
Applying simple beam
theory

with
Code Aster®

1D and 3D
For CAELinux.com, May 2011 - Claus Andersen

Rev. 1.0

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

Rev. 1.0

• Table of Contents
Rev. 1.0..1
 1 Introduction..4
 2 Analytical solution..5

 2.1 Analytical solution...5
 3 Using MACR_CARA_POUTRE to calculate a cross section..8

 3.1.1 MACR_CARA_POUTRE values...9
 3.1.2 Analytical values..9

 3.2 Difference between analytical and MACR_CARA_POUTRE values.......................10
 3.3 Note on MACR_CARA_POUTRE..10
 3.4 ASTK set-up for MACR_CARA_POUTRE...11

 4 1D Beam calculation with Code Aster®...12
 4.1 Mesh...12
 4.2 Command file..13

 4.2.1 Reading the mesh and assigning a finite element model.................................13
 4.2.2 Define and assign the material..13
 4.2.3 Characteristics of the beam...13
 4.2.4 Boundary conditions and load...14
 4.2.5 Linear elastic solution..14
 4.2.6 Calculating elements and nodes...15
 4.2.7 Writing results to .MED file and text file..15
 4.2.8 Comparing results...15

 4.3 Comparing analytical results to Code Aster® (1D):...16
 4.4 Post-processing with Salomé...17
 4.5 ASTK set-up for 1D beam..18

 5 3D beam...19
 5.1 Preparing and meshing the 3D beam...19

 5.1.1 Preparing the geometry...19
 5.1.2 Creating the mesh...20
 5.1.3 Creating the mesh – creating groups and extrusion...21

 5.2 Command file..24
 5.2.1 Load mesh, assign model and material..24
 5.2.2 Boundary condition and load...25

2 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

Rev. 1.0

 5.2.3 Calculating a solution and writing the result..26
 5.2.4 Post-processing options in the command file...27

 5.3 Post-processing..29
 5.3.1 Reviewing the textual output...29
 5.3.2 Post-processing in Salomé..29

 5.4 Comparing results – analytical to Code Aster® (3D)...32
 5.5 ASTK setup for 3D calculation..32

 6 Conclusion, remarks and author(s)..33
 7 Links...34

3 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 1 Introduction

 1 Introduction
For this exercise, we'll analyze a cantilever beam in three different ways: analytical
approach and 1D modelization / 3D modelization with Code Aster®

Simple beam theory will be kept at a minimum and emphasis will be on how to utilize Code
Aster® to calculate the results, and how to extract and view said results.

A standard steel H profile beam is used in this exercise, as tables with values for these
profiles are abundant. This saves us some time doing trivial calculations on the specific
profile, but should we want to use a non-standard profile or just a profile not found in a
table, a short introduction to Code Asters® integrated profile calculator
(MACR_CARA_POUTRE) is included.

4 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 2 Analytical solution

 2 Analytical solution

 2.1 Analytical solution

t:=27.7mm IY:=712·10⁶mm⁴ E:=66·10³ MPa

w:=17.3mm IZ:=283·10⁶mm⁴ P:=-10000N

b:=394mm L:=3000mm x:=L

d:=375mm d1:=d-t c:=d/2

Area:

A :=2⋅t⋅b+(d−2⋅t)⋅w =2.74⋅104mm²
(1)

5 of 34
25. Aug. 2011

Figure 2.1: CCW

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 2 Analytical solution

Displacement at free end:

δ=
P⋅x2⋅(3⋅L− x)
6⋅E⋅I X

=−1.92mm
(2)

Angle of slope at free end:

ϕ=−
P⋅(2⋅L−x)
2⋅E⋅I X

=5.49⋅10(−2)deg ∨ 9.98⋅10(−4)rad
(3)

Bending moment at fixed end:

M A=P⋅L =−3⋅107 N⋅mm
(4)

Shear force:

V=P
(5)

Maximum normal stress:

σmax=|M A |⋅
c
I Y

=7.9MPa
(6)

Average shearing stress:

τavg=
V
A

=−0.37MPa
(7)

Max. shearing stress (in the web of profile, neglecting shear in flanges)

τmax.web=
V
Aweb

→
V

(d−2⋅t)⋅w
=−1.81MPa (8)

Section warping constant:

6 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 2 Analytical solution

J G=
d 1
2
⋅b3⋅t
24

=8.51⋅1012mm6
(9)

Torsion (stiffness) constant :

CT=
2⋅b⋅t 3+d 1⋅w

3

3
=6.18⋅106mm4 (10)

Note on shearing stress: Using the web area to determine maximum shearing stress is a
bit crude and gives a conservative (greater than actual stress, not by much though) result.

An alternative approach, is to determine maximum shearing stress by means of area
coefficients.

We are working in the OYZ coordinate system and want to determine maximum shearing

stress τxz, and thus need the AZ area coefficient This can be manually calculated, or
obtained from MACR_CARA_POUTRE (see section 3).

ATTENTION(!): pay special attention to section 3.3 when extracting AY/AZ from
MACR_CARA_POUTRE.

The following uses the concept of reduced area: Reduced area=
Actual area

Areacoefficient

Thus we have (using values from MACR_CARA_POUTRE):

Areduced=
A
AZ

→
2.77143E+04mm2

4.64168E+00
=5970,7477mm2 (11)

Which gives the following maximum shearing stress τxz:

τxz=
V

Areduced

→
−10kN

5970.7477mm 2
=−1.675MPa (12)

7 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 3 Using MACR_CARA_POUTRE to calculate a cross section

 3 Using MACR_CARA_POUTRE to calculate a cross section
There exists many, many tables filled with profile characteristics, readily available for all
your beam calculation needs. However, you could happen to have an irregular profile not
found in any table, or want to skip calculating the values by hand. In either case,
MACR_CARA_POUTRE can do this for you.

To have Code Aster® calculate the values for you, you must provide it with a 2D mesh of
the profile in question, laying on the OXY plane (Fig. 3.1)

To get MACR_CARA_POUTRE calculate the sectional warping constant JG and torsional
inertia constant CT, the mesh must have an element group of the entire border/edge of the
profile - this group is used with the keyword GROUP_MA_BORD.

Once the values have been calculated, they are written into the .resu file with the
IMPR_TABLE keyword. A list of parameters is used as not to clutter the .resu file. Each
entry is separated by a comma (,).
DEBUT();

8 of 34
25. Aug. 2011

Figure 3.1: W360x216 profile

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 3 Using MACR_CARA_POUTRE to calculate a cross section

mesh=LIRE_MAILLAGE(FORMAT='MED',);

Xsection=MACR_CARA_POUTRE(MAILLAGE=mesh,
 ORIG_INER=(0.0,0.0,),
 GROUP_MA_BORD='border',
 NOEUD='N421',);

IMPR_TABLE(TABLE=Xsection,
 FORMAT='TABLEAU',
 NOM_PARA=('Y_MAX','Z_MAX','Y_MIN','Z_MIN','R_MAX','
AIRE','CDG_X','CDG_Y','IX_G','IY_G','IXY_G','CT','JG','AY','AZ',),
 SEPARATEUR=' ,',);

FIN();

 3.1.1 MACR_CARA_POUTRE values

2nd MOI 2nd MOI Area Torsional inertia
constant

Sectional
warping constant

[mm⁴] [mm⁴] [mm²] [mm⁴] [mm⁶]

IX_G IY_G AIRE CT JG

7.15279e8 2.82575e8 2.77143e4 6.31927e6 8.42738e12

• AY: 4.64168E+00

• AZ: 1.46472E+00

 3.1.2 Analytical values

(Or values from tables)

2nd MOI 2nd MOI Area Torsional inertia
constant

Sectional
warping constant

[mm⁴] [mm⁴] [mm²] [mm⁴] [mm⁶]

IY IZ A CT JG

7.12e8 2.83e8 2.74e4 6.18e6 8.51e12

9 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 3 Using MACR_CARA_POUTRE to calculate a cross section

 3.2 Difference between analytical and MACR_CARA_POUTRE values

Most of the difference can be attributed to omitting fillets in the analytical approach.

2nd MOI 2nd MOI Area Torsional inertia
constant

Sectional
warping constant

0.46% 0.15% 1.13% 2.20% 0.97%

 3.3 Note on MACR_CARA_POUTRE

Values cannot be chained directly from the MACR_ concept to a beam calculation, not
without involving Python scripting. As such, values must be written to a file and entered
manually in the beam calculation.

Much confusion can come from using MACR_CARA_POUTRE (MCP) if one is not paying
attention to what coordinate system (CSYS) is the reference frame.

MCP outputs values in two reference coordinate systems: OXY, the CSYS used to create
and mesh the 2D profile and OZY – principal axes

This is very important when importing the calculated values into AFFE_CARA_ELEM
since this keyword used a third (!) CSYS: OYZ.

Below is an attempt to clarify the different reference CSYS' :

Mesh CSYS input for MCP. Outputs AIRE_M, CDG_X_M, CDG_Y_M, IX_G_M, IY_G_M,
IXY_G_M and IX_G, IY_G in this CSYS:
y
↑
z→x

Values Y_MAX, Z_MAX, Y_MIN, Z_MIN, IY_PRIN_G, IZ_PRIN_G, AY, AZ in this CSYS:
 y
 ↑
z←x

Assuming the beam lies on the (global) X-axis, AFFE_CARA_ELEM (A_C_E) uses this
CSYS:
z

10 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 3 Using MACR_CARA_POUTRE to calculate a cross section

↑
x→y

This effectively means that when using values from MCP in A_C_E, the following
conversion is necessary (only relevant values for our analysis is shown here):

MACR_CARA_POUTRE AFFE_CARA_ELEM

2nd MOI, Iy IX_G_M, IX_G → I_y

2nd MOI, Iz IY_G_M, IY_G → I_z

Extremity, width (Y) Z_MAX → RY

Extremity, height (Z) Y_MAX → RZ

Area coefficient AZ → AY

Area coefficient AY → AZ

Kees Wouters have written a more comprehensible tutorial for MACR_CARA_POUTRE
on the CAELinux.com wiki.

 3.4 ASTK set-up for MACR_CARA_POUTRE

11 of 34
25. Aug. 2011

Figure 3.2: ASTK set-up

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 4 1D Beam calculation with Code Aster®

 4 1D Beam calculation with Code Aster®

 4.1 Mesh

Creating the geometry and mesh in Salomé® is quite straight-forward:

(To aid post-processing we off-set the beam in the Z-axis)

• GEOM: Create two points at (0,0,500) and (3000,0,500), and create a line using
these two points.

• SMESH: Create a new mesh using the line as a Geometry input, under 1D select
'Wire discretization' as algorithm, and 'Nb. of segments' as hypothesis – set number
of segments to 9.

• SMESH: Create two node groups: One called 'Fix' at node (0,0,500) and one called
'Load' at (3000,0,500). Export the mesh as a .med file. The result should look like
figure 4.1

Note: Placing the beam as pictured will make sure the local coordinate system (csys) of
the beam matches the global csys. For orientations that differ from the global csys, see
ORIENTATION keyword in [U4.42.01] Opérateur AFFE_CARA_ELEM.

12 of 34
25. Aug. 2011

Figure 4.1: 1D mesh

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 4 1D Beam calculation with Code Aster®

 4.2 Command file

 4.2.1 Reading the mesh and assigning a finite element model

Load the mesh and name the concept ('Mesh') as per usual – format MED

Create an element group called 'TOUT' for all elements in the mesh.

Assign a mechanical phenomenon and a modelization of POU_D_E to everything
(TOUT=OUI).

Modelization POU_D_E is the Euler-Bernoulli hypothesis that assumes that the sections
remain straight and perpendicular to the fiber and assumes a long slender profile.

POU_D_E has the following degrees of freedom: DX, DY, DZ, DRX, DRY, DRZ.

(See [U3.11.01] Modélisations POU_D_T, POU_D_E, POU_C_T, BARRE)
DEBUT();

Mesh=LIRE_MAILLAGE(FORMAT='MED',);

Mesh=DEFI_GROUP(reuse =Mesh,
 MAILLAGE=Mesh,
 CREA_GROUP_MA=_F(NOM='TOUT',
 TOUT='OUI',),);

Model=AFFE_MODELE(MAILLAGE=Mesh,
 AFFE=_F(TOUT='OUI',
 PHENOMENE='MECANIQUE',
 MODELISATION='POU_D_E',),);

 4.2.2 Define and assign the material

Young's module of 66·10³ MPa (aluminum) and a Poisson's ratio of 0.3 – assign to
everything.
Material=DEFI_MATERIAU(ELAS=_F(E=66000,
 NU=0.3,),);

MatField=AFFE_MATERIAU(MAILLAGE=Mesh,
 AFFE=_F(TOUT='OUI',
 MATER=Material,),);

 4.2.3 Characteristics of the beam

In order to define our non-standard cross-section (i.e. not a square, circle etc.), the
keyword GENERALE must be used. For a Euler-Bernoulli beam, six parameters are
needed: Area (A), 2nd moment of inertia around the Y- and Z-axis (IY and IZ), a torsion

13 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 4 1D Beam calculation with Code Aster®

constant and RY/RZ. RY and RZ denotes maximum distance from neutral axis to extremity
of either axis. The torsion constant CT is now referred to as 'J'. (Section warping constant
is still called JG, but not needed here).

These values are entered as parameters and referenced under AFFE_CARA_ELEM ->
VALE. (See doc. [U4.42.01] section 9.4.3)
A = 27400.0;

I_y = 712000000.0;

I_z = 283000000.0;

J = 6180000.0;

RY = 394 / 2;

RZ = 375 / 2;

CARA_POU=AFFE_CARA_ELEM(MODELE=Model,
 POUTRE=_F(GROUP_MA='TOUT',
 SECTION='GENERALE',
 CARA=('A','IY','IZ','JX',RY,RZ,),
 VALE=(A,I_y,I_z,J,RY,RZ,),),);

 4.2.4 Boundary conditions and load

Fix left extremity – ENCASTRE is equal to to imposing DX=0, DY=0 ... etc.

Apply a point load at right extremity (ignoring gravity).
Hold=AFFE_CHAR_MECA(MODELE=Model,
 DDL_IMPO=_F(GROUP_NO='Fix',
 LIAISON='ENCASTRE',),);

Load=AFFE_CHAR_MECA(MODELE=Model,
 FORCE_NODALE=_F(GROUP_NO='Load',
 FZ=-10000,),);

 4.2.5 Linear elastic solution

Calculate a linear solution using the material field, characteristics of the beam and loads.
RESU1=MECA_STATIQUE(MODELE=Model,
 CHAM_MATER=MatField,
 CARA_ELEM=CARA_POU,
 EXCIT=(_F(CHARGE=Hold,),
 _F(CHARGE=Load,),),);

14 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 4 1D Beam calculation with Code Aster®

 4.2.6 Calculating elements and nodes

EFGE: Calculate generalized forces (N,Vx,Vy,Mx,My,Mz) on elements and nodes,
according to the global csys. For forces in the local csys of beam, you must provide the
orientation in AFFE_CARA_ELEM.

SIPO: Calculate stress based on the properties entered in AFFE_CARA_ELEM.

REAC_NODA: Reactions on nodes
RESU1=CALC_ELEM(reuse =RESU1,
 RESULTAT=RESU1,
 OPTION=('EFGE_ELNO_DEPL','SIPO_ELNO_DEPL',),);

RESU1=CALC_NO(reuse =RESU1,
 RESULTAT=RESU1,
 OPTION=('REAC_NODA','FORC_NODA','EFGE_NOEU_DEPL','SIPO_NOEU
_DEPL',),);

 4.2.7 Writing results to .MED file and text file

Write the calculated results to .med and .resu file, respectably.
IMPR_RESU(MODELE=Model,
 FORMAT='MED',
 RESU=_F(MAILLAGE=Mesh,
 RESULTAT=RESU1,
 NOM_CHAM=('DEPL','EFGE_NOEU_DEPL','REAC_NODA','FORC_NOD
A','SIPO_NOEU_DEPL',),),);

IMPR_RESU(MODELE=Model,
 FORMAT='RESULTAT',
 RESU=_F(RESULTAT=RESU1,
 NOM_CHAM=('DEPL','EFGE_NOEU_DEPL','SIPO_NOEU_DEPL','REA
C_NODA','FORC_NODA',),
 VALE_MAX='OUI',
 VALE_MIN='OUI',),);

 4.2.8 Comparing results

Values are found in the .resu file under their respective fields. Component=cmp

• Displacement at free end: DEPL field, DZ cmp: -1.915[mm]

• Angle of slope at free end: DEPL field, DRY cmp: 9.57610E-04 radians, equivalent
to 5.487E-2 degrees

• Bending (force) moment at fixed end: EFGE_ELNO_DEPL field, DRY cmp:
3E+7[Nmm]

• Bending (reaction) moment at fixed end: REAC_NODA field, DRY cmp:

15 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 4 1D Beam calculation with Code Aster®

-3E+7[Nmm]
• Shearing force: EFGE_ELNO_DEPL field, cmp VZ: -1.00000E+04[N]
• Normal stress due to bending: SIPO_ELNO_DEPL, SMFY cmp: 7.879[MPa]
• Shearing stress: SIPO_ELNO_DEPL field, SVZ cmp: -3.65E-01[MPa]

 4.3 Comparing analytical results to Code Aster® (1D):

Analytical Code Aster® Percentage

Displacement, free end -1.92 mm -1.915 mm 0.26 %

Angle of slope 9.58E-4 radians 9.576E-4 radians 4.17E-2 %

Normal stress, bending 7.9 MPa 7.879 MPa 0.27 %

Shearing stress -3.7E-1 MPa -3.65E-1 MPa 1.35 %
*Difference mostly due to rounding off.

16 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 4 1D Beam calculation with Code Aster®

 4.4 Post-processing with Salomé

Salomé® has some capabilities for post-processing beams elements, and as such, here’s
an attempt to visualize the values obtained – Figure 4.2.

From bottom up:

• Shear force diagram: Plot3D with VZ cmp. Default scaling.

• Node forces: Vectors, cones of 2nd type, no shading. Default scaling.

• Moment diagram: Plot3D, MFY cmp. Scaled to 5e-05.

17 of 34
25. Aug. 2011

Figure 4.2: Post-processing with Salomé

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 4 1D Beam calculation with Code Aster®

 4.5 ASTK set-up for 1D beam

18 of 34
25. Aug. 2011

Figure 4.3: ASTK set-up

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

 5 3D beam

 5.1 Preparing and meshing the 3D beam

To achieve accurate results from the calculation, the beam should be meshed with
hexahedral elements. Since most geometries with Salomés SMESH module requires
vigorous partitioning to satisfy the '4 sides only' rule for the quadrangle algorithm, we
exploit the geometry of the beam to extrude quads into hexas.

The methodology is as follows:

• Import a 3D version of the beam in STEP format

• 'Explode' (extract) a face from the geometry

• Create groups on the resulting 2D shape

• Mesh 2D shape with quads, import groups

• Extrude 2D shape, create groups for boundaries and loads

 5.1.1 Preparing the geometry

Start a new session in Salomé(MECA) and open the GEOM module. Select File →
Import... and select the beam STEP file.

Note: When importing STEP files in Salomé(MECA), Salomé automatically scales the
model down by a factor of 1000 in preparation of using the meter/kilogram/second system.

Select the model and scale the model up by a factor of 1000. Operations →

Transformation → Scale transformation, or click the appropriate icon in the toolbar

If needed, rotate the model so it aligns with the X-axis: Create an origin and base vectors
by clicking the icon - rotate the model -90 degrees around the Z-axis

Rotate the view so you are able to select the beam profile face closest to the origin, and
select New Entity → Explode and extract the face such as shown in figure 5.7

19 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

To save some time creating groups in the mesh module, create a face group on the
extracted profile – 'Face_1' (expand the 'Scale_1' geometry) - and call it 'Fix'. Also create
an edge group of the top edge of the profile – call it 'Press'.

 5.1.2 Creating the mesh

Switch to the mesh module, and while the 'Face_1' geometry is selected, click Create
mesh , enter the values shown in figure 5.2 and compute the mesh.

20 of 34
25. Aug. 2011

Figure 5.1: Extracting the profile

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

 5.1.3 Creating the mesh – creating groups and extrusion

Import the groups from the geometry by right-clicking the mesh and selecting Create
group, switch to Group on geometry and select Direct geometry selection (press the blue
arrow). Now create a face group from the 'Fix' group, and create an edge group from the
'Press' group.

To extrude the 2D mesh into a 3D mesh, make sure the 2D mesh is selected and press
the extrude button

To create a 3D mesh 3 meters long with reasonable hexahedral distribution, set X-
distance to 150 and number of steps to 20 (distance of 150 X 20 steps = 3000mm)

21 of 34
25. Aug. 2011

Figure 5.2: Mesh generation settings

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

See remaining settings in figure 5.3

When Generate groups is checked, the mesh module creates volume groups from face
groups and face groups from edge groups. For this study we don't need the newly created
volume group (we'll retain the 'Press' group in case it's needed for another load case), so
delete the 'Fix_extruded' volume group, delete the 'Press' edge group and finally rename
the face group 'Press_extruded' → 'Press'.

The last group we need, is an edge group at the free end of the beam so we can apply the
concentrated load.

To easily select the elements for the group, we can use 'clipping' to isolate the elements:
Select the mesh and in the view port right-click and select 'clipping'

Click New and select Y-Z for orientation. To isolate the elements of interest, the plane
needs to be rotated 180 degrees around the Y-axis (or Z). Set the distance to 0.99 and
click Apply and close.

Note: The clipping plane has two colors: Dark blue and pale blue; everything on the dark

22 of 34
25. Aug. 2011

Figure 5.3: Settings for 3D extrusion

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

blue side of the plane will remain visible while everything else will be clipped away.

When the 3D mesh is clipped, we are left with a 2D mesh of the free end. With a the view
port set to Front View, an edge group can be create easily. Name it 'Load' – see figure 5.4

We are now left with a mesh comprised of hexahedral elements containing the face group
'Fix' and the edge group 'Load'. See figure 5.5

23 of 34
25. Aug. 2011

Figure 5.4: Creating the edge group ' Load'

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

Right-click the name of the mesh and convert it to a quadratic mesh by selecting 'Convert
to/from quadratic' – tick 'Medium nodes on geometry'

Export the mesh to your working folder – right-click the mesh and select Export → MED
file

 5.2 Command file

The command file is a straight forward linear elastic study, and with exception of the
application of load and post-processing commands, it won't be commented further upon,
except directly in the .comm file.

 5.2.1 Load mesh, assign model and material
DEBUT();

#Defining the material.

#Linear elastic material - E-module = 66000MPa for Aluminum and a
Poisson's ratio of 0.35.

Alu=DEFI_MATERIAU(ELAS=_F(E=66000.0,

24 of 34
25. Aug. 2011

Figure 5.5: Green: Face group 'Fix' – Pink: Edge group 'Load'

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

 NU=0.35,),);

#'Read the mesh' - we use the 'med' file format here.

mesh=LIRE_MAILLAGE(UNITE=20,
 FORMAT='MED',
 INFO_MED=2,);

#Assigning the model for which CA will calculate the results: 'Mecanique'
- since we are dealing with a linear elastic beam and '3D' since it's a
3D model.

Meca=AFFE_MODELE(MAILLAGE=mesh,
 AFFE=_F(TOUT='OUI',
 PHENOMENE='MECANIQUE',
 MODELISATION='3D',),);

#Assigning the material of the beam using previously defined material.
'Tout = oui' means the whole model will have this material assigned.

Mat=AFFE_MATERIAU(MAILLAGE=mesh,
 AFFE=_F(TOUT='OUI',
 MATER=Alu,),);

 5.2.2 Boundary condition and load

The fixed end of the beam is imposed with zero displacement. In order to apply an
equivalent to a point force, the keyword FORCE_ARETE is used to impose a linear force
over the edges of the 'Load' edge group. A parameter ('Force') is used to impose this
force.

Further more, the keyword LIAISON_UNIF with option=DZ, ensures the edge displaces
uniformly in the Z direction.

#Boundary conditions
#'Fix' is blocked in all directions

BCs=AFFE_CHAR_MECA(MODELE=Meca,
 FACE_IMPO=_F(GROUP_MA='Fix',
 DX=0.0,
 DY=0.0,
 DZ=0.0,),);
#Load parameter
#The load is distributed linearly over the extreme end of the beam.
#-10000N / 394mm = -25.4N/mm
Force = -10000 / 394;

#'Load' element group is loaded with the parameter 'Force' in the Z
direction
 #'Load' elements are constrained to move uniformly in the DZ direction

25 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

Loads=AFFE_CHAR_MECA(MODELE=Meca,
 LIAISON_UNIF=_F(GROUP_MA='Load',
 DDL='DZ',),
 FORCE_ARETE=_F(GROUP_MA='Load',
 FZ=Force,),);

 5.2.3 Calculating a solution and writing the result
#Defining the calculation model using previously defined model and loads
('Meca', 'BCs' and 'Loads')

RESU=MECA_STATIQUE(MODELE=Meca,
 CHAM_MATER=Mat,
 EXCIT=(_F(CHARGE=BCs,),
 _F(CHARGE=Loads,),),);

#Calculate the elements.

#Using the model 'Meca', the material 'Mat' and entering the results into
'RESU'

#'b_lineaire' contains the things we want C_A to calculate.

#Normal stress and displacement on the elements.

#SIGM_ELNO_DEPL = Principal stress based on the 'displacement'.

#EQUI_ELNO_SIGM = Equivalent stress on the elements. ELGA: Elements Gauss
points

RESU=CALC_ELEM(reuse =RESU,
 MODELE=Meca,
 CHAM_MATER=Mat,
 RESULTAT=RESU,
 OPTION=('EQUI_ELNO_SIGM','EQUI_ELGA_SIGM','SIGM_ELNO_DEPL'
,),);

#Calculate the nodes..

#and enter it to 'RESU'

#OPTION = SIGM_NOUD_DEPL, EQUIV_NOEU_SIGM corresponds to the calculation
of the elements. FORC_NODA = Forces on nodes

RESU=CALC_NO(reuse =RESU,
 RESULTAT=RESU,
 OPTION=('EQUI_NOEU_SIGM','SIGM_NOEU_DEPL','FORC_NODA',),);

#Write the results from the calculation.

#'med' file format is our weapon of choice.

26 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

#'RESU' - b_extrac = what do we want to extract and write from the
calculation? = SIGM_NOEU_DEPL,EQUI_NOEU_SIGM,DEPL

#Stress at the nodes from the displacement (what, where, how)

#EQUIvalent Nodal Stress

#and Displacement.

IMPR_RESU(FORMAT='MED',
 RESU=_F(RESULTAT=RESU,
 NOM_CHAM=
 ('EQUI_NOEU_SIGM','DEPL','EQUI_ELGA_SIGM','SIEF_ELGA_DE
PL',
 'FORC_NODA','SIGM_NOEU_DEPL',),),);

 5.2.4 Post-processing options in the command file

Creating node groups from element groups is necessary in order to perform certain actions
with the keyword POST_RELEV_T
#Create / define a new node group based on an element group

mesh=DEFI_GROUP(reuse =mesh,
 MAILLAGE=mesh,
 CREA_GROUP_NO=_F(GROUP_MA='Load',
 NOM='Load_no',),);

#Extract reactions on nodes.

#Operation of 'actions' is to extract forces on nodes from the FORC_NODA
field calculated by CALC_NO.

#Use the node groups previously defined (element groups obviously can't
be used) for each 'action' respectively.
#Extract the 'resultant force' in the DZ direction on the nodes.

#Note: Probably self-evident, but using RESULTANT calculates the
resulting vector of each individual vector on each node. Using the
keyword NOM_CMP=DZ (name_of_component) will print a list of nodes in the
group and their corresponding vector.
#Third actions extracts the displacement of a single node at the free end
of the beam (node id. found i Salomé)
#Forth action computes the resulting moment from the forces in Fix group
at a specific POINT (0,0,0)

Table=POST_RELEVE_T(ACTION=(_F(OPERATION='EXTRACTION',
 INTITULE='Force_Fix',
 RESULTAT=RESU,
 NOM_CHAM='FORC_NODA',
 GROUP_NO='Fix_no',

27 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

 RESULTANTE='DZ',),
 _F(OPERATION='EXTRACTION',
 INTITULE='Force_Load',
 RESULTAT=RESU,
 NOM_CHAM='FORC_NODA',
 GROUP_NO='Load_no',
 RESULTANTE='DZ',),
 _F(OPERATION='EXTRACTION',
 INTITULE='Depl_Load',
 RESULTAT=RESU,
 NOM_CHAM='DEPL',
 NOEUD='N1458',
 NOM_CMP='DZ',),
 _F(OPERATION='EXTRACTION',
 INTITULE='Moment_Fix',
 RESULTAT=RESU,
 NOM_CHAM='FORC_NODA',
 GROUP_NO='Fix_no',
 RESULTANTE=('DX','DY','DZ',),
 MOMENT=('DRX','DRY','DRZ',),
 POINT=(0,0,0,),),),);

#Print maximum and minimum values from the SIEF_ELGA_DEPL field to a text
file with the unit number 9

IMPR_RESU(MODELE=Meca,
 FORMAT='RESULTAT',
 UNITE=9,
 RESU=_F(RESULTAT=RESU,
 NOM_CHAM='SIEF_ELGA_DEPL',
 FORM_TABL='OUI',
 VALE_MAX='OUI',
 VALE_MIN='OUI',
 IMPR_COOR='NON',),);

#Print the table with extracted forces, displacement and moment, to a
text file with the unit number 9 - only show parameters DZ and MOMENT_Y

IMPR_TABLE(TABLE=Table,
 UNITE=9,
 NOM_PARA=('DZ','MOMENT_Y',),);

FIN();

28 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

 5.3 Post-processing

 5.3.1 Reviewing the textual output

Since we specifically asked Code Aster® to output values to the text file with unit number
9, this is the file we have to review, and not the default .resu file.

Starting with forces, displacement and moment, the (primitive) filtration of parameters has
cut off the names of the rows, so the list corresponds like this:

• Resulting force on fixed end ('fix_no')

• Resulting force on free end ('load_no')

• Displacement of node

• Moment resulting from forces from group 'fix_no' at point [0,0,0]
Table CALCULE LE 19/04/2011 A 11:56:52 DE TYPE
#TABLE_SDASTER
 DZ MOMENT_Y
 1.02440E+04 -
 -1.02440E+04 -
 -2.07089E+00 -
 - -3.07320E+07

From the SIEF_ELGA_DEPL field, the normal stress of the beam is the SIXX component:
 CHAMP PAR ELEMENT AUX POINTS DE GAUSS DE NOM SYMBOLIQUE SIEF_ELGA_DEPL
 NUMERO D'ORDRE: 1 INST: 0.00000E+00

 LA VALEUR MAXIMALE DE SIXX EST 9.80867E+00 EN 1
MAILLE(S) : M10581

 5.3.2 Post-processing in Salomé

Field and component is noted in each image (figures 5.6, 5.7 and 5.8)

29 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

30 of 34
25. Aug. 2011

Figure 5.6: Normal stress and displacement – side view

Figure 5.7: Normal stress and displacement – arbitrary view

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

31 of 34
25. Aug. 2011

Figure 5.8: Shearing stress: SIXZ cmp – Cut plane at ~1.5m
(or use clipping)

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 5 3D beam

 5.4 Comparing results – analytical to Code Aster® (3D)

Analytical Code Aster® Percentage

Displacement, free end -1.92 mm -2.07089E+00 mm 7.29 %

Angle of slope 9.58E-4 radians N/A N/A

Normal stress, bending 7.9 MPa 8.055 MPa 1.9 %

Shearing stress (average) -3.7E-1 MPa N/A N/A

Shearing stress (web) -1.81 MPa -1.77 MPa 2.2 %

Shearing stress (AZ) -1.675 MPa -1.77 MPa 5.4 %

 5.5 ASTK setup for 3D calculation

32 of 34
25. Aug. 2011

Figure 5.9: ASTK setup – note last entry (unit 9)

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 6 Conclusion, remarks and author(s)

 6 Conclusion, remarks and author(s)
That's it for this tutorial. Much more information can be found in the user documents on the
Code Aster® website, its forum and on the CAELinux website.

Remark:

Any and all information and content in this document is published under the GPL license
and can as such be used or reproduced in any way. The author(s) only ask for
acknowledgment in such an event.

Acknowledgment goes out to EDF for releasing Code Aster® as free software and to all
those who help out by answering questions in the forum and writing documentation /
tutorials.

Contributions and/or corrections to this tutorial are always welcomed.

Author(s):

Claus Andersen – ClausAndersen81_[at]_gmail.com

ENDED OK

33 of 34
25. Aug. 2011

Applying simple beam theory with Code Aster® - 1D and 3D
Written for CAELinux.com

 7 Links

 7 Links
[CAELinux Website] www.caelinux.com

[Code Aster® Website] www.code-aster.org

[GMSH® Website] www.geuz.org/GMSH

[XMGrace® Website] http://plasma-gate.weizmann.ac.il/Grace/

34 of 34
25. Aug. 2011

	Rev. 1.0
	 1 Introduction
	 2 Analytical solution
	 2.1 Analytical solution

	 3 Using MACR_CARA_POUTRE to calculate a cross section
	 3.1.1 MACR_CARA_POUTRE values
	 3.1.2 Analytical values
	 3.2 Difference between analytical and MACR_CARA_POUTRE values
	 3.3 Note on MACR_CARA_POUTRE
	 3.4 ASTK set-up for MACR_CARA_POUTRE

	 4 1D Beam calculation with Code Aster®
	 4.1 Mesh
	 4.2 Command file
	 4.2.1 Reading the mesh and assigning a finite element model
	 4.2.2 Define and assign the material
	 4.2.3 Characteristics of the beam
	 4.2.4 Boundary conditions and load
	 4.2.5 Linear elastic solution
	 4.2.6 Calculating elements and nodes
	 4.2.7 Writing results to .MED file and text file
	 4.2.8 Comparing results

	 4.3 Comparing analytical results to Code Aster® (1D):
	 4.4 Post-processing with Salomé
	 4.5 ASTK set-up for 1D beam

	 5 3D beam
	 5.1 Preparing and meshing the 3D beam
	 5.1.1 Preparing the geometry
	 5.1.2 Creating the mesh
	 5.1.3 Creating the mesh – creating groups and extrusion

	 5.2 Command file
	 5.2.1 Load mesh, assign model and material
	 5.2.2 Boundary condition and load
	 5.2.3 Calculating a solution and writing the result
	 5.2.4 Post-processing options in the command file

	 5.3 Post-processing
	 5.3.1 Reviewing the textual output
	 5.3.2 Post-processing in Salomé

	 5.4 Comparing results – analytical to Code Aster® (3D)
	 5.5 ASTK setup for 3D calculation

	 6 Conclusion, remarks and author(s)
	 7 Links

