Individual g-const
$\mathrm{R}_{\mathrm{ch} 4}:=518 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{D}:=1.9 \mathrm{~mm}$
$\Delta \mathrm{p}:=1 \mathrm{kPa}$

Noz. coef.
$\alpha_{\text {noz }}:=0.5$

Density
$\rho:=0.656 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Isentropic exp.
$\kappa:=1.317$
$\mathrm{T}_{1}:=290 \mathrm{~K}$
$\mathrm{p}_{2}:=1 \mathrm{~atm}$
$\mathrm{p}_{1}:=\mathrm{p}_{2}+\Delta \mathrm{p}$

Dynamic viscosity

$$
\mu:=1 \cdot 10^{-5} \frac{\mathrm{~kg}}{\frac{\mathrm{~m}}{\mathrm{~s}}}
$$

Kinematic viscosity
$\nu:=1.65^{-5} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
Burner tube geometry
$\mathrm{D}_{2}:=\frac{13 \mathrm{~mm}}{2}$
$\mathrm{A}_{2}:=\pi\left(\frac{\mathrm{D}_{2}}{2}\right)^{2}=33.183 \mathrm{~mm}^{2}$

Specific vol.
$\mathrm{v}_{1}:=\frac{\mathrm{R}_{\mathrm{ch} 4} \cdot \mathrm{~T}_{1}}{\mathrm{p}_{1}}=1.468 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$

Ideal speed
$c_{2 s}:=\sqrt{2 \cdot \frac{\kappa \cdot 2}{\kappa-1} \cdot p_{1} \cdot v_{1} \cdot\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\kappa-1}{\kappa}}\right]}$
$c_{2 \mathrm{~s}}=76.774 \frac{\mathrm{~m}}{\mathrm{~s}}$
Real speed

$$
\mathrm{c}_{2}:=\mathrm{c}_{2 \mathrm{~s}} \cdot \alpha_{\mathrm{noz}}=38.387 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Calculation based on measured flow rate

Flow rate (air) $\times \sqrt{ }(1 /$ Relative Density (NG))
$\mathrm{V}_{\text {air }}:=\left(\begin{array}{c}5.33 \\ 5.25 \\ 4.25\end{array}\right) \frac{1}{\min } \quad \quad \mathrm{RD}_{\mathrm{ng}}:=0.656$
$\mathrm{V}_{\mathrm{ng}}:=\mathrm{V}_{\text {air }} \cdot \sqrt{\frac{1}{\mathrm{RD}_{\mathrm{ng}}}}$
$\mathrm{V}_{\mathrm{ng}}=\left(\begin{array}{l}0.395 \\ 0.389 \\ 0.315\end{array}\right) \cdot \frac{\mathrm{m}^{3}}{\mathrm{hr}}$
$\mathrm{V}_{\mathrm{ng}}=\left(\begin{array}{l}6.581 \\ 6.482 \\ 5.247\end{array}\right) \cdot \frac{1}{\mathrm{~min}}$

Alt. veloc. calc.
$\mathrm{A}:=\pi \cdot\left(\frac{\mathrm{D}}{2}\right)^{2}=2.835 \cdot \mathrm{~mm}^{2}$
$\mathrm{v}:=\frac{\mathrm{V}_{\mathrm{ng}}}{\mathrm{A}}=\left(\begin{array}{l}38.684 \\ 38.103 \\ 30.845\end{array}\right) \frac{\mathrm{m}}{\mathrm{s}}$
Massflowrate $:=\mathrm{V}_{\mathrm{ng}} \cdot \rho=\left(\begin{array}{l}0.259018 \\ 0.255131 \\ 0.206534\end{array}\right) \cdot \frac{\mathrm{kg}}{\mathrm{hr}}$

Reynolds number
$\mathrm{Re}:=\frac{\mathrm{V}_{\mathrm{ng}} \cdot \mathrm{D}_{2}}{\nu \cdot \mathrm{~A}_{2}}=\left(\begin{array}{l}24928008.505 \\ 24553854.531 \\ 19876929.858\end{array}\right)$

