Code_Aster ®
Version
3
Titre :
HSNL100 - Echauffement d'un câble par effet Joule
Date :
03/12/96
Auteur(s) :
M. AUFAURE
Clé :
V7.21.100-A Page :
1/6
Organisme(s) : EDF/IMA/MNN
Manuel de Validation
Fascicule V7.21 : Thermo-mécanique statique non linéaire des structures linéiques
Document V7.21.100
HSNL100 - Echauffement d'un câble par effet Joule
Résumé :
Ce test concerne la thermique transitoire indépendante de l'espace des câbles électriques soumis à l'effet Joule
et la thermo-élasticité dynamique de ces câbles.
Intérêt :
· tester les fonctions d'évolution de l'échauffement d'un câble conducteur par effet Joule, puis de son
refroidissement à l'air ambiant (opérateur DEFI_THER_JOULE [U4.21.09]),
· tester l'influence de la variation de température d'un câble sur l'évolution de la flèche (opérateur
DYNA_NON_LINE [U4.32.02]).
Manuel de Validation
Fascicule V7.21 : Thermo-mécanique statique non linéaire des structures linéiques
HI-75/96/067/A
Code_Aster ®
Version
3
Titre :
HSNL100 - Echauffement d'un câble par effet Joule
Date :
03/12/96
Auteur(s) :
M. AUFAURE
Clé :
V7.21.100-A Page :
2/6
1
Problème de référence
1.1 Géométrie
Un câble de section 1.71 103 et de portée 100 m pend dans le champ de la pesanteur, à la
température de 0°C. Il est le siège, pendant 25 secondes, d'un courant de court-circuit qui porte sa
température à 1636°C. On suit l'évolution de la position d'équilibre.
T = 0°
T = 1636°
1.2
Propriétés des matériaux
Propriétés du métal conducteur :
E = 5.4 1010 Pa
= 2761.4 Kg/m3
= 23. 106 °C1
résistivité (T : température) : (T) = 3.25 108 (1. + 3.6 103 (T20.)) m
Cp = 2 457 646 J m3 °C1
Coefficient de convection pour les pertes de chaleur par la paroi latérale du câble :
0.5 J m2 °C1
1.3
Conditions aux limites et chargements
Le câble a ses extrémités fixes. Il est soumis à la pesanteur et se dilate par l'effet Joule dû à un
courant de 70 000 A pendant 25 secondes.
1.4 Conditions
initiales
Le câble forme une chaînette, à la température de 0°C.
Manuel de Validation
Fascicule V7.21 : Thermo-mécanique statique non linéaire des structures linéiques
HI-75/96/067/A
Code_Aster ®
Version
3
Titre :
HSNL100 - Echauffement d'un câble par effet Joule
Date :
03/12/96
Auteur(s) :
M. AUFAURE
Clé :
V7.21.100-A Page :
3/6
2
Solution de référence
2.1
Méthode de calcul utilisée pour la solution de référence
· En première partie, le test consiste à vérifier si Aster tabule bien deux fonctions-température
d'échauffement et de refroidissement. Ce sont des fonctions analytiques, de caractère exponentiel
par rapport au temps, résultant de l'intégration exacte de l'équation de la chaleur indépendante de
l'espace mais comportant un terme d'échange de type Fourier. Cette équation et sa solution sont
dans [bib1] [R3.08.02].
La valeur numérique des coefficients est dans [bib2] [U4.21.09].
· En deuxième partie, on compare la flèche du problème de référence, à un instant donné, à la
flèche théorique de la chainette d'équilibre statique d'un câble inextensible, de mêmes longueur,
portée et température. On peut le faire parce que la rigidité extensionnelle du câble (produit EA)
est grande et que la variation de température est lente.
Comme il n'existe pas de solution analytique au problème de référence, on admet qu'un
échauffement régulier de 1600° en 25 secondes provoque une évolution quasi-statique. La vitesse
de descente du milieu du câble est en effet de l'ordre de 0,3 m/s, alors que la vitesse d'un
mouvement pendulaire à 0° atteint une valeur au moins 30 fois supérieure.
La courbe d'équilibre statique d'un câble inextensible dont les extrémités sont de niveau [fig 2.1-a],
de portée s , de poids linéique w (gA) et de tension horizontale H a pour équation [bib3] :
H
w s
ws
z =
cosh
- x
cosh
.
éq 2.1-1
w
H
2
-
2H
D'où l'on déduit la longueur L :
w L
ws
= sinh
.
éq 2.1-2
2H
2H
z
x
f
O(0, 0)
P(s, 0)
Figure 2.1-a : Courbe d'équilibre d'un câble
H , qui est constant le long du câble puisqu'il n'y a aucune force extérieure horizontale, est donné,
d'après [éq 2.1-2], par l'équation transcendante :
L
sinh X =
X
éq 2.1-3
s
où :
ws
X =
.
2H
Manuel de Validation
Fascicule V7.21 : Thermo-mécanique statique non linéaire des structures linéiques
HI-75/96/067/A
Code_Aster ®
Version
3
Titre :
HSNL100 - Echauffement d'un câble par effet Joule
Date :
03/12/96
Auteur(s) :
M. AUFAURE
Clé :
V7.21.100-A Page :
4/6
L'équation [éq 2.1-3] a une racine positive Xo pourvu que :
L >1.
s
L
s
1
sinh X
X
X0
La flèche f se déduit alors de [éq 2.1-1] :
s
f =
(cosh Xo - )1.
2 Xo
La longueur du câble à T o , qui intervient en coefficient dans [éq 2.1-3], découle de la longueur
donnée à 0° par l'équation de dilatation :
L(T) = L( )
0
(1+ T).
2.2 Références
bibliographiques
[1]
M. AUFAURE, G. DEVESA : Modélisation des câbles dans le Code_Aster. Document
[R3.08.02] (1996).
[2]
M. AUFAURE : Opérateur DEFI_THER_JOULE. Document [U4.21.09] (1994).
[3]
H. MAX IRVINE : Cable structures. The MIT Press (1981).
Manuel de Validation
Fascicule V7.21 : Thermo-mécanique statique non linéaire des structures linéiques
HI-75/96/067/A
Code_Aster ®
Version
3
Titre :
HSNL100 - Echauffement d'un câble par effet Joule
Date :
03/12/96
Auteur(s) :
M. AUFAURE
Clé :
V7.21.100-A Page :
5/6
3 Modélisation
A
3.1
Caractéristiques de la modélisation
Câble de 100 m de portée modélisé par 20 éléments de câble du 1er ordre. Pas de temps de l'analyse
dynamique : 0.25 secondes.
3.2 Fonctionnalités
testées
Commande
Mot clé
Mot clé
Clés
facteur
DEFI_THER_JOULE
PARA_COND_1D
[U4.21.09]
AFFE_CHAM_NO
AFFE
GRANDEUR
[U4.26.01]
GROUP_NO
NOM_CMP
FONCTION
CREA_RESU
CHAM_GD
TYPE_RESU
[U4.26.02]
NOM_CHAM
LIST_INST
CHAM_NO
AFFE_CHAR_MECA
TEMP_CALCULEE
[U4.25.01]
STAT_NON_LINE
EXCIT
CHARGE
[U4.32.01]
DYNA_NON_LINE
EXCIT
CHARGE
[U4.32.02]
Manuel de Validation
Fascicule V7.21 : Thermo-mécanique statique non linéaire des structures linéiques
HI-75/96/067/A
Code_Aster ®
Version
3
Titre :
HSNL100 - Echauffement d'un câble par effet Joule
Date :
03/12/96
Auteur(s) :
M. AUFAURE
Clé :
V7.21.100-A Page :
6/6
4
Résultats de la modélisation A
4.1 Valeurs
testées
Identification
Référence
Aster
% différence
Tabulation de 6 valeurs d'une fonction f01 d'échauffement-refroidissement
instant 0.1
12.0°C
12.0°C
1E6
instant 0.
1.0°C
1.0°C
1E6
instant 10.
44051.93°C
44051.93°C
1E6
instant 20.
2.9999°C
2.9999°C
1E6
instant 30.
88102.86°C
88102.86°C
1E6
instant 40.
4.9998°C
4.9998°C
1E6
Tabulation de 3 valeurs d'une fonction f02 d'échauffement-refroidissement
instant 0.1
15.0°C
15.0°C
1E6
instant 0.
15.0°C
15.0°C
1E6
instant 40.
15.0°C
15.0°C
1E6
Câble soumis à une 3ème fonction d'échauffement f1
flèche à l'instant 6.25s (T = 167°C)
1.614397 m
1.583216
1.9
flèche à l'instant 12.50s (T = 441°C)
3.682028 m
3.640127
1.1
flèche à l'instant 18.75s (T = 892°C)
6.157222 m
6.092494
1.1
flèche à l'instant 25.00s (T = 1636°C)
9.244288 m
9.121316
1.3
4.2 Remarques
La flèche dynamique calculée par Aster est inférieure, d'environ 1%, à la flèche statique à la même
température. Cette différence résulte de l'inertie mécanique.
4.3 Paramètres
d'exécution
Version : 3.06.11
Machine : CRAY C90
Encombrement mémoire :
8 MW
Temps CPU User :
280 secondes
5
Synthèse des résultats
Le passage de ce test garantit qu'il n'y a pas eu de régression du Code_Aster pour l'analyse de
l'évolution de la flèche des câbles soumis à l'effet Joule.
Manuel de Validation
Fascicule V7.21 : Thermo-mécanique statique non linéaire des structures linéiques
HI-75/96/067/A
Document Outline