At outlet and symmetry
planes, the standard treatment described for scalars (section 6) applies and will not
be recalled here.

Eventually, in this appendix as in the main section, n denotes the unit vector normal
to the boundary and oriented outwards. When it is required (at walls) the tangential
velocity is defined as:

Uy =u— (u - n)n

9

and the unit vector ¢ tangent to the boundary is:

p=
T gl

14.2 'Wall boundary condition for the momentum equation

For the computation of div(zr t), a boundary value is required for the total wall shear
stress: 7y = [|(z,n) - t||. With the previous definitions, the following modelling is
adopted:

Tw = putug (95)

where u; and u* are friction velocities determined from variables obtained close to
the wall, namely the turbulent kinetic energy k and the tangential velocity ||u|-
More precisely, let us assume that the geometrical point I’ (figure 3) is located at a
distance y from the wall where the logarithmic law is valid, that is:

lugll 1,

with y* = pugy/p Kk =0.42 and C = 5.2

"The logarithmic law of the wall degenerates to a linear law in the viscous sublayer.
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Since p and p are known, it is possible to evaluate 7, = pu*uy using:

11
U = Cﬁkzzl (97)
{U* = lugg,ll/(zin(y™) + C)

14.3 Imnlet boundary conditions for turbulence

At inlet, the approach described for scalars in section 6.2 applies to variables k, ¢
and R;;. However, the inlet values for the Dirichlet conditions need to be specified.
Indeed, various inlet quantities might be available from experimental data or ana-
lytical considerations (for example velocity or scalars) but for turbulent variables,
further assumptions are often required.

With the & — € model, the following conditions are set by default:

’U,*2 u*3/2
k = \/C_’u and g = m (98)

where Dy, is the user-prescribed hydraulic diameter of the inlet, and u* is a friction
velocity, determined from experimental correlations. For example, for a developed
pipe flow with zero roughness, we have:

w* = \/Uyef A" /8  with A* 0.3164Re— 1 for Re < 30000
and M\ = 0.1840Re"5 for Re > 30000

UyerD
where Uy is a user-defined bulk velocity and Re = p’";ﬂ is the bulk Reynolds

number.

For second moment closure, the inlet conditions might be derived from (98):

9 U*Z u*3/2

HDh / 10
These conditions suffer some limitations and users might be driven to prescribe more
appropriate values depending on the cases studied (indeed, these conditions do not
account for the shear stress across vertical inlets and the dissipation rate remains a
crude approximation based on a mixing length applicable only to energy-equilibrium
flows).

R,’j =

14.4 'Wall boundary conditions for turbulence

In this section, ¢ denotes any variable pertaining to the turbulence models (&, ¢
or R;;). Boundary conditions for all discrete terms are build under the following
assumptions:

- zero mass flow rate normal to the boundary;
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- for the k — € model, the following profiles are assumed to be valid close to the

wall: ) 9%
k= w?/CZ that is o 0
, ' oe s (101)
e = ux’/Ky that is ay = —ug’/Ky

- for the second moment closure, the local orthonormal basis (n,t,t,) is defined
(n and t are defined in section 14.1). Denoting Rij the components of R
in this local frame, the formulation of the boundary conditions relies on the
assumption that the following equations are valid close to the wall:

(g@ (R“) . @) =0 (no summation implied)
Rio = uug
Riz = Rys =0 (102)
€ = w®/ky that is % = —u®/ky?
Y

For convection terms, the boundary value for Q4 = (Q(") - m)¢* is merely set to
zero, as it was for scalars in section 6.4.

For diffusion terms and source terms requiring the computation of the gradient of
k, € or R;;, the boundary treatment is the same as that detailed for the scalars
(section 6.4), using the Neumann and Dirichlet conditions defined by systems (101)
and (102).

15 Appendix E: non conservative methods applied to
compressible flows with second moment closure

15.1 Introduction

To illustrate the use of Code_Saturne as an open research and development platform,
this section proposes a brief overview of the work presented in [PAH 00].

The standard k& — ¢ model suffers limitations for a number of flows, especially those
encountered in turbomachinery applications, which also tend to include compress-
ibility effects. Second moment closures provide some improvement but robustness
of the algorithm might be limited by realizability conditions and by the prominant
hyperbolic nature of the system. Some considerations related to this second aspect
are presented here.

15.2 Sub-set of equations considered

We consider the second moment closure described in detail in [BRU 00]. Ouly
the following terms are retained (in particular, source terms expected to have a
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stabilizing effect are not considered here):

( % + div(pu) =0
0 .
5;(Pw) +div(pu®u+PId+R) = 0
S (103)
oF .
o T div (Bu + [P1d + Rlu) =0
OR;j )
\ Btj + div (ng) + NCT%J' =0
with
NCT;j = Rika— + Rjka— non conservative “production-destruction” term
Lk gg93
P 1 1
R=pR and EF = ——+ —pugup + =Rk
= = y—1 2 2

(104)

15.3 Numerical scheme

With W denoting the conservative m-variables vector (W = (p, pu, E,R)"), C the
m X m matrix related to non conservative terms, system (103) can be written as:

I aiv (B W) + C(W) - grad (W) =0 (105)
With 6W = W™+ W) discretization in time leads to the following formulation:
W+ div (EW®)) + W) - grad (W) = 0 (106)

The superscript is dropped hereafter for variables evaluated at time step n.

Let W; stand for the value of W at cell <. For the sake of clarity, we assume here
that no face pertaining to cell 7 is on the boundary of the computational domain.
With the finite volume formulation, we have:

|92
At

Wit 3 [ EO)-nyds+ [ C0V)-gad W)aa =0 (07
JjENeibrs(i) Sij i

Non conservative terms are approximated as follows [BRU 00]:

[ cov)-grad W) da = cow)- [ grad (W) o (108)
Q; Q;
and, using the Gauss theorem:
/ C(W)-grad (W)dQ~C(Wi)- > W, dS (109)
Q jENeibrs(i) Sij
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Interface values for W are computed as %(WZ + W;) and we finally have:

| ) gad (Wyaex Y S+ W)CO) ny)S; (10
Q;

JENeibrs(q)

Conservative terms are computed using the Rusanov scheme. The implemen-
tation of this scheme in a three-dimensional environment is particularly simple
[BER 02]: it requires nothing more that the computation of a spectral radius prys(i)
in each cell ¢ to evaluate the conservative flux as follows:

1 1
/SH F(W) - n;;dS ~ (5 (E(W:) + E(W;)) - nyj — 5 max (prus(K)) (W — WZ-)) Sij

€{i,5}
(111)
The spectral radius accounts for conservative and non conservative terms. Indeed,
it is determined as follows.

In the global computational frame, (e,,e,,€,), the three components of F(W) and
C (W) are respectively denoted Fi,(W), Fy(W), F,(W) and Cp(W), C,(W), C,(W).
We also introduce the m x m matrices J and B and their components. With &
standing for z, y or z, we have:

0
(W) = 5 Fr(W) and Bp(W) = Jy(W) + Cr(W) (112)
Hence, system (106) reads:
ow ow ow ow
4 By(W)Z= + By(W) = + B,(W)=— = 11
AT (W) e + By (W) 9y + B, (W) % 0 (113)

Similarly, for each interface (4,7) of the mesh, let (n;;, Ty ;;,75,;) be a local basis
and let us denote (&, (j,7i;) the related coordinates. Neglecting variations of W
on the interface equation (113) reads:

ow ow
Ar T Bes (W) 9

0 (114)

With prys(i) denoting the spectral radius of Bg,, (W;), the Rusanov scheme can be
applied to approximate the flux at interface (7, ) using expression (111). It is pointed
out that matrix B, (W) accounts for conservative and non conservative terms and
is the Jacobian matrix if non conservative terms vanish.

15.4 Interesting properties
Eigenvalues of B, (W) take the following values:

Un,ij, Unij + Cl,ij and Un,ij + C2,ij (115)
. ~vP
with: unij = u- 155, c145 = {/3Rnn,ij + i =V Rnn,ij (116)

. .t
and: Rnn,ij = ﬂm@@ij
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Since c1;; and co;; account for pressure and turbulence effects, the scheme is ex-
pected to be more stable than methods decoupling equations for second moments
R;;, especially for flows at high turbulence levels in impingement regions or after-
bodies, as those often encountered in turbomachinery.

In addition to its simple formulation, the Rusanov scheme benefits from another im-
portant asset: it garantees the positivity of the density. Nevertheless, it turns out to
be quite diffusive, and at least more diffusive than the approximate Godunov scheme
denoted VFRoe-ncv [BUF 00] [GAL 02] [GAL 03]: figure 28 shows a comparison
of pressure obtained with VFRoe-ncv and Rusanov on coarse and fine meshes for a
one-dimensional shock tube.

2000 cells 5000 cells

‘\ T 1e+05 T T

I L L L
00 020 0.40 0.60 0.80 1.00
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Figure 28: Pressure profile obtained with VFRoe-ncv and Rusanov on coarse and
fine meshes for a one-dimensional shock tube.

This research work would require an extension to take into account a complete
physical modelling. Nevertheless, to illustrate the capability to carry out two- and
three-dimensional computations with these developments included in Code_Saturne,
figures 29, 30, 31 and 32 represent iso-Mach contours obtained above ascending
steps and around a turbine blade with grids constituted of hexaedra and prisms
(Code_Saturne data structure supports any mesh).
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0.00

Figure 29: Iso-Mach contours above an ascending step obtained with the Rusanov
scheme on a mesh consisting of hexaedra.
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Figure 30: Iso-Mach contours above an inclined ascending step obtained with the
Rusanov scheme on a mesh consisting of hexaedra.
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Figure 31: Iso-Mach contours above an inclined ascending step obtained with the
Rusanov scheme on a mesh consisting of prisms.

Figure 32: Iso-Mach contours around a turbine blade obtained with the Rusanov
scheme on a mesh consisting of prisms.
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