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Summary: 
This document presents the bases of the isoparametric elements introduced into Code_Aster for 
modeling of the continuous mediums 2D and 3D. One first of all recalls the passage of a strong 
formulation to one 
variational formulation, then one details the discretization by finite elements: use of an element of 
reference, calculation of the functions of form and evaluation of the elementary terms. One also briefly 
describes 
the principle of the assembly of these terms and the imposition of the boundary conditions, and they are 
evoked 
methods of matric resolution used. Finally the principal stages of a calculation by elements are exposed 
stop such as it is conceived and established in Code_Aster. 
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1  
Principle of the finite element method 
The finite element method is employed in many scientific fields to solve 
partial derivative equations. It makes it possible to build a simple approximation of 
unknown factors to transform these continuous equations into a system of equations of finished size, 
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that one can write schematically in the form WITH = L, where U is the vector of the unknown factors, A 
a matrix and L a vector. 
Initially, one transforms the partial derivative equations (or strong formulation of 
problem) in a variational formulation (or weak formulation). The approximate solution is sought 
like linear combination of functions given. These functions must be simple but enough  
general to be able “well” to approach the solution. They must in particular make it possible to generate 
one 
space of finished size which is as close as one wants space of functions in which 
find the solution. From this old idea (method of the balanced residues), various ways 
to choose these functions give place to various numerical methods (collocation, methods 
spectral, finite elements). 
The originality of the finite element method is to take as functions of approximation of 
polynomials which are null on almost all the field, and thus take part in calculation only with 
particular point neighborhood. Thus, matrix A is very hollow, containing only the terms 
of interaction between “close points”, which reduces the computing time and the place memory 
necessary to 
storage. Moreover, matrix A and the vector L can be built by assembly of matrices and 
elementary vectors, calculated locally. 
2  
Obtaining a variational formulation 
One can obtain the variational formulation of a problem starting from the equations with the derivative 
partial, by multiplying those by functions tests and while integrating by parts. In mechanics of 
solids, the weak formulation then obtained is identical to that given by the Principle of Work 
Virtual or in certain cases the minimization of the total potential energy of the structure. Let us note 
however that for certain problems, the equations of the model are easier to establish in 
tally variational (case of the plates and hulls for example). 
2.1 Formulation  
strong 
Let us take an example resulting from the mechanics of the solids. Local equations of static balance of 
one 
structure, subjected to forces of volume F, the displacements imposed uD on part of its 
border D and of the forces imposed G on a part NR of its border, are written: 
div 
 
+ F = 0  
 
in  
 
U = uD on D 
.n = 
 
G on NR 
where is the tensor of the constraints and N the outgoing normal on the border. The relations which bind 
the tensor of the constraints to displacements U.S. 'call relations of behavior. 
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The boundary conditions applying to the primal unknown factors (displacements here) are called 
boundary conditions of DIRICHLET, or “essential”. Boundary conditions relating to 
the forces (or flows in thermics) are called boundary conditions of NEUMANN, or 
“natural”. 
2.2 Formulation  
weak 
2.2.1 Functions  
tests 
That is to say a space V of functions called functions tests, “sufficiently” regular and cancelling itself on 
D. In mechanics kinematically, this space is called the space of virtual displacements 
acceptable. By multiplying the local equations by a function test v pertaining to space V and in 
integrating on the field, one obtains a variational form of the problem, rigorously 
equivalent to the form preceding, known as so operational: 
V D = { 
D 
v “regular”, v = U on D 
} 
V = {v “regular”, v = 0 S  
ur D 
} 
v 
 
V: (div + F) v D = 0 
D 
 
 
To find U V 
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such as 
 
:  
 
éq 2.2.1-1 
.n = G on  
 
 
NR 
In what follows, it will be supposed to simplify that the conditions of DIRICHLET are homogeneous,  
i.e. uD = 0; thus, spaces V D and V are confused. Treatment of the conditions 
to the limits of nonhomogeneous DIRICHLET is exposed in the document [R3.03.01]. 
Note: 
One will not discuss in this document functional spaces to which must belong 
the functions tests (cf [bib1]). 
2.2.2 Formulate of GREEN 
The analogue of integration by parts for an unspecified field of border is called 
formulate of GREEN and states itself as follows, in its simplest form: 
 
id =  
in D, 
 
 
where I indicates the derivative compared to direction I, and N the outgoing normal with the field. 
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When = Q, where Q is a vector and a scalar, it is expressed in the following way: 
I iq D = iq in D - I Q 
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D, 
 
 
 
I 
maybe, by using vectorial notations (it. indicate the scalar product): 
div (Q) D + will gra  
D (). Q  
D = 
(q.n) 
 
 
 
D 
 
 
 
2.2.3 Formulation  
variational 
By applying the formula of GREEN to the integral [éq 2.2.1-1] and by taking account of the condition 
with 
limits of NEUMANN  
 
ijn J = I 
G on NR and of the condition v = 0 on D, one obtains the form known as 
variational of the problem: 
To find U V D such as:  
v 
 
V 
v D 
ij J I = 
F v D 
I I + 
 
 
 
 
G v D 
I I 
NR 
As the tensor of the constraints is symmetrical, the equation can be also written: 
ij (U) ij (v) D = 
fi iv D + 
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I 
G iv D 
 
 
 
, 
 
 
NR 
where 
1 
ij (v) = (I vj +j iv) 
2 
is the tensor of the linearized deformations. One thus finds exactly the expression given by 
Principle of Virtual Work in small displacements. The relation between the tensor of the constraints of 
CAUCHY and displacements U will be given by a relation of behavior, and are 
independent of the writing of the variational formulation (in the elastic case, one has for example 
ij (U) = ijklkl (U)). 
One of the advantages of the variational formulation is that it integrates all the boundary conditions: 
the conditions of DIRICHLET are taken into account in the definition of space V of the functions 
tests, while the conditions of NEUMANN appear naturally after integration by parts. 
This integration by parts also makes it possible to lower the order of derivation on the unknown factors. 
Of 
more, in a certain number of cases, it symmetrizes the problem out of U and v. 
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Two things remain to be made lorque one wrote the variational formulation (or the Principle of Work 
Virtual): to take into account the relation of behavior and to set up the algorithmic one 
resolution. For this last point, let us give some examples: writing of an algorithm of resolution  
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of nonlinear system (method of NEWTON for example) for the nonlinear problems, 
writing of a diagram of integration in time for the problems of evolution in dynamics (method of 
NEWMARK for example)… Consequently, the majority of the variational problems are brought back to 
find 
U V D such as: 
v V, has (U, v) = L (v), 
where has (·, ·) is a bilinear, symmetrical form or not, and L (·) a linear form. If 
bilinear form is symmetrical and positive, the problem arising is equivalent to a problem of 
minimization of a functional calculus, which in static mechanics of the solids is total potential energy 
structure. 
2.3  
Method of resolution 
In this document, one presents only the method finite elements in displacements, where 
unknown factors are, as its name indicates it, the variables known as primal (displacements in 
mechanics), 
in opposition to the methods in constraints, or the mixed methods. Space V is represented by 
a discrete space V h. For the methods finite elements in conformity to which us 
let us restrict here, space V H is included in V: the approximate solution is thus “more rigid” than 
exact solution (it over-estimates energy). 
It is pointed out that one places oneself here if the boundary conditions of DIRICHLET are 
homogeneous. In addition, one confines oneself with the finite elements of LAGRANGE for which 
variables are the values of the unknown fields. 
For the finite element method of GALERKIN described in this document, the unknown factors and them 
functions tests are represented in the same way, by defining a base of functions {wi (X} 
) of 
space V h. 
One calls nodes the points of the field where the unknown factors are calculated, and variable nodal or 
degrees of freedom scalar unknown factors to the nodes (components of displacement for example).  
a many basic functions necessary are equal to the number of nodal variables: for a problem 
three-dimensional where the unknown factors are the three components of the vector displacement, the 
dimension of 
the base is three times the number of nodes. 
One will use indices I, J,… to indicate the numbers of the nodes (NR on the whole), and the indices 
,… to indicate the numbers of the unknown factors (M unknown per node). Thus, the vector 
displacement discretized V H is written: uh (X 
H 
) = U (X) E 
 
, where the vectors E are the vectors of 
 
base Cartesian. Thereafter, one will omit the index H of the writings. 
Handbook of Reference 
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The basic function associated node I for the unknown factor number will be noted wI (X). In this 
base {wI (X} 
) 1IN, the unknown field is written: 
1  
M 
NR 
U (X) = uI W 
 
I (X). 
I =1 
where uI is the nodal variables. 
Thus, the problem amounts finding U V D such as: 
NR M 
v V, has (W E, v) uI = L (v 
I 
) 
 
 
. 
I=1=1 
Each choice of v makes it possible to obtain an equation. In the finite element method, one takes 
like function test v successively each function W 
D 
I (when V 
= V). Thanks to 
linearity of A (·, ·) and L (·), one can write the discrete problem like: 
NR M 
J, has (W E, W E) uI  
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= L (W 
I 
J 
J E), 
 
I=1 =1 
from where the matric system to solve: WITH = L, 
with: 
With 
= has (W E, W E), L 
1 
1 
 
= L (W 
 
 
 
 
E), and U 
 
 
= 
 
{U… U ..... uI 
… U I… U I ..... U NR… U NR T 
J I 
I 
J 
J 
J 
1 
M 
1 
 
M 
1 
M}, 
 
where NR is the number of nodes and M the number of scalar unknown factors per node (3 for 
displacements in 3D). 
In fact, one “condenses” the indices two by two: each new index I contains at the same time information 
on the number of node I and the local number of the unknown factor (the index condensed I is called it 
number of degree of freedom). A Aeij term of the matrix thus contains information on the interaction 
between the degrees of freedom I and J (for example, I represents displacement according to y with node 
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12 and J it 
displacement according to Z with the node 23). 
In many cases, the basic functions used for the various unknown factors in a given node 
are the same ones: W 
= W 
I 
I. One calls then the common basic function the function associated with 
node I, and it is noted wI. Subsequently, it will be supposed to simplify the writings that there is not 
that only one scalar basic function associated each node. 
N.B.: 
Let us note that certain authors, of Anglo-Saxon culture for the majority, describe for reasons 
histories finite element method like a method of RITZ per pieces. 
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3 Discretization 
The discretization consists in choosing a base of space V H and calculating the terms numerically 
matrix A and vector L. For that, one expresses the bilinear form has (·, ·) and the linear form 
L (·) like a sum on elements, defined by basic field division. If one begins again 
the mechanical problem presented in the paragraph [§1.2], that gives: 
has 
(W, W) = (W) (W 
I 
J 
kl I kl J) 
 
 
elements 
E 
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E 
L 
(W) =  
F W + 
G W 
I 
I I I I 
 
 
elements 
E 
E 
 
 
 
 
E 
The Aij terms, which represent the interaction between two degrees of freedom I and J are built in 
“assembling” the contributions coming from each element which contains the nodes 
correspondents; one proceeds in the same way to build the vector L. These contributions, 
called elementary terms, are calculated at the time of a loop on the elements and only depend 
only variables of the element E. 
3.1  
Cutting in finite elements 
The structure is cut out of “pieces” called elements. The data of the co-ordinates of the nodes 
elements and connectivities (list of the tops of each element) constitutes a grid.  
cutting must respect a certain number of rules: in particular, there should not be nor covering 
nor hole. 
Let us recall that one calls nodes the points where the unknown factors are calculated. The nodes can be  
tops of the grid or not (mediums on the sides for example). The number of scalar unknown factors 
(or nodal variables) in an element the number of degrees of freedom of the element is called. 
3.2  
Choice of the functions tests 
The functions tests (or functions of the base {wi (X} 
)) must be dense in space V of 
unknown functions, being continuous from one element to another, to allow to calculate the terms simply 
elementary Aij and Li, and to generate a matrix A hollow and conditioned well. Three first 
conditions are met in particular by the choice of polynomial functions. Moreover, to have one 
stamp A hollow, one will make so that the supports of two basic functions associated two 
“distant” nodes are disjoined: thus, the corresponding terms of the matrix will be null. 
It is pointed out that one places oneself to simplify the writings if only one function is used 
basic by node I for all the unknown factors. In this case: W = W = W 
I 
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I 
I 
, where I is it 
condensed number of degree of freedom for the unknown factor of node I. 
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The choice of the basic functions is then the following: one associates each node I a basic function 
wI which is a polynomial per pieces being cancelled on all the elements not containing node I 
[Figure 3.2-a]. So has (W, W 
I 
J) = 0 if the ddl of numbers I and J are carried by nodes I and J 
who do not belong to the same element. One forces moreover this polynomial to be worth 1 with node I, 
and 0 in all the other nodes. In other words, W (X J 
J 
I 
) = I. Thus, nodal values of 
unknown factors will be the values taken with the nodes by the exact solution: U X J 
uJ 
( 
) = 
. 
Appear 3.2-a: Basic function associated a node 
In the continuation, one will call function of form associated with node I the trace (or restriction) on the 
element 
considered basic function wI, and it will be noted Ni. 
3.3  
Representation of the geometry 
The calculation of the functions of form for an unspecified element can be rather complicated. In the case 
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triangles, one can for example use the concept of barycentric co-ordinates of a point by 
report/ratio at the three tops. However, in the case of the quadrangles, such a concept is less 
current and calculations can be delicate to carry out analytically. This is why one prefers 
often to bring back itself to an element known as of reference, simple form, and from which one can 
generate 
all elements of the same family by a geometrical transformation. Functions of form 
are then calculated on this generic element noted R, and the transport of the sizes on the element 
real E is carried out thanks to the knowledge of the geometrical transformation. Let us note however that 
 
the thermohydraulic code N3S uses for reasons of performance of the analytical formulas 
explicit and not concept of element of reference. 
Handbook of Reference 
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3.3.1 Element of reference 
Let us note X the punctual coordinates X in the absolute reference mark. Points of the element of 
reference 
will be described in terms of co-ordinates known as parametric. The figure [Figure 3.3.1-a] gives for 
a triangular element in 2D the element of reference and the real element. The transformation must be 
bijective and to transform the tops and sides of the element of reference into tops and sides of 
the real element. 
2 
x2 
1 
element of reference 
real element 
0 
1 
1 
x1 
Appear 3.3.1-a: Geometrical transformation 
3.3.2 Functions of geometrical interpolation 
The geometry of the element will be approximate by the means of functions known as of geometrical 
interpolation: 
thus for example, the curved lines of the real element can be represented by segments 
on the element of reference. 
These noted functions NR () are defined on the element of reference; they make it possible to know them 
co-ordinates X of an unspecified point of the real element starting from its co-ordinates of sound 
antecedent in the element of reference and co-ordinates X I of the nodes (of local number I) of 
the real element: 
N 
X = NR () xI 
 
I 
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, 
I =1 
where N is the number of nodes of the element, and I the number of each node locally to the element. 
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3.3.3 Stamp jacobienne transformation 
The jacobienne of the transformation is the matrix of the derivative partial of the real co-ordinates X 
compared to the co-ordinates in the element of reference: 
X 
J 
 
=  
. 
 
 
By taking account of the definition of co-ordinates X according to co-ordinates xI of the nodes, 
one obtains an equivalent expression of the matrix jacobienne: 
N NR 
J 
I 
=  
xI 
 
 
 
, 
I =1 
 
NR 
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NR T 
where  
I 
are the terms of the tensor  
, the number of lines is the number of directions 
 
 
space, and numbers it columns the number of nodes of the element. 
NR T 
Let us note that the tensor  
depends only on the definition of the element of reference and not on 
 
that of the real element. 
The determinant of the matrix jacobienne, useful in calculations which will follow, is called the jacobien 
the geometrical transformation. It is nonnull when the transformation which makes pass from the 
element of 
reference to the real element is bijective, and positive when respects the orientation of space. 
3.4  
Representation of the unknown factors 
There are two equivalent ways to represent the unknown factors (component displacement in 
the mechanical example) in an element: by the coefficients of their polynomial approximation, or by 
their nodal values. These two possibilities correspond to the two manners complementary to 
to define an element: by the data of a base of students'rag processions, or by the data of the functions of 
form 
associated the nodes. In addition, let us note that an element is known as isoparametric when its functions 
of form are identical to its functions of geometrical interpolation. In Code_Aster, all them  
finite elements of continuous medium (2D and 3D) are isoparametric. 
3.4.1 Base  
polynomial 
The way simplest to define an element is to choose a polynomial base made up of one 
certain number of independent students'rag processions. For a given unknown factor, the number of 
students'rag processions 
used must be equal to the number of nodal variables, i.e. with the number of nodes used for 
to represent the unknown factor. In the case of a triangular finite element where one wishes to have them 
linear displacements and constant pressure in each element, polynomial bases used 
are respectively {1, X, 
1 x2} and {} 
1. Consequently, one can choose to calculate displacements 
with the 3 nodes tops and the pressure with the central node. 
Handbook of Reference 
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One generally defines the polynomial base on the element of reference; it contains students'rag 
processions of 
 
the form  
1 2 3, where, and are positive or null whole exhibitors. The degree of such 
students'rag procession is the entirety + +. The base is known as complete degree N when all the 
students'rag processions of 
degree N are present. In certain cases, one employs incomplete bases. For example, for 
Q1 quadrangle in 2D, displacements are linear compared to each direction: the base 
used is {1, 
1 2 1 
2 
}. The components u1 and u2 of displacement are thus written: 
U 
(,) = has + has + has + has 
1 1 2 
1 
2 1 
3 2 
4 1 
2 
 
U (,) = B +b +b +b 
2 1 2 
1 
2 1 
3 2 
4 1 
2 
 
One notes pi () the ième students'rag procession of the base (which includes/understands m of them). 
Components of the vector 
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displacement ( 
U) in the element are then given by the formula: 
m 
U () = have P 
 
I () 
i=1 
One will note the matrix giving the values taken by the students'rag processions of the polynomial base 
on 
nodes of the element of reference: 
 
I 
II = I 
P (), 
where I is the sequence number of the students'rag procession in the base, I the number of the node 
locally to the element and 
I co-ordinates of node I in the element of reference. This matrix is square, its dimension 
is the square of the number of nodes of the element. 
3.4.2 Functions of form 
An equivalent way to define a finite element is to give, for each unknown factor, the expression of 
functions of form of the element. For a given scalar unknown factor (component of displacement 
according to y for example), there is as much as nodes where the unknown factor must be calculated. In 
much 
case, one uses the same functions of form for all the components of an unknown vector, 
but it is not obligatory. In what follows, one will suppose however to simplify the writings 
that it is the case. 
The functions of form can be defined on the element real E: they then are noted NR E (X), they 
depend on the geometry of the real element, and are thus different from one element to another. It is 
more 
simple to express them on the element of reference, which gives the functions NR () independent of 
geometry of the real element. Let us recall that these functions are polynomial on the element, and that 
function of form associated with a node given there takes value 1, whereas it cancels in all them 
other nodes of the element. 
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The unknown factors are expressed then like linear combination of the functions of form, the coefficients 
uI of the combination being called nodal variables: 
N 
U () = NR () uI 
 
I 
. 
I =1 
N 
or U (X) = NR 
-1 
 
((X))uI 
I 
 
I =1 
3.4.3 Element  
isoparametric 
Two types of interpolation thus intervene in the construction of a finite element: the interpolation 
geometrical (using the functions NR ()) and the interpolation of the unknown factors (using the functions 
NR ()). An element is known as isoparametric when it is based on identical interpolations for its 
geometry and its unknown factors: NR () = NR (). 
3.4.4 Correspondence between polynomial base and functions of form 
There are the relations: 
U () = have P 
I 
 
I () and U () = NR () U 
 
I 
. 
I 
I 
m 
Moreover, it is clear that one a: uI = have P I 
() = have 
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I 
II. One deduces from it the following relation between 
i=1 
base polynomial and the functions of form: II Ni () = I 
P (). 
Example: P1 triangle in 2D 
One will note = (1,2) the parametric co-ordinates in the element of reference. 
P () = 1, P () =, P 
1 
2 
1 
3 () = 2 
, 
1 0 
 
0 
1 0 
 
0 
 
 
 
 
= 1 1  
0 
-1 
, 
= -1 1  
0 , 
 
1 0 1 
 
-1 0 1 
from where functions of form: 
N1 () = 1 - 1 - 2 
 
 
N2 () = 1 
 
NR 
3 () = 2 
 
It is checked well that NR 
J 
J 
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I () = I. 
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3.5  
Calculation of the elementary terms 
The elementary terms to calculate are form: 
U (X) 2u (X) 
F (U (X), 
, 
,…) dx 
 
2 
. 
E 
X 
X 
Three types of operations are to be carried out: the transformation of derived compared to X into 
derivative 
compared to, the passage of an integration on the real element with an integration on the element of 
reference, and the numerical realization of this integration which is generally made by a formula of 
squaring. 
3.5.1 Transformation of the derivative 
The transformation of derived is carried out thanks to the matrix jacobienne J, according to the rule of 
derivation in chain: 
U 
 
T 
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U 
 
1 NR  
- 
nod 
= 
= 
 
J  
U 
X X  
 
 
where unod 
is the vector of the nodal values of the component of displacement. 
The derivative of a higher nature are also obtained by using this rule, even if that gives place 
with expressions more complex than we will not clarify here. 
3.5.2 Change of field of integration 
The passage to integration on the element of reference is carried out by multiplying the intégrande by 
determinant of the matrix jacobienne, called jacobien: 
U (X) 2u (X)  
U () 2u () 
F (U (X), 
, 
,…) dx = 
F (U (), 
, 
,…) det (J ()) D 
 
 
2 
 
. 
 
2 
E 
X 
X 
R 
 
 
3.5.3 Numerical integration: points of GAUSS 
In certain particular cases, one can calculate the integrals analytically. For example, for one 
triangle in 2D, Jacobien is constant on the triangle, and the intégrandes are brought back to students'rag 
processions 
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that one can integrate exactly: 
1 1  
- 
 
!! 
 
1 2 d1d2 = 
. 
0 0 
 
( + + 2)! 
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However, these particular cases are rare, and one prefers to evaluate the integrals numerically in 
calling upon formulas of squaring. Those give an approximation of the integral under 
form of a balanced sum of the values of the intégrande in a certain number of points of the element 
called points of integration: 
R 
G ( 
 
) D G 
G 
(G). 
R 
g=1 
The scalars G are called the weights of integration, and the co-ordinates G are the co-ordinates 
R points of integration in the element of reference. 
In the methods of integration of GAUSS, the points and weights of integration are given of 
manner to integrate exactly polynomials of a nature given. It is this type of method which one uses 
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in Code_Aster then, the points of integration are called points of GAUSS. 
Note: 
The number of points of selected GAUSS makes it possible to integrate exactly in the element of 
reference. In fact, because of the possible non-linearity of the geometrical transformation or 
space dependence of the coefficients, integration is not exact in the real element. 
However, it is shown that the made error is of an order lower than the error of 
discretization induced by the finite element method. 
To illustrate the use of the points of GAUSS, let us take as example the case 3D, where one supposes 
that one uses r1 points in direction 1, r2 in the direction  
in the direction  
 
2 and r3  
3, is one 
total of R = R R R 
1 2 3 points of GAUSS. It is shown whereas the expression: 
R 
R 
R 
1 
2 
3 
G ( 
 
) D G I J K 
I 
J K 
( , 
1 , 
2 ) 
 
3 
R 
i=1 j=1 K =1 
 
 
 
allows to integrate exactly students'rag processions of the type (1) (2) (3), with 
2 R - 1, 2 R - 1, 
1 
2 
and 2 r3 - 1. 
3.6 Example 
One proposes to detail the calculation of the variational formulation, of the functions of form, of 
elementary matrix of thermal rigidity and the elementary vector loading in the case of 
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the equation of heat (Laplacian) in 2D, for elements of the type Q1 quadrangle. 
Handbook of Reference 
R3.01 booklet: General references 
HI-75/95/023/A 

Code_Aster ® 
Version 
3 
Titrate:  
Isoparametric elements 
Date:  
05/05/95 
Author (S): 
I. VAUTIER 
Key: 
R3.01.00-A 
Page: 
17/24 
3.6.1 Formulation  
variational 
If one calls K the coefficient of conduction, and T the temperature, the local equations of balance are 
: 
- div (K grad (T)) = F in  
 
T = 0 out of 0  
 
- K grad (T) .n = 
 
known R 1 
where - K grad (T) is the heat flow and N the outgoing normal with the field. One is imposed 
T0 temperature = 0 on edge 0 of the field, and a heat flow on edge 1. 
That is to say the virtual variable associated the temperature. By multiplying the equilibrium equation 
by, in 
integrating by parts and by holding account of the boundary conditions, the formulation is obtained 
variational: 
K grad (T) grad () D = 
F D - 
 
 
 
 
D 
 
 
1 
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The elementary terms that one will have to calculate will be thus: 
· the matrix of thermal rigidity elementary: Ae = 
K 
NR) grad (NR) D 
ij 
grad (I 
J 
 
E 
· the elementary vector of surface loading: = 
F NR D 
S 
 
I  
I 
E 
· the elementary vector of linear loading: = 
NR D 
L 
 
I  
I 
1e 
In fact, the term corresponding to the linear loading Lel is calculated in Code_Aster on one 
I 
element of particular edge and not on the edge of the element E. The functions of form are thus used 
element of edge (which is the traces on the edge of the functions of form of the surface element). It 
is thus necessary always to use 2 elements when one wishes to impose a loading or one 
boundary condition: an element of “volume” (for E) and an element of edge (for E). 
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3.6.2 Functions of form 
One will use Q1 quadrangles, where the unknown factors are represented on the polynomial basis 
{1, 1, 2, 1 2}. The element of reference is the square represented on the figure [Figure 3.6.2-a]: 
2 
1 
-1 
1 
1 
-1 
Appear 3.6.2-a: Square of reference 
One thus has: 
1 -1 -1 
 
1 
1 
1 
1 
 
1 
1 1 -1 -  
 
1 
1 - 1 
1 
1 -  
1 
=  
, 
-1 
 
 
 
, 
1 
1 
1 
 
= 
1 
4 -1 -1 
1 
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1 
 
 
 
 
1 -1 
1 -  
1 
1 -1 
1 -  
1 
and by using relation II Ni () = I 
P (), one obtains the expressions of the four functions of form 
associated the tops: 
 
1 
NR 
1 (1 
, 2 
) = 1 
(- 1 
) 1 
(- 2 
) 
4 
 
1 
N2 (1, 2) = 1 (+ 1) 1 (- 2) 
 
4 
 
1 
N3 (1, 2) = 1 (+ 1) 1 (+ 2) 
 
4 
 
1 
N4 (1, 2 
) = 1 
(- 1 
) 1 
(+ 2 
) 
 
4 
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The matrix of derived from the functions of form in the element of reference is: 
NT N1 
NR 
, 
2, 
, 
, 
1 
1 
1 
1 
1 
1 
 
N3 
1 
 
N4 
1 
 
1 
- + 2 
- 2 
+ 2 - - 2 
 
 
= 
= 
 
, 
 
N1 
NR 
, 
2, 
, 
, 
4 
1 
1 
1 
1 
2 
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N3 
2 
 
N4 
2 
2  
- + 1 - - 1 
+ 1 
- 1  
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from where the matrix jacobienne J which makes it possible to pass from the element of reference to a 
real element of which 
4 NR 
the tops have the co-ordinates (X, y 
I 
I 
I 
I), obtained thanks to the relation J 
=  
X 
 
 
 
: 
I =1 
 
1 1 
(- 2 
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) (2 
X - 1 
X) + 1 
(+ 2 
) (x3 - X) 1 
4 
(- 2 
) (y2 - 1 
y) + 1 
(+ 2 
) (3 
y - y4) 
J =  
 
4 1 
(- 1 
) (4 
X - 1 
X) + 1 
(+ 1 
) (x3 - X) 
1 
2 
(- 1 
) (y4 - 1 
y) + 1 
(+ 1 
) (3 
y - 2 
y)  
This matrix of order 2 could be calculated at the points of GAUSS when one needs some and 
easily reversed. 
3.6.3 Calculation of the elementary terms 
The elementary matrix Ae = 
K 
NR) grad (NR) D 
ij 
grad (X I 
X 
J 
4 X include/understand 4 = 16 terms, but 
E 
as it is symmetrical, only 10 are to be calculated. It is necessary to carry out three operations for 
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to evaluate each term of the elementary matrix: 
· sum balanced on the points of GAUSS, 
· transformation of the derived ones: grad (NR) = -1 grad (NR) 
X 
J 
I 
 
I, 
· integration on the element of reference while multiplying by the jacobien (determinant of J). 
One notes gradx here the gradient whose components are the derivative of the functions compared to 
co-ordinates X, and grad the gradient whose components are the derivative of the functions by 
NT 
report/ratio with the co-ordinates (they are the columns of the matrix  
). 
 
One deduces the final expression from it from the elementary term Aeij: 
NPG 
Ae = K 
- 
J 1 
NR 
- 
 
J 1 
grad ( 
( 
)) 
grad (NR 
ij 
G 
I 
G 
J (G)) det (J (G)) 
 
 
, 
g=1 
where NPG indicates the number of points of GAUSS. One of the families of possible points of GAUSS 
(because it integrates the Q1 elements exactly) for the square of reference [- 1,] 
1 × [-1, ] 
1 is that where 
1 
1 
the points of GAUSS have as co-ordinates (± 
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,± 
) and where the weights of integration are worth 1. 
3 
3 
The components of the elementary vector corresponding to the surface loading Them are calculated 
I 
in a way even simpler: 
NPG 
= F () NR 
S 
G 
G 
I (G) det (J (G)) , 
I 
g=1 
where the surface loading F is interpolated at the points of GAUSS of parametric co-ordinates G. 
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4 System  
matric  
For each element E, one knew to calculate the terms known as elementary: elementary matrix Ae and 
elementary vector It. The matrix A and the vector L are obtained by a procedure that one calls 
assembly of the elementary terms, described below. One exposes then the principle of 
the imposition of the boundary conditions, then one gives a list of methods usable to solve it 
matric system obtained. These the last two points are evoked very briefly because they are treated 
in other booklets of the reference material [in particular R6]. 
4.1  
Assembly of the matrices and vectors elementary 
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The assembly consists in deferring the Ae terms 
E 
ij and Li of each elementary matrix Ae and of 
each elementary vector It in corresponding boxes AIJ and LI of matrix A and of 
vector L. the correspondence enters the local numbers I and J of the degrees of freedom, and their 
numbers 
total I and J are given by the table of connectivities belonging to the grid. 
Indeed, the table of connectivities gives, for each element, the absolute numbers of its nodes 
(tops or not). The order in which the nodes of the element are described gives their numbers 
buildings in the element of reference (K ième node described will have the number K locally). In 
addition, 
one knows for each node the order of the degrees of freedom: for example, displacement according to X, 
then displacement according to y, then pressure. That makes it possible to number the degrees of freedom 
locally in each element. As for the numbers of the degrees of freedom of the total system, they are 
obtained after renumerotation of the unknown factors [R2.02.03]. One thus knows, for a given element, 
to associate numbers I and J local degrees of freedom numbers I and J of the degrees of freedom 
total. 
To carry out the assembly, one carries out a loop on the elements. For each element, one 
determine the nodes which it comprises and thus the total numbers of the degrees of freedom considered, 
and 
one adds at the end A 
E 
IJ the Aij term corresponding to him. 
4.2  
Imposition of the boundary conditions kinematics 
The treatment of the boundary conditions kinematics of the type U = uD is described in detail in 
booklet [R3.03.01]. They are imposed by a method of duality, by introducing a vector of 
multipliers (or parameters) of LAGRANGE, which leads to the mixed matric system: 
 
WITH + BT = L 
DRUNK 
 
 
= UD 
4.3  
Resolution of the matric system 
The preceding linear system can be solved by a certain number of numerical methods.  
methods used in Code_Aster are factorization LDLT per blocks [R6.02.01], the method 
multifrontale [R6.02.02], and the packaged combined gradient [R6.01.01]. 
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4.4  
Estimate of error and improvement of the precision of calculations 
After having carried out a calculation by finite elements, it is possible to make an allowing 
postprocessing 
to consider the error made: to see on this subject the documents [R4.10.01] and [R4.10.02]. 
To improve the precision of the results, two tactics are possible: 
· to refine the grid 
· to use an approximation of a higher nature 
- is by increasing the number of nodes of interpolation (family of the elements of 
LAGRANGE); 
- is by increasing the number of nodal variables, by adding for example them 
derived from the unknown factors (family of the elements of HERMIT); this method is not 
used in Code_Aster. 
5 Organization of a calculation by finite elements in 
Code_Aster 
One very briefly describes how and in which place the aspects evoked in this document are 
established in Code_Aster. 
5.1  
Concept of finite element in Code_Aster 
A type of finite element is defined by: 
· a type of mesh 
· a list of nodes 
· of the functions of form 
· of the options of calculation 
An element in the grid is defined by a type of mesh, a geometry (coordinated nodes) 
and a topology (ordered list of the nodes). It is the type of modeling chosen in the file of 
order which makes it possible to assign to each mesh grid a type of finite element. The order 
AFFE_MODELE [U4.22.01] assigns to each mesh a type of finite element corresponding to 
modeling specified for this mesh. When same modeling is retained for all it 
grid, the use of AFFE_MODELE is simple thanks to the use of the key word ALL: “YES”. 
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Important remark: 
In the contrary case, one should not forget to assign finite elements to the meshs of edge of which 
one has need to impose the boundary conditions and loadings, and which one will have taken care of 
to create during the manufacture of the grid. 
Operator AFFE_CHAR_MECA [U4.25.01], which affects boundary conditions and loadings, goes 
also to create finite elements, for example the finite elements which will carry the degrees of freedom 
LAGRANGE used in the dualisation of the boundary conditions [R3.03.01]. 
Operator AFFE_CARA_ELEM [U4.24.01] allows to define additional characteristics for 
certain types of elements: for example, the thickness of the hulls, orientation of the beams, matrices 
of mass and rigidity of the discrete elements. 
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An option of calculation indicates the elementary type of calculation that the element is able to calculate. 
By 
example RIGI_MECA relates to the calculation of the elementary matrix of mechanical rigidity: 
Ae 
E 
E 
= ijkl ij (NR (X))kl (NR (X))dx, 
R 
The “data” of this option are the geometry (R) and the material (), supplemented by 
temperature if the material depends on it. 
Option CHAR_MECA refers to the calculation of the elementary vector for a mechanical loading 
imposed on the border: 
= 
gN E 
 
 
(X) dx. 
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R 
 
Let us recall that to apply the loadings of border, one uses finite elements of edge 
private individuals, and not borders of the finite elements of volume (3D) or surface (2D). 
Note:  
A developer can sometimes have the choice between creating a new finite element or adding one 
option of calculation to an existing element; the choice between these two solutions holds in general 
count criteria of data-processing facility (e.g. under-integrated elements). 
5.2  
Initializations of the elements 
The use of elements of reference makes it possible to once carry out a certain number of calculations for 
all at the beginning of the execution. These calculations are carried out in routines INI…. called routines 
of initialization of the elements. One defines, for each type of element of reference: 
· the number of nodes and their co-ordinates; 
· the number of families of points of GAUSS; 
· the number of points of GAUSS; 
· weights of integration G; 
· values of the functions of form at the points of GAUSS Nor (G); 
Nor (G) 
· values of derived from the functions of form at the points of GAUSS  
 
. 
For a given element, one inevitably does not integrate all the elementary terms with the same one 
a number of points of GAUSS: for example, one in general uses more points of GAUSS for 
stamp of mass that for the matrix of rigidity, because the products of functions of form are degree 
higher than the products of their derivative. Another example is the under-integration used in 
certain cases. One calls family of points of GAUSS each whole of points of GAUSS 
likely to be used. 
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5.3  
Calculation of the elementary terms 
During the calculation of the elementary terms (in the routines YOU….), one carries out for each point of 
GAUSS following operations: 
· calculation of derived from the functions from form, X on the real element starting from the co-
ordinates 
nodes of the element and derivative of the functions of form NR, on the element of 
reference; 
· calculation of the matrix jacobienne; 
· recovery of the weight of integration multiplied by Jacobien at the point of GAUSS considered; 
· evaluation of the intégrande (according to the calculated option). 
The elementary term is calculated by nap on the points of Gauss while balancing by the weights 
of integration. 
5.4 Resolution  
total 
The total resolution takes place in routines COp…. high level corresponding to the orders 
user (MECA_STATIQUE [U4.31.01], STAT_NON_LINE [U4.32.01], THER_LINEAIRE [U4.33.02], 
etc). 
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1 Introduction  
 
In Code_Aster, one calls “finite element”, a triplet (phenomenon, modeling, type of mesh). There is  
three principal phenomena: MECHANICS, THERMICS and ACCOUSTICS.  
There are many modelings; for example, for the MECHANICAL phenomenon: 3D, C_PLAN,  
D_PLAN, AXIS, DKT, POU_D_E,…  
For a given modeling (for example 3D) of a phenomenon (for example MECHANICAL), there exists  
in general several finite elements: an element by type of mesh supported: HEXA8, HEXA20,  
PENTA6,…  
 
With final, there thus exists of very many finite elements (more than 500 in July 2004).  
 
On the other hand, the types of mesh are them numbers some reduced: POI1, SEG2, SEG3, SEG4, 

file:///Z|/process/refer/refer/p30.htm (7 of 16)10/2/2006 2:51:38 PM

http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p30s.html%230


file:///Z|/process/refer/refer/p30.htm

TRIA3,  
TRIA6, TRIA7, QUAD4, QUAD8, HEXA8, HEXA20,…, TETRA4, TETRA10.  
 
In general, each finite element, to carry out its elementary calculations, uses the concepts of function  
of interpolation (or function of form) and of diagram of integration. In general also, these functions of  
form and these diagrams of integration are defined on an element known as “of reference” whose 
geometry is  
defined in a frame of reference often called: (,) the passage of the element of  
reference to the real element is done thanks to a geometrical transformation which uses the same ones  
functions of interpolation. The element is then known as “isoparametric”. These concepts are very well  
explained in [bib1].  
 
The high number of finite elements of the code combined with the restricted number of the types of mesh, 
conduit  
with the fact that there are several finite elements being based on the same type of mesh; for example it  
quadrilateral with 8 nodes called QUAD8 supports more than 60 different finite elements.  
 
In theory, each finite element can choose its functions of interpolation and its diagrams of integration  
as it hears it. But in practice, almost all finite elements being based on the same type  
of mesh, use the same element of reference, the same functions of form and the same ones  
diagrams of integration. The goal of this document is to describe these various elements of reference  
 
For each element of reference (called in the continuation of document ELREFE), one will indicate:  
 
· the mesh support, the number of the nodes, their local classification and their co-ordinates,  
· algebraical expressions of the functions of form and their derivative first (and sometimes  
seconds)  
· families of points of integration which one will name. For each family, one will give it  
a number of points, their co-ordinates and their “weights” of integration. The sum of these weights,  
must give the “volume” of the element of reference. For example, the “volume” of the quadrangle of  
reference (- 1 <= <= +1, 1 < < +1) is worth: 4.  
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2  
Linear elements: SE2, SE3 and SE4  
 
SE2: segment with 2 nodes  
a number of nodes  
: 2  
a number of nodes tops  
: 2  
 
SE3: segment with 3 nodes  
a number of nodes  
: 3  
a number of nodes tops  
: 2  
 
 
 
X  
N1 -1.0  
N2 1.0  
N3 0.0  
 
 
N1 
X 
N3 
N2  
 
SE4: segment with 4 nodes  
a number of nodes  
: 4  
a number of nodes tops  
: 2  
 
 
 
X  
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N1 -1.0  
N2 1.0  
N3 -1. /3.  
N4 +1. /3.  
 
 
 
N1  
X 
N3 
N4 
N2  
 
 
 
functions of form of the segment with 2 nodes:  
 
W (X) = 0 5 
. 1 
(- X) 
W (X) = 0 5 
. 1 
(+ X 
1 
2 
)  
 
functions of form of the segment with 3 nodes:  
 
W (X) = - 5 
. 
0 
1 
(- X) X 
W (X) = 
5 
. 
0 
1 
(+ X) X 
W (X) = 
1 
(+ X 1 
) (- X) 
1 
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functions of form of the segment with 4 nodes:  
 
1 
W (X) = 16 (1 - X) 
1  
X + (X -1/) 
3 
9 
 
3  
w2 (X) = - 16 (1+ X) 1 
 
 
1  
- X  
X +  
9 
3 
 
 
3  
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3 
W (X) = 16 (X -) 
1 (X +) 
1  
1 X -  
27 
 
3  
w4 (X) = - 16 (X -) 
1 (X +) 
1  
1 X +  
27 
 
3  
 
 
Nb of pts  
Not  
X  
Weight  
of intégr.  
1 1  
0.0  
2.0  
2 1  
0.577350269189626  
1.0  
2  
-0.577350269189626  
1.0  
3 1  
-0.774596669241  
0.55555...  
2  
0  
0.88888...  
3  
0.774596669241  
0.55555...  
4 1  
0.339981043584856  
0.652145154862546  
2  
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-0.339981043584856  
0.652145154862546  
3  
0.861136311594053  
0.347854845137454  
4  
-0.861136311594053  
0.347854845137454  
 
 
 
 
3  
Surface elements  
 
3.1 Triangles  
:  
ELREFE TR3, TR6, TR7  
 
 
 
 
 
N3 
N6 
N5 
N7 
N1 
N4 
N2 
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Co-ordinates of the nodes:  
 
 
 
 
N1  
0.0  
0.0  
N2  
1.0  
0.0  
N3  
0.0  
1.0  
N4  
0.5  
0.0  
N5  
0.5  
0.5  
N6  
0.0  
0.5  
N7  
1/3  
1/3  
 
 
 
Family Not  
 
 
Weight  
 
 
 
 
 
FPG1 1 1/3 1/3 1/2  
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FPG3 1 1/6 1/6 1/6  
2 2/3  
1/6 1/6  
3 1/6  
2/3 1/6  
 
 
 
 
 
FPG4 1 1/5 1/5  
25/(24*4)  
2 3/5  
1/5  
25/(24*4)  
3 1/5  
3/5  
25/(24*4)  
4 1/3  
1/3  
-27/(24*4)  
 
 
 
 
 
FPG6 1  
B  
B  
P2  
 
2  
1 2 B  
B  
P2  
 
3  
B  
1 2 B  
P2  
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4  
has  
1 2 A  
P1  
5 A has P1  
 
6  
1 2 A  
has  
P1  
 
 
 
 
 
COT3 1 1/2 1/2 1/6  
2 0 1/2 1/6  
3 1/2 0 1/6  
 
 
 
 
 
 
 
With  
P1 = 0.11169079483905,  
P2 = 0.0549758718227661,  
 
To = 0.445948490915965,  
B = 0.091576213509771  
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Family Not  
 
 
Weight  
 
 
 
 
 
FPG7 1 1/3 1/3 9/80  
2 A A P1  
3  
1-2A A P1  
4 A 1-2A P1  
5 B B P2  
6  
1-2B B P2  
7 B 1-2B P2  
 
 
With  
To = 0.470142064105115  
 
 
B = 0.101286507323456  
 
 
P1 = 0.066197076394253  
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P2 = 0.062969590272413  
 
 
 
Family Not  
 
 
Weight  
 
 
 
 
 
FPG12 1  
With  
With  
P1  
2  
1-2A A P1  
3 A 1-2A P1  
4 B B P2  
5  
1-2B B P2  
6 B 1-2B P2  
7 C D P3  
8 D C P3  
9  
1-C-D  
C P3  
10  
1-C-D D P3  
11 C 1-C-D P3  
12 D 1-C-D P3  
 
 
With  
To = 0.063089014491502  
 
 
B = 0.249286745170910  
 
 
C = 0.310352451033785  
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D = 0.053145049844816  
 
 
P1 = 0.025422453185103  
 
 
P2 = 0.058393137863189  
 
 
P3 = 0.041425537809187  
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TR3: triangle with 3 nodes  
a number of nodes  
: 3  
a number of nodes tops  
: 3  
 
 
functions of form and derived first of the triangle with 3 nodes:  
 
{NR}  
{NR/  
}  
{NR/  
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}  
1- -  
-1  
-1  
 
1  
0  
 
0  
1  
 
 
 
TR6: triangle with 6 nodes  
a number of nodes  
: 6  
a number of nodes tops  
: 3  
 
functions of form, derived first of the triangle with 6 nodes:  
 
{NR}  
{NR/  
}  
{NR/  
}  
- 1 
(- - 1 
) (- 1 
( 
2 - -))  
1 - 1 
( 
4 - -)  
1 - 1 
( 
4 - -)  
- 1 
( - 2 )  
-1+  
4  
0  
- 1 
( - 2)  
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0  
-1+  
4  
4 1 
( - -)  
1 
( 
4 - 2 -)  
-  
4  
 
4 
 
 
4  
 
4  
4 1 
( - -)  
-  
4  
1 
( 
4 - - 2)  
 
 
derived seconds from the triangle with 6 nodes:  
 
{2 
2 
NR/  
} 
{2N/  
} 
{2 
2 
NR/  
} 
 
 
 
4 4 4  
4 0 0  
0 0 4  
-8 -4 0  
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0 4 0  
0 -4 -8  
 
 
Handbook of Reference  
R3.01 booklet: General references  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Functions of form of the elements  
 
 
Date:  
15/09/05  
Author (S):  
J. PELLET, X. DESROCHES Key  
:  
R3.01.01-D Page  
: 9/26  
 
 
TR7: triangle with 7 nodes  
a number of nodes  
: 7  
a number of nodes tops  
: 3  
 
functions of form of the triangle with 7 nodes:  
 
{NR}  
1- ( 
3 +) + ( 
2 2 
2 
+ ) + 7 - 3( +)  
(-1+ 2 + 3 - 3( +))  
(1 
- + 2 + 3 - 3 ( +))  
4 1 
( - - 4 + 3( +))  
4 (2 

file:///Z|/process/refer/refer/p40.htm (6 of 34)10/2/2006 2:51:39 PM



file:///Z|/process/refer/refer/p40.htm

- + ( 
3 +))  
4 1 
( - 4 - + 3 ( +))  
27 1 
( - - )  
 
 
derived first from the triangle with 7 nodes:  
 
{NR/  
}  
{NR/  
}  
2 
- 3 + 4 + 7 - 6 - 3  
2 
- 3 + 7 + 4 - 6 - 3  
2 
-1+ 4 + 3 - 6 - 3  
3 1 
( - - 2)  
3 1 
( - 2 -)  
2 
-1+ 3 + 4 - 6 - 3  
1 
( 
4 - 2 - 4 + 6 + 3 2 
)  
4 (4 
- + 3 + 6)  
4 (2 
- + 6 + 3)  
4 (2 
- + 3 + 6)  
4 (4 
- + 6 + 3)  
( 
4 -1 - 4 - 2 + 6 + 3 2 
)  
27 1 
( - 2 -)  
27 1 
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( - - 2)  
 
 
derived seconds from the triangle with 7 nodes:  
 
{2 
2 
NR/  
} 
{2N/  
} 
{2 
2 
NR/  
} 
 
 
 
4 -  
6  
7 -  
6 -  
6  
4 -  
6  
4 -  
6  
3 -  
6 -  
6  
-  
6  
-  
6  
3 -  
6 -  
6  
4 -  
6  
( 
4 -2 + 6)  
( 
4 4 
- + 6 + 6)  
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24  
 
24  
( 
4 2 
- + 6 + 6)  
 
24  
 
24  
( 
4 4 
- + 6 + 6)  
( 
4 -2 + 6 )  
-  
54  
27 1 
( - 2 - 2)  
-  
54  
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3.2 Quadrangles  
:  
ELREFE QU4, QU8, QU9  
 
 
N4 
N7  
N3 
 
N8 
 
N6 
N9 
N1 
N5 
N2 
 
 
Co-ordinates of the nodes:  
 
 
 
 
N1 -1.0 -1.0  
N2 1.0 -1.0  
N3 1.0 1.0  
N4 -1.0 1.0  
N5 0.0 -1.0  
N6 1.0 0.0  
N7 0.0 1.0  
N8 -1.0 0.0  
N9 0.0 0.0  
 
 
 
Family Not  
 
 
Weight  
FPG1 1  
0  
0  
4  
FPG4 1  
- has  
- has 1.0  
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2  
has  
- has  
1.0  
 
3  
has  
has  
1.0  
4 - has  
 
has  
1.0  
 
 
= 1 has 3  
 
 
 
FPG9 1  
- has  
- has 25/81  
2  
has  
- has  
25/81  
 
3  
has  
has  
25/81  
4 - has  
 
has  
25/81  
5.0.0 - has  
40/81  
6  
has  
0.0  
40/81  
7 0.0  
has  
40/81  
8 - has 0.0  
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40/81  
9 0.0 0.0  
64/81  
 
 
a= 0.774596669241483  
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QU4: quadrangle with 4 nodes  
a number of nodes  
: 4  
a number of nodes tops  
: 4  
 
 
functions of form, derived first and seconds of the quadrangle with 4 nodes:  
 
{NR}  
{NR/  
}  
{NR/  
}  
1 
(- 1 
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)( -) / 4  
- 1 
( -) / 4  
- 1 
( - ) / 4  
1 
(+ 1 
)( -) / 4  
1 
( -) / 4  
- 1 
( + ) / 4  
1 
(+ 1 
)( +) / 4  
1 
( +) / 4  
1 
( + ) / 4  
1 
(- 1 
)( +) / 4  
- 1 
( +) / 4  
1 
( - ) / 4  
 
 
 
{2 
2 
NR/  
} 
{2N/  
} 
{2 
2 
NR/  
} 
 
 
0 1/4  
 
0  
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0 -1/4 0  
0 1/4 0  
0 -1/4 0  
 
 
 
QU8: quadrangle with 8 nodes  
a number of nodes  
: 8  
a number of nodes tops  
: 4  
 
 
functions of form and derived first of the quadrangle with 8 nodes:  
 
{NR}  
{NR/  
}  
{NR/  
}  
1 
(- 1 
) (-) (1 
- - -) / 4  
1 
( -)(2 +) / 4  
1 
( - )( + 2) / 4  
1 
(+ 1 
)( -)(-1+ -) / 4  
1 
( -)(2 -) / 4  
- 1 
( + )( - 2) / 4  
1 
(+ 1 
) (+) (1 
- + +) / 4  
1 
( +)(2 +) / 4  
1 
( + )( + 2) / 4  
1 
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(- 1 
)( +)(-1- +) / 4  
- 1 
(+) (2 
- +) / 4  
1 
( - )(  
- + 2) / 4  
1 
(-) 2 1 
( -) / 2  
- 1 
( -)  
- 1 
( 
2 
- ) / 2  
1 
(+ 1 
) (-) 2 
/ 2  
1 
( 
2 
- ) / 2  
- 1 
( + )  
1 
(-) 2 1 
( +) / 2  
- 1 
( +)  
1 
( 
2 
- ) / 2  
1 
(- 1 
) (-) 2 
/ 2  
- 1 
( 
2 
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- ) / 2  
- 1 
( - )  
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derived seconds from the quadrangle with 8 nodes:  
 
{2 
2 
NR/  
} 
{2N/  
} 
{2 
2 
NR/  
} 
 
 
 
1 
( -) / 2  
1 
( - 2 - 2) / 4  
1 
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( - ) / 2  
1 
( -) / 2  
- 1 
( + 2 - 2) / 4  
1 
( + ) / 2  
1 
( +) / 2  
1 
( + 2 + 2) / 4  
1 
( + ) / 2  
1 
( +) / 2  
- 1 
( - 2 + 2) / 4  
1 
( - ) / 2  
-1+  
 
0  
0  
-  
-1-  
-1-  
-  
0  
0  
 
-1+  
 
 
QU9: quadrangle with 9 nodes  
a number of nodes  
: 9  
a number of nodes tops  
: 4  
 
functions of form and derived first of the quadrangle with 9 nodes:  
 
{NR}  
{NR/  
}  
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{NR/  
}  
( - )( 
1 - ) 
1 / 4  
(2 - ) 
1 ( - ) 
1 / 4  
( - )( 
1 2 - ) 
1 / 4  
( + )( 
1 - ) 
1 / 4  
(2 + ) 
1 ( - ) 
1 / 4  
( + )( 
1 2 - ) 
1 / 4  
( + )( 
1 + ) 
1 / 4  
(2 + ) 
1 ( + ) 
1 / 4  
( + )( 
1 2 + ) 
1 / 4  
( - )( 
1 + ) 
1 / 4  
(2 - ) 
1 ( + ) 
1 / 4  
( - )( 
1 2 + ) 
1 / 4  
1 
( 
2 
- )( - ) 
1 / 2  
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- ( - ) 
1  
1 
( 
2 
- )(2 - ) 
1 / 2  
(+ 1 
)( 
1 
2 
- ) / 2  
(2 + 1 
)( 
1 
2 
- ) / 2  
- ( + ) 
1  
1 
( 
2 
- )( + ) 
1 / 2  
- ( + ) 
1  
1 
( 
2 
- )(2 + ) 
1 / 2  
(- 1 
)( 
1 
2 
- ) / 2  
(2 - 1 
)( 
1 
2 
- ) / 2  
- ( - ) 
1  
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1 
( 
2 
- 1 
)( 
2 
- )  
- 2 1 
( 
2 
- )  
- 2 1 
( 
2 
- )  
 
 
derived seconds from the quadrangle with 9 nodes:  
 
{2 
2 
NR/  
} 
{2N/  
} 
{2 
2 
NR/  
} 
 
 
 
( - ) 
1 / 2  
( -1/ )( 
2 -1/ ) 
2 / 4  
( - ) 
1 / 2  
( - ) 
1 / 2  
( +1/ )( 
2 -1/ ) 
2 / 4  
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( + ) 
1 / 2  
( + ) 
1 / 2  
( +1/ )( 
2 +1/ ) 
2 / 4  
( + ) 
1 / 2  
( + ) 
1 / 2  
( -1/ )( 
2 +1/ ) 
2 / 4  
( - ) 
1 / 2  
-( - ) 
1  
- (2 - ) 
1  
2 
1-  
2 
1-  
-(2 + ) 
1  
- ( + ) 
1  
-( + ) 
1  
- (2 + ) 
1  
2  
1-  
2 
1-  
-(2 - ) 
1  
- ( - ) 
1  
- 1 
( 
2 
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2 
- )  
 
4 
 
- 1 
( 
2 
2 
- )  
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4  
Voluminal elements  
 
4.1 Tetrahedrons  
:  
ELREFE TE4, T10  
 
 
Z 
N2 
N5 
N6 
N9 
N3 
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N7 
N1 
N10 
y 
N8 
N4 
X 
 
 
 
X  
y  
Z  
N1 0. 1. 0.  
N2 0. 0. 1.  
N3 0. 0. 0.  
N4 1. 0. 0.  
N5 0. 0.5 0.5  
N6 0. 0. 0.5  
N7 0. 0.5 0.  
N8 0.5.0.5 0.  
N9 0.5 0. 0.5  
N10 0.5 0. 0.  
 
 
Functions of form:  
 
Formulate with 4 nodes  
 
w1 (X, y, Z) = y 
 
w2 (X, y, Z) = Z 
 
W3 (X, y, Z) = 1 - X - y - Z 
 
W 
4 (X, y, Z) = X 
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Formulate with 10 nodes  
 
W 
= y 
W 
= 4 Z 
6 
(1 - X - y - Z) 
1 
(2y -) 1 
W 
= Z (2z -) 
W 
= 4 y 
7 
(1 - X - y - Z) 
2 
1 
W 
W 
= 4 X y 
3 
= (1 - X - y - Z) (1 - 2x - 2y - 2z)  
8 
 
W 
= X (2x -) 
W 
= 4 X Z 
4 
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1 
9 
W 
= 4 y Z 
W 
= 4 X 
10 
(1 - X - y - Z) 
5 
 
Formulate numerical integration:  
 
Formulate at 4 points, of order 2 in X, y, Z: (FPG4)  
 
Not  
X  
y  
Z  
Weight  
1  
has  
has  
has  
1/24  
2  
has  
has  
B  
1/24  
3  
has  
B  
has  
1/24  
4  
B  
has  
has  
1/24  
 
5 - 5 
5 + 3 5 
with: has = 
B = 
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20 
20 
 
Formulate at 5 points, of order 3 in X, y, Z: (FPG5)  
 
Not  
X  
y  
Z  
Weight  
1  
has  
has  
has  
- 2/15  
2  
B  
B  
B  
3/40  
3  
B  
B  
C  
3/40  
4  
B  
C  
B  
3/40  
5  
C  
B  
B  
3/40  
 
1 
with: has 
= 0 2 
. 5 
B = 
C = 0 5 
. 
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6 
 
Formulate at 15 points, of order 5 in X, y, Z: (FPG15)  
 
Not  
X  
y  
Z  
Weight  
1  
has  
has  
has  
8/405  
2  
B  
 
1  
b1  
b1  
3  
B 
2.665.-14 15 
1  
b1  
c1  
 
4  
b1  
c1  
b1  
226 800 
5  
c1  
b1  
b1  
6  
B 
 
2  
b2  
b2  
7  
B 
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2.665 + 14 15 
2  
b2  
c2  
 
8  
b2  
c2  
b2  
226 800 
9  
c2  
b2  
b2  
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10  
D  
D  
E  
 
11  
D  
E  
D  
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12  
E  
D  
D  
5 
13  
D  
E  
E  
 
14  
567 
E  
D  
E  
15  
E  
E  
D  
 
with:  
 
has = 0 2 
. 5  
7 + 15 
13 - 3 15 
5 - 15 
b1 = 
C 
= 
D = 
34 
1 
34 
20 
 
 
7 - 15 
13 + 3 15 
5 + 15 
b2 = 
C 
= 
E = 
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34 
2 
34 
20 
 
 
 
4.2 Pentahedrons  
:  
ELREFE PE6, P15  
 
Z 
N2 
N11 
N8 
N7 
N3 
N1 
N9 
N5 
N12 
N10 
y 
N14 
N13 
N6 
N15 
N4 
X 
 
 
 
 
X  
y  
Z  
N1 -1. 1. 0.  
N2 -1. 0. 1.  
N3 -1. 0. 0.  
N4 1.  
1. 0.  
N5 1.  
0. 1.  
N6 1.  
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0. 0.  
N7 -1. 0.5.0.5.  
N8 -1. 0. 0.5.  
N9 -1. 0.5 0.  
N10 0.  
1. 0.  
N11 0.  
0. 1.  
N12 0.  
0. 0.  
N13 1.  
0.5 0.5  
N14 1.  
0. 0.5  
N15 1.  
0.5 0.  
Handbook of Reference  
R3.01 booklet: General references  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Functions of form of the elements  
 
 
Date:  
15/09/05  
Author (S):  
J. PELLET, X. DESROCHES Key  
:  
R3.01.01-D Page  
: 16/26  
 
 
Functions of form:  
 
Formulate with 6 nodes  
 
1 
1 
W = y 
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W 
= 
y (X +) 
1 
(1 - X) 
1 
2 
4 
2 
1 
1 
W = Z 
W 
= 
Z (X +) 
2 
(1 - X) 
 
1 
 
2 
5 
2 
1 
1 
W = 
w6 = 
(1 - y - Z) (X +) 
3 
(1 - y - Z) (1 - X) 
1 
2 
2 
 
Formulate with 15 nodes  
 
 
W 
= y (1 - X) 
W 
= 2y 
9 
(1 - y - Z) (1 - X) 
1 
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(2y -2 - X)/2 
W 
= Z (1 - X) (2z - 2 - X) 
2 
2 
/2 
W 
= y 
10 
(1 - X) 
W 
= (X -) 
3 
1 (1 - y - Z) (X + 2y + 2z)/2 
W 
= Z 
2 
11 
(1 - X) 
W  
= y (1+ X) 
4 
(2y -2+ X)/2 
2 
 
w12 = (1 - y - Z) (1 - X)  
W 
= Z (1+ X) (2z - 2 + X) 
5 
/2 
W 
= 2yz (1+ X) 
13 
W 
= (- X -) 
6 
1 (1 - y - Z) (- X + 2y + 2z)/2 
W 
= 2z 
14 
(1 - y - Z) (1+ X) 
W 
= 2yz (1 - X) 
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7 
W 
= 2y 
15 
(1 - y - Z) (1+ X) 
W 
= 2z 
8 
(1 - y - Z) (1 - X) 
 
 
 
Formulas of numerical integration at 6 points (order 3 in X, order 2 in y and Z) (FPG6)  
 
Not  
X  
y  
Z  
Weight  
1  
- 3 3  
0.5 0.5 1/6  
2  
- 3 3  
0. 0.5 1/6  
3  
- 3 3  
0.5 0.  
1/6  
4  
3 3  
0.5 0.5 1/6  
5  
3 3  
0. 0.5 1/6  
6  
3 3  
0.5 0.  
1/6  
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Formulate numerical integration at 8 points: (FPG8)  
 
2 points of Gauss in X (order 3).  
4 points of Hammer in y and Z (order 3).  
 
 
Not  
X  
y  
Z  
Weight  
1 - has  
1/3  
1/3 -27/96  
2 - has  
0.6  
0.2 25/96  
3 - has  
0.2  
0.6 25/96  
4 - has  
0.2  
0.2 25/96  
5 +a  
1/3  
1/3 -27/96  
6 +a  
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0.6  
0.2 25/96  
7 +a  
0.2  
0.6 25/96  
8 +a  
0.2  
0.2 25/96  
 
With A = 0.577350269189626  
 
 
 
Formulate numerical integration at 21 points: (FPG21)  
 
3 points of Gauss in X (order 5).  
7 points of Hammer in y and Z (order 5 in y and Z).  
 
 
Not  
X  
y  
Z  
Weight  
1  
-  
1/3 1/3  
C 
9 
1 × 80  
2  
-  
has  
has  
155+ 15 
3  
-  
1-2a  
has  
×  
 
4  
-  
has  
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1-2a  
c1 2 400  
5  
-  
B  
B  
155 - 15 
6  
-  
1-2b  
B 
C ×  
 
7  
 
1 
-  
B  
1-2b  
2 400  
8 0.  
1/3  
1/3 C 9 
2 × 80  
9  
0.  
has  
has  
155+ 15 
10  
0.  
1-2a  
has  
C ×  
 
11  
0.  
has  
1-2a  
2 
2 400  
12  
0.  
B  
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B  
155 - 15 
13  
0.  
1-2b  
B  
C ×  
 
14  
0.  
2 
B  
1-2b  
2 400  
15  
 
1/3 1/3  
C 
9 
1 × 80  
16  
 
has  
has  
155+ 15 
17  
 
1-2a  
has  
C ×  
 
18  
 
has  
1-2a  
1 
2 400  
19  
 
B  
B  
155 - 15 
20  
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1-2b  
B  
C ×  
 
21  
 
1 
B  
1-2b  
2 400  
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with:  
 
3 
5 
8 
= 
 
c1 = 
 
c2 = 
 
5 
9 
9 
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6 + 15 
6 - 15 
 
has = 
B = 
21 
 
21 
 
 
 
4.3 Hexahedrons  
:  
ELREFE HE8, H20, H27  
 
Z 
N5 
N8 
N26 
N6 
N25 
N7 
N27 
y 
N24 
N1 
N22 
N4 
N23 
N21 
N14 
X 
N2 
N3 
 
 
 
X  
y  
Z  
N1 -1. 
-1. 
-1.  
N2 1. 
-1. 
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-1.  
N3 1. 
1. 
-1.  
N4 -1. 
1. 
-1.  
N5 -1. 
-1. 
1.  
N6 1. 
-1. 
1.  
N7 1. 
1. 
1.  
N8  
-1. 
1. 
1.  
N9 0. 
-1. 
-1.  
N10 1. 
0. 
-1.  
N11 0. 
1. 
-1.  
N12 -1. 
0. 
-1.  
N13 -1. 
-1. 
0.  
N14 1. 
-1. 
0.  
N15 1. 
1. 
0.  
N16  
-1. 
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1. 
0.  
N17 0. 
-1. 
1.  
N18 1. 
0. 
1.  
N19 0. 
1. 
1.  
N20  
-1. 
0. 
1.  
N21 0. 
0. 
-1.  
N22 0. 
-1. 
0.  
N23 1. 
0. 
0.  
N24 0. 
1. 
0.  
N25  
-1. 
0. 
0.  
N26 0. 
0. 
1.  
N27 0. 
0. 
0.  
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Functions of form:  
 
Formulate with 8 nodes  
 
1 
1 
W 
= 
(1 - X) 
W 
= 
(1 - X) 
5 
(1 - y) (1+ Z)  
1 
(1 - y) (1 - Z) 
8 
8 
1 
1 
W 
= 
(1+ X) 
W 
= 
(1+ X) 
6 
(1 - y) (1+ Z) 
2 
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(1 - y) (1 - Z) 
8 
8 
 
 
1 
1 
W 
= 
(1+ X) 
W 
= 
(1+ X) 
7 
(1+ y) (1+ Z) 
3 
(1+ y) (1 - Z) 
8 
8 
1 
1 
W 
= 
(1 - X) 
W 
= 
(1 - X) 
8 
(1+ y) (1+ Z) 
4 
(1+ y) (1 - Z) 
8 
8 
 
 
Formulate with 20 nodes  
 
1 
1 
W 
= 
(1 - X) 
W 
2 
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11 
= 
(1 - X) (1+ y) (1-z) 
1 
(1 - y) (1 - Z) (- 2 - X - y - Z) 
8 
4 
1 
1 
W 
= 
(1+ X) 
W 
2 
12 
= 
(1 - y) (1 - X) (1-z) 
2 
(1 - y) (1 - Z) (- 2+ X - y - Z) 
8 
4 
1 
1 
W 
= 
(1+ X) 
W 
2 
13 
= 
(1-z) (1 - X) (1 - y) 
3 
(1+ y) (1 - Z) (- 2+ X + y - Z) 
8 
4 
1 
1 
W 
= 
(1 - X) 
W 
2 
14 
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= 
(1-z) (1+ X) (1 - y) 
4 
(1+ y) (1 - Z) (- 2 - X + y - Z) 
8 
4 
1 
1 
W 
= 
(1 - X) 
W 
2 
15 
= 
(1-z) (1+ X) (1+ y) 
5 
(1 - y) (1+ Z) (- 2 - X - y + Z) 
8 
4 
1 
1 
W 
= 
(1+ X) 
W 
2 
16 
= 
(1-z) (1 - X) (1+ y) 
6 
(1 - y) (1+ Z) (- 2+ X - y + Z) 
8 
4 
1 
1 
W 
= 
(1+ X) 
( 
Z) 
W 
2 
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17 
= 
(1 - X) (1 - y) (1+z) 
7 
(1+ y) (1+ Z) -2+ X + y + 
8 
4 
1 
1 
W 
= 
(1 - X) 
W 
2 
18 
= 
(1 - y) (1+ X) (1+z) 
8 
(1+ y) (1+ Z) (- 2 - X + y + Z) 
8 
4 
1 
1 
W 
2 
W 
2 
19 
= 
(1 - X) (1+ y) (1+z) 
9 
= 
(1 - X) (1 - y) (1-z) 
4 
4 
 
 
1 
1 
W 
2 
W 
2 
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20 
= 
(1 - y) (1 - X) (1+z) 
10 
= 
(1 - y) (1+ X) (1-z) 
4 
4 
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Formulate with 27 nodes  
 
1 
1 
W 
= 
X (X -) 
1 y 
W 
= 
X (X +) 
1 y 
2 
15 
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(y +) 1 (1 - Z) 
1 
(y -) 1 Z (Z -) 1 
8 
4 
1 
1 
W 
= 
X (X +) 
1 y 
W 
= 
X (X -) 
1 y 
2 
16 
(y +) 1 (1 - Z) 
2  
(y -) 1 Z (Z -) 1 
8 
4 
1 
1 
W 
= 
X (X +) 
1 y 
W 
2 
17 
= 
(1 - X) y (y) 1 Z (z+) 
3 
(y +) 1 Z (Z -) 1 
1 
8 
4 
1 
1 
W 
= 
X (X -) 
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1 y 
W 
= 
X (X +) 
2 
18 
1 (1 - y) Z (Z +) 
4 
(y +) 1 Z (Z -) 1 
1 
8 
4 
1 
1 
W 
= 
X (X +) 
1 y 
W 
2 
19 
= 
(1 - X) y (y+) 1 Z (z+) 
5 
(y -) 1 Z (Z +) 1 
1 
8 
4 
1 
1 
W 
= 
X (X +) 
1 y 
W 
= 
X (X -) 
2 
20 
1 (1 - y) Z (Z +) 
6 
(y -) 1 Z (Z +) 1 
1 
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8 
4 
1 
1 
W 
= 
X (X +) 
1 y 
W 
2 
2 
21 
= 
(1 - X) (1 - y) Z (Z) 
7 
(y +) 1 Z (Z +) 1 
1 
8 
2 
1 
1 
W 
= 
X (X -) 
1 y 
W 
2 
2 
22 
= 
(1 - X) y (y) 1 (1-z) 
8 
(y +) 1 Z (Z +) 1 
8 
2 
1 
1 
W 
2 
W 
= 
X (X +) 
2 
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2 
23 
1 (1 - y) (1 - Z) 
9 
= 
(1 - X) y (y) 1 Z (Z) 1 
4 
2 
1 
1 
W 
= 
X (X +) 
2 
W 
2 
2 
24 
= 
(1 - X) y (y+) 1 (1-z) 
10 
1 (1 - y) Z (Z -) 
1 
4 
2 
1 
1 
W 
2 
W 
= 
X (X -) 
2 
2 
25 
1 (1 - y) (1 - Z) 
11 
= 
(1 - X) y (y+) 1 Z (Z) 1 
 
4 
2 
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1 
1 
W 
= 
X (X -) 
2 
W 
2 
2 
26 
= 
(1 - X) (1 - y) Z (z+) 
12 
1 (1 - y) Z (Z -) 
1 
1 
4 
2 
1 
W 
2 
2 
2 
27 
= (1 - X) (1 - y) (1 - Z) 
W 
= 
X (X -) 
1 y 
2 
13 
(y -) 1 (1 - Z) 
4 
1 
W 
= 
X (X +) 
1 y 
2 
14 
(y -) 1 (1 - Z) 
4 
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Formulate squaring of Gauss at 2 points in each direction (order 3) (FPG8)  
 
Not  
X  
y  
Z  
Weight  
1  
- 3 3  
- 3 3 
- 3 3 
1.  
2  
- 3 3  
- 3 3 
3 3 
1.  
3  
- 3 3  
3 3 
- 3 3 
1.  
4  
- 3 3  
3 3 
+ 3 3 
1.  
5  
3 3  
- 3 3 
- 3 3 
1.  
6  
3 3  
- 3 3 
3 3 
1.  
7  
3 3  
3 3 
- 3 3 
1.  
8  
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3 3  
3 3 
3 3 
1.  
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Formulate squaring of Gauss at 3 points in each direction (order 5): (FPG27)  
 
Not  
X  
y  
Z  
Weight  
1  
-  
-  
-  
c31  
2  
-  
-  
0.  
c2 C 
1 
2  
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3  
-  
-  
 
c31  
4  
-  
0.  
-  
c2 C 
1 
2  
5  
-  
0. 0.  
C c2 
1 2  
6  
-  
0.  
 
c2 C 
1 
2  
7  
-  
 
-  
c31  
8  
-  
 
0.  
c2 C 
1 
2  
9  
-  
 
 
c3  
 
1 
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10 0.  
-  
-  
c2 C 
1 
2  
11 0.  
-  
0.  
C c2 
1 2  
12 0.  
-  
 
c2 C 
1 
2  
13 0.  
0.  
-  
C c2 
1 2  
14 0.  
0. 0.  
c32  
15 0.  
0.  
 
C c2 
1 2  
16 0.  
 
-  
c2 C 
1 
2  
17 0.  
 
0.  
C c2 
1 2  
18  
0.  
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c2 C 
 
1 
2  
 
19  
 
-  
-  
c31  
20  
 
-  
0.  
c2 C 
1 
2  
21  
 
-  
 
c31  
22  
 
0.  
-  
c2 C 
1 
2  
23  
 
0. 0.  
C c2 
1 2  
24  
 
0.  
 
c2 C 
1 
2  
25  
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-  
c31  
26  
 
 
0.  
c2 C 
1 
2  
27  
 
 
 
c31  
 
with:  
 
3 
5 
8 
= 
 
c1 = 
 
c2 = 
 
5 
9 
9 
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4.4 Pyramids  
:  
ELREFE PY5, P13  
 
 
 
 
 
Z 
N5 
N12 
N3 
N13 
N8 
N7 
N11 
N10 
N4 
N2 
y 
N9 
N6 
N1 
X 
 
 
 
 
 
 
 
 
 
 
 
 
 
The square base is consisted the quadrangle N1 N2 N3 N4 and N5 is the top of the pyramid.  
 
 
X  
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y  
Z  
N1 1. 0.  
0.  
N2 0. 1.  
0.  
N3 1. 0. 0.  
N4 0.  
1.  
0.  
N5 0. 0.  
1.  
N6 0.5  
0.5  
0.  
N7 0.5 0.5  
0.  
N8 0.5  
0.5  
0.  
N9 0.5  
0.5  
0.  
N10 0.5  
0.  
0.5  
N11 0. 0.5  
0.5  
N12 0.5 0. 0.5  
N13 0.  
0.5  
0.5  
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Functions of form:  
 
Formulate with 5 nodes  
 
 
(- X + y + Z -) 1 (- X - y + Z -) 1 
w1 = 
4 (1 - Z) 
(- X - y + Z -) 1 (X - y + Z -) 1 
w2 = 
4 (1 - Z) 
(X + y + Z -) 1 (X - y + Z -) 1 
W3 = 
 
4 (1 - Z) 
(X + y + Z -) 1 (- X + y + Z -) 1 
w4 = 
4 (1 - Z) 
W = 1 - Z 
5 
 
 
Formulate with 13 nodes  
 
(- X + y + Z -) 1 (- X - y + Z -) 1 (X -0. ) 5 
w1 = 
2 (1 - Z) 
(- X - y + Z -) 1 (X - y + Z -) 1 (y -0. ) 5 
w2 = 
2 (1 - Z) 
(X - y + Z -) 1 (X + y + Z -) 1 (- X -0. ) 5 
W3 = 
2 (1 - Z) 
(X + y + Z -) 1 (- X + y + Z -) 1 (- y - 0. ) 5 
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w4 = 
2 (1 - Z) 
W = 2 Z (Z - 0. ) 
5 
5 
(- X + y + Z -) 1 (- X - y + Z -) 1 (X - y + Z -) 1  
w6 = - 
2 (1 - Z) 
(- X - y + Z -) 1 (X - y + Z -) 1 (X + y + Z) 1 
w7 = - 
2 (1 - Z) 
(X - y + Z -) 1 (X + y + Z -) 1 (- X + y + Z -) 1 
W = - 
8 
2 (1 - Z) 
(X + y + Z -) 1 (- X + y + Z -) 1 (- X - y + Z -) 1 
W = - 
9 
2 (1 - Z) 
 
Handbook of Reference  
R3.01 booklet: General references  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Functions of form of the elements  
 
 
Date:  
15/09/05  
Author (S):  
J. PELLET, X. DESROCHES Key  
:  
R3.01.01-D Page  
: 24/26  
 
Z (- X + y + Z -) 
1 (- X - y + Z -) 
1 
w10 = 
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1 - Z 
Z (- X - y + Z -) 
1 (X - y + Z -) 
1 
w11 = 
1 - Z 
Z (X - y + Z -) 
1 (X + y + Z -) 
1 
w12 = 
1 - Z 
Z (X + y + Z -) 
1 (- X + y + Z -) 
1 
w13 = 
1 - Z 
 
 
 
Formulate numerical integration at 5 points (FPG5):  
 
 
Not X y Z Weight  
1 0.5  
0.  
h1 2/15  
2 0.  
0.5  
h1 2/15  
3 0.5  
0.  
h1 2/15  
4 0.  
0.5  
h1 2/15  
5 0.  
0.  
H2 2/15  
 
with:  
 
h1 = 0.1531754163448146  
H2 = 0.6372983346207416  
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Formulate numerical integration at 6 points (FPG6):  
 
 
Not X y Z Weight  
1 A 0.  
h1  
p1  
2 0.  
has  
h1  
p1  
3   
0. h1 has  
p1  
4 0.  
  
has  
h1  
p1  
5 0.  
0.  
H2  
p2  
6 0.  
0.  
h3  
p3  
 
with:  
 
p1 = 0.1024890634400000  
p2 = 0.1100000000000000  
p3 = 0.1467104129066667  
 
 
 
= 0.5702963741068025 have  
h1 = 0.1666666666666666  
H2 = 0.08063183038464675  
h3 = 0.6098484849057127  
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Formulate numerical integration at 27 points (FPG27):  
 
Not X y Z Weight  
1 0.  
0.  
1/2 a1  
2  
B 
B 
 
1 ( 
1 
1 - Z) 
1/2  
b6  
 
1 
(- Z)  
2 
2 
3  
B 
B 
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- 1 1 
(- Z)  
1 1 
(- Z)  
1/2  
b6  
2 
2 
4  
B 
B 
 
- 1 1 
(- Z)  
- 1 1 
(- Z)  
1/2  
b6  
2 
2 
5  
B 
B 
 
1 ( 
1 
1 - Z) 
1/2  
b6  
 
- 
1 
(- Z)  
2 
2 
6  
 
 
0.  
0.  
1 - b1 
B 
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6  
2 
7  
 
 
0.  
0.  
1 + b1 
B 
 
6  
2 
8  
C ( 
Z) 
C 
1 1 - 
 
0.  
(1-c) /2 
8  
1 
 
9 0.  
C ( 
Z) 
C 
1 1 - 
 
(1-c) /2 
8  
1 
 
10  
- C (- Z) 
C 
1 1 
 
0.  
(1-c) /2 
8  
1 
 
11 0.  
- C ( 
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) 
C 
1 1 - Z  
(1-c) /2 
8  
1 
 
12  
C ( 
Z) 
C 
1 1 - 
 
0.  
(1+c)/2 
8  
1 
 
13 0.  
C ( 
Z) 
C 
1 1 - 
 
(1+c)/2 
8  
1  
 
14  
- C ( 
) 
C 
1 1 - Z  
0.  
(1+c)/2 
8  
1 
 
15 0.  
- C ( 
) 
C 
1 1 - Z  
(1+c)/2 
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8  
1 
 
16  
d1 
D 
( 
) 
1 
(- Z) 
1 - D/2 
 
1 1 
(- Z)  
1 
 
d12  
2 
2 
17  
D 
D 
- 1 
( 
) 
1 
(- Z) 
1 - D/2 
 
1 1 
(- Z)  
1 
 
d12  
2 
2 
18  
D 
D 
- 1 
( 
) 
1 
(- Z) 
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1 - D/2 
 
- 1 1 
(- Z)  
1 
 
d12  
2 
2 
19  
d1 
D 
( 
) 
1 
(- Z) 
1 - D/2 
 
- 1 1 
(- Z)  
1 
 
d12  
2 
2 
20  
D ( 
) 
1 1 - Z  
0. 1/2 d12  
21 0.  
D ( 
) 
1 1 - Z  
1/2 d12  
22  
- D (- Z) 
1 1 
 
0. 1/2 d12  
23 0.  
- D ( 
) 
1 1 - Z  
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1/2 d12  
24  
d1 
D 
D 
1 
(- Z)  
1 1 
(- Z)  
(1+d) /2 
12  
1 
 
2 
2 
25  
D 
D 
- 1 
( 
) 
1 
(- Z) 
1 + D/2 
 
1 1 
(- Z)  
1 
 
d12  
2 
2 
26  
D 
D 
- 1 
( 
) 
1 
(- Z) 
1 + D/2 
 
- 1 1 
(- Z)  
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1 
 
d12  
2 
2 
27  
d1 
D 
( 
) 
1 
(- Z) 
1 + D/2 
 
- 1 1 
(- Z)  
1 
 
d12  
2 
2 
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with:  
 
a1 = 0.788073483  
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b6 = 0.499369002  
b1 = 0.848418011  
c8 = 0.478508449  
c1 = 0.652816472  
d12 = 0.032303742  
d1 = 1.106412899  
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We are interested in this document in the dualisation of the boundary conditions (known as 
kinematics). Two problems distinct from linear algebra are examined: 
· the resolution of the linear systems: paragraphs 2, 3, 4, 5, 6, 
· the research of the clean modes: paragraph 7. 
2 Dualisation of the boundary conditions kinematics, 
principle of the multipliers of Lagrange 
In Code_Aster (as in the other codes of finite elements), one is brought to solve 
many linear systems. 
Often such a system can be regarded as the algebraical expression of a problem of 
minimization of a positive quadratic functional calculus J (U) where U belongs to RN or N is the number 
nodal unknown factors while being constrained by a certain number of relations closely connected C (U 
I 
) - di = 0 
(boundary conditions of the Dirichlet type). 
It is with this problem of minimization under constraints closely connected that one is interested here. In 
the continuation of 
document, one will take as example the case (and the vocabulary) of linear static mechanics. One 
will speak about matrix of rigidity, vector displacement,… but the technique suggested remains valid 
for the problems of thermal evolution, into linear or non-linear. 
That is to say the discretized problem: 
 
Pb1: min 
J (U) 
U V 
RN 
where: 
·  
J (U) is a quadratic form (total potential Energy) 
1 
J (U) = 
(With, U) - (B, U) 
2 
A is a positive symmetrical matrix (With, U) 0 U 
) but not inevitably definite 
(To = the 0 is possible for U 0) 
·  
V is the space of displacements kinematically acceptable 
(it is under space closely connected of RN). 
This discrete problem is solved numerically while expressing that the “derivative” of J (U) in V is 
null. One is then brought back to solve a linear system of equations. 
The problem is “to derive” J (U) in V RN. 
Handbook of Reference 
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In general, for practical reasons, the expression of J (U) is calculated in the base of all them 
nodal displacements (without taking account of the constraints): U belongs then to RN where N is the 
number 
total of nodal unknown factors. 
If V is under vector space of RN generated by (N - p) of basic nodal displacements, 
derivation of J (U) in V is done very simply: it is enough “to forget” in the matrices A and B them 
lines and columns correspondents with the removed ddl (ui =) 
0 . 
If the constrained ddl are not put at zero but not assigned to a given value: U = D 
I 
I, it is necessary to modify 
B. 
Finally if the constraints “mix” the ddl between them (linear relations between unknown factors) it A 
should be modified 
and B. 
The principle of the multipliers of Lagrange makes it possible to solve the problem without touching with 
matrices A and B. The price to be paid is an increase in the number of unknown factors in the system 
with 
to solve. 
Instead of solving the problem in space V of dimension N - p, one solves it in Rn+p space, 
noted additional unknown factors I being called multiplying of Lagrange. 
Principle and justification  
Let us take again the preceding problem by clarifying space V 
Problem 1: 
min J (U) 
U V 
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1 
J (U) = 
(With, U) - (B, U) 
 
2 
V = 
N 
 
{uR C (U) =d, I =, 1 
I 
I 
} p 
Ci are linear forms on RN, the di are constant data. One supposes 
more than the p forms Ci are independent between them: the dimension of the space generated by 
Ci are p. 
One can show (cf [Appendix 1]) that this problem is equivalent to the following: 
Problem 2: 
to find U V where 
 
V = {U RN Ci (U) = I 
D, I =, 
1 } 
p 
such 
(With - b) (v) 
that where 
= 0 v 
V 
 
0 
V 
N 
0 
= 
 
{v such 
R 
that Ci (v) = 
0 I = 
 
, 
1 } 
p 
Handbook of Reference 
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Let us rewrite problem 2 differently: 
Problem 3: 
to find U R N such as 
I C U - D 
I 
I 
= 0 
éq 2-1 
v V, C v 
0 
I 
= 0 
éq 2-2 
v V 
(With - b) v 
0 , 
= 0 
éq 2-3 
The equations [éq 2-2] and [éq 2-3] show (by identifying RN and its dual) that: 
(I) Ci 
is orthogonal in V0 
(With - b) 
is orthogonal in V0 
V 
{Ci I =1, p} 
0 are under vector space of RN orthogonal with  
( 
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) (V0 is of dimension (N - p) 
because the p conditions Ci are supposed to be independent). 
Since the decomposition of RN all in all direct of 2 pennies orthogonal spaces is single, one 
in deduced that (With - b) belongs to the vector space generated by Ci. 
There is thus a family of scalars I called multipliers of Lagrange such as: 
(With - B) + C 
I 
I 
= 0 
I 
This equality is true in RN. 
Problem 3 becomes then: 
Problem 4: 
 
 
To find U RN, I R, (I =, 1 p) 
( 
 
I =, 
1 p) C U - D 
I 
I 
= 0 
 
( 
 
 
With - B 
 
) + C 
I I = 0 
 
 
I 
 
The reciprocal one (Pb4 => Pb3) is obvious: if there is I such as: 
(With - b) + C 
I 
= 0, then v 
V (With - b) v = - C. v 
I 
I I 
= 0 
0 
I 
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Problem 4 is the sought problem. It will be said that it is the problem with conditions 
dualized kinematics. Matriciellement one can write it: 
KX = F 
With CT U 
B 
 
 
=  
C 
0 
 
éq 2-4 
D 
 
 
 
 
(K) (X) (F) 
where: 
U N 
p 
X n+ 
R 
R 
R p 
;  
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;  
WITH A 
; C 
N, N 
With 
; K 
p, N 
An+ p, n+ p 
One realizes that this system can be obtained while seeking to make extreme the functional calculus: 
1 
L (U,) = 
(With, U) - (B, U) + (Cu -) D 
éq 2-5 
2 
This functional calculus is called Lagrangian initial problem. Principal interest of this 
method is to free itself from the constraints: U and are sought in RN and RP (X in 
Rn+p). 
Coefficients I are called coefficients of Lagrange of the problem (one will say sometimes them 
“Lagrange”). 
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3  
Disadvantages of this dualisation 
One sees according to the expression of Lagrangian that the matrix K is not positive any more (what was 
the case of 
With). Indeed: 
1 
U Cu 0 L (U,)! = 
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(With, U) + Cu 
0 
0 
0 
0 
0 
0 
0 
0 
0 < 0 
2 
The loss of the positivity of the matrix K involves that the resolution of the system KX = F cannot any 
more 
to be done in general by the traditional algorithms of gradient or, by the factorization of Cholesky. 
The algorithm of factorization LDLT without permutation of the lines and columns is not guaranteed 
any more either: 
it is the latter algorithm which one wants to be able to continue to use. 
Let us illustrate the problem on the following example: 
Example 1: 
a spring of stiffness K connects 2 nodes N1 and N2 
X 
N1 
K 
N2 
2 unknown factors: u1, u2; 2 modal forces: f1, f2 (N = 2) 
K 
- K 
With =  
 
- K 
K  
1 constraint: U + U 
1 
2 
= (p = 1) 
The dualized problem is written: KX = F 
with: 
K 
- K  
U  
F  
 
 
1 
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1 
K = 
- K 
K 
X = 
U F 
 
 
2 
= f2 
 
 
 
 
0 
 
 
 
 
Recall of the condition necessary and sufficient so that algorithm LDLT-SP (without permutation) 
function: 
Let us note K I under matrix of K formed of I first lines and columns of K. 
(If K is of order N, K N = K, K1 = [k11]). 
There will be no null pivot in algorithm LDLT-SP if and only if (Ki is invertible for 
any I ranging between 1 and N). 
This condition will be noted: cond1 
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The matrix K above is written with like classification of the unknown factors, the order of the 
components 
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X: 
·  
X = (U, U 
1 
2 , ) 
K 
- K  
 
 
K = 
- 
K 
K 
 
 
 
 
0 
K 
- K 
K2 =  
do not check the condition cond1. 
- K 
K  
On example 1 let us test new classifications: 
·  
X = (, U, U 
1 
2 ) 
0  
 
 
 
K = 
 
K 
- 
 
K  
 
- K K  
K1 does not check the condition cond1. 
·  
X = (U, U 
1 
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2 ) 
K 
- K 
det K1 = K 
 
 
K = 
 
0 
det K 
2 
 
 
2 
=  
2 
 
- K K  
det K3 = - K (+) 
-  
K is supposed > 0 (stiffness of the spring) 
-  
K3 is invertible only if + 0. The case + = 0 corresponds indeed to one 
“bad” physical blocking: the condition: U - U 
1 
2 = cte does not block the “movements 
rigid body " for A (without energy). 
So that the total problem has a single solution, it is necessary indeed that the conditions 
C U = D 
I 
I generate a space of acceptable displacements which does not contain any 
movements of rigid body of A. 
With the notations of [§1] one will write: 
ker A V0 = {} 
0 
One will suppose in the continuation of the document that this condition is checked. I.e. 
constraints Ci block at least the movements of rigid body of A (they 
can be more numerous of course). When this condition is checked and that them 
conditions Ci are independent between them, one will say that the problem is physically 
posed well. 
Handbook of Reference 
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-  
K2 is invertible only if 0 
It is thus seen that classification (U, U 
1 
2) checks the condition cond1 if 0. 
If blocking U + U 
1 
2 = is reduced to: 
u1 =  
( ,) = (1, ) 
0 it goes 
u2 =  
( ,) = (0, ) 
1 that does not go 
The symmetry of the problem shows that to be able to deal with the problem (,) = (, 
0 ) 
1 it is necessary to number 
X = (U, U 
2 
1) . 
From this very simple example, one can draw some general conclusions (all negative): 
· if one numbers all I after the ui, if A is singular, the condition cond1 will not be 
checked for K 
With 
I = 
, 
· is a condition C U = D and the multiplier of associated Lagrange. The equation C U = D 
in general does not utilize all the unknown factors ui: the equation constrained some ddl. If 
is numbered before the ddl that it constrained the condition cond1 will not be checked. Indeed 
let us look at under matrix K J where J is the number of the equation giving. 
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K 
0 
-1 
 
K 
J 
J 
= 0 0 
 
 
· Is a physical structure which, by bad luck, “is retained by its physical last ddl” 
i.e. such as if this ddl is not blocked, the matrix is singular, and such as if one it  
block the matrix is invertible. The use of a ddl of Lagrange for this blocking is 
impossible. Indeed, if one numbers before the physical last ddl, there will be a null pivot with 
level of, and if one numbers it after (thus in any last ddl), matrix kN-1 will not be 
not invertible since blocking is not taken yet into account. One will see with [§4] that 
technique of the “double lagrange” makes it possible to solve this problem. 
To finish this paragraph we can make the following remark: If K is invertible, one 
knows that there is a classification of the unknown factors making it possible to factorize K by LDLT. 
This 
classification is for example that resulting from algorithm LDLT with permutation (pivot 
maximum for example). But this renumerotation relates to only the lines of the matrix; it 
y thus has loss of the symmetry of K. It is enough to consider the following example: 
Example 2: 
With = [] 
0  
0 
 
1 
U 
K = 
X 
C = [] 
 
 
=  
1  
1 
 
0 
 
K is invertible, but there is not any common permutation of the lines and columns of K 
allowing a resolution by LDLT. 
All these remarks show that the dualisation proposed in this paragraph does not allow 
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not to use LDLT_SP. 
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4  
Principle of the “Lagrange doubles” 
The method suggested here is that implemented in code CASTEM 2000 (communication 
personal of Th. CHARAS and P. VERPEAUX). An intuitive presentation could be of it 
following: 
It is seen that the dualized problem [éq 2-4] has null terms on the diagonal: those corresponding to 
ddl of Lagrange. This property is also noticed on the Lagrangian one [éq 2-5]: there are no terms 
quadratic in. 
This nullity of the diagonal terms prevents certain permutations of lines and columns: one cannot 
to place Lagrange before the physical ddl that it constrained. 
The idea is then to break up each coefficient of Lagrange into 2 equal parts 1 and 2. 
The equation C U = D is then replaced by: 
C U - (1 - 2) = D 
C U + (1 - 2) = D 
where is a nonnull constant. 
Let us show the equivalence of the old problem and the new one: 
Problem 1: “simple Lagrange” 
U 
 
 
RN 
 
With + CT 
 
= B 
to find:  
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such as (S):  
p 
 
Cu = D 
 
 
R 
 
 
1 = 2 
 
With + CT1 + CT2 = B 
= 1 + 2 
 
 
(S)  
 
 
Cu - 1 + 2 = D 
With + CT = B 
 
 
Cu + 1 - 2 = D 
Cu = 
 
 
D 
is a constant 0 
Handbook of Reference 
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From where the problem are equivalent to the precedent: 
Problem 2: “double Lagrange” 
With + CT1 CT2 = B 
U 
 
N 
R 
 
 
to find:  
such as (): Cu 
 
- 1 + 2 = D 
 
1 2 p 
p 
, 
R 
× R 
Cu 
 
+ 1 - 2 = D 
 
The new problem can be written: 
K' X' = F' 
with: 
X' 
 
= (U, 1 2) 
F' = 
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(B, D,) D 
WITH CT 
CT  
 
 
K' = 
C 
 
- L L  
C L - L 
 
 
 
The problem corresponds to make extreme the functional calculus: 
1 
(U, 1, 2) = 
(With, U) - (B, U) + (1, Cu -) D 
2 
2 
 
+ (, Cu -) 
D - (1 - 2, 1 - 2) 
2 
One can show (cf Appendix 2) that if one observes a certain rule of classification of the unknown 
factors, and 
by choosing the constant > 0, the K' matrix check the condition cond1. 
This rule is as follows: 
That is to say a relation of blocking Cu - D = 0, it corresponds to him 2 multipliers of Lagrange 1 and 2. 
This relation utilizes a certain number of ddl physical. 
Regulate R0: 
For each relation of blocking, it is necessary to place 1 before the constrained first ddl physical and 2 
after the constrained last ddl physical. 
To decrease the occupation memory of the matrix K, it is necessary to seek to minimize the bandwidth. 
It is what one does in Code_Aster in “framing” the relations “with nearest”: 1 is placed just 
before the constrained first ddl, 2 is placed just after the constrained last ddl. 
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Illustration: 
That is to say a problem with 4 ddls physical: U, U, U, U 
1 2 3 4 . 
This system is subjected to 2 conditions: 
U + has U = B has 
11 1 
13 3 
1 
U + has U = B has 
22 2 
24 4 
2 
let us call 1 
2 
1 
2 
1, 1 2 ddls of Lagrange associated with the 1st condition and 2, 2 those associated 
2nd condition. 
By supposing that the physical ddls were numbered in the order: U, U, U, U 
1 2 3 4, classification 
total of the ddls retained by Aster is then: 
1 
1 
2 
2 
1, 1 
U, 2, 2 
U, 3 
U, 1, 4 
U, 2 
1 
2 
1 and 1 frames “with more close” the constrained ddls (U and U 
1 
3 ) 
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1 
2 
2 and 1 frame “with more close” the constrained ddls (U and U 
2 
4 ) 
The technique of the “Lagrange doubles” associated with the R0 rule thus makes it possible to solve any 
system 
linear posed physically well with the algorithm of LDLT without permutation. The demonstration 
suppose nevertheless that matrix A is symmetrical and positive (not inevitably definite). 
Note: 
Assumptions: With symmetrical and A positive are necessary to use LDLT (or LU) 
without permutation as the two following counterexamples show it: 
0  
 
1 
·  
A1 = 1 0 is symmetrical but nonpositive, 
 
 
0 1 
·  
A2 =  
is positive but nonsymmetrical. 
- 1 1 
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5 Advantage  
additional 
One will show in this paragraph that the technique of the “Lagrange doubles” can allow 
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economically to solve a series of problems which would differ only by their conditions with 
limits kinematics (for example a variable zone of contact). 
Note: 
This possibility is not currently used in the code. 
That is to say a system with constraints KX = F: 
Let us write this system while emphasizing a particular constraint (this calculation remains obviously 
valid when there are several constraints) Cu - D = 0. To simplify the writing, = 1 is chosen. 
That is to say 
1 the first ddl of Lagrange associated with the constraint 
2 the second ddl of Lagrange associated with the constraint 
U = X - {1 2 
, 
} 
~ 
K = matrix K projected on U; B = vector F projected on U 
 
The system is written with these variables: 
~ 
K 
 
CT CT U  
B 
 
 
1 
 
C 
 
-1 
1 
 
= 
D 
 
 
C 1 -1 2 
 
D 
 
 
 
 
Let us change the coefficient (2 2 
,): - 1 3 and let us write the new system: 
~ 
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K 
U (1 2) CT 
+ 
+ 
=  
B 
(1 +2) = 0 
 
éq 5 - 1 
(S) C 
U - 1 + 2 = D 
C U - 1 + 2 = D 
éq 5 - 2 
 
1 
2 
~ 
C U + +  
3 
= D 
K U = B 
 
éq 5 - 3 
This last system is uncoupled: one can solve [éq 5-3] to obtain U then to calculate 1 and 2. 
It is noticed that the resolution of [éq 5-3] corresponds to the initial problem without the constraint 
Cu - D = 0. The values of 1 and 2 then do not have any more the same physical significance. In others 
~ 
terms, the system (S) with the same solution out of U as the subsystem K U = B; 2 unknown factors 
additional 1 and 2 does not disturb the solution out of U. The total system can appear of size 
higher (+2) with what is necessary, but by means of computer, that can be very convenient. 
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Indeed, let us imagine now that we know in advance that certain relations kinematics 
are likely to be slackened. Let us number the 2 associated ones with these relations at the end of the 
system. Us 
let us can then triangulate partially once and for all the system while stopping before these ddl.  
left the triangulated matrix is most important in volume: all physical ddl and all the 1. 
When a concrete problem arises, i.e. when one knows the list of the linear relations 
active, it is enough to update the last lines of the matrix (- if the relation is active, + 3 if 
it is not it). One can then finish the triangulation and solve the problem economically. 
6  
Notice on the conditioning of the system  
When one looks at the form of the matrix which one finally will factorize K' (cf [§3]), one sees 
that its various submatrices A, C, I can be of order of magnitude very different. One knows 
that in general this situation is not favorable numerically (limited precision of the computers). 
It should be noticed that the equations of connection Cu - D = 0 can be multiplied by a constant 
arbitrary () without changing the problem. Moreover, we saw that matrices I were 
also arbitrary (>) 
0. We thus have two parameters allowing “to regulate” it 
conditioning of the matrix. 
We will not make a general demonstration but we are satisfied to examine the case more 
commonplace which is: a spring, a ddl, a connection. 
The K' matrix is written if K is the rigidity of the spring: 
K 
 
 
 
 
K' = 
- + 
 
 
 
-  
 
The conditioning of this matrix is related to the dispersion of its eigenvalues µi: 
Let us calculate the polynomial characteristic of K': 
P (µ) = (µ + 2) (- µ2 + kµ + 22) 
µ1 = -  
2 
< 0 
+ K + 
2 
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K + 82 
µ2 = 
> 0 
2 
+ K - 
2 
K + 82 
µ3 = 
< 0 
2 
K is the eigenvalue of the nonconstrained system. This eigenvalue is the required order of magnitude 
for µ1, µ2, µ3. 
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It is noticed that µ1 < 0, µ3 < 0 and µ2, > 0 i.e. the 2 eigenvalues added by 
coefficients of Lagrange is < 0 (it is besides because of that that LDLT_SP is not guaranteed without 
precautions). 
One seeks to obtain eigenvalues of the same order of magnitude: 
µ1µ2µ3 
µ 
2 
2 
2 
2 µ3 
µ1 
2 
 
 
4 
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éq 6-1 
If << K, then µ3 0 µ2 K: it is not the sought result. 
If >> K, then µµ 2 µ 
2 
3 
1 
The three eigenvalues are then in absolute value about which is an arbitrary constant 
very large in front of K. This solution is not that which one will retain because the value K is in the case 
general (with great number of ddl) of an order of magnitude comparable with the other eigenvalues of 
system. 
One will choose rather: 
=  
K µ1 -2k 
µ2 2k 
µ3 - K 
Practically in Code_Aster, one chooses a value of single for all the system. This 
value is the average of the extreme values of the diagonal terms associated the physical ddl: 
(min (a)+max (has 
II 
II)/2. Moreover, one takes =. 
Handbook of Reference 
R3.03 booklet: Boundary conditions and loadings 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Dualisation of the boundary conditions 
Date:  
09/02/01 
Author (S): 
J. PELLET 
Key: 
R3.03.01-B 
Page: 
16/30 
7  
Clean modes and parameters of Lagrange 
7.1 Introduction 
This paragraph wants to answer the two following questions: 
Q1:  
Which is the system of values (and vectors) clean tiny room to be solved when one 
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mechanical model is subjected to constraints linear kinematics 
homogeneous? 
Q2: 
Which is the model dualized (with parameters of Lagrange) equivalent or precedent? 
7.2  
Mechanical problem to solve 
One supposes a mechanical system already discretized by finite elements. 
The nodal unknown factors are noted U = {U} (I = N 
I 
1, ). 
Nodal displacements are not all independent: there is p (< N) linear relations 
homogeneous between these displacements: B () 
0 (J 1, p 
J U = 
= 
). 
These linear relations are independent between them, i.e. the row of the matrix B 
containing the coefficients of the p linear relations is p. 
That is to say K the matrix of rigidity of the mechanical system without constraints. 
That is to say M the matrix of mass of the mechanical system without constraints. 
Which is the system with the eigenvalues to solve to find the modes clean of the structure 
constraint? 
7.3 System  
reduced 
Let us notice that if one writes the linear relations kinematics in the form: 
B U = 0 
éq 7.3-1 
where: 
B is a matrix p × N 
U is the vector of nodal unknown factors RN 
then: 
B U " = 0 
éq 7.3-2 
and the relation is also valid for speeds. 
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Moreover, if B is of row p, then there is a square submatrix of B of row p. Notons B1 
this submatrix. 
Then let us make a partition of the unknown factors of U in U1 and U2 such as: 
U1 
B U = 0  
[ 
B 
B] 
0 
1 
2 
U 
= 
2 
U 
p 
1 
R 
U 
N p 
2 
 
- 
R 
B1 = matrix p × p 
B2 = matrix p × (N - p) 
The linear relations can then be written: 
B U + B U 
1 
1 
2 
2 
= 0 
what makes it possible to express the U1 unknown factors according to U2 since B1 is invertible. 
U 
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= - B 1 
- B U 
1 
1 
2 
2 
éq 7.3-3 
Stamp reduced rigidity: 
1 
The elastic deformation energy of the not forced discretized structure is W 
T 
def = 
THE U.K.U. 
2 
If one partitionne the matrix K in the same way that one partitionné U, one obtains: 
K 
K 
1 
12  
K = T 
 
K 
K 
12 
2  
then: 
2 W 
T 
T 
T 
T 
T 
def 
= U1 K1 U1 + U2 K2 U2 + U2 K12 U1 + U1 K12 U2 
Let us introduce the linear constraints then [éq 7.3-3]: 
2 
T 
T 
- T 
1 
W 
- 
T 
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def  
= U2 B2 B1 K1 B1 B2 U2 + U2 K2 U2 
T 
1 
- 
T 
T 
- T T 
- U2 K12 B1 B2 U2 - U2 B2 B1 K12 U2 
T 
= 
~ 
U2 K2 U2 
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with: 
~ 
K 
= K + BT BT K B 1 
- B - K B 1 
- B - BT B-TKT 
2 
2 
2 
1 
1 
1 
2 
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12 
1 
2 
2 
1 
12 
éq 7.3-4 
It is thus seen that one expressed the deformation energy of the reduced structure like a form 
bilinear of U2. The nodal unknown factors of U1 were eliminated. The nodal unknown factors U2 
are forced. 
Stamp of reduced mass: 
The same partition for the matrix of mass Mr. We adopt can write the relation [éq 7.3-2]: 
B U " + B U 
1 
1 
2 “2 
= 0 
Same calculation as previously then leads us to: 
2 W 
T 
cin 
= 
" ~ 
U2 m2 “U2 
with: 
~ 
M 
= M + BT BT MR. B 1 
- B - Mr. B-1 B - BT B-TMT 
2 
2 
2 
1 
1 
1 
2 
12 
1 
2 
2 
1 
12 
éq 7.3-5 
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Conclusion: 
The system to solve to find the modes (and the frequencies) clean of the structure forced 
is: 
2 
~ 
2 ~ 
To find them (N - p) ( 
N p 
Xi, I) R 
× R such as: (K2 - I m2) I 
X 
= 0 
~ 
~ 
with K 2 and m2 defined by [éq 7.3-4] and [éq 7.3-5]. 
Application to the blocked ddl: 
In this case: 
B 
 
= I 
1 
B 
2 = 0 
~ 
~ 
from where: K = K 
2 
2 and M = M 
2 
2 
i.e. it is enough “to forget” in K and M the lines and columns corresponding to the blocked ddl. 
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7.4 System  
Dualisé 
We saw with [§5] that the taking into account of the coefficients of Lagrange (double) in a matrix 
A led to the A' matrix: 
AT BT BT 
 
 
A' = 
B 
 
- I + I 
B 
I 
 
- I 
 
 
where: · B is the matrix of the conditions kinematics: B U = 0, 
·  
+ 
R arbitrary  
 
0 , 
·  
R arbitrary 0, 
Let us apply the dualisation of the C.L to the matrices K and M, by partitionnant the ddl in X, X 
1  
2 like 
with [§7.3]. We obtain the problem with the eigenvalues according to: 
T 
T 
T 
T 
K 
K 
 
 
 
1 
12 
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K 
B1 
K 
B 
M 
M 
1 
1 
12 
m 
B1 
m 
B1 
 
 
T 
T  
 
T 
T  
(K 
K 
 
B 
B 
M 
M 
 
 
B 
B  
S) 
12 
2 
K 
2 
K 
2 
2 
12 
2 
m 
2 
m 
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2 
 
-  
 
 
 
 
X = 0 
K 
B1 K 
B2 - K 
I + K 
I 
m 
B1 m 
B2 - m I m I 
 
 
 
 
 
 
 
K 
B1 K 
B2 
K 
I - K 
I 
 
m 
B1 m 
B2 
m 
I - m 
I 
for an own pulsation and a clean vector X of this system, one can write: 
K X + K X + BT 
1 
1 
12 
2 
1 (1 
+ 2 
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) = 0 
éq 7.4-1 
K 
X + K X + BT 
12 
1 
2 
2 
2 (1 
+ 2 
) = 0 
éq 7.4-2 
(B X + B X 
1 
1 
2 
2 -  
) (1 -2) = 0 
éq 7.4-3 
(B X + B X 
1 
1 
2 
2 +  
) (1 -2) = 0 
éq 7.4-4 
with: K = K - 2 M 
2 
2 
I 
I 
I; = K 
- m 
;  
= K - 
 
m 
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N 
= a number of ddls physical 
The system (S) is of order (N + 2 p) if  
. 
p = a number of relations kinematics 
 
The characteristic polynomial in 2 is a priori degree N + 2 p. Its term of higher degree is worth: 
N 
(- m 
2 p 
I) (+ m) 
if semi is the ième diagonal term of Mr. 
i=1 
· one thus sees that if m 0, the term of higher degree is 0 (because the semi ones are > 0) and thus 
the dualized system (S) has more eigenvalues than the reduced system: (N - p). Both 
systems are thus not equivalent. It is what one notes on the example of [§7.5], 
· let us choose  
N = N = 0: 
[éq 7.4-3] and [éq 7.4-4]  
 
1 = 2 
 
1 
 
 
- 
1 
X 
= - B1 B2 X2 
[éq 7.4-1]  
-1 
 
- T 
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1 
- 
1 
= 2 = 
B1 (- K1 B1 B2 + K12) X 
2 
2 
[éq 7.4-2]  
- 
-1 
T 
T 
1 
2 
2 + 
2 
2 - 
- 
2 
1 
(- 
- 
K 
B 
B X 
K X  
B B 
K B 
B 
1 
1 
2 + K 12) X 
12 
1 
2 
= 0 
(~ - 2 ~ 
K 
M2) X 
2 
2 
= 0 
with: ~K 
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= - KT B 1 
- B + K + BT BT K B-1 B - BT BT K 
2 
12 
1 
2 
2 
2 
1 
1 
1 
2 
2 
1 
12 
~ 
M 
= - MT B 1 
- B + M + BT BT MR. B 1 
- B - BT BT M 
 
2 
12 
1 
2 
2 
2 
1 
1 
1 
2 
2 
1 
12 
~ 
~ 
It is noted that the definitions of K 2 and m2 are identical to those of the equations 
[éq7.3-4] and [éq 7.3-5]. 
It is thus seen that any clean vector X of the dualized system is also clean vector of 
reduced system (with the same own pulsation) if one projects it on U2 space. 
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Reciprocally, any clean vector X2 of the reduced problem can be prolonged in a clean vector 
system dualized XT 
[XT, XT T T 
= 1 2 ,1 ,2 ]. 
with: 
 
X = - B 1 - B X 
1 
1 
2 
2 
 
 
1 
= - 
BT 
1 
- 
1 
1 (- K B 
B + K 
1 
1 
2 
12) X2 
2 
 
 
 
1 
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= - 
BT 
1 
- 
2 
1 (- K B 
B + K 
1 
1 
2 
12) X2 
2 
 
 
The two systems are thus equivalent, they have the same clean modes and the same values 
clean. 
The dualized system, although of size higher than the reduced system, does not have more values 
clean that the reduced system (the dimension of clean space is the same one). 
Conclusion: 
The dualized system is equivalent to the reduced system as soon as one chooses m = m = 0, 
i.e. if one takes the matrix of dualized rigidity but which one does not modify the matrix of 
mass. It is what is made in Aster. 
7.5 Example 
That is to say the system: 
K 
m 
m 
u1 
u2 
K 
- K 
m 0 
K = 
M 
 
 
=  
 
- K 
K  
0 
 
m 
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the constraint U is added to him 
U 
1 + 
2 = 0 
( ) 
0; That is to say =. 
The reduced system is then: 
·  
K = K; K = K; K = - K; M = m; M = m; M 
1 
2 
12 
1 
2 
12 = 0 
·  
B =; B 
1 
2 =  
~ 
= K (1+) 2 
~ 
K 
; M 
2 
2 
2 
= 
(m1+) 
2 
K 1 
2 
( + ) 
 
= 
; X = 1 
m 1+ 2 
2 
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It is noted that the eigenvalue 2 depends on the report/ratio =. 
K 
If = 0 
2 
, 
= m 
2 
If = 1 
2 
K 
= m 
If  
2 
K 
m 
Let us choose (= =) 
1 to simplify and let us write the dualized system: 
K 
- K 
 
 
m 
0 
 
X 
K 
K 
m 
m 
1  
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- K 
K 
 
 
 
 
0 
m 
 
 
 
X  
K 
K 
m 
m 
 
 
 
 
2  
 
-  
= 0 
K 
 
K 
 
- K 
 
K 
 
m 
 
m 
 
- m 
 
m 
 
 
 
 
 
 
1  
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K 
K 
K 
- K  
m 
m 
m 
- m2 
the eigenvalues of this system are: 
 
K  
2 
K K 2 
=  
K 
, 
, 
, 
m 
m  
 
 
m 
m  
It is noted that one finds the real eigenvalue (the 4°), but that one finds 3 eigenvalues  
parasites due to nonthe nullity of m and Mr. 
If one chooses m = m = 0, calculation shows that the characteristic polynomial is degree 1 and that its 
only solution is: 
K 
 
2 
2 
 
= 
 
m 
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X = 
 
 
{-1, + } 
1 
who is the sought solution. 
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7.6 Conclusions 
· If  
K and M are the matrices of rigidity and mass of a not-constrained system. 
· If the linear constraints can be written in the form: 
[ 
U  
B 
B] 1 
0 
B 
1 
2  
invertible 
U = 
with 1 
2 
· Alors the clean modes of the forced structure are those of the reduced system: 
(~ 
2 ~ 
K - M2) X 
2 

file:///Z|/process/refer/refer/p80.htm (7 of 26)10/2/2006 2:51:41 PM



file:///Z|/process/refer/refer/p80.htm

2 
= 0 
with: 
~ 
 
K 
= - KT B 1 
- B + K + BT BT K B 1 
- B - BT BT K 
2 
12 
1 
2 
2 
2 
1 
1 
1 
2 
2 
1 
12 
~ 
M 
= - MT B 1 
- B + M + BT BT MR. B 1 
- B - BT BT M 
 
2 
12 
1 
2 
2 
2 
1 
1 
1 
2 
2 
1 
12 
· The dualized system (double Lagrange) which is written: 
(~~ 
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~ 
~ 
-2 
) ~~ 
K 
MR. X = 0 
with: 
~ 
~ 
XT 
= [X X 
1 
12 
1 
 
2 
] 
K 
K 
BT BT  
1 
12 
1 
1  
~ 
~ 
KT 
K 
BT BT 
K = 12 
2 
2 
2  
B 
B 
1 
2 
- I 
I  
 
 
B 
B 
I 
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1 
2 
- I 
M 
M 
1 
12 
0 
 
0 
T 
 
~ 
~ 
M 
M 
0 0 
M = 12 
2 
 
0 
0 
0 
 
0 
 
 
0 
0 
0 
 
0 
has the same solutions then as the reduced system. 
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Appendix 1  
That is to say problem 1 
min J (U) 
U V 
 
1 
J (U) = 
(With, U) - (B, U) 
2 
V under space refines RN = {U RN such 
C 
that  
U - D 
I 
I = 0 I = 1 
, , } 
p 
With and B are defined on RN 
With positive symmetrical matrix of order N. 
Problem 2 
To find U V such as: (With, v) - (B, v) = 0 v 
V 
0 
0  
0 
0 ) 
V = {U RN such as C U - D 
I 
I = 0, I = 1,} 
p 
V0 = {v RN such 
C 
that  
U 
0 
I 
= 0, I = 1,} 
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p 
One will show that the two preceding problems are equivalent. 
Let us notice first of all that problem 2 is equivalent to problem 2 '. 
Problem 2 ' 
To find U V such as: (With, v - U) - (B, v - U) = 0 v V) 
V = {U RN such as C U - D 
I 
I = 0, I = 1,} 
p 
There is indeed bijection between the whole of the {v - U, U V, v} 
V and the V0 unit. 
Let us show that problem 2 ' is equivalent to problem 1: 
That is to say U solution of 2 ' 
Then, v V 
1 
1 
J (v) - J (U) = 
(AV, v) - (B, v) - (With, U) + (B, U) 
2 
2 
1 
1 
= 
(AV, v) - (With, v - U) - (With, U) 
2 
2 
1 
1 
= 
( 
S 
AV, v) - 2 (With, v) + (With, U) = 
(A (UV, UV) 0 
2 
2 
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Let us calculate first of all the derivative of J (U): 
U V, v V 
, 
0 
0 
J (U + v 
0) - J (U) 
I (U) v0 = lim 
0 
 
 
= 
 
 
lim (With, v0) + (AV, v 
0 
0) - (B, v0) 
(With the b) v 
 
0 
0  
2 
 
= 
- 
That is to say U the solution of Pb1 
v V, let us pose v = v - U; v V 
0 
0 
0 . 
J (U + v0) - J (U) 
 
0 (I (U) v0 0, v0 V0) 
 
It is seen that I (U) who am a linear form on V0 must be systematically positive. This is not 
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possible that if this form is identically null. 
One concludes from it that: 
I (U v - U 
= 
With - B v - U 
= 0  
) ( 
) 
( 
)( 
) 
, 
v 
V 
S 
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Appendix 2  
Definitions, notations 
A is the matrix of unconstrained rigidity (N × N) (symmetrical and positive) 
C is the matrix of blocking: Cu - D = 0 (C stamps N × p (p <) 
N) 
U is the vector of physical ddl RN 
1 is the vector of the first ddl of Lagrange R p 
2 is the vector of the second ddl of Lagrange R p 
X = (U, 1, 2) RN × R p × R p 
One notes: 
·  
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U the whole of the physical ddl, 
·  
1 the whole of the first ddl of Lagrange, 
·  
2 the whole of the second ddl of Lagrange. 
+ 
R 
K stamps of a symmetrical nature 2p + N 
WITH CT 
CT  
 
 
K = 
C 
 
- L L  
C L - L 
 
 
 
The matrix K written above corresponds to a certain classification of the unknown factors: 
X = (U, 1, 2) 
The genuine matrix K which one seeks to show that it is factorisable by LDLT without permutation 
is not written with this classification. The only rule of classification taken into account is 
following: 
Regulate R0: 
Both ddl of Lagrange associated with an equation with connection C U - D 
I 
I = 0 frame the ddl 
physiques constrained by this equation. 
Thereafter, to simplify the writing, = 1 will be taken. 
One seeks to show that very under Ki matrix of K is invertible. 
That is to say under Ki matrix given. It corresponds to a division of the ddl: those of row I, those of 
row > I. 
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We will note: 
~ 
U the subset of U corresponding to the ddl of row I. 
~ 
~ 
U the subset of U corresponding to the ddl of row > I. 
L 
1 
2 
1 
2 
1 is the whole of the couples (1, 1) 
ruffle 
such as  
(1)< 
( 
ng  
ruffle 
1 ) 
ng  
I 
L1 = {1 
2 
1}; L2 
1 
1 = {1 } 
L 
1 
2 
1 
2 
3 is the whole of the couples (3, 3) 
ruffle 
such as I < 
(3)< 
(3 
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ng  
ruffle 
) 
ng  
L1 = {1 
2 
3}; L2 
3 
3 = {3} 
L 
1 
2 
1 
2 
2 is the whole of the couples (2, 2) 
ruffle 
such as 
(2) 
ng  
I < ruffle (2) 
ng  
L1 = {1 
2 
2}; L2 
2 
2 = {2} 
J 
There are L = 
Li 
# . 
i=1,3 
j=1,2 
The matrix C can cut out in 3 parts corresponding to cutting (L1, L2, L3) 
C1 
C2 
C3 
~ ~~ 
Each matrix C 
(U, U) 
I can cut out in 2 parts corresponding to cutting  
~ 
C 
~ 

file:///Z|/process/refer/refer/p80.htm (17 of 26)10/2/2006 2:51:41 PM



file:///Z|/process/refer/refer/p80.htm

~ 
I 
Ci 
~ ~~ 
Matrix A can cut out in 4 parts corresponding to cutting (U, U) 
~A 
With 
With =  
~ 
~ 
T 
 
With 
With 
 
 
Using these notations, the problem to be solved is to show that the Ki matrix is invertible. 
- 
~ 
I 
I 
0 
C  
 
1 
~  
I 
- I 
0 
C 
K 
 
1  
I 
=  
~ 
0 
0 
- I C  
 
2 
~ 
~ 
~ 
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~  
CT CT CT 
With 
1 
1 
2 
 
 
Handbook of Reference 
R3.03 booklet: Boundary conditions and loadings 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Dualisation of the boundary conditions 
Date:  
09/02/01 
Author (S): 
J. PELLET 
Key: 
R3.03.01-B 
Page: 
28/30 
1 
12 
1  
This matrix corresponds to the vector Xi = 1  
 
2 
~  
U 
 
It should be shown that: K. X = 0 
X 
I  
I 
I = 0 
The problem is equivalent to: 
Problem 1: 
- 1 
2 
~ ~ 
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1 + 1 + 
1 
C U = 0 
 
~ 
~ 
U = 0 
1 
2 
~ 
1 - 1 + 
1 
C U = 0 
( 
 
 
S) =  
~ 
 
1 
2 
0 
1 
1 = 1 = 
-  
~ 
2 + C2 U = 
 
0 
 
 
1 
0 
~ 
1 
2 
~ 
1 
~ 
2 = 
T 
 
1 
C (1 + 1) 
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T 
+ C2 2 + A.~u = 0 
Case general: 
~ 
It is supposed that U; L1; L2  
(S)  
1 
2 
1 
= 1 
éq An2-1 
~ ~ 
C U 
1 
= 0 
éq An2-2 
12 = ~ ~ 
2 
C U 
éq An2-3 
~T 
~T ~ 
~ 
2 
1 
+ ( 
~ 
C 
2 
C C2 + A) U = 0 
1 1 
éq An2-4 
From [éq An2-4], one deduces: 
T T 
T ~ T ~ 
~ 
2 ~ ~ 
1 
~ 
+ 
( 
~ 
u.a. 
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U 
2 
C 
2 
C + A) U = 0 
1 1 
From [éq An2-2], one obtains: 
~T ~ T 
T ~ T ~ 
~ 
u.a. 
= 0 ~u 
1 
(C C + A 
2 
2 
) ~u = 0 
~T ~ T ~ ~ 
~T ~~ 
u.a. C U + U With 
2 
2 
= 0 
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~ 
~T ~ 
However A is symmetrical positive (under matrix of a positive matrix) and C C 
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2 
2 is also a matrix 
symmetrical positive, therefore this sum can be null only if the two terms are null. 
T T ~ 
~ ~ 
u.a. 
~ 
C U 
2 
2 
= 0 
~T ~~ 
U With = 
 
 
0 
~ ~ 
C U 
1 
2 
= 0 
2 
= 0 
éq An2-5 
~ 
A is a positive matrix, one wants to show that: 
~T ~~ 
~ 
U To = 0 U = 0 
éq An2-6 
It remains us to be shown that: ~ 
U = 0 
1 
and 
= 0 
1 
·  
~ 
U = 0 
Let us prolong ~ 
U on RN by ~~ = 0 = (~, ~~ 
U 
U 
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U U): 
~ 
C With 
U 
~T 
= 
Au~ = 0 
 
U ker A 
 
~ 
C U  
C u~  
1 
 
0 
1  
~ 
 
~ 
 
Cu = C U 
2 
= C U 
 
 
2 
=  
0 
C U 
3  
C~ u~ 
3  
 
0 
~ 
Indeed C3 = 0 bus if not, there would not yet exist ddl of ~u constrained by equations 
taken into account (of row > I) what is contrary in R0. 
The prolongation U of ~ 
U is thus in the cores of A and C. One will show that it is then null. 
Let us take again the problem with “simple Lagrange”. 
( 
 
With + CT = B 
S2) = Cu = 
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D 
If u0 0 is such as Au0 = 0 and Cu0 = 0. 
If u1 is solution of S2, it is seen that then U + U 
1 
µ 0 is also solution. What is impossible bus 
we suppose our problem posed physically well.  
One concludes from it that U = 0 U 
~ = 0. 
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·  
11 = 0 
[éq An2-4] gives: 
~ 
CT 1 
1 1 
= 0 
éq An2-7 
~ 
~ 
~ 
In the same way that the rule imposing R0 C3 = 0, one sees that C1 = 0. 
[éq An2-6] gives: 
~CT 1 
 
0 
CT 1 
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1 
1 
1 1 
= ~~ 
= 
0 
= 
éq An2-8 
CT 1 
 
 
0 
1 
1 
 
Let us reason by the absurdity: if 1 
T1 
1 0 is such as C1 1 
= 0, it is that there is a combination 
linear of the lines of C1 which is null, which is contradictory with the fact that the lines of C1 
from/to each other are independent (physical problem good posed). 
Thus 11 = 0. 
Particular case: 
When one (or more) of the ~ sets 
U, L1, L2 are empty, the system (S) is simplified. One can 
to check that the reasoning which one made in the case general, makes it possible to show 
similar results. 
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Summary 
One presents in this documentation a manner of modelling indeformable parts of structure, in 
small displacements and rotations, thanks to key word LIAISON_SOLIDE of AFFE_CHAR_MECA. 
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1 Introduction 
Key word LIAISON_SOLIDE of orders AFFE_CHAR_MECA and (AFFE_CHAR_MECA_F) allows 
to model an indeformable part of a structure. 
The principle selected is to write linear relations between the ddls “solid” part; these relations 
expressing the fact that the distances between the nodes are invariable. 
Important remark:  
The relations expressing the indeformability of a solid are in general not linear.  
linearization of the problem supposes that the problem can be solved in theory of “small 
displacements ". To be convinced some, let us take the example of a segment AB in 2D: 
B 
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With 
The indeformability of AB is written: 
([ 
2 
2 
2 
2 
X + dx 
With 
With) - (X + dx 
B 
B)] + ( 
[y +dy 
With 
With) - (y + Dy 
B 
B)] = (X - X 
With 
B) + (y - y 
With 
B) 
( 
2 
2 
dx - dx 
B 
With) + ( 
2 X - X 
B 
With) (dx - dx 
B 
With) + (Dy - Dy 
B 
With) + ( 
2 y - y 
B 
With) (Dy - Dy 
B 
To) = 0 
X, y, X, y 
With 
With 
B 

file:///Z|/process/refer/refer/p90.htm (3 of 22)10/2/2006 2:51:42 PM



file:///Z|/process/refer/refer/p90.htm

B co-ordinates of A and B 
by noting dx, Dy, dx, Dy 
With 
With 
B 
B displacements of A and B 
it is seen that the expression is quadratic in dx, dx, Dy and Dy 
With 
B 
With 
B. To be able to linearize it, 
it is necessary to eliminate the quadratic terms and for this reason, one is obliged to suppose that them 
elements dx, dx, Dy and Dy 
With 
B 
With 
B are small compared to the length of AB. 
This remark wants to say that one cannot use this key word when the structure becomes deformed (or 
turn) too much. In such situations, “to rigidify” a solid part, one is obliged to use one 
“hard” material (compared to the remainder of the structure). 
2  
Principle of the use of the key word 
Key word LIAISON_SOLIDE is a key word factor répétable at will. With each occurrence of the word 
key, the user defines a “piece of model” which it wishes to rigidify. 
This “piece of model” defined by key words GROUP_MA, GROUP_NO, MESH and NODE, one 
deduced the list from the nodes to be rigidified. 
Once this drawn up list, one writes the linear relations necessary to express that the “piece 
rigid " has nothing any more but the degrees of freedom of a solid (3 in 2D or 6 in 3D). 
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Page: 
4/12 
3  
Which are the treated cases of figure? 
According to ddls carried by the nodes of the list of the nodes to rigidify, one places oneself in one of 
the four 
following cases of figure. If one does not find oneself in one of these cases of figure, the code stops in 
fatal error 
The cases 2DA and 2DB correspond to plane” or axisymmetric problems “. 
The cases 3DA and 3DB correspond to 3D problems. 
Case 2DA: 
All the nodes of the list of the nodes to be rigidified carry the ddls DX, DY (and possibly 
DRZ) but they do not carry DRX, DRY and DZ and there is at least a node of the list of 
nodes to be rigidified which carries DRZ. 
Case 2DB: 
All the nodes of the list of the nodes to be rigidified carry DX, DY but they do not carry DRX, 
DRY and DZ. 
Case 3DA: 
All the nodes of the list of the nodes to be rigidified carry DX, DY, DZ (and possibly DRX, 
DRY, DRZ) and there exist a node of the list of the nodes to be rigidified which carries DRX, DRY, 
DRZ. 
Case 3DB:  
All the nodes of the list of the nodes to be rigidified carry DX, DY, DZ and there is not node 
list of the nodes to be rigidified carrying at the same time DRX, DRY, DRZ. 
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In these 2 cases of figure, one could find a node of the list of the nodes to be rigidified which carried all 
degrees of freedom of the solid. That is to say this node. 
in 2D: DX, DY, DRZ 
in 3D: DX, DY, DZ, DRX, DRY, DRZ 
That is to say a node M of the list of the nodes to be rigidified unspecified. 
In theory of small displacements, the movement of a solid body is expressed by: 
U is of displacement of A 
U 
= U + AM 
With 
M 
With 
 
where the vector rotation of the solid 
4.1 Case  
2DA 
The linear relations are written: 
 
X 
MR. A: DX (M) - DX () 
With + y DRZ () 
To = 0 
with AM =  
 
y 
DY (M) 
 
- DY () 
With - X DRZ () 
To = 0 
+ if M 
por DRZ 
you  
: DRZ (M) - DRZ () 
To = 0 
4.2 Case  
3DA 
DX (M) - DX () 
WITH - DRY () 
WITH .Z + DRZ () 
A. y = 0 
MR. A: DY (M) - DY () A DRZ () A.x + DRX (A) .z = 0 
DZ (M) 
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- DZ () 
WITH - DRX () 
A. y + DRY () 
With .x = 0 
DRX (M) - DRX () 
To = 0 
 
+ if M 
por DRX 
you, DRY, DRZ: DRY (M) - DRY () 
To = 0 
DRZ (M) - DRZ () 
With = 
 
0 
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5  
Treatment of the case 2DB 
5.1 Case  
general 
With and B in the list of the nodes to be rigidified/D (A, B) 0 
· determination  
of  
: 
nx  
That is to say N = AB K =  
(K unit vector according to O 
N 
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Z). 
y  
(U 
 
- U 
B 
With). AB = 0 
U - U - K AB 
B 
With 
(U - U 
 
B 
With) .n - (K AB) .n = 0 
· since  
AB 0, one can determine: 
1 
= ( 
DX B .N 
DX A .N 
DY B .N 
DY B .N 
K AB) ( 
() X - 
() X + () y - () y) 
.n 
' 
N  
1 
That is to say = 
X 
( 
;  
N 
 
K AB) 
= 
=  
.n 
 
' 
ny  
· equations to be written:  
-  
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(U - U) .AB 
B 
With 
= 0 
(1 equation for 2 points A 
and B) 
X 
-  
M (A, B): 
AM =  
y 
DX (M) - DX () 
With + y 
' 
' 
' 
' 
 
(DX (B).n - DX 
X 
(a).n + DY 
X 
(B).n - DY 
y 
( ) 
With ny) = 0 
DY (M) - DY () A X 
' 
' 
' 
' 
 
 
(DX (B).n - DX 
X 
( ) 
WITH .N + DY 
X 
(B).n - DY 
y 
( ) 
With ny) = 0 
5.2 Case  
private individuals 
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· list of the nodes to be rigidified = {} 
With there is nothing to write A tear, 
· list of the nodes to be rigidified = {Have} where all Have them have the same co-ordinates. 
That is to say Ao the first node of the list of the nodes to be rigidified 
DX 
 
(Have) - DX (A0) = 0 
WITH A 
I 
O it is necessary to write DY 
 
 
(Have) - DY (A0) = 0 
Note: 
is unspecified 
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6  
Treatment of the case 3DB 
6.1 Case  
general 
With, B, C in the list of the nodes to be rigidified such as ABC is a triangle of nonnull surface 
6.1.1 Treatment of the points A, B, C and determination of the vector rotation  
B 
B = AB; C = AC; m = AM 
B 
That is to say N = B C 
 
b'= bn; c'= C N 
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With 
C 
C 
M, UM - UA = M 
éq 6.1-1 
U 
 
- U = B 
 
· 
B 
With 
 
for the points B and C: U - U = C 
C 
With 
 
U - U .N =. 
B 
B 
With 
' 
éq 6.1-2 
U - U .C =. 
N 
B 
With 
éq 6.1-3 
U - U .B 
B 
With 
= 0 
éq 6.1-4 
U - U .N =. 
C 
C 
With 
' 
éq 6.1-5 
U - U .B = -. 
N 
C 
With 
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éq 6.1-6 
U - U .C 
C 
With 
= 0 
éq 6.1-7 
U - U .C + U - U .B 
B 
With 
C 
With 
= 0 
éq 6.1-8 
Of the 6 equations concerning the points B and C, 
-  
3 are to be written: [éq 6.1-4], [éq 6.1-7] and [éq 6.1-8] (they do not utilize) 
-  
3 are used to determine: 
.B'= (UB - U A) .N 
 
 
 
 
.c'= (CPU - U A) .n éq  
6.1-9 
 
 
.n'= 
 
(UB - U A) .C 
Handbook of Reference 
R3.03 booklet: Boundary conditions and loadings 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Conditions of solid connection of body 
Date:  
12/02/01 
Author (S): 
J. PELLET 
Key: 

file:///Z|/process/refer/refer/p90.htm (12 of 22)10/2/2006 2:51:42 PM



file:///Z|/process/refer/refer/p90.htm

R3.03.02-A 
Page: 
8/12 
6.1.2 Relations concerning a point M (A, B, C) 
 
12 
That is to say U 
the vector  
ABCM 
: (U A V 
, A, WA, U B V 
, B, ......., C 
W, U MR. V 
, M, WM)  
 
R 
the vector 
3 
 
 
 
(  
X, y, Z) R 
The equation [éq 6.1-9] can be written: Mr. = MR. U 
1 
2 
ABCM 
b' b' b'  
X 
y 
Z  
with M = it 
it 
it 
X 
y 
Z M is invertible bus ABC is of nonnull surface 
1 
1 
 
 
N 
N 
N 
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X 
y 
Z  
- nx - ny - N N N N 0 0 0 0 0 0 
 
Z 
X 
y 
Z 
 
and 
M2 = - nx - ny - N 
0 
0 
0 
N 
N 
N 
0 0 0 
Z 
X 
y 
Z 
 
- cx - cy - C C C C 0 0 0 0 0 0 
 
Z 
X 
y 
Z 
 
= - 
MR. M 
1 
U 
1 
2 . 
ABCM 
éq 6.1-10 
The equation [éq 6.1-1] U 
- U - M 
M 
With 
= 0 can be written: 
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M. U 
M 
4 
ABCM + 
3. = 0 
éq 6.1-11 
0 
- M 
M  
 
Z 
y  
with 
M = M 
0 
 
Z 
- M 
where 
M 
3 
X  
= (M, M, M 
X 
y 
Z) 
- M 
M 
0  
 
y 
X 
 
- 1 
1 
 
 
 
and 
M4 = 
- 1 
0 
0 
1 
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- 1 
0 
1 
M. U 
+ Mr. Mr. M 
1 
. U 
= 0 M. U 
4 
ABCM 
3 
1 
2 
ABCM 
5 
= 0 
ABCM 
M (A, B, C), the 3 equations should be written corresponding to the 3 lines of the matrix 
M = M + M - Mr. M 
1 
5 
4 
3 
1 
2 
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Page: 
9/12 
6.1.3 Summary of the equation to be written 
· calculation  
of  
B, C, N, b', it 
· calculation  
of  
M-1M 
1 
2 
U - U B 
B 
A. = 0 
 
· for the points B and C: U - U .C 
C 
With 
= 0 
U - U .c + U - U B 
B 
With 
C 
A. = 0  
·  
M (A, B, C): 
- calculation  
of  
M = M + MR. M 1 
- M 
5 
4 
3 
1 
2 
-  
writing of the 3 equations corresponding to M 
6.2 Case  
private individuals 
· list of the nodes to be rigidified = {} 
With there is nothing to write A tear, 
· list of the nodes to be rigidified = {Have} where all Have them have the same co-ordinates. 
That is to say Ao the first point of the list of the nodes to be rigidified 
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DX (Have) - DX (A0) = 0 
 
 
WITH A DY (Have) - DY (A0) 
I 
O  
= 0 
 
DZ 
 
(Have) - DZ (A0) = 0 
is unspecified, which does not pose a problem. 
· list of the nodes to be rigidified = {Have} where all Have them are aligned (right). 
The solid {Have} does not have more whereas 5 movements of possible rigid bodies. 
It misses rotation around. 
That is to say: 
- two  
points  
With and B/ 
AB 0 
-  
B = AB 
-  
n1 a vector not no orthogonal with B (thus with) 
-  
N = bn 
2 
1 
B 
B 
n1 
With 
N2 
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· not b: U - U = B 
B 
With 
(U - U) .B 
B 
With 
= 0 
éq 6.2-1 
(U - U) .n1 = (n1) .b 
B 
With 
éq 6.2-2 
(U - U) .n2 = (N2) .b 
B 
With 
éq 6.2-3 
-  
the equation [éq 6.2-1] is to be written 
-  
the equations [éq 6.2-2] and [éq 6.2-3] are used to calculate  
The component of on B is unspecified, one does not hold account of it: 
= 1n1 + 2n2 
(n1) = 2n1 N 
2 
that is to say K = n1n2.b 
K 0 
 
( 
 
 
 
K 1 = - U B - U .n 
With 
2 
N 
2) 
( 
) 
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= 1n2 N 
1 
 
 
 
 
 
K 2 = - (U B - U A) .n1 
K =  
K 1n1 +  
K 2n2 
has 
 
 
 
That is to say N 
( 
B, 
B 
W, U MR. V 
, M, WM) 
1 = B 
; N 
 
2 = 
;  
 
U 
 
ABM = U 
V 
, 
, W, U V 
With 
With 
With 
B, 
R9 
 
C 
 
 
K = M1 U ABM with: M1 = [M, 
2 - M, 
2 
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] 0 
 
0 
has 
- B 
has 
- C 
M2 =  
 
B - has 
0 
B 
- C 
 
 
C 
- has 
 
C - B 
 
0 
 
 
M (A, B) 
U M - U A - m 
= 0 
m = AM = (M, M, M 
X 
y 
Z) 
MR. U 
4 
ABM + m3 = 0 
0 
- M 
M  
Z 
y 
- 1 0 
0  
1 
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·  
with m3 = Mz 
0 
- MX  
M4 = 0 - 
 
1 
0 
0 
1 
 
- 
 
M 
M 
y 
X 
0  
 
0 
0 
- 1 
 
 
1 
1 
MR. U 
5 
ABM = 0 
with 
M5 = M4 + M. M 
K 
3 
1 
for each point M, it is necessary to write the 3 equations corresponding to the 3 lines of the matrix 
M5. 
Handbook of Reference 
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· summarized equations to be written: 
- calculation  
of  
B, N, N, 
1 
2 K 
- calculation  
of  
M1 
-  
for point b: U - U B 
B 
A. = 0 
-  
M (A, B) 
1 
- calculation  
of  
M = M + M. M 
5 
4 
3 
1 
K 
-  
writing of the 3 equations corresponding to M5 
7  
How to detect the particular cases? 
In the paragraphs [§6] and [§7], we saw that it could arrive of the particular cases when 
certain nodes geometrically were confused or aligned on the same line. 
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The numerical criteria selected to detect these particular cases are: 
· 2 points A and B are confused if: 
AB  
- 
10 6. DMIN 
· 3 points A, B, C are aligned if: 
(AB AC 
 
) 1/2 
-6 
10 .DMIN 
where: DMIN notes the length of smallest stops meshs of the grid. 
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Organization (S): EDF/IMA/MMN 
Handbook of Reference 
R3.03 booklet: Boundary conditions and loadings 
Document: R3.03.03 
Connection 3D - Beam 
Summary: 
This document explains the principle retained in Aster to connect a modeling continuous medium 3D and 
a modeling beam. 
This connection results in 6 linear relations connecting displacements of the whole of nodes “3D” 
(3 degrees of freedom per node) dependent with the node of beam with the 6 degrees of freedom of this 
node. 
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1 Presentation of the document ..................................................................................................................... 
3 
2 the connection 3D-
beam ............................................................................................................................. 3 
2.1 Objectives and excluded solutions .......................................................................................................... 
3 
2.2 Orientation ....................................................................................................................................... 4 
2.3 Decomposition of displacement 3D on the interface .......................................................................... 5  
2.4 Expression of the static condition of connection ............................................................................... 8 
3 Establishment of the method of 

file:///Z|/process/refer/refer/p100.htm (3 of 13)10/2/2006 2:51:42 PM



file:///Z|/process/refer/refer/p100.htm

connection .................................................................................................. 9 
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5 Bibliography ........................................................................................................................................ 10 
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1  
Presentation of the document 
This document is shown of a note of S. ANDRIEUX [bib1] in the course of publication. We added there 
some precise details concerning the establishment of modeling “connection 3D/Poutre”. Order 
AFFE_CHAR_MECA [U4.25.01] key words LIAISON_ELEM and OPTION: “3D_POU”. 
2  
The connection 3D-beam 
2.1  
Objectives and excluded solutions 
When one wishes to finely analyze part of a slim structure complexes [Figure 2.1-a], one 
can, to minimize the size of the grid to be handled, to want to represent the structure by a beam 
“far” from the part being analyzed. The goal of schematization by a beam is to bring conditions 
with the realistic limits at the edges of the part modelled and with a grid in continuous medium 3D. The 
connection 
3D-beam must thus meet the following requirements: 
P1 
To be able to transmit the efforts of beam (torque) to the grid 3D 
P2 
Not to generate “parasitic” constraints (even of stress concentration), because it 
would then be necessary to place the connection far from the zone to be sufficiently analyzed so that 
these 
disturbances are attenuated in the zone of study. 
P3 
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Not to support the conditions kinematics or the static conditions of connection one by 
report/ratio with the other. It must be equivalent to bring back a torque of effort or displacement to 
limits of the field 3D. 
P4 
To admit unspecified behaviors on both sides of the connection (elasticity, 
plasticity…) and to also allow a dynamic analysis. 
modeling 3D 
modeling beam 
modeling beam 
fissure 
Appear 2.1-a 
If these objectives are achieved one will be able to also use the rules of connection to deal with the 
problem 
embedding of a beam in a solid mass 3D. However the distribution of the constraints in 
solid mass around embedding will remain rather coarse and will have to be used with precaution. It is 
preferable to net the connection in 3D then to prolong the starter of the grid 3D of the section of 
beam by one of the elements of beam with connection 3D/Poutre [Figure 2.1-b]. 
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modeling beam 
modeling 3D 
Appear 2.1-b 
Within sight of objectives 1 to 4, one can eliminate two current techniques of connection right now: 
1) the first which brings back all the connection to the treatment of conditions of connections between 
the points 
in opposite with the intersection of the neutral axis of the beam and the solid 3D. Except the difficulty of 
to correctly define the “specific” rotation of the material point pertaining to the solid 3D, one 
concentrate the efforts (concentrated reaction, couple) in this point and one breaks symmetry 
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static kinematics/by privileging a particular kinematics.  
2) the second solution which imposes completely a displacement of beam (NAVIER-BERNOULLI) 
at the points of the solid mass 3D being with the intersection of the solid 3D and the section of the beam. 
In elasticity, one knows that the assumption of indeformability of the sections in their plan is only one 
approximation. Correct from the energy point of view for the beam, it leads to 
stress concentrations in the vicinity of the limits of the section of junction for the solid 
3D. 
Note: 
It goes without saying that all that is presented here is valid only on the assumption of 
small disturbances (small displacements). 
2.2 Orientation 
We will leave the machine elements of the connection: 
· the field of definite vector forced .n on the trace of the section S of the beam on 
solid mass 3D, N being the normal in the plan of S, 
· and the field of definite u3D displacement on this same field, 
for the three-dimensional solid, like: 
· it  
torque  
T of the efforts of beam in the geometrical centre of inertia G of S, 
· and the torque D of displacements of beam in this same point, 
for the beam. 
These mechanical magnitudes are connected by: 
· conditions of kinematic continuity, 
· equilibrium conditions of the connection. 
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The first conditions are the conditions of connections to impose in an approach “displacement”, 
the seconds result from the weak formulation of balance via the virtual work of the actions from 
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contact between beam and solid mass (which is not other than the expression of the “principle” of the 
action and the reaction 
writing for the interface S). On surface S, one has indeed for any virtual displacement (v, T,) licit: 
. . 
N v dS = 
. 
+ 
 
F T Mr. 
éq 2.2-1 
S 
where: 
· T and is respectively the translation and the infinitesimal rotation of the beam: D = (T,) 
· F 
M 
and  
are respectively the resultant and the moment in the beam at the point of connection: 
T = (F, M) 
The first member of this equality will provide the scalar product thanks to which one will define 
“component beam” of a field of displacement 3D defined on S. By using this scalar product, one 
the symmetry of the approach between conditions kinematics and statics of connection (P3) will ensure 
like 
the possibility of treating unspecified behaviors on both sides of the connection (P4) since none 
aspect of behavior does not appear in the equality of balance used. 
The step: 
One will break up the field of displacement 3D into a part “beam” and a part 
“complementary”. This will lead us to rather naturally define the conditions of connection 
kinematics between beam and solid 3D like the equality of the displacement (torque) of beam and of 
beam part of the field of displacement 3D [(§ 2.3)]. Once this made, the equality [éq 2.2-1] us 
will allow to interpret in static term the conditions of connection and to thus reach the conditions of 
static connection [(§2.4)]. 
2.3  
Decomposition of displacement 3D on the interface 
The junction between the three-dimensional solid B and the beam of section S is supposed to be plane 
and of 
normal N parallel with the tangent with the beam at the point of contact G, geometrical centre of inertia 
section S [Figure 2.3-a]. 
 
N =  
G 
G 
N 
S 
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(A) Normal with the solid = tangent with the beam 
(b) Normal with the solid ° tangent with the beam 
Appear 2.3-a  
One thus excludes the case (b) where the beam “does not leave” by perpendicular to surface the solid. It 
is necessary 
to understand well that this restriction is necessary to the coherence of the connection such as it is 
considered here 
since the theory of the beams knows only cuts normal with average fibre: the condition 
of balance [éq 2.2-1] no direction has if S is not the cross-section of the beam. If this 
condition is violated, one will be able to modify the grid to carry out it as the diagram indicates it 
below. 
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N =  
S 
G 
Appear 2.3-b 
One notes: 
x2 
x1 
G 
S 
·  
(G, E, E 
1 
2) a principal reference mark of geometrical inertia of S having for origin the center 
of inertia G, and (X, X 
1 
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2) associated co-ordinates, 
·  
N or e3 the normal in the plan S, outgoing with the solid mass 3D, 
·  
3 = (  
E, E, e3) the alternate shape of the mixed product of the basic vectors, 
finally I the geometrical tensor of inertia of S (diagonal in the reference mark (E, E 
1 
2)) and A = S the surface 
section S. 
Let us recall that the tensor of inertia I can be defined in an equivalent way by an application 
linear (mixed representative): 
(IU) = GM (X) (U GM (X)) dx 
S 
or a symmetrical bilinear application (covariant representative): 
(IU, V) = (U GM (X)). (V GM (X)) dx 
S 
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These two expressions will be useful, in the reference mark (G, E, E, E 
1 
2 
3) the matrix representative of I is: 
I 
0 
0  
1 
[ 
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I] = 0 I2 
0  
 
0 0 I1 + I2 
with I geometrical moment of inertia of S compared to the axis (G, E). By convention indices 
Greeks take values 1 or 2. 
Useful space for the fields of displacements and vectors forced definite on 
S be V 
T  
= L2 (S) 3. One introduces space T of the fields associated with a torque (defined by two 
vectors): 
T = {v V/(T,) such 
v 
that (M) = T + G} 
M 
éq 2.3-1 
For the fields of displacement of S, T is the translation of the section (or the point G), 
infinitesimal rotation and fields v are displacements preserving the section S plane and not 
deformation (Assumptions of NAVIER-BERNOULLI). 
For the fields of vectors forced, S T is the resultant F of the actions applied to S, and 
(I) M in G is the resulting moment. Fields v correspond then to distributions of 
constraints closely connected in the section. Indeed, one a: 
F () .n dS = 
 
T dS = S T 
S 
S  
M () GM (X) .n dS = GM (X) (GM) dS = ( 
I) 
S 
S 
The fact here was used that G is geometrical centre of inertia thus:  
X dS 
S  
= 
 
0. The subspace 
vectorial T being of finished size (equal to 6) has additional orthogonal for the product 
scalar defined on V: 
T = {v V/v.wdS = 0 W 
 
éq 2.3-2 
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S 
} T 
Maybe, in a more explicit way: 
T = {v V/vdS = 0 and GM vdS = 
 
0 
éq 2.3-3 
S 
S 
} 
Any field of V all in all breaks up in a single way of an element of T and an element of 
T. 
U up custom up T 
custom 
= 
+ 
 
T 
, 
éq 2.3-4 
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One has moreover the following property: 
For any couple of field 3D (U, v) definite on S, 
U = up + custom 
 
v. W dS = vp. wp dS + vs. ws 
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dS 
éq 2.3-5 
S 
S 
S 
v = vp + vs 
The following definition is thus natural: 
Definition: 
One calls component of displacement of beam of a field U defined on the section 
component up  
U 
of on the subspace. 
The calculation of the beam part of a field 3D U.S. 'operates by using the property of projection 
orthogonal since T and T are orthogonal by definition. 
If one notes up = T + GM 
U 
U 
, then: 
( 
Argmin 
2 
You, U) = ( 
U - T -  
T,) ( 
GM) 
éq 2.3-6 
S 
One will note in the passing the interpretation of the component beam of U: it is the field of displacement 
of beam nearest to U within the meaning of least squares. The calculation of the led minimum 
immediately with the characterization: 
1 
T 
-1 
U = 
U dS, 
= I 
GM U 
 
 
 
dS 
éq 2.3-7 
S 
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U 
S 
 
 
S  
 
The kinematic condition of connection sought is thus the following linear constraint between the field 3D 
on S and elements of the torque of displacement of the beam in G: 
S T - U dS, 
(I) - GM udS = 
 
 
0 
éq 2.3-8 
S 
S 
2.4  
Expression of the static condition of connection 
While returning to the weak formulation of the balance of the interface [éq 2.2-1], one can deduce them 
conditions necessary and sufficient of static connection. Indeed, one a: 
. . 
N v dS = R.T + Mr. 
v V 
 
 
 
éq 2.4-1 
S 
v 
v 
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Thanks to the expressions [éq 2.3-7] and the decomposition of space V, and the property [éq 2.3-5], one 
has 
immediately three equations: 
F = .ndS 
S 
M = GM (X)  
 
.ndS 
éq 2.4-2 
S 
(.n) S = 0 
or in an equivalent way 
. . 
N v dS = 0 v  
 
 
T 
S 
The conditions of static connection are thus: 
· transmission of the torque of the efforts of beam, (satisfied the P1 property), 
· nullity of the complementary part (“not beam”) of the field of vector forced 3D on 
section of the solid 3D (satisfied the P2 property). 
One will also notice static and kinematic symmetry (P3 property) since conditions of 
connection are also interpreted like: 
· equality within the meaning of least squares between displacement 3D and the displacement of the 
beam, 
· equality within the meaning of least squares between the field of vector forced and the elements of 
reduction of the torque of the efforts of beam. 
3  
Establishment of the method of connection 
For each connection, the user must define: 
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S: 
the trace of the section of the beam on the solid mass 3D: it does it by key words MAILLE_1 and/or 
GROUP_MA_1; i.e. it gives the list of the meshs (lma) surface (affected 
elements “edge” of modeling 3D) which represent this section geometrically. 
P: 
a node (key word NOEUD_1 or GROUP_NO_1) carrying the 6 ddl traditional of beam: DX, 
DY, DZ, DRX, DRY, DRZ 
Note: 
· the node P can be a node of element of beam or discrete element, 
· the list of the meshs lma must represent the section of the beam exactly. It is one 
important constraint for the grid. 
For each node, the program calculates the coefficients of the 6 linear relations [éq 2.3-8] which 
connect: 
· 6 ddl of the node P, 
· with the ddl of all the nodes of lma. 
These linear relations will be dualisées, like all the linear relations resulting for example from 
key word LIAISON_DDL of AFFE_CHAR_MECA. 
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The calculation of the coefficients of the linear relations is done in several stages: 
· calculation of elementary quantities on the elements of lma: (OPTION: CARA_SECT_POUT3) 
- surface  
= 1 
; 
X; 
y; 
x2 
 

file:///Z|/process/refer/refer/p110.htm (2 of 17)10/2/2006 2:51:43 PM



file:///Z|/process/refer/refer/p110.htm

 
 
 
; ! 
elt 
elt 
elt 
elt 
· summation of these quantities on (S) from where the calculation of: 
-  
WITH = S 
- position  
of  
G 
- tensor  
of inertia  
 
· knowing G, elementary calculation on the elements of lma of: 
(OPTION: CARA_SECT_POUT4) 
GM {X, y,} 
Z 
Ni; 
xNi; 
yNi; 
zNi 
 
 
 
 
= 
where: 
elt 
elt 
elt 
elt 
Nor = functions of form of the element 
· “assembly” of the terms calculated above to obtain of each node of lma, them 
coefficients of the terms of the linear relations. 
4  
Which uses can one make this modeling? 
In addition to the two aimed uses to [§2] [Figure 2.1-a] and [Figure 2.1-b], this connection can also be  
used for: 
· to apply a torque of efforts to a known surface of a modeling 3D: 
For that, the user defines the surface of load application (lma), it “connects it” with one 

file:///Z|/process/refer/refer/p110.htm (3 of 17)10/2/2006 2:51:43 PM



file:///Z|/process/refer/refer/p110.htm

node (P) of discrete element (DIS_TR_N) without rigidity then it applies the torque wanted to it 
node (FORCE_NODALE). 
In this way, the torque is applied in “softness”, without generating secondary stresses 
on surface. 
· “to retain” a structure without too the encaster: 
For example, if there is with a grid in 3D a pipe and that one wants to prevent his movements of 
solid body 
S 
( ) 
P 
one connects (S) to P then one blocks the 6 ddls P. 
The structure is then retained, without (S) is embedded. In particular, the section (S) 
can ovalize itself. 
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1 Introduction 
The taking into account of loadings of the type pressure (key word PRES_REP in the order  
AFFE_CHAR_MECA [U4.25.01]) poses a certain number of difficulties in the absence of the 
assumption of 
small displacements. Indeed, unlike the dead loads evoked with [R5.03.20], the pressure 
depends on displacements since it is about an effort whose direction is normal with the field; one speaks 
then of following forces, activated by key word TYPE_CHARGE: “SUIV” in the order 
STAT_NON_LINE [U4.32.01]. Nevertheless, the choice of the current configuration like configuration 
of 
reference (Lagrangian updated) led to simple expressions - with the help of some concepts of 
differential geometry - work of the efforts of pressure and its variation first compared to 
displacement, the latter being a nonsymmetrical bilinear form. 
2  
Virtual work of the efforts external of pressure 
R 
 
X = (X) 
 
= F 
R 
N 
p 
 
NR 
p 
P (X) 
p (X) 
Appear 2-a: Configuration of reference and current configuration 
In the current configuration, the virtual work of the efforts external of pressure is written simply 
[Figure 2-a]: 
W (). = 
- p 
p U 
v 
N v 
 
 
ds 
éq 2-1 
p (U) 
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Moreover, one supposes henceforth that the value of the pressure does not depend explicitly on 
displacement but only of the material point of application: 
( 
p X) = P ((X)) 
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In this case, one can then express the virtual work of the efforts of pressure in the configuration of 
reference: 
R 
W (). = 
- P det () 
-1. R 
p U 
v 
F F 
N 
v 
 
 
T 
((X))ds 
éq 2-2 
R 
p 
On the practical level, one will use the formula [éq 2-1] to calculate the work of the efforts of pressure. 
However, the formula [éq 2-2] is adapted best to a derivation compared to the displacement, of which 
one will see the need in the following paragraph. 
3 Variation of the virtual work of the efforts external of 
pressure 
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In the optics of a resolution of the problem of balance of the structure by a method of Newton, one 
is brought to express the variation of the virtual work of the efforts external of pressure compared to 
displacement, in a way similar to what was made for the virtual work of the interior efforts with 
[R5.03.20]. The field of integration being fixed in the expression [éq 2-2], derivation under the sign 
nap is licit, (cf [bib2]): 
Wp (U) 
 
. U 
. v 
= 
- P 
 
[det (F) TF1] 
R 
 
 
 
R 
 
U 
 
N 
v 
ds 
U 
R 
 
. 
. 
U 
p 
We decide to choose like configuration of reference the current configuration, for which 
F = Id. This choice led to a simple expression of derived from the term between hooks: 
[det (F) F-T]. U =div (U) - T 
 
 
 
 
Id 
U 
 
U 
Finally, the variation of the virtual work of the efforts external of pressure is written in the configuration 
current: 
Wp (U). U. v = - p 
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[div (U 
) Id-T U 
]  
 
. N v 
ds 
éq 3-1 
U 
p (U)  
In the expression [éq 3-1] remains a difficulty. Indeed, one expects to obtain a size 
primarily surface whereas the intégrande reveals terms of normal derivation with 
surface. In other words, it is necessary to know the expression of virtual displacements not only on 
surface field but also inside this one (in a vicinity of surface to be able 
to express the derivative normals). This disadvantage is not pain-killer since in Code_Aster, for 
to calculate the elementary terms due to the surface efforts, one employs elements of skin for 
which a normal variation does not have a direction. 
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4  
Adoption of a curvilinear parameter setting of surface 
To cure the problem mentioned previously, it is necessary to seek to express the relation [éq 3-1] with 
assistance of surface sizes only. For that, one has recourse to elements of geometry 
differential, [bib1], which one adopts the notations in particular (, one adopts the convention of 
summation 
repeated indices where the Greek indices take values 1 and 2 while the Latin indices 
take values 1 to 3). 
3 
1 
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N 
2 
p 
S 
M 
 
Appear 4-a: Curvilinear parameter setting of the vicinity of subjected surface 
with the pressure 
That is to say (1 2 
, 
) an acceptable parameter setting of surface. To describe volume made up of one 
vicinity of this surface, one associates a third variable to him, 3, which measures the progression 
according to 
unit normal N in (1 2 
, 
). One has thus [4-a]: 
OM (1 2 3) = 
( 
OS 1 2) +3 ( 
N 1 2 
, 
, 
, 
, 
) 
With this choice of parameter setting, the natural base covariante (G, G, G 
1 
2 
3) and the metric tensor G 
are: 
G 
G 
0 
OM 
OM 
OM 
11 
12 
 
 
G = 
G = 
G = 
= N 
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gij = G .g 
1 
I 
J = G 
G 
0 
1 
2 
2 
3 
3 
21 
22 
 
 
 
 
0 
0 
1 
 
 
 
In this curvilinear parameter setting, the intégrande [éq 3-1] has as an expression: 
- p G nor [the U.K. v J 
J 
K 
 
K 
- U 
v 
ij 
K 
] 
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This term is simplified considerably. Indeed, one can already note that when J = K, the term enters 
hook is null. Moreover, in the adopted curvilinear system, the components contravariantes of N 
are: n1 =, N2 =, n3 
0 
0 
= 1. Lastly, by taking account of the particular form of G, the variation of 
work is written simply: 
W 
 
p ( 
 
3 
3 
 
U). U 
. v 
= 
- p  
 
 
U v - U  
 
v  
ds 
éq 4-1 
U 
p ( 
 
 
 
 
U) 
On this expression, one notes that only intervene of the surface differential operators 
(derivation covariante compared to 1 and 2 only), which is well the required goal. In 
introducing the base contravariante (G, G, G = N 
1 
2 
3 
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), also called bases dual and which is expressed to leave 
ij 
base covariante by gi = [g-1] G J, one can be freed from the curvilinear components: 
Wp ( 
 
 
U 
 
 
 
U 
 
 
 
 
U) 
 
. U 
. v 
 
p 
 
= 
- 
 
 
. G 
(v. N). N (v. G) ds 
 
éq 4-2 
U 
 
 
 
 
-  
 
 
 
p (U) 
 
 
 
It is henceforth the expression [éq 4-2] which will be used to calculate the variation of the virtual work of 
efforts of pressure. 
5  
Introduction into Code_Aster 
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In Code_Aster, finite elements of skin (surface elements plunged in a space 
three-dimensional) are employed to discretize real and virtual displacements intervening in 
surface expressions such as [éq 2-1] and [éq 4-2]. These last make it possible to express 
respectively the vector second member and the matrix of rigidity due to the pressure, of which 
employment by 
the algorithm of STAT_NON_LINE is specified in [R5.03.01] and which call some note: 
· The calculation of the virtual work of the efforts of pressure [éq 2-1] is in fact identical to that carried 
out 
in small displacements, with the help of a preliminary reactualization of the geometry. Let us recall 
that it is carried out with each iteration. 
· The calculus of the variation of the virtual work of the efforts of pressure [éq 4-2], carried out with each 
construction of the matrix of rigidity, proves a little more delicate insofar as it 
require the knowledge of metric of the element of skin of each one of its points of 
Gauss. If one calls Nn the functions of form and xn the position of the nodes of the element, 
then the metric one is calculated as follows: 
NR 
G 
N 
N 
1 G 
G =  
X 
N = 
2 
[G] = G G G 
µ 
= -1 
. 
 
 
 
[G] G 
 
 
N  
g1 G 
µ 
2 
Moreover, this variation behaves like a term complementary to the matrix of 
tangent rigidity; in general, it is not symmetrical (except particular case of a structure 
subjected to an internal or external pressure constant, cf [§6]). It is then desirable 
to spread out the strategy of resolution. Initially, only the part is considered 
symmetrical of this complementary term: the problem remains symmetrical, even if it requires 
(perhaps) some additional iterations. It is the choice carried out in Code_Aster. 
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In the event of problems of convergence, one could consider this complementary term in 
its integrality while being ready to pay the price of a nonsymmetrical resolution. 
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6 particular Cases of a structure subjected to one 
internal or external pressure constant 
v = 0 
 
 
N 
p 
p 
N 
p 
p 
Appear 6-a: Structure under internal or external pressure constant 
In the particular case of a constant pressure in a cavity [Figure 6-a], one shows that the efforts  
from pressure derive from a potential which is not other than the product of the pressure by the volume 
of 
cavity. This result extends to the case from a structure plunged in a fluid with constant pressure. 
R 
P = p 
D = p det (F) 
 
 
D 
p 
Pr 
Again, one chooses like configuration of reference the current configuration. Variation of P 
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conduit then well with the virtual work of the efforts external of pressure: 
Statement = p div (v 
 
) D = - p 
dS = W 
 
p 
 
v 
N 
v 
 
U 
p 
p 
In this particular case, the variation of virtual work is also the second variation of the potential P, 
i.e. a symmetrical bilinear form: 
W 
2 
p ( 
P 
U) 
 
. U 
. v 
= 
(U)  
 
. U 
. v 
 
U 
u2 
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Summary: 
Here the connection hull-beam is described, which makes it possible to connect two parts of grid, one 
made up 
elements of beams (or a discrete element), and the other with a grid one in elements of hulls (to represent 
phenomena except kinematics of beam). This development thus functions under assumptions translating 
that it is the same kinematics of beam which is transmitted between the two grids, on both sides of 
connection. It results in 6 linear relations connecting displacements of the whole of the nodes of the edge 
of 
hull with the 6 degrees of freedom of the node end of the beam. 
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1  
Assumptions and applications 
1.1  
Assumptions and limitations 
Here the connection hull-beam is described, which is used to connect two grids, one comprising of the 
elements 
hulls (or plates), the other comprising of the elements of beams. This functionality allows 
to model a slim structure in two parts: a part with a grid with traditional elements of 
beams, representing a kinematics and a behavior of beams, and the other part with a grid in 
elements of hulls, to reveal other phenomena (ovalization, swelling, plasticity 
located). 
The following assumptions however are made: 
1) the transverse sectional surface of the end of the grid of hulls is identical to 
right sectional surface of the element of beam which corresponds to him, 
the 2) centres of gravity are identical, 
the 3) sections are plane and coplanar, 
4) the normal with the section of hulls is confused with the axis of the beam. 
Limitations: 
1) one does not hold account in the connection of the ovalization of the cross-sections, 
2) account of warping is not taken. 
1.2  
Applications concerned: 
1.2.1 Modeling of pipings 
One of the major applications relates to pipings. The bent parts or prickings are 
then with a grid in hulls, which makes it possible to reveal an ovalization, a behavior 
elastoplastic room or a swelling in the event of internal pressure. This connection does not transmit 
the ovalization of the pipes since this one is not modelled in the elements of beams. For it 
to make, it is necessary to use the connection hull-pipe or to net a sufficient length of right piping in 
elements of hulls so that ovalization on the level of the connection is negligible. 
Circular piping of section (or rectangular…) with a grid in hull then in beam. 
1.2.2 Connection plates beam 
Connection plate-beam (mean rectangular section). 
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1.2.3 Beam with symmetrical profile 
Beam with symmetrical profile with a grid partly in hulls. 
1.2.4 Application of a loading or boundary conditions of the type “beam” 
At the end of a slim structure with a grid in hulls, it is often useful to impose is one 
loading of the type “beam” i.e. a torque of efforts, is boundary conditions 
(embedding) compatible with the kinematics of beam. One can then connect the section 
transverse of end of the grid hulls to a discrete element to which one will apply this torque 
or this embedding. 
1.2.5 Application not considered: 
This functionality does not make it possible to model the `'prickings transverse or orthogonal '' of one 
beam on a plate or a hull: 
2  
Application of the method of the connection 3D-beam. Equations 
of connection 
The step is identical to that of the connection beam-3D [R3.03.03]: the connection results in 6 
linear relations connecting displacements of the whole of the nodes hull of the section of 
connection (6 degrees of freedom per node, compared to 3 ddl by node in 3D) with the 6 degrees 
of freedom of the node of beam. The section of connection of hull is made up of elements of edge 
hulls (segments). On the section crosses connection, one breaks up the field of 
displacement “hull” in a part “beam” and a “complementary” part. This brings us to 
to define the conditions of kinematic connection between beam and hull like the equality of 
displacement  
(torque distributor or kinematic torque) of beam and the beam part of the field of displacement 
hull 
As in [R3.03.03], one introduces space T of the fields associated with a kinematic torque (definite 
by two vectors): 
T = {v V/( 
T,)  
v 
such as (M) = T + G} 
M 
éq 2-1 
Here, G represents the centre of gravity of the section of connection (having to be identical to that of 
the beam). For the fields of displacement of T, T is the translation of the section (or of the point G), 
infinitesimal rotation and fields v are displacements of the space of displacements 
there acceptable V preserving the section S plane and not deformed (One uses still the Assumptions of 
NAVIER-BERNOULLI). 
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The vectorial subspace T being of finished size (equalizes to 6) has additional 
orthogonal for the definite scalar product on V: 
T = v V/v (M) .w (M) 
{ 
dS = 0 W 
 
 
éq 2-2 
S 
} T 
Maybe, in a more explicit way: 
T = {v V/v (M) dS = 0 and GM vdS = 
 
0 
éq 2-3 
S 
S 
} 
Any field of V all in all breaks up in a single way of an element of T and an element of 
T. 
U up custom up 
T 
custom 
= 
+ 
 
T 
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, 
éq 2-4 
One has moreover the following property: 
For any couple of field hull (W, v) definite on S, 
W = wp + ws v wdS = vp.wpdS + vs.ws 
. 
éq 2-5 
S 
S 
 
dS 
v = vp + vs 
S 
Definition: 
One calls component of displacement of beam of a field of hull U defined on the section 
component up of U on the subspace T. 
The characterization immediately is obtained: 
1 
T 
-1 
U = 
udS, 
 
dS 
éq 2-7 
S  
U = I 
GM U 
S 
 
 
 
S 
 
 
where S represents the surface of the section S and I the geometrical tensor of inertia of surface S, 
expressed 
in G. 
In other words, one can as say as the calculation of the beam part of a field hull U.S. 'operates in 
using the property of orthogonal projection since T and T are orthogonal by definition. 
If one notes up = T + GM 
U 
U 
, then: 
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( 
2 
T,) = Argmin 
éq 2-6 
S (- T 
U 
U 
U 
- GM) 
(T,) 
The component beam of U can thus be interpreted like the field of displacement of beam it 
nearer to U within the meaning of least squares. 
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The kinematic condition of connection sought between the field hull on S and the elements of the torque 
of displacement of the beam in G is given by: 
ST - 
dS = 0 
() - GM D 
U.S. = 
U 
I 
 
0 
éq 2-8 
S 
S 
The equation [éq 2-8] shows that the situation is identical to the case 3D-beam. Linear relations 
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will have the same form. The only difference comes from the integrals on S (which represents a curve 
here 
corresponding to the section of the hull, modelled by elements of edge of hull). Moreover, 
the field of displacement of hull utilizes DDL of rotation. 
To translate the equation [éq 2-8] into linear relations, the two integrals should be calculated: 
· average displacement: udS 
S 
· average rotation: GM U 
 
dS 
S 
3  
Integrals to be calculated. Kinematics of hull. 
For each node, the program calculates the coefficients of the 6 linear relations [éq 2-8] which connect: 
· 6 ddl of the node of beam P (geometrically confused with the centre of gravity G of 
transverse section of the grid hulls) 
· with the ddl of all the nodes of the list of the meshs of the edge of hull. 
These linear relations are dualisées, like all the linear relations resulting, for example, of the word 
key LIAISON_DDL of AFFE_CHAR_MECA. They are built as for the connection 3D-beam with 
to leave the assembly of elementary terms. 
x3 
y3 
N 
M 
y3 
H 
Q 
Q y2 
T 
E 
1=e1 
3rd 
Edge of the transverse section (of hull) of 
2 
connection 
G 
e1 
x1 S = L × I 
H 
L: line of the points Q on the average layer 
H H 
I = -, interval describing the épaisseu .r 
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2 2 
Kinematics of hull or linear plate in the thickness: 
( 
U M) = ( 
U Q) + (( 
Q) N). y3 
·  
U is the vector displacement of average surface in Q, 
·  
N is the normal vector on the average surface of the hull in Q, 
·  
is the vector rotation in Q of the normal according to directions' T1 and t2 of the tangent plan 
H H 
·  
y3 is the co-ordinate in the thickness (y3 -, 
). 
 
2 2 
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3.1  
Calculation of average displacement on the section S 
It is a question of calculating the integral udS 
 
, where U is the displacement of hull (comprising 6 ddl by node), 
S 
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S is the edge of hull of the transverse section of connection. 
Average displacement on the section S is written: 
( 
h/2 
U M) ds = H 
 
(uQ) ds + ((Q) N) 
y Dy ds 
 
S 
L 
L 
 
 
 
H 
3 
3 
/2 
 
 
- 
that is to say  
( 
U M) ds = H 
 
(uQ) ds 
S 
L 
One neglects in this expression the variations of metric in the thickness of the hull. 
3.2  
Calculation of the average rotation of the section S 
h/2 
GM ( 
U M) ds =  
 
(GQ + y3 (nQ) ((uQ) + (Q) (nQ) .y3) dsdy 
S 
L - H 
3 
/2 
H 
= 
/2 
H GQ U 

file:///Z|/process/refer/refer/p120.htm (10 of 19)10/2/2006 2:51:44 PM



file:///Z|/process/refer/refer/p120.htm

 
(Q) ds+ GQ 
 
((Q) (nQ) ds y Dy 
 
L 
L 
- H 
3 
3 
/2 
H 
+ ( 
h/2 
N Q) ( 
U Q) 
y Dy ds 
N 
2 
 
 
 
 
2 
3 
3 
 
. 
/2 
 
 
- 
 
+ (Q) ((Q) (nQ) 
y Dy ds 
L 
H 
H 
L 
3 
3 
- 2 
h3 
that is to say GM ( 
U M) ds = H GQ  
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(uQ) ds + 
 
. 
12 ( 
N Q) ((Q) 
 
(nQ) ds 
S 
L 
L 
3.3  
Calculation of the tensor of inertia 
The tensor of inertia is defined by [R3.03.03]: 
I () = GM (GM) ds 
S 
while posing: GM = GQ + N (Q). y. 
3 
h3 
One obtains: I () = H GQ  
 
(GQ) ds+ 12 (nQ) (N (Q) ds 
L 
L 
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3.4  
Establishment of the method 
The calculation of the coefficients of the linear relations is done in two times: 
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· calculation of elementary quantities on the elements of the list of the meshs of edges of hulls 
(mesh of type SEG2 or SEG3): 
-  
the 9 terms are calculated: 
-  
ds; xds; 
yds; 
x2ds; 
y2ds; 
z2ds; 
xyds; 
xzds; 
yzds 
 
 
 
 
 
 
 
 
elt 
elt 
elt 
elt 
elt 
elt 
elt 
elt 
elt 
h3 
 
as well as terms resulting from I (): 
N (N) ds 
 
12 L 
h3 
h3 
 
what makes it possible to calculate:  
+ 
 
, 
 
, etc… 
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12 (N2 N2) ds 
N N ds 
y 
Z 
L 
X y 
12 L 
-  
summation of these quantities on (S) from where the calculation of: 
-  
WITH = S 
- position  
of  
G 
- tensor  
of inertia  
I 
· knowing  
G, elementary calculation on the elements of the list of the meshs of edges of 
hulls of: 
GM {X, y,} 
Z 
NR ds; 
xN ds; 
yN ds; 
Zn ds 
I  
I 
 
I 
where: 
 
= 
elt 
elt 
elt 
I 
elt 
Nor = functions of form of the element 
 
(It should simply be noticed that in this case, the integrals on the elements of edge 
are to be multiplied by the thickness of the hull:  
NR ds = H NR dl 
I 
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I where L represents the X-coordinate 
elt 
L 
curvilinear of average fibre of the element of edge of hull). 
h3 
 
Moreover, one adds the terms additional coming from:  
(nQ) (N (Q) ds 
12 L 
nx 
X  
 
While noting N = ny and = y in the total reference mark one obtains: 
nz 
Z 
(N2 +n2 
y 
Z) - N N - N N 
X 
X there y 
X Z Z 
 
( 
N Q) (( 
N Q) = - N N 
2 
2 
X there X 
+ (N + N 
X 
Z) - N N 
y 
y Z Z 
= A 
- N N - N N 
2 
2 
X Z X 
y zy + (N + N 
X 
y) Z 
 
 
then: 
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h3 
h3 
 
(nQ) ((nQ) ds = 
 
With 
 
12 
12 
((S) NR (S) ds 
L 
J 
el 
) J 
el 
 
· “assembly” of the terms calculated above to obtain of each node of the meshs 
of edge, coefficients of the terms of the linear relations. 
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4 Use 
4.1 Modeling 
For each connection, the user must define under the key word factor LIAISON_ELEM of 
AFFE_CHAR_MECA: 
S: 
the trace of the cross-section of the beam on the hull: it does it by key words MAILLE_1 
and/or GROUP_MA_1 i.e. it gives the list of the linear meshs (affected of elements 
“edge” of modeling hull) which represents this section geometrically. 
P: 
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a node (key word NOEUD_1 or GROUP_NO_1) carrying the 6 ddl traditional of beam: DX, DY, 
DZ, DRX, DRY, DRZ 
V: 
the vector defining the axis of the beam, directed hull towards the beam, and defined by its 
co-ordinates using key word AXE_POUTRE: (v1, v2, v3) 
Note: 
· the node P can be a node of element of beam or discrete element, 
· the list of the meshs of edge of hull, defined by MESH or GROUP_MA must represent 
exactly the cross-section of the beam. It is an important constraint for 
grid. 
4.2  
Examples and tests 
4.2.1 Test  
SSLX101 
It is about a subjected right beam has unit efforts out of B (traction, moments bending and of 
torsion). One takes a mean section of tube thickness H << R. 
y 
H 
M 
R 
Z 
O 
X 
With 
MX B 
F 
My 
Embedding out of O is carried out using a connection between the edge of the hull and a specific element 
located out of O. This element is embedded (null translations and rotations). 
This makes it possible to obtain in the hull a state of stresses very close to a solution “beam”: there is not 
no disturbance of the stress field. The solution differs from the analytical solution (solution 
RDM) of 3%, this being only due to the smoothness of the grid in elements of hulls. 
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4.2.2 Inflection of a plate 
Let us consider a sufficiently long thin section, length 2L, of width B, thickness H,  
modelled by an element of hull OA and an element of beam on AB: 
Z 
y 
O 
L 
B 
D 
With 
L 
B 
X 
H 
C 
·  
1st condition of connection is written: 
B H U () 
With = H 
U 
(y) Dy 
CD 
 
the displacement of point A (pertaining to the beam) is the average of displacements of the edge CD 
plate. 
 
·  
2nd condition of connection is written: 
h3 
I () = H 
AQ U (Q) ds + 
 
 
12  
(Q) ds 
CD 
CD 
h3 B 2 
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In the case of an inflection around y, the only term not no one is:  
B  
/(y) Dy 
12 -2 
B 
 
Indeed, H 
AQ U 
 
(Q) ds = H2 U ydy 
B Z 
.x 0 
CD 
 
2 
 
= 
- 
For an inflection around y, the connection is thus written: 
bh3 
I () 
With 
y y 
= 
y bus  
12 
y is constant on CD. 
This application is implemented in test SSLX100B: mix 3D_coque_poutre. 
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Handbook of Reference 
R3.03 booklet: Boundary conditions and loadings 
R3.03.07 document 
Following pressure for the elements of hulls 
voluminal 
Summary: 
We present in this document, the model used to calculate the loading of following the pressure type 
acting on the average surface of the finite elements of voluminal hulls corresponding to modeling 
COQUE_3D. Discretization of the loading led to a nodal vector of the external forces and to one 
nonsymmetrical contribution in the tangent matrix of rigidity. These finite elements objects are 
evaluated with 
each iteration of the algorithm of Newton of STAT_NON_LINE. 
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1 Introduction 
Our analysis leaves the weak formulation of balance under a loading of following the pressure type 
activated by key word TYPE_CHARGE: “SUIV” in order STAT_NON_LINE [U4.32.01].  
difference compared to a traditional geometrical linear analysis is that the pressure acts on 
geometry deformed and either on the initial geometry. This new geometry is obtained to leave 
transform of the initial average surface subjected to great displacements and the large ones 
rotations [R3.07.05]. The notations are inspired by [R3.07.05]. 
This transform can be paramétrisée exactly as initial surface by using them 
reduced co-ordinates of the associated isoparametric element: Co-variable or counter-variable reference 
marks 
build themselves in each point of deformed surface. The writing of the virtual work of the pressure with 
this parameterization is done in the configuration deformed by using the isoparametric elements  
associated. It results an independence from it from the field of integration with displacements that one 
use to express the variation of the virtual work of the efforts external of pressure compared to the known 
as ones 
displacements. That has an important advantage compared to the method applied for 
pressure which follows the facets of the elements 3D [R3.03.04]. Indeed, this last method, based on 
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a brought up to date Lagrangian formulation, led to nonlinear terms difficult to linearize, 
coming from the transformation jacobienne compared to the configuration of reference. 
The finite elements objects obtained by linearization compared to incrémentaux displacements of 
virtual work of the efforts external of pressure are to be reactualized with each iteration of the algorithm 
of 
Newton of STAT_NON_LINE. We underline the fact that the contribution of the following pressure to 
stamp tangent rigidity is nonsymmetrical, and we point out that the geometrical part of 
stamp tangent is already nonsymmetrical [bib2]. 
2 Kinematics 
For the elements of voluminal hull one defines a surface of reference, or surfaces 
average, left (of curvilinear co-ordinates  
1 2 for example) and a thickness ( 
H, 
1 2 ) 
measured according to the normal on the average surface. The position of the points of the hull is given 
by 
curvilinear co-ordinates (1,2) of average surface and rise 3 compared to this 
surface. 
One points out the great transformation undergone by the hull: 
(together of the points P with 3 = 0) is the transform of initial average surface  
(together of the points P with 3 = 0). 
The position of the point P on the deformed configuration can be established according to the position of 
not initial P as follows: 
X (1,2) = X (1,2) + U 
P 
P 
P (1,2). 
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N (1,2) = (1,2) N (1,2) 
N (1,2)  
 
uQ (1,2,3) 
Q (3 0) 
Q 3 0 
· 
· 
 
( 
) 
P (3 = 0) 
 
· 
P (3 = 0) 
· 
H 
U P (1,2, 3 = 0) 
xQ (1,2, 3) 
X P (1,2, 3 = 0) 
X 
 
Q (1, 2, 3) 
X P (1, 2, 3 = 0) 
E 2, y 
e1, X 
E 3, Z 
Appear 2-a: Voluminal hull. 
Great transformations of an initially normal fibre on the average surface 
2.1  
Parameterization of the transform of average surface 
The transform can be paramétrisée in a way similar to parameterization of surface 
initial. Thus one can define the infinitesimal element of tangent vector in: 
 
 
 
X 
X 
 
dx 
P 
P 
P (1,2) = 
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D + 
D 
1 
 
 
2 
1 
1 
dx 
 
 
P (1,2) = D has 
1 
1 (1,2) + D 
has 
2 
2 (1,2 ) 
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where [has (,); has 
1 
1 2 
2 (1 
, 2  
)] represent a nonorthogonal natural base (has .a 
1 
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2 ) 
0 and not 
 
 
normalized (1 has; has 
1 
1 ) 
1 tangent on the surface. The two basic vectors can be 
dependent on displacements via the following formula: 
 
 
X 
X + U 
has 
P 
p 
p 
1 (1 
, 2 
) 
( 
) 
= 
= 
1 
 
1 
 
 
 
X 
X + U 
has 
P 
p 
p 
2 (1 
, 2 
) 
( 
) 
= 
= 
2 

file:///Z|/process/refer/refer/p130.htm (6 of 23)10/2/2006 2:51:44 PM



file:///Z|/process/refer/refer/p130.htm

 
2 
 
what makes it possible to connect them to the vectors of the natural base related to initial surface by 
relations: 
U 
 
has 
p 
1 (1 
, 2 
) = a1 (1, 2) + 1 
 
U 
 
has 
p 
2 (1 
, 2 
) = a2 (1, 2) + 2 
 
It is important to note that these vectors are distinct from the vectors obtained by great rotation  
vectors has (,); has 
1 1 2 
2 (1 
, 2 
) : 
a1 (1 
, 2 
) (1 
, 2 
) a1 (1 
, 2 
) 
a2 (1 
, 2 
) (1 
, 2 
) a2 (1 
, 2 
) 
Indeed, because of deformation due to transverse shearing, the turned vectors are not any more 
tangent with. The illustration of that is given by [Figure 3.1-a]. 
With this parameterization, the infinitesimal vector element of surface which is perpendicular to  
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can be written: 
D (,) = has (,) × has 
1 2 
1 
1 2 
2 (1,2) d1d2 
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3 Formulation  
variational 
3.1 Work  
virtual 
N  
( , 
1 ) 
2 
 
 
p0 
 
N  
( , 
 
N 
1 ) 
2 
=  
( , 
1 ) 
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2 
 
( , 
1 ) 
2 
 
 
p = p0 
 
 
Appear 3.1-a: Voluminal hull. 
Following pressure on initial average surface and its transform 
The virtual work of a following pressure p (i.e. acting on transformed average surface 
and moving with) can be expressed in the form: 
pressure = - 
 
up.p D 
 
following 
If one uses the isoparametric element of surface corresponding to our modeling of hull 
voluminal, surface D is expressed directly according to the isoparametric co-ordinates 
D D 
1 2 and one obtains the following simple form of the equation above: 
 
= - 
 
 
U p. p (, 12) 
 
a1 (,) 
 
pressure 
× has (,) 
[- ,1+ ]1 [×- ,1+ ] 
D D 
following 
1 
1 2 
2 
1 2 
1 
2 
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3.2 Operator  
tangent 
As the virtual work of the following pressure depends on the current configuration, its variation  
linear is not null and must be taken into account. The tangent operator associated this virtual work 
is written with the iteration (I +) 
1 pennies the form: 
 
( 
 
i+) 
1 
(I) 
(I) 
L 
 
pressure = pressure + pressure 
 
following  
following 
following 
 
 
(I) 
where pressure is the increment between two iterations of the virtual work of the following pressure. If 
following 
pressure is given in the form: 
p = p0 
being the level of load which is fixed lasting the iterations (piloting = 0 charge some), one can 
to write: 
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pressure = - [ 
U. 
has 
has 
has 
has 
- ,+ ] [ 
× -, +] P p (1 × 2 - 2 × 1) D D 
1 2 
1 1 
1 1 
following 
Incremental variations of the vectors of the tangent local base to the transform of surface 
average are given by: 
 
a1 = 
U P 
1 
 
 
a2 = 
U P 
2 
 
since initial surface average “does not move” not during the iterations what involves X P = 0. 
These calculations finally make it possible to establish the expression of the increment of the virtual 
work of pressure 
following in the form: 
 
 
 
 
 
pressure = - [, 1] 1 [, 1] uP.p has 
U 
has 
U 
1 
2 
 
- + × - +1 
[ 
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×] P - 
× 
P D D 
1 2 
following 
 
[ ]  
2 
2 
 
 
 
where [× has] and [has 
1 
2 ×] are respectively the antisymmetric matrices of the tangent vectors 
has and has 
1 
2 respectively. 
Note: 
In the reference [bib2], an integration by part is undertaken on the expression above. It 
is shown that the tangent matrix can be broken up into a symmetrical part resulting 
of an integration on the field and an antisymmetric part resulting from integration on 
contour. II is as shown as the assembly of the antisymmetric parts of the matrices 
elementary tangents leads to a null matrix when the pressure is continuous of one 
finite element with another, because of existence of a potential associated with work with the pressure 
in this case there. 
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4 Discretization 
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At the points P of average surface, the interpolation of virtual displacement is written: 
U  
1 
NB 
 
U ( 
1 
1 ,2 ) 
( ) 
= NOR (1,2) v  
I 1 
= 
 
 
W I 
and the interpolation of incremental displacement between two iterations is written: 
U 
 
1 
NB 
 
 
U ( 
1 
1 ,2 ) 
( ) 
= NOR (1,2) v 
 
I 1 
= 
 
 
W I 
We rewrite the two preceding equations in the matric form: 
U ( 
E 
1, 2) = [NR] {} 
U 
U ( 
E 
 
1,2) = [NR] {} 
U 
where [NR] is the matrix of the functions of form of translation on the average surface, of which the 
expression 
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is: 
 
1 0 
 
0 0 0 
 
0  
0 0 
 
 
 
0 
 
[ ] 
( )1  
 
 
 
 
NR =! NR I 0 1  
0 0 0  
0  
!0 0  
0 
 
 
 
 
 
0 0 10 0  
0  
 
0 0 0 
 
I 1, NB1 
NB2  
= 
() 1 
(2) 
Functions of form NR  
and NR 
I 
I 
(used thereafter are given in appendix of [R3.07.04]. 
The nodes I = 1, NB1 are the nodes tops and the mediums on the sides (for the quadrangle and it 
triangle). Node NB2 is with the barycentre of the element. 
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The vector {} 
U.E. is the nodal vector of virtual displacements given by: 
 
. 
 
 
 
 
. 
 
 
. 
 
U  
 
 
 
v 
 
 
W  
 
 
X  
 
{ 
y 
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ue} =  
 
Z I 
 
 
 
. 
 
 
. 
 
 
 
 
. 
 
I =, 
1 NB 
 
 
1 
 
 
 
 
X 
 
 
 
 
 
X  
 
 
 
 
 
X NB2  
The vector {} 
U.E. is the nodal vector of displacements incremental between two iterations. 
 
. 
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. 
 
 
. 
 
U  
 
 
 
v 
 
 
W  
 
 
X  
 
 
{ 
y 
 
 
ue} =  
 
 
Z I 
 
 
 
. 
 
 
. 
 
 
 
 
. 
 
I =, 
1 NB 
 
1 
 
 
 
 
X  
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X  
 
 
 
X NB2 
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This discretization also enables us to establish the expression of derived from incremental displacement 
average surface compared to the surface isoparametric co-ordinates in the form: 
 
 
 
U ( 
 
 
E 
1,2 ) =  
NR {} 
 
U 
1 
 
1  
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U ( 
 
 
E 
1 ,2 ) =  
NR {} 
 
U 
2 
2  
 
 
 
 
where  
and  
are the matrices derived from the functions of forms of translation on the surface 
NR 
NR 
1 
 
2  
average, whose expressions are: 
 
 
() 1 
 
0 0 0 
 
0 0 
0 
 
0 0 
 
1 
NR I  
 
 
 
 
 
 
= ! 
 
 
! 
NR 
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0 1 0 0 0 0 
0 0 0 
 
 
 
 
 
1 
 
1 
 
 
0 
 
0 1 0 
 
0 0 
0 
 
0 0 
 
 
 
 
 
 
 
 
I 1 
=, NR 1 
B 
NB2  
 
 
() 1 0 0 0 
 
0 0 
0 0 
 
0 
 
1 
NR 
 
I 
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0 0 0 
 
NR = 
0 1 0 0 0 0 
! 
 
! 
 
 
 
 
 
 
2 
 
 
 
2 
 
 
 
0 0 1 0 
 
0 0 
 
 
 
 
 
 
0 0 0 
 
I 1, NB1 
NB2  
= 
Thus one can express the virtual work of the following pressure in the following matric form: 
 
 
 
E 
E 
 
pressure = {U} .f pressure  
following 

file:///Z|/process/refer/refer/p130.htm (21 of 23)10/2/2006 2:51:44 PM



file:///Z|/process/refer/refer/p130.htm

following 
 
 
 
 
 
 
 
 
with F E 
pressure the nodal vector of the external forces which can be expressed in the following way: 
following 
 
 
 
 
 
 
 
 
F E 
 
=  
[NR] T  
 
[ 
 
-1,+ ] 
1 [ 
× -1,+ ] 
1 
(a1 ×a 
pressure 
1) D D 
1 
2 
following 
 
 
 
 
It is important to note that with our parameterization of the transform of average surface, it 
jacobien det [(J (3 =) 
0]) of this surface are not implied in the calculation of the finite elements objects.  
It will be also noted that the pressure is discretized with an isoparametric interpolation of the values with 
NB2 nodes: 
( 
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NB2 
p  
2 
1,2 ) 
( ) 
= NR (1,2) p 
I 
I 
I 1 
= 
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One can also express the increment between two iterations of the virtual work of the following pressure 
under 
the matric form: 
 
 
 
 
 
E 
E 
E 
pressure = - {U}. K T pressure { 
U} 
following 
following 
 
 
 
 
 
 
 
 
where K E 
T pressure is the contribution in the tangent matrix of rigidity of the external forces which can 
following 
 
 
 
 
to be expressed in the form: 
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K E 
 
=  
[NR] T 
a1 × 
NR 
 
 
1 
2 
- 
 
1, 1 
1, 1 
 
[NR] T 
p 
D D 
 
[ 1, ]1 [ 1, ] 
p 
1 
[a2 ×] 
[ 
] [ 
] 
[ ] 
NR 
T pressure 
D D 
 
 
- + × - + 
- + × - + 
1 
2 
following 
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2  
1 
 
Note: 
It is noted that the finite elements formulations resulting from this approach do not make 
to intervene degrees of freedom of rotations. The treatment is thus also valid for 
facets of the finite elements of three-dimensional elasticity. 
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1  
Options of linear modeling 
In this document, one considers only the linear modeling of the physical phenomenon of evolution 
temperature in a continuous medium. All coefficients intervening in the equation of 
heat will be constants or many functions being able to depend on time or space.  
boundary conditions could be only linear functions of the temperature. 
By defect the material is supposed to be isotropic, the Fourier analysis connecting the heat flow to the 
gradient of 
temperature utilizes a scalar coefficient thermal conductivity: 
Q = - T 
In the case general, unspecified medium, this relation is expressed with a tensor of conductivity 
thermics. The definite associated matrix being positive, it is always possible to be brought back to one 
stamp diagonal in the reference mark associated with the clean directions. Treatment of the anisotropy  
thermics (see [bib 1] is thus carried out in Code_Aster by providing the values of conductivity 
thermics for each principal direction and the clean reference mark. The evaluation of the elementary 
terms 
be carried out then by recovering the various coefficients and while changing reference mark. Two types 
of anisotropy are treated in Code_Aster, it acts: 
· of the Cartesian anisotropy where the privileged directions remain fixed in a reference mark 
Cartesian, the data of the three nautical angles, and makes it possible to pass from the reference mark 
total with the principal reference mark of anisotropy, 
· of the cylindrical anisotropy where the privileged directions remain fixed in a reference mark 
cylindrical, the data of the two nautical angles and defining the direction of the axis and 
of the three punctual coordinates of this axis allows to pass from the total reference mark to the 
reference mark 
the main thing of anisotropy. 
The variational formulation of the linear equation of heat (cf [R5.02.01]) led to the evaluation 
of a certain number of expressions in the form of integrals which constitute finally a system 
matric. The matrix and the second member are built starting from various bricks: options of 
calculation which gathers one or more integrals. The options described here are common to the unit 
isoparametric finite elements. Their evaluation depends on the type of element: degree of the functions 
of form, numbers and family of points of integration used. 
One will be able to refer to the documents [U1.23.01], [U1.23.02] and [U1.24.02] concerning the 
different ones 
modelings (type of mesh supporting the finite elements). 
Handbook of Reference 
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2  
Expression of the elementary terms for the different ones 
options of calculation 
2.1 Notations  
general 
We indicate by: 
 
open of ¤3 or ¤2 of border, 
T 
the variable representing time, 
T 
the step of time used, 
R 
the variable of space, 
T 
the temperature (unknown of the problem), 
Tn 
the temperature at the previous moment (known), 
T* 
the function test, 
 
density, 
C 
specific heat with constant pressure, 
p 
C = C 
heat-storage capacity with constant pressure per unit of volume, 
p 
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p 
 
the parameter of - method for the transitory thermal analysis. 
2.2  
Elementary terms contributing a share 
2.2.1 Rigidity  
thermics 
Term utilizing variations in temperatures and the coefficient of conduction in the case 
isotropic mediums (denomination used by analogy at the end of rigidity intervening in 
the equation of the modeling of the mechanical phenomenon of elasticity). The coefficient can depend 
time. 
· mathematical expression:  
( ) . 
* 
T 
T T 
 
D 
 
, 
 
when the medium is anisotropic, the evaluation of flow (T) T is carried out in the reference mark 
the main thing of anisotropy after a first change of reference mark (the tensor of conductivity 
thermics is diagonal there) then by a change locates opposite, one returns in the reference mark 
total, 
· denomination of the option in the catalogues: RIGI_THER, 
· a number of points of integration used: (first family of points of integration 
cf [R3.01.01]). 
net support 
a number of nodes 
a number of points 
triangle 
3 
1 
6 
3 
quadrangle  
4 
4 
8 or 9 
9 
tetrahedron 
4 
4 
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10 
15 
pentahedron 
6 
6 
15 
21 
hexahedron 
8 
8 
20 
27 
27 
27 
Table 2.2.1-1 
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2.2.2 Mass  
thermics 
Term utilizing the coefficient of heat-storage capacity to constant pressure C = C 
p 
p 
(denomination used by analogy at the end of mass intervening in the equation of modeling 
equations of dynamics). The coefficient CP can depend on time. 
· 
1 
 
mathematical expression: (). *  
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T 
C T T T 
D 
p 
· denomination of the option in the catalogues: MASS_THER 
· a number of points of integration used: (second family of points of integration) 
net support 
a number of nodes 
a number of points 
triangle 
3 
3 
6 
6 
quadrangle 
4 
4 
8 or 9 
9 
tetrahedron 
4 
4 
10 
15 
pentahedron 
6 
6 
15 
21 
hexahedron 
8 
8 
20 
27 
27 
27 
Table 2.2.2-1 
2.2.3 Rigidity due to the boundary conditions of exchange 
Term utilizing the coefficient of exchange H having for origin a boundary condition modelling 
the convectifs exchanges with the edge of the field. The coefficient H can depend on time and space. 
· mathematical expression: H (R, T) T.T* D 
 
· denomination of the option in the catalogues: RIGI_THER_COEF_R or RIGI_THER_COEF_F 
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· a number of points of integration used: 
net support 
a number of nodes 
a number of points 
segment 
2 
4 
3 
4 
triangle 
3 
3 
6 
4 
quadrangle 
4 
4 
8 or 9 
9 
Table 2.2.3-1 
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2.2.4 Rigidity due to the conditions of exchange between walls 
Term due to the boundary condition of the Neumann type bringing into play two pennies left the border 
in opposite and utilizing a single coefficient of exchange h. This type of boundary condition 
create new relations between the degrees of freedom of the border. 
In this case, one uses a particular finite element whose mesh support is obtained by associating two 
meshs of identical edge or face, the functions of form used and the points of integration are 
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those of the starting mesh. 
Into three-dimensional, the meshs support of the elements of face are of type TRIA3-TRIA3, QUAD4- 
QUAD4, TRIA6-TRIA6, QUAD8-QUAD8 or QUAD9-QUAD9.  
Into two-dimensional, they are of type SEG2-SEG2 or SEG3-SEG3. 
One will be able to refer to [U4.25.02 § 3.1.3] for the description of the algorithm of search for meshs 
in opposite. 
· mathematical expression: 
( ( , + ) ( 2 - )). * 
H R T 
T 
T 
T 
T D 
 
 
1 
and  
( ( , + ) ( 1 - )). * 
H R T 
T 
T 
T 
T D 
 
 
2 
 
 
1 
2 
1 
2 
where 1 and 2 is two pennies left the border in opposite. 
· denomination of the option in the catalogues: RIGI_THER_PARO_R or RIGI_THER_PARO_F 
· a number of points of integration used: cf [Table 2.2.3-1]. 
2.3  
Elementary terms contributing a share to the second member 
2.3.1 Discretization in time 
Term due: 
· with the discretization of derived in time utilizing part of the term of mass with 
the coefficient of heat-storage capacity CP, 
· with  
 
- method utilizing part of rigidity in the second member with 
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coefficient of conduction, 
· mathematical expression in the case of isotropic mediums: 
1 
N 
 
. * 
- 
1 
N 
* 
 
 
( -) . 
 
 
T 
C T T 
D 
T 
T 
D 
p 
 
when the medium is anisotropic, the evaluation of flow (T) T is carried out in the reference mark 
the main thing of anisotropy after a first change of reference mark (the tensor of conductivity 
thermics is diagonal there) then by a change locates opposite, one returns in the reference mark 
total, 
· denomination of the option in the catalogues: CHAR_THER_EVOL, 
· a number of points of integration used: cf [Table 2.2.2-1]. 
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Page: 
7/8 
2.3.2 Voluminal term of source 
Term due to the voluminal source of heat. 
· mathematical expression:  
(S (R, T + T) + (1 -) S (R, T)). * 
 
 
T D 
 
 
, 
 
· denomination of the option in the catalogues: CHAR_THER_SOUR_R or 
CHAR_THER_SOUR_F, 
· a number of points of integration used: cf [Table 2.2.1-1]. 
2.3.3 Term of convectif exchange 
Term due to the boundary condition of convectif exchange utilizing the coefficient of exchange H and 
the temperature of the “external” medium Tex. 
· mathematical expression: 
(H (R, T 
T) T (R, T 
T 
) (1 
) H (R, T) (T (R, T) T N 
+ 
+ 
+ - 
- 
) ). * 
 
 
T D 
 
 
ex 
ex 
 
 
· denomination of the option in the catalogues: CHAR_THER_R or CHAR_THER_F, 
· a number of points of integration used: cf [Table 2.2.3-1]. 
2.3.4 Term of imposed normal flow 
Term due to the boundary condition of flow imposed according to the normal on the border, utilizing one 
function being able to depend on the variables R and T. 
· mathematical expression:  
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(F (R, T + T) + (1 -) F (R, T)). * 
 
 
T D 
 
 
, 
 
· denomination of the option in the catalogues: CHAR_THER_FLUN_R or 
CHAR_THER_FLUN_F, 
· a number of points of integration used: cf [Table 2.2.3-1]. 
2.3.5 Term of exchange between walls 
Term due to the boundary condition of the Neumann type bringing into play two pennies left the border 
in opposite and utilizing a single coefficient of exchange h.  
· mathematical expression: 
((,) (-) (N 
N 
1 
- 
)). * 
H R T 
T 
T 
T D 
 
 
N 
N 
2 
1 
1 
and  
( ( , ) (1- ) ( 
- 
)). * 
H R T 
T 
T 
T D 
 
 
1 
2 
2 
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1 
 
2 
 
where 1 and 2 is two pennies left the border in opposite 
· denomination of the option in the catalogues: CHAR_THER_PARO_R or 
CHAR_THER_PARO_F, 
· a number of points of integration used: cf [Table 2.2.3-1]. 
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Calculation of the constraints to the nodes by local smoothing 
Summary: 
One presents a local method of calculation of constraints at the nodes starting from the constraints at the 
points of 
GAUSS. It is used in options SIGM_ELNO_DEPL and SIEF_ELNO_ELGA of the order 
CALC_ELEM [U4.61.02]. 
This method is summarized to calculate the constraints at the tops of an element by multiplying the 
constraints 
at the points of GAUSS by a matrix of smoothing, constant for each type of element. 
For the isoparametric elements of degree 2, the constraints with the nodes mediums are obtained by 
average of the values of the constraints at the 2 tops of the edge. 
This method of smoothing has two advantages: 
· the nodal constraints obtained have an order of precision moreover than by direct calculation with the 
nodes, 
· the method is inexpensive in time CPU. 
This method was generalized: 
· with calculations of the deformations (option EPSI_ELNO_DEPL) and the variables intern (option 
VARI_ELNO_ELGA) with the nodes in mechanics, 
· with the calculation of flows (option FLUX_ELNO_TEMP) to the nodes in thermics. 
Handbook of Reference 
R3.06 booklet: Machine elements and thermal for the continuous mediums 
HI-75/97/004/A 

Code_Aster ® 
Version 
3 

file:///Z|/process/refer/refer/p150.htm (1 of 19)10/2/2006 2:51:45 PM



file:///Z|/process/refer/refer/p150.htm

Titrate:  
Calculation of the constraints to the nodes by local smoothing 
Date:  
23/01/97 
Author (S): 
X. DESROCHES 
Key: 
R3.06.03-B 
Page: 
2/10 
1 Preliminaries 
This method is based on the observation [bib1] which it exists points where the calculation of the 
constraints, with 
to leave displacements in a primal formulation in displacements, is more precise. 
In the case of isoparametric finite elements of order 2 (SEG3 in 1D, QUAD8 and QUAD9 in 2D, 
HEXA20 
in 3D), one shows that points of GAUSS of the formula of squaring to 2n points (N: dimension of 
space) are such as one can hope, without that being formally shown, for the calculation of 
the same order of precision as for the calculation of the field of displacement U. 
The idea of the method is to calculate for each element the constraints! with the nodes from 
K at the points of GAUSS, these last being calculated on each element by the formula: 
NN 0 
K 
K 
K 
= dB U = D iB Ui 
i=1 
where: 
D is the matrix of elasticity, 
Bk is the matrix connecting the deformations to displacements at the point of GAUSS K, 
U are nodal displacements. 
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2  
Local method of minimization by least squares 
Generally, one wishes to approximate, within the meaning of least squares, a function (X, y) 
by a function polynômiale: 
! (X, y) = xi yi has 
ij 
i=0, p 
i=0, Q 
The problem amounts finding the coefficients aij which minimize the functional calculus: 
= ( 
2 
- 
 
!) dx Dy  
The values of the function are known here only at the points of Gauss: K = (xk, yk) 
The minimum will be reached if and only if: 
 
I = 0,…, p 
= 
 
0 
has 
J = 0,…, Q 
ij 
Within the framework of the finite element method in displacement, the function of smoothing is written: 
N 
! (X, y) = NR (X, y 
I 
)! I 
i=1 
where: 
Ni is related to form associated with node I, 
! 
I is the value of the sought constraint to node I, 
N the number of nodes retained for smoothing. 
One must thus solve the system: 
 
= 0 I =, 
1…, N 
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éq 2-1 
! I 
One can choose between two methods of local smoothing: continuous smoothing or discrete smoothing. 
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3  
Methods of local smoothing (réf [bib2] and [bib3]) 
3.1  
Continuous local smoothing 
2 
2 
This type of smoothing led to solve the system [éq 2-1] with = (-!) = 
 
NR 
 
. 
E 
(- I! I) 
E 
What leads to M E 
Fe 
! = 
with: 
npg 
M E = NR NR dx Dy = NR 
ij 
I J 
() Nj (K) (det J)  
E 
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I 
K 
K 
K 
K =1 
npg 
and 
F E = NR dx Dy = 
 
NR 
I 
I 
I (K 
) K (det J)  
K 
K 
E 
K =1 
where 
K are the points of GAUSS in the element of reference 
(det J) 
the jacobien of the geometrical transformation enters the element of reference and 
K 
the element running at the point K. 
K: the weight associated with the point K 
K: the constraint at the point K 
Nor (K 
): the value of the function of form in the element of reference to the point K 
^  
 
^  
 
^  
 
3 
2 
 
^  
1 
^  
4 
3 
3 
2 
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2 
4 
4 
1 
1 
direct calculation of the constraints 
smoothed constraints 
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Note: 
· If spaces of interpolation of and of! are the same ones, one has obviously =! . 
In practice, one retains for space of! a space smaller than that where is defined 
by the finite element. 
· One sees the bond between the approximation at the points of GAUSS of where thus converges 
better and this process of smoothing whose justification is on the contrary continuous. 
· The way in which is calculated at the points of GAUSS does not intervene. Generalization 
with the nonlinear problems is thus obvious, although it cannot concern same 
justification.  
This method is however not adopted because it requires a resolution of system linear for 
each calculation of! 
. 
3.2  
Discrete local smoothing 
In this case, the functional calculus is replaced by the summation: 
npg 
npg 
N 
2 
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~ 
2 
 
 
= ((K) -! (K) =  
(K) - Ni! I (K) 
K =1 
K =1 
i=1 
 
^  
 
^  
 
3 
3 
 
^  
3 
 
III 
4 
^  
2 
4 
 
 
IV 
II 
2 
4 
2 
^  
 
1 
I 
1 
1 
constraints at the points of GAUSS 
smoothed constraints 
~ 
The system to be solved is written there still:  
= 
 
0 are: 
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! I 
npg 
npg 
NR () NR ()! = NR () () I 
I 
K 
J 
K 
J 
I 
K 
K 
K =1 J 
K =1 
maybe in matric form: 
M {! node} = P {GAUSS} 
The matrices M and P being then independent of the element running E. 
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They can thus be calculated once and for all on the element of reference. 
Note: 
· This method is more economic than the preceding one and gives results 
comparable [bib2], 
· Là still, the manner thus K is calculated in each point of GAUSS is indifferent 
(since the number of points of GAUSS used for the calculation of and that of! 
 
is the same one). One will be able to thus use this method into nonlinear (option 
SIEF_ELNO_ELGA). 
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4  
Application of the method to calculation of the constraints to 
nodes for various elements 
The local smoothing adopted in Code_Aster is the discrete local smoothing [§2.2], which makes it 
possible to avoid it 
calculation of integrals on the element. 
On all the elements of continuous medium 2D and 3D, one chose a space of smoothing resting on 
functions of form relating to the tops of the element. 
The method thus makes it possible to obtain the constraints at the tops. In the case of elements of order 2, 
one calculates the constraints with the nodes mediums by taking the average value of the two tops 
“framing” the node medium considered. 
One gives hereafter the matrices of passage allowing to calculate the constraints with the nodes 
tops starting from the constraints at the points of GAUSS. These matrices can be square or 
rectangular. Indeed, matrices of passage Mr. P 
1 is calculated once and for all with 
the initialization of each type of finite element (in AFFE_MODELE). Two types of matrices exist: 
· of  
matrices  
Square M-1P, which are to be used when the number of points of GAUSS used 
for the calculation of the constraints at the points of GAUSS K is identical to the number of nodes 
tops, 
· of  
matrices  
Rectangular M-1P, which are to be used when the number of points of GAUSS 
K is different (in general higher) nodes tops. 
4.1  
Square matrices of passage 
These matrices are used by all the elements for option SIGM_ELNO_DEPL. The option calculates in 
first constraints in a number of points of GAUSS equal to the number of tops. Then them 
matrices M-1P (given afterwards) are used to calculate the constraints with the nodes. These matrices  
are also used for option SIEF_ELNO_ELGA, in the elements for which the number 
points of GAUSS of the calculation of SIEF_ELGA (in STAT_NON_LINE) is equal to the number of 
tops. They are the elements: 
· in 2D: QUAD4, TRIA6, under-integrated QUAD8, 
· in 3D: TETRA4, PENTA6, HEXA8, PYRAM5 and under-integrated HEXA20. 
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4.1.1 Square matrices of passage for the elements 2D 
4.1.1.1 Triangles 
5 -1 -  
1 
1 
1  
 
Mr. P = 
-1 
5 - 
 
 
1 
3 -1 -1 5 
4.1.1.2 Quadrangles 
 
3 
1 
3 
1  
1+ 
- 
1- 
- 
 
 
2 
2 
2 
2  
 
1 
3 
1 
3 
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- 
1+ 
- 
1- 
 
1 
 
2 
2 
2 
2  
Mr. P =  
 
 
3 
1 
3 
1 
1- 
- 
1+ 
- 
 
 
2 
2 
2 
2  
 
1 
3 
1 
3  
- 
1- 
- 
1+ 
 
2 
2 
2 
2  
4.1.2 Square matrices of passage for the elements 3D 
4.1.2.1 Tetrahedrons 
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has 
has 
has -1 
has  
has has - 
 
1 
has 
has 
Mr. P 
1 
1 
= 
 
 
has - B has -1 
has 
has 
has  
 
 
has 
has 
has 
has -  
1 
5 - 5 
5 + 3 5 
has = 
B = 
20 
20 
4.1.2.2 Pentahedrons 
-  
 
1 - -1 1 -  
 
-  
1 - 1 - -1 
-  
 
 
-1 1- 1 -  
M-1P = 
1 - -1 1 -  
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- 
 
1 - 1 - -1 
 
- 
-1 1- 1 -  
- 
 
 
3 +1 
= 2 
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4.1.2.3 Hexahedrons 
B B C B C C D has 
5 + 3 3 
has = 
 
 
4 
B C C D has B B C 
(1+ 3) 
C D B C B a.c. B 
B = 
 
 
4 
B a.c. B C D B C 
Mr. P 
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1 
=  
 
B has C B C B D C 
(3 -) 1 
 
 
C = 
C B D C B has C B 
4 
D C C B C B B has 
 
 
(5-3 3) 
 
C B B has D C C B 
D = 
4 
7 
6 
VIII 
VI 
8 
5 
VII 
IV 
3 
V 
II 
Z 
2 
III 
y 
X 
I 
4 
1 
Appear 4.1.2.3 - has: Classification of the points of GAUSS 
on the hexahedron with 8 nodes 
4.2  
Matrices of passage Mr. P 
1 rectangular 
Into nonlinear for certain types of elements (TRIA3, QUAD8 and QUAD9 in 2D, TETRA10, PENTA15 
and 
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HEXA20 in 3D), the internal constraints and variables at the points of GAUSS are calculated on one 
family of points of richer GAUSS (9 points for the quadrangles, 15 points for the tetrahedrons, 21 
points for the pentahedrons, 27 points for the hexahedrons). 
Discrete local smoothing is then carried out starting from these fields and made transport with the nodes 
to intervene of the matrices different from the preceding ones. They are not square any more, because of 
dimension  
(Nb tops, Nb points of GAUSS). Matrices of passage Mr. P 
1 is not calculated 
explicitly, in particular M is reversed by Aster. 
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In the particular case of the triangle with 3 nodes, the fields are supposed to be constant by element (one 
only point of GAUSS) and: 
 
1 
1 
 
Mr. P =  
1 
 
1 
For example, the calculation carried out by option SIEF_ELNO_ELGA is then the following: 
If the constraints were calculated (in STAT_NON_LINE for example) on a family 
having a number of points of GAUSS higher than the number of tops (for the elements 
Nb tops Nb pts Gauss 
announced above). Mr. P 
1 is then rectangular, and! 
-1 
K 
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I = 
 
(MR. P). 
ik 
i=1 
K =1 
If not, if the number of points of GAUSS equal to the number of tops, (Mr. P 
1) is then square. 
One calculates! 
 
- 
K 
I = (MR. P 
1 ) [§4.1]. 
ik 
5  
Other options of calculation using the same method 
The method described previously is used in Code_Aster to calculate the deformations, them 
internal variables and flows with the nodes. 
The list of modelings supporting these options is given below, with the numbers of 
routines of elementary terms YOU corresponding. 
The produced fields are cham_elem with the nodes. 
5.1 Phenomenon  
:  
“MECHANICAL” 
MODELING 
SIGM_ELNO_DEPL 
EPSI_ELNO_DEPL 
SIEF_ELNO_ELGA 
VARI_ELNO_ELGA 
AXIS 
TE0086 
TE0087 
TE0098 
AXIS_SI 
TE0086 
TE0087 
TE0098 
C_PLAN 
TE0086 
TE0087 
TE0098 
D_PLAN 
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TE0086 
TE0087 
TE0098 
D_PLAN_SI 
TE0086 
TE0087 
TE0098 
AXIS_FOURIER 
TE0116 
TE0114 
3D 
TE0023 
TE0025 
TE0020 
3D_SI 
TE0023 
TE0025 
TE0020 
AXIS_META 
TE0352 
TE0087 
TE0098 
3D_META 
TE0357 
TE0025 
TE0020 
AXIS_INCO 
TE0448 
TE0447 
not disp 
PLAN_INCO 
TE0448 
TE0447 
not disp 
3D_INCO 
TE0454 
TE0453 
not disp 
COQUE_AXIS 
TE0230 
TE0229 
not disp 
COQUE_C_PLAN 
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TE0230 
TE0229 
not disp 
COQUE_D_PLAN 
TE0230 
TE0229 
not disp 
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5.2 Phenomenon  
:  
“THERMAL” 
MODELING 
FLUX_ELNO_TEMP 
META_ELNO_TEMP 
META_INIT_ELNO 
AXIS 
TE0069 
TE0067 
TE0320 
PLAN 
TE0069 
TE0067 
TE0320 
AXIS_FOURIER 
TE0265  
not disp 
not disp 
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3D 
TE0063 
TE0064 
TE0321 
HULL 
not disp 
not disp 
not disp 
6  
Other methods of smoothing of constraints 
There are two other methods of smoothing, relating only to the constraints, used by 
estimators of Zhu-Zienkiewicz version 1 and 2 [R4.10.01 §3]. 
The stress fields to the produced nodes are then cham_no. 
The corresponding options of calculation are accessible by order CALC_ELEM [U4.61.02]. 
7 Bibliography 
[1]  
BARLOW J. - Optimal stress hirings in finite element models - International Newspaper for 
Numerical Methods in Engineering Vol.10 p 243 - 251 (1976). 
[2]  
HINTON E., CAMPBELL JJ. - Total Room and smoothing of discontinuous finite element 
functions using has least public gardens method - International Newspaper for Numerical Methods in 
Engineering Vol.8 p 461 - 480 (1974). 
[3]  
HINTON E., SCOTT F.C., RICKETTS R.E. - Room least public gardens stress smoothing for 
parabolic isoparametric elements - Int. J. for Num. Meth. in Eng. Flight 9 p 235 - 256 (1975) 
Handbook of Reference 
R3.06 booklet: Machine elements and thermal for the continuous mediums 
HI-75/97/004/A  

file:///Z|/process/refer/refer/p150.htm (19 of 19)10/2/2006 2:51:45 PM



file:///Z|/process/refer/refer/p160.htm

Code_Aster ® 
Version 
5.0 
Titrate:  
Elements of Fourier for the axisymmetric structures 
Date:  
21/12/00 
Author (S): 
X. DESROCHES 
Key: 
R3.06.04-A 
Page: 
1/12 
Organization (S): EDF/MTI/MMN 
Handbook of Reference 
R3.06 booklet: Machine elements and thermal for the continuous mediums 
Document: R3.06.04 
Elements of Fourier for the structures 
axisymmetric 
Summary 
The elements of Fourier are intended to calculate the response of structure for axisymmetric geometry 
solicited 
by nonaxisymmetric loadings broken up into Fourier series. 
One exposes in this document a general theory of Analysis of Fourier with coupling of the symmetrical 
modes 
and antisymmetric in the anisotropic case. The case of isotropic, or orthotropic materials of axis OZ, 
where 
modes are uncoupled, is studied separately. 
The elements of Fourier are usable in Code_Aster starting from modeling AXIS_FOURIER.  
meshs supports of these elements are triangles and quadrangles of degree 1 and 2. 
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1 Introduction 
The analysis of Fourier is intended to calculate the response of structures for axisymmetric geometries 
subjected to nonaxisymmetric loadings. In this case, it is necessary to develop them 
loadings in Fourier series. Generally convergence is reached for 4 or 5 harmonics, 
but the speed of this convergence depends on the nature of the loading: more the loading is 
regular and more the corresponding series converges quickly. The most unfavourable case is that of one 
force concentrated for which the practice shows that it is necessary to go to beyond (at least 7 
harmonics). 
In Code_Aster, the decomposition of the loading in Fourier series is supposed to be made 
au préalable by the user. Code_Aster makes it possible to calculate the answers to this loading, 
harmonic by harmonic (modeling AXIS_FOURIER), and overall after recombination of 
harmonics between them (operators COMB_CHAM_NO and COMB_CHAM_ELEM). 
One will expose in a first chapter the framework general of the anisotropy, while insisting on decoupling 
modes in the orthotropic case. The second chapter clarifies the calculation of the matrix of rigidity 
in the isotropic case. 
For the use of the elements of Fourier in Code_Aster, one returns to the note of use of 
modeling Fourier [U1.01.07]. 
2  
Analyze of anisotropic Fourier 
2.1 Theory  
general 
All the fields considered (forces, displacements, strains, stresses) are expressed in 
cylindrical co-ordinates with following convention on the order of the components: 
1 radial component according to R 
2 axial component according to Z 
3 tangential component according to  
Example: (ur, uz, U), (Fr, fz, F) 
Z 
R 
 
uz 
M 
U 
U 
 
R 
The grid is localised in plan (R, Z), the symmetry of revolution being done around axis OZ.  
trihedron (R, Z,) is directed in the direct direction. 
Handbook of Reference 
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Z 
rez 
R 
 
er 
C 
One breaks up displacement U (or the loading F) according to U = custom + ua 
custom 
where 
(resp. ua) 
indicate the symmetrical part (resp. antisymmetric) of the development in Fourier series of U by 
report/ratio with the variable. 
One obtains: 
 
 
custom = custom 
R 
L (R, Z) cosl 
 
l=0 
 
 
 
 
custom = 
v S 
S 
Z 
L (R, Z) cosl left symmetrical U  
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l=0 
 
 
 
custom = 
ws, 
sin  
L (R Z) (- L) 
l=0 
 
 
 
ua = ua 
R 
L (R, Z) sin L  
l=0 
 
 
 
 
ua = goes 
has 
Z 
L (R, Z) sin L left antisymétriqu U 
E  
l=0 
 
 
 
ua = wa, cos  
L (R Z) 
L  
l=0 
 
To note the choice of the sign for custom, which makes it possible to simplify later calculations. If one 
notes 
Custom = (S S S 
has 
L 
U, lv, L 
W) (resp. U 
L 
L) the L - ième component symmetrical (resp. antisymmetric) of 
development in Fourier series of U, one obtains: 
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cosl 
0 
 
sinl 
0  
 
 
 
 
 
 
S 
has  
U =  
 
cosl 
Ul +  
sin L 
Ul  
éq 2.1-1 
l=0  
 
0 
- sinl 
 
0 
cosl 
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Page: 
4/12 
If one indicates by the vector deformation linearized, one realizes that can be broken up into 
following Fourier series: 
cosl I 
0 
 
sinl 
4 
4 2 
I 
0 
 
= 
, 
 
 
4 
4, 
S 
2 
has 
L +  
 
éq 2.1-2 
0 
- sinl 
2 4 
I  
0 
cosl 
2 
2 4 
I 
L 
l= 
, 
, 
2 
0 
 
with = {R, Z, rz, R, Z} 
S 
S 

file:///Z|/process/refer/refer/p160.htm (6 of 39)10/2/2006 2:51:46 PM



file:///Z|/process/refer/refer/p160.htm

S 
has 
has 
has 
L = 
L 
B Ul 
L = L 
B Ul 
with (see [bib1]): 
 
 
 
0 
0 
R 
 
 
 
 
0 
0  
Z 
 
 
 
1 
L 
 
0 
- 
 
 
 
Bs 
R 
R 
L =  
 
 
 
0  
Z R 
 
 
L 
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1 
0 
-  
R 
R R  
 
L 
 
0 
 
 
R 
Z 
 
There is Ba 
Bs 
= 
L 
L 
L 
(this is due to the choice of the symmetrical development of U in (cos, cos, sin) to the place 
of (cos, cos, sin)). One will omit starting from now the indices has and S and one will note Bl the 
operator 
allowing to calculate the deformations corresponding to the harmonic L. 
2.2  
Coupling and decoupling of the symmetrical and antisymmetric modes  
By taking again the preceding notations, one a: 
cosl I 
0 
 
sin 
2 
2, 
L 
1 
I2 
02,1  
U =  
custom +  
ua 
0 
- sinl 
L 
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1 2 
 
0 
cos 
L 
, 
, 
L 
1 2 
 
L 
L 
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what is written, by introducing matrices M S and M has 
L 
L: 
U = (M sUs 
has 
has 
L 
L + MR. U 
L 
L) 
L 
U 
S 
S 
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has 
has 
L = MR. U 
L 
L + MR. U 
L 
L 
One deduces from it that:  
S S 
has has 
L = Me L L + Me L L 
cosl I4 
04,2 
 
with 
M L =  
 
02 4 
- sinl I 
, 
2  
sinl I4 
04 2  
M has 
' 
, 
L =  
 
0 
cosl 
2 4 
I 
, 
2  
Calculation of the deformation energy 
2 
W 
T 
= 
D dsd 
with ds = rdrdz 
L 
L L 
0 S 
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2 
2 
= D 
T S T 
M DM S S 
'ds + D 
T has T 
M a' DM has has 
'ds 
L 
L 
L L 
L 
L 
L 
L 
0 
S 
0 
S 
2 
2 
+ D 
T has T 
M a' DM S S 
'ds + D 
T S T 
M DM is had has 
'ds 
L 
L 
L L 
L 
L 
L 
L 
0 
S 
0 
S 
sinl I4 
0 
D 
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D 
1 
3 cosl I4 
0 
 
Since M has 
'DM S 
L 
'L =  
T 
 
 
 
0 
cosl I2 D 
D 
3 
2  
0 
- sinl I2 
 
2 
has 
S 
D sin L cosl 
1 
 
- D3 (sinl)  
Me DM 
L 
'L =  
 
 
T D 
2 
3 (cos L) 
- D sinl cosl 
2 
 
2 
and that  
sin L cosl D = 
, if D 
 
= 
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0 
0 
T has 
S 
T S 
has 
3 
there is thus no term (L, L) or (L, L) in W. 
0 
There is then no coupling (U has U.S.) or (U.S.U has 
, 
, 
). 
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2.3  
Calculation of the constraints 
Just as, can be broken up into following Fourier series: 
= (M S 
has 
has 
L + M 
L 
'L L) 
L 
Law of Hooke = D, one deduces: 
 
L D1 - 
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L D3 
sinl D 
cosl 
1 
D3 
= cos 
sin 
 
S 
has 
T 
L +  
T 
 
cosl D3 - sinl D2 
sinl D 
cosl 
3 
D2 L 
L 
Maybe, while revealing the matrices M S and M has 
'L 
'L: 
 
D1 04,2 
0 
D 
4,4 
3  
 
= M S 
S 
has 
'L  
 
 
L +  
T 
L  
0 
0 
L 
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D 
2,4 
2  
- D3 
2,2  
 
 
 
 
04,4 - D3 
D1 04,2 
 
+ M a'  
S 
has 
L  
T 
 
L +  
L  
 
D3 
02,2  
0 
D 
2,4 
2  
 
 
 
D 
0  
0 
D 
1 
4,2 
4,4 
3  
By posing Ds  
and Da =  
, one deduces the parts from them symmetrical and 
0 
D  
- Dt 
2,4 
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2 
3 
02,2 
antisymmetric of the constraint relating to the harmonic L: 
 
S 
S S 
has has 
S 
S 
has 
has 
L = D L + D L = D 
L 
B ul + D L 
B ul 
 
éq 2.3-1 
 
has 
S has 
S.A. 
has 
S 
S 
has 
L = - D L + D L = - D 
L 
B ul + D L 
B ul 
Note: 
In the case of the orthotropism compared to OZ, there is Da = 0 and [éq 2.1-1] is reduced to: 
 
S 
S 
S 
L = D 
L 
B ul 
 
 
has 
S 
has 
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L = D 
L 
B ul 
I.e. if displacements are symmetrical (or antisymmetric), the constraints are it 
too. 
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3  
Calculation of the matrix of rigidity 
3.1 Case  
general 
Are U and two fields kinematically acceptable unspecified. By applying the principle of 
virtual work with the element of volume v, one can write: 
(T.) FD = (T U 
. F) FD 
v 
v  
After decomposition in Fourier series and integration compared to, one obtains, for fields 
S.A.S.A. 
L, L, L 
U, L 
u.a. A. unspecified and for any harmonic L: 
(T S S T has has 
T 
S 
S T 
has 
has 
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L 
.l + L .l) L 
ds = (read. fl + read. fl) L 
ds 
S 
S 
L 
L 
Maybe, while using [éq 2.3-1] and while posing: 
K S 
T 
= 
B Ds B ds 
L 
L 
L 
L 
sl 
K has 
T 
= 
B Ds B ds = K S = K 
L 
L 
L 
L 
L 
L 
sl 
K have 
T 
= 
B Da B ds 
L 
L 
L 
L 
sl 
One obtains the system of equations according to: 
 
K custom + Kas ua = F S 
L L 
L 
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L 
L 
 
éq 3-1 
T Kasus 
 
 
+ K ua = F has 
L 
L 
L L 
L 
where T 
have 
have 
Kl = - Kl one sees that if Da 0, the decoupling of the modes in symmetrical harmonics and 
antisymmetric is not possible any more. On the other hand, if Da = 0 (orthotropism compared to OZ) 
then 
Kas 
L 
= 0 and [éq 3-1] are reduced to: 
 
K custom = F S 
L 
L 
L 
K ua = F has 
 
L L 
L 
While taking for vectors displacement (resp. force) corresponding to the harmonic L the vectors: 
U 
S 
S 
S 
has 
has 
has 
L = {R 
U, Z 
U, U, 
R 
U, Z 
U, U} L 
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F 
S 
S 
S 
has 
has 
has 
L = {Fr, fz, F, F 
 
R, F Z, F} L 
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One has then: 
have 
 
 
G 
G 
K 
K 
K U = F 
with K 
L 
L 
 
 
L 
L 
L 
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L = T 
Kas 
K 
L 
L  
3.2 Calculation  
of  
K gl in the isotropic case 
In this case there are thus K have 
T 
S 
L 
= 0. One details in the continuation the calculation of K = 
B D B ds 
L 
 
S 
L 
L 
L 
L 
In the isotropic case, one a: 
D1 D2 D2 
0 
 
D2 D1 D 
 
 
2 
0 
 
 
0 
D2 D2 D1 
0 
 
D Ds 
= 
=  
 
0  
0 
0 
D 
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3 
 
D 
 
3 
0  
 
0 
0 
D 
 
 
 
3 
E (1 -) 
with 
D1 = (1+) (1 - 2) 
E 
D2 = (1+) (1 - 2) 
E 
D3 = (21+) 
One can write: 
 
R  
 
 
 
Z 
S 
 
 
U 
 
 
R 
T 
 
 
 
S  
' 
ur uz  
U 
ur uz  
U 
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ur uz  
U  
 
 
= L 
B U 
Z = L 
B 
, 
, 
, 
, 
, 
, 
, 
, 
 
rz 
R R R R R R Z Z Z 
 
 
 
 
S  
 
U 
 
 
 
 
R 
 
 
 
 
 
Z  
fcts of form 
derived from the fcts of form 
0 
0 
0 
1 0 
0 
0 0 
0  
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0 0 0 0 0 0 0 1 0  
 
 
1 
0 
- L 0 0 0 0 0 0  
with B' L =  
 
0 
0 
0 
0 1 
0 
1 0 
0 
 
 
L 
0 
-1 0 0 1 0 0 0  
 
 
0 
L 
0 
0 0 
0 
0 0 
1 
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While indicating by {WJ} 
functions of form of the element considered, one a: 
J =1 with N 
ur  
node J 
 
 
 
R  
W 
"#$ 
J 
 
 
! 
 
0 
0 
! 
U 
R 
Z  
 
W 
R 
 
J 
 
 
 
! 
0 
0 
 
! 
U  
R 
 
W 
 
J 
R  
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! 
 
0 
0 
 
 
R 
! 
 
 
 
 
U  
 
 
 
R 
W 
 
 
J 
 
 
 
 
0 
0 
R 
 
 
! 
 
R 
 
! 
 
U 
R (J) 
 
 
U 
 
W 
 
J 
 
 
U 
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Z 
=  
= ! 
 
0 
0 
! uz (J) 
 
 
R 
R 
 
 
W 
 
 
 
 
U 
J 
 
U (J) 
 
 
0 
0 
 
 
 
 
 
! 
 
R 
! 
 
 
 
R 
 
 
 
W 
J 
 
 
U 
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0 
0 
 
R  
! 
 
Z 
! 
 
Z 
 
W 
 
 
 
J 
 
 
 
U 
 
! 
0 
0 
! 
Z 
 
 
Z 
 
Z 
 
WJ 
 
 
! 
0 
0 
 
 
U  
%&' 
! 
Z 
 
block P 
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J 
Z 
 
One notes (P) = (P 
P 
1, 
, 
! NR) where NR is the number of nodes of the element. 
Then K 
T 
= 
Pt B D B P ds 
L 
 
' 
' 
L 
L 
L 
sl 
I, J 
Kl symmetrical and is made of blocks (Kl) 3× 3: 
(I, J 
K) 
T P you 
' 
= I B D B P ds 
L 
L 
L 
J 
L 
sl 
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I, J 
The calculation of the blocks (Kl) is clarified below: 
D1+12 D3 
0 
- L (D1+ D) 
3 
D2 
0 
lD3 
0 
D2 
0  
 
 
0 
l2 D3 
0 
0 
0 
0 
0 
0 
lD 
 
3 
- L (D1+ D) 3 
0 
L 2 D1+ D3 
- lD2 
0 
- D3 0 
- lD2 
0  
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D2 
0 
- lD2 
D1 
0 
0 
0 
D2 
0  
tB' D B' 
 
 
L 
L = 
0 
0 
0 
0 
D3 
0 
D3 
0 
0 
 
 
 
lD3 
0 
- D3 
0 
0 
D3 
0 
0 
0  
 
0 
0 
0 
0 
D3 
0 
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D3 
0 
0  
 
 
 
D2 
0 
- lD2 
D2 
0 
0 
0 
D1 
0  
 
 
0 
lD3 
0 
0 
0 
0 
0 
0 
D 
 
3 
I, J 
I, J 
I, J 
K 
K 
K 
 
I, J 
11 
12 
13 
' 
' 
I, J 
I, J 
I, J  
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T 
T 
L 
I 
P 
L 
B D L 
B 
J 
P = (Kij) 
= 
with 
3 × 
K 
K 
K 
21 
22 
23  
3 I, J 
I, J 
I, J  
K 
K 
K 
31 
32 
33  
 
 
2 
I, J 
D1 + L D3 
W 
 
W 
W W 
 
D2  
W 
 
W 
J 
I  

file:///Z|/process/refer/refer/p160.htm (33 of 39)10/2/2006 2:51:46 PM



file:///Z|/process/refer/refer/p160.htm

K11 =  
 
I 
J 
I 
J + 
WI 
+ W 
2 
I 
W 
J 
W + D1 
+ D3 
 
 
R 
 
R 
 
R 
Z Z 
R  
R 
J 
 
R  
 
2 
I, J 
L D3 
W W 
 
W W 
K22 =  
W W 
I 
J 
I 
J 
 
2 
I 
J + D3 
+ D1 
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R  
R 
 
R 
 
Z 
Z 
 
 
 
2 
I, J 
L D1 + D3 
W W 
 
W 
 
W 
I 
J 
I J  
D3  
W 
W 
J 
I 
 
K33 =  
W W 
2 
I 
J + D3 
+ 
W 
W 
 
 
R 
 
 
R R 
Z 
 
Z - 
I 
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+ 
R  
R 
R 
J 
 
 
 
 
W  
 
W 
 
W 
 
W 
I, J 
D2 
W 
 
K 
= D 
I 
J 
2 
+ D 
I 
J 
3 
+ 
W 
J 
12 
 
R Z 
Z R 
R 
I 
Z 
 
 
W 
 
W 
W 
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W 
I, J 
D2 
W 
K 
= D 
I 
J 
3 
+ D 
I 
J 
2 
+ 
W 
I 
21 
R 
Z 
 
Z R 
R 
J Z 
 
I, J 
L 
L 
W 
L 
W 
 
K 
13 = - 
(D1+ D) 
3 W W - D2W 
I + D W 
J 
3 
R 2 
I 
J 
R 
J 
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R 
 
R 
I 
R 
 
 
I, J 
L 
L 
W 
L 
J 
W 
K 
I 
31 = - 
(D1+ D) 
3 W W - D2W 
+ D W 
 
3 
R 2 
I 
J 
R 
I 
R 
R 
J R 
 
I, J 
L 
W 
L 
I 
W 
K23 = - D2 
W + D W 
J 
 
3 
R 
Z 
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J 
R 
I 
Z 
I, J 
L 
W 
L 
J 
W 
K32 = - D2W 
+ D 
I 
3 
W 
 
R 
I 
Z 
R 
Z 
J 
 
 
 
The blocks K I, J are not symmetrical except for I = J (on the diagonal of K). One notices in 
fact that the blocks K I, J can be written for any harmonic (L = 0 included/understood). 
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D3 
K I, J = K I, J 
0 
+ l2 
W W 
11 
11 
r2 
I 
J 
 
D3 
KI, J = K I, J 
0 
+ l2 
W W 
22 
22 
 
r2 
I 
J 
 
D1 
KI, J = K I, J 
0 
+ l2 
W W 
33 
33 
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r2 I J 
KI, J 
 
= K I, J 
12 
12 
0 
 
K I, J = K I, J 
21 
021 
KI, J 
 
= - L K I, J 
13 
13 
0 
KI, J = - L K I, J 
31 
031 
KI, J = - L K I, J 
23 
023 
 
KI, J = - L K I, J 
32 
032 
 
 
 
 
where the blocks K I J 
0, are independent of the harmonic L. 
4 Loadings 
It is supposed that the loading was broken up according to the same base which displacements, that is to 
say: 
 
cosl 
0 
 
sinl 
0  
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S 
has  
F =  
 
cosl 
Fl +  
sin L 
Fl  
l=0  
 
0 
- sinl 
 
0 
cosl 
 
 
 
There is not coupling for the same harmonic between the parts symmetrical and antisymmetric of 
loading because of orthogonality of the goniometrical functions sin L and cosl, this for all 
types of loading. This wants to say in particular that the equivalent nodal forces are them 
same for the harmonics symmetrical and antisymmetric if the amplitudes F S and F has 
L 
L are them 
same. 
For the nature of the acceptable loadings with Fourier modeling, one returns to the note 
of use [U1.01.07]. 
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R3.06.04-A 
Page: 
12/12 
5  
Conclusion and Outlines 
Currently, it is supposed that the decomposition of the loading was made as a preliminary by the user, 
i.e. {F S, F 
L 
L} 
is known. This decomposition could be carried out by an operator 
l0 
of Code_Aster which would project the loading on the modes of Fourier. 
For the moment, only the nonanisotropic case is established, i.e. it y forever coupling of 
modes. The extension to the anisotropy can constitute a later development. 
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Functions of form and points of integration  
elements pyramid at square base  
 
 
 
 
 
Summary:  
 
The free maillor of CASTEM 2000 creating under certain conditions of the meshs of pyramidal 
form at base  
quadrangular, the associated finite elements were established in Code_Aster.  
 
These elements have the characteristic to have rational functions of form, although guaranteeing a 
connection  
continuous with the traditional tetrahedrons or hexahedrons.  
 
The expression of the functions of form and the formulas of numerical integration were 
communicated to us by  
CEA/DMT [bib1] and are thus those used by CASTEM 2000.  
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1 General information  
 
Two new finite elements pyramid at square base were established in Code_Aster for  
modelings three-dimensional mechanics and thermics:  
 
·  
pyramid with 5 nodes,  
·  
pyramid with 13 nodes.  
 
The functions of form associated with these elements are rational functions which make it possible to 
have  
a continuous connection (C0) between these elements and traditional tetrahedrons and hexahedrons.  
 
For example, the function of form associated with a top with the base with the pyramid is the product 
of  
equations of the plans passing by the other nodes, divided by the distance to the base of the pyramid.  
On a triangular face of the pyramid containing this top, the distance to the axis is simplified with  
the equation of the plan of the opposite face: the expression of the function form is then that of the 
triangles  
traditional.  
 
The functions of form are not derivable at the top of the pyramid. Integration by points of  
Gauss cannot thus be exact even for the element of reference.  
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2  
Pyramid at square base  
 
2.1 Denominations  
 
The names of the finite elements are coded and respect following conventions  
 
·  
the characters in position 1 to 4 indicate the modelled phenomenon:  
 
MECA: mechanics  
THER: thermics  
 
·  
the character in position 5 is _,  
·  
starting from character 6, the name of the mesh support:  
 
PYRAM5  
: pyramid at square base with 5 nodes,  
PYRAM13: pyramid at square base with 13 nodes.  
 
Example:  
 
MECA_PYRAM5: pyramid at square base with 5 nodes in mechanics.  
 
 
2.2  
Geometry, topology and functions of form  
 
2.2.1 Pyramid with 5 nodes  
 
Z 
N5 
N3 
N4 
N2 
y 
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N1 
X 
 
 
The square base is consisted the quadrangle N1 N2 N3 N4 and N5 is the top of the pyramid.  
 
X  
y  
Z  
N1 1. 0.  
0.  
N2 0. 1.  
0.  
N3 1. 0. 0.  
N4 0.  
1.  
0.  
N5 0. 0.  
1.  
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Functions of form:  
 
(- X + y + Z -) 1 (- X - y + Z -) 1 
w1 = 
4 (1 - Z) 
(- X - y + Z -) 1 (X - y + Z -) 1 
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w2 = 
4 (1 - Z) 
(X + y + Z -) 1 (X - y + Z -) 1 
W3 = 
 
4 (1 - Z) 
(X + y + Z -) 1 (- X + y + Z -) 1 
w4 = 
4 (1 - Z) 
W = Z 
5 
 
Formulate numerical integration at 5 points:  
 
Not X y Z Weight  
1 0.5  
0.  
h1 2/15  
2 0.  
0.5  
h1 2/15  
3 0.5  
0.  
h1 2/15  
4 0.  
0.5  
h1 2/15  
5 0.  
0.  
H2 2/15  
 
with:  
 
h1 = 0.1531754163448146  
H2 = 0.6372983346207416  
 
1 initialized family:  
 
1st family: formulate at 5 points.  
 
2.2.2 Pyramid with 13 nodes  
 
Z 
N5 
N12 
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N3 
N13 
N8 
N7 
N11 
N10 
N4 
N2 
y 
N9 
N6 
N1 
X 
 
Handbook of Reference  
R3.06 booklet: Machine elements and thermal for the continuous mediums  
HT-66/02/004/A  

Code_Aster ®  
Version  
5.7  
 
Titrate:  
Functions of form and points of integration of the elements pyramid  
Date:  
16/02/02  
Author (S):  
J. Key PELLET  
:  
R3.06.06-B Page  
: 5/8  
 
 
The square base is consisted mesh QUAD8 (N1 N2 N3 N4 N6 N7 N8 N9) and N5 is the top of  
the pyramid.  
 
X  
y  
Z  
N1 1. 0.  
0.  
N2 0. 1.  
0.  
N3 1. 0. 0.  
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N4 0.  
1.  
0.  
N5 0. 0.  
1.  
N6 0.5  
0.5  
0.  
N7 0.5 0.5  
0.  
N8 0.5  
0.5  
0.  
N9 0.5  
0.5  
0.  
N10 0.5  
0.  
0.5  
N11 0. 0.5  
0.5  
N12 0.5 0. 0.5  
N13 0.  
0.5  
0.5  
 
Functions of form:  
 
 
(- X + y + Z -) 1 (- X - y + Z -) 1 (X -0. ) 5 
w1 = 
2 (1 - Z) 
(- X - y + Z -) 1 (X - y + Z -) 1 (y -0. ) 5 
w2 = 
2 (1 - Z) 
(X - y + Z -) 1 (X + y + Z -) 1 (- X -0. ) 5 
W3 = 
2 (1 - Z) 
(X + y + Z -) 1 (- X + y + Z -) 1 (- y - 0. ) 5 
w4 = 
2 (1 - Z) 
W = 2 Z (Z - 0. ) 
5 
5 
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(- X + y + Z -) 1 (- X - y + Z -) 1 (X - y + Z -) 1 
w6 = - 
2 (1 - Z) 
(- X - y + Z -) 1 (X - y + Z -) 1 (X + y + Z) 1 
w7 = - 
2 (1 - Z) 
(X - y + Z -) 1 (X + y + Z -) 1 (- X + y + Z -) 1 
W = - 
8 
2 (1 - Z) 
( 
 
X + y + Z -) 
1 (- X + y + Z -) 
1 (- X - y + Z -) 
1 
W = - 
9 
2 (1 - Z) 
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Z (- X - y + Z -) 
1 (X - y + Z -) 
1 
w11 = 
1 - Z 
 
Z (X - y + Z -)  
1 (X + y + Z -) 
1 
w12 = 
1 - Z 
Z (X + y + Z -) 
1 (- X + y + Z -) 
1 
w13 = 
1 - Z 
 
 
Formulate numerical integration: formulate at 6 points  
 
 
Not X y Z Weight  
1 A 0.  
h1  
p1  
2 0.  
has  
h1  
p1  
3   
0. h1 has  
p1  
4 0.  
  
has  
h1  
p1  
5 0.  
0.  
H2  
p2  
6 0.  
0.  
h3  
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p3  
 
with:  
 
p1 = 0.1024890634400000  
p2 = 0.1100000000000000  
p3 = 0.1467104129066667  
 
 
 
= 0.5702963741068025 have  
h1 = 0.1666666666666666  
H2 = 0.08063183038464675  
h3 = 0.6098484849057127  
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Formulate at 27 points:  
 
Not X y Z Weight  
1 0.  
0.  
1/2 a1  
2  
B 
B 
 
1 ( 
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1 
1 - Z) 
1/2  
b6  
 
1 
(- Z)  
2 
2 
3  
B 
B 
 
- 1 1 
(- Z)  
1 1 
(- Z)  
1/2  
b6  
2 
2 
4  
B 
B 
 
- 1 1 
(- Z)  
- 1 1 
(- Z)  
1/2  
b6  
2 
2 
5  
B 
B 
 
1 ( 
1 
1 - Z) 
1/2  
b6  
 
- 

file:///Z|/process/refer/refer/p170.htm (15 of 22)10/2/2006 2:51:47 PM



file:///Z|/process/refer/refer/p170.htm

1 
(- Z)  
2 
2 
6  
 
 
0.  
0.  
1 - b1 
B 
 
6  
2 
7  
 
 
0.  
0.  
1 + b1 
B 
 
6  
2 
8  
C ( 
Z) 
C 
1 1 - 
 
0.  
(1-c) /2 
8  
1 
 
9 0.  
C ( 
Z) 
C 
1 1 - 
 
(1-c) /2 
8  
1 
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10  
- C (- Z) 
C 
1 1 
 
0.  
(1-c) /2 
8  
1 
 
11 0.  
- C ( 
) 
C 
1 1 - Z  
(1-c) /2 
8  
1 
 
12  
C ( 
Z) 
C 
1 1 - 
 
0.  
(1+c)/2 
8  
1 
 
13 0.  
C ( 
Z) 
C 
1 1 - 
 
(1+c)/2 
8  
1 
 
14  
- C ( 
) 
C 

file:///Z|/process/refer/refer/p170.htm (17 of 22)10/2/2006 2:51:47 PM



file:///Z|/process/refer/refer/p170.htm

1 1 - Z  
0.  
(1+c)/2 
8  
1 
 
15 0.  
- C ( 
) 
C 
1 1 - Z  
(1+c)/2 
8  
1 
 
16  
d1 
D 
( 
) 
1 
(- Z) 
1 - D/2 
 
1 1 
(- Z)  
1 
 
d12  
2 
2 
17  
D 
D 
- 1 
( 
) 
1 
(- Z) 
1 - D/2 
 
1 1 
(- Z)  
1 
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d12  
2 
2 
18  
D 
D 
- 1 
( 
) 
1 
(- Z) 
1 - D/2 
 
- 1 1 
(- Z)  
1 
 
d12  
2 
2 
19  
d1 
D 
( 
) 
1 
(- Z) 
1 - D/2 
 
- 1 1 
(- Z)  
1 
 
d12  
2 
2 
20  
D ( 
) 
1 1 - Z  
0. 1/2 d12  
21 0.  
D ( 
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) 
1 1 - Z  
1/2 d12  
22  
- D (- Z) 
1 1 
 
0. 1/2 d12  
23 0.  
- D ( 
) 
1 1 - Z  
1/2 d12  
24  
d1 
D 
D 
1 
(- Z)  
1 1 
(- Z)  
(1+d) /2 
12  
1 
 
2 
2 
25  
D 
D 
- 1 
( 
) 
1 
(- Z)  
1 + D/2 
 
1 1 
(- Z)  
1 
 
d12  
2 
2 
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26  
D 
D 
- 1 
( 
) 
1 
(- Z) 
1 + D/2 
 
- 1 1 
(- Z)  
1 
 
d12  
2 
2 
27  
d1 
D 
( 
) 
1 
(- Z) 
1 + D/2 
 
- 1 1 
(- Z)  
1 
 
d12  
2 
2 
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with:  
 
a1 = 0.788073483  
b6 = 0.499369002  
b1 = 0.848418011  
c8 = 0.478508449  
c1 = 0.652816472  
d12 = 0.032303742  
d1 = 1.106412899  
 
 
Note:  
 
It proved in practice, in particular for the thermal elements, that the formula  
of integration at 6 points was not satisfactory. Only the formula at 27 points is thus used.  
 
 
1 initialized family:  
 
1st family: formulate at 27 points.  
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R3.06.07 document 
Diagonalisation of the thermal matrix of mass 
Summary: 
To improve the regularity of the solution in the problems of transitory thermics, one of the solutions 
consist with “lumper” (i.e.: to condense on the diagonal) the thermal matrix of mass (matrix of 
capacity). 
This possibility is accessible by modelings PLAN_DIAG, AXIS_DIAG and 3D_DIAG for the 
phenomenon 
THERMICS. It is activated at the time of the call to the orders of thermal calculation THER_LINEAIRE 
and 
THER_NON_LINE. 
When these modelings are used, only the linear finite elements (2D and 3D) have a matrix of mass 
lumpée. Indeed, the direct diagonalisation does not give satisfactory results for the finite elements 
quadratic. Consequently, for the quadratic finite elements 2D, one carries out a cutting in 
linear elements, which are lumpés. On the other hand, for the quadratic finite elements 3D, one does not 
make 
diagonalisation of the matrix of mass. 
The theoretical results are illustrated by the thermomechanical calculation of a cylinder subjected to a 
thermal shock. 
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1 Introduction 
One is interested in transitory thermal calculations where intervene of abrupt variations of 
loadings - for example, thermal shocks. In certain cases, one notes that the temperature 
oscillate spatially and temporally. Moreover, if one observes a profile of temperature at one moment 
given transient, the temperature can in certain nodes exceed the terminals min. and max. 
imposed by the initial conditions and the boundary conditions. This result physically 
unacceptable violate what is called the “principle of the maximum”. 
The diagonalisation of the matrix of mass can solve these problems of going beyond of 
maximum. This is detailed in the note [bib1]. One is satisfied here to recall the principal results of them. 
One points out the principle of the maximum in the continuous case, then sufficient conditions are 
expressed 
who allow to check it for the discrete equations. It is shown in particular that the diagonalisation 
thermal matrix of mass is one of these sufficient conditions and one presents different 
methods for diagonaliser Mr. 
Another sufficient condition depends on the thermal matrix of rigidity (conduction). One studies more 
particularly from this point of view finite elements of thermics used in Code_Aster. 
It results from it that in the case of the linear elements, all the sufficient conditions to check it 
principle of the maximum are gathered. In particular, the diagonalisation of the mass allows 
indeed to obtain a regular solution. On the other hand, for the quadratic elements, one cannot 
to prevent the oscillations. 
One thus describes the solution suggested in Code_Aster: the modelings developed in 2D 
(AXIS_DIAG, PLAN_DIAG) function with linear elements (if the mesh is of order 2, one 
cut out in linear elements for thermal calculation). In 3D, one treats only the linear elements. 
A numerical study of a thermal shock on a cylinder makes it possible to illustrate these results. 
2  
Principle of the maximum 
2.1  
Statement of the principle for the continuous case 
One gives here one of the statements possible of the principle of the maximum for the operator of heat 
(in 
the absence of terms of source, and in isotropic homogeneous linear thermics) [bib2]. 
That is to say open limited of IRn of border, whose adherence is noted. 
That is to say ( 
U X, T) such as: 
U - 0 on × 0], [, (> 
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U 
T 
T 
0) 
T 
of class 2 compared to X and U of class  
 
1 
C 
C compared to T on ×] 0, T [ 
Then max U = max U, where P = (× {} 
0 ) ( × [ , 
0 T]) is the border of the cylinder ×] 0, T [. 
[ 
× 0, T] 
P 
This result thus ensures that the maximum of U is inevitably reached either at the time of the initial 
conditions 
maybe on an edge of the field during the transient. 
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2.2  
Respect of the principle of the maximum at the discrete level 
The equation of heat (thermal conduction) is considered: 
T 
div (. T) + S (X, T) = C 
0 
p 
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= 
+ Conditions limit + initial condition T (T, X) T (X 
0 
) 
T 
with 
T 
temperature 
S 
heat per unit of volume (sources intern) 
T 
variable of time 
X 
variable of space 
 
thermal coefficient of conductivity 
CP 
voluminal heat with constant pressure 
Limiting types of conditions: 
· Imposed Température: condition limits of Dirichlet 
T (X, T) = T (X, T 
imp 
) on imp 
· Imposed normal Flux: condition of Neumann defining flow entering the field 
- ( 
Q X, T) .n = F (X, T) on flow 
· Echange: condition limits of Fourier modelling the convectifs exchanges on the edges of 
field 
- ( 
Q X, T) .n = ( 
H X, T) (T (X, T) - T (X, T 
ext. 
) on éch 
angel 
The variational formulation of the problem is as follows: [bib3] 
T 
C 
. D + T 
. D + 
HT. D = S.D + 
F. D + 
HT 
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ext.  
 
 
D 
p 
T 
 
 
exchange 
 
 
flow 
exchange 
 
v checking v = T (X, T 
imp 
) on imp 
After discretization in space of this equation, one obtains the system: 
T  
M 
(T) + K ( 
T T) = F 
 
(T). 
T 
 
 
with 
( 
T T): vector of the nodal temperatures 
M: stamp of thermal mass 
M = C NN 
 
T FD 
E E 
 
 
K 
 
T 
T 
 
: stamp thermal rigidity 
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K = NR. NR 
 
FD + 
H N.N 
 
 
D  
E E 
exchange 
 
E 
 
 
 
 
 
F: vector of the second member 
F =  
S Nd + 
F NR D + 
H T NR 
 
 
 
D 
ext. 
 
E E 
flow 
 
E 
echangee 
 
 
NR: (functions of form) 
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For the discretization in time, one applies one - method ([0] 
1 
,), which leads to: 
(M + K 
T) Tn+1 = (M + (-) tK) Tn + Fn+ 
 
 
 
1 
1 
+ (1 -) Fn 
where Tn Tn 
, 
+1 is the vectors of the nodal temperatures at the moment T, T 
N 
n+1. 
2.3 Conditions sufficient for the respect of the principle of the maximum with 
discrete level 
One of the characteristics of nonrespect of the principle of the maximum is the appearance of 
oscillations  
(temporal or space): if one observes the variation in the temperature in a node during 
time, it is noted that the solution oscillates and exceeds the values minimal and maximum determined by 
initial conditions and limiting conditions. Or, at a given moment, one observes oscillations 
space. 
One thus seeks sufficient conditions on T, K and M so that the solution does not oscillate with 
run from time ([bib1], [bib4], [bib5]). Indeed, one cannot obtain conditions necessary and 
sufficient. One thus seeks conditions of nonoscillation of the solution in the course of time. If 
those are checked, it will be checked that the space oscillations also disappeared, and then it 
respect of the principle of the maximum is assured. 
Assumptions: 
To be able to express these sufficient conditions of nonoscillation, two should be added 
assumptions: 
· one is placed at the elementary level. The respect of the properties at the elementary level is enough for 
that the conditions of nonoscillation are checked for the assembled matrices. 
· one considers that the matrix of rigidity K is formed only of the voluminal term 
K 
NR NR 
V = 
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. T FD 
E 
This assumption is valid whenever there is no condition of exchange or when it 
coefficient of exchange H is sufficiently large: one can then approach the condition of exchange 
by a condition in imposed temperature. 
The sufficient conditions of nonoscillation amount expressing conditions on the step of time 
and on the diagonal and extra-diagonal terms of M and K so that certain properties of these 
matrices are checked (based on the monotony of the matrices) [bib1]: 
M +. T 
K 0 I J 
ij 
ij 
éq 2.3-1 
M + (-) 
1 T 
K 0 I J 
ij 
ij 
éq 2.3-2 
M + (-) 
1 T 
K 0 I 
 
II 
II 
 
éq 2.3-3 
In the case general, the extra-diagonal terms can be of unspecified sign. A fast study 
allows to determine the conditions on T according to their signs so that the equations 
the preceding ones are checked: 
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Kij 0 
Kij 0 
Mij  
 
M 
 
M 
+ . 
0 
 
II 
 
 
ij 0 
M 
tK 
I 
J 
ij 
ij 
max 
T 
 
min 
 
 
 
 
 
 
K 
 
(1) K  
[éq 2.3-1] unconditionally distorts 
I J  
ij 
I 
 
II 
except M = K 
ij 
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ij = 0 
 
M 
 
 
M 
 
M 
ij 
II 
ij 0 
M + (-) 
1 T 
K 0 
I J 
ij 
ij 
max 
 
T 
 
min 
 
 
 
 
 
(1 -) K 
(1) K  
[éq 2.3-2] unconditionally distorts 
I J 
ij 
I 
 
II 
except M = K 
ij 
ij = 0 
 
 
Some is T and the form of M, 
Interval E to be respected on T.  
there is risk of oscillations. 
The diagonalisation of M allows 
to remove the lower limit. 
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The sufficient conditions to avoid the oscillations are then: 
K 
0 I 
J 
ij  
 
T 
T T 
min 
max 
with: 
 
M 
 
· 
II 
 
tmax = min 
 
I (1  
and 
) Kii  
 
Mij 
Mij  
·  
T 
= max 
, 
 
min 
 
 
I J (1) Kij - K 
 
, 
ij  
Consequently, it is necessary initially that the elementary matrices check Kij 0 (it is the case of 
linear finite elements studied further). 
With regard to the interval on the step of time: 
If the oscillations are due to a step of too large time (T > tmax), one can advise: 
· is to choose a diagram of integration in time of the implicit type (=) 
1, to eliminate 
the upper limit of the interval. 
· is to decrease T. (In practice, it is difficult to know an order of magnitude of 
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Enough often, the problem of the oscillations arises for steps of small times (T < tmin); in 
effect, to take into account the variations of the solution (for example, at the time of a thermal shock), 
one 
is brought to choose a fine discretization in time. In this case, to avoid the oscillations, one can 
to suggest: 
· is to increase the step value of time. In practice, this is not always possible 
because T can be imposed by the nature of the problem (fast variation of the loading). Moreover, 
it is difficult to have an order of magnitude of tmin. 
· is to decrease the size of the meshs and thus to increase the number of elements. Indeed, 
value of tmin depends directly on the space discretization: 
The forms of the elementary matrices are indeed: 
M = 
C NR NR FD 
ij 
I J 
E 
K = 
NR 
NR 
 
FD 
ij 
I 
J 
E 
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For the elements 2D, the terms of M are thus of the form C × Surface whereas 
those of K are related only to. This solution remains the best if one is not 
not limited by the cost calculation, because the thermal solution and especially mechanics will be of as 
much 
more precise. 
· Is of diagonaliser the matrix M, which removes the lower limit of the interval. 
It is the solution suggested here. 
In the continuation of the study, one is interested only in the problem of the oscillations which appear for 
steps of too small times: T < tmin. One presents the method more precisely of 
diagonalisation of the matrix M chosen, and the various types of elements to which it applies. 
3  
Method of diagonalisation selected and types of elements 
3.1  
Elements such as the extra-diagonal terms of K are negative 
It was seen that the diagonalisation of M is effective only when the extra-diagonal terms of 
stamp rigidity K are negative. In the contrary case, one of the sufficient conditions of 
not-oscillation is unconditionally false, whatever the shape of Mr. 
For each finite element used in thermics in Code_Aster, one checks if the matrix 
elementary of rigidity of the element has negative extra-diagonal terms, while resting  
mainly on [bib11], which gives the analytical expressions of the elementary matrices for 
traditional finite elements. One summarizes here the observations made in [bib11]. 
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3.1.1 Elements  
linear 
3.1.1.1 Elements TRIA3, TETRA4, PENTA6 
The elementary matrix K is a function of the cotangents of the angles. If one of the angles is blunt, 
certain extra-diagonal terms of K are positive. If all the angles are acute, the property is 
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checked. 
One has the same type of result in 3D for the tetrahedron with 4 nodes and the pentahedron with 6 nodes. 
3.1.1.2 Elements QUAD4 and HEXA8 
Certain extra-diagonal terms of K can be positive if the element is lengthened too much in one 
direction. If not, the property is checked. 
One has the same type of result in 3D for element HEXA8. 
3.1.1.3 Element 3D pyramid with 5 nodes 
For this element, the functions of form are not any more of the polynomials but rational fractions in 
X, y, Z. For this type of element, one does not have the expression, even approximate of K. 
3.1.2 Elements  
quadratic 
3.1.2.1 Element  
TRIA6 
In K, certain extra-diagonal terms are necessarily positive. 
3.1.2.2 Element  
QUAD9 
In the same way, on the analytical expression of the terms of K, one notes that some of the terms 
extra-diagonal are necessarily positive. 
3.1.2.3 Element  
QUAD8 
For this element, there is not the complete expression of K for the real element. But for the element of 
reference, one notes that certain extra-diagonal terms are positive. 
3.1.3 Conclusion on the elements: properties of the matrices K 
For the linear elements, if the real element is not too irregular, extra-diagonal terms of K 
are quite negative. For the quadratic elements (in 2D), certain extra-diagonal terms of K 
are positive. Even by diagonalisant M, one cannot ensure that the solution will not oscillate. 
In Code_Aster, to eliminate the problems from oscillation and going beyond of the maximum, one 
diagonalise only matrices of mass for the thermal calculations carried out on elements 
linear. For the quadratic elements, one saw that one could not diagonaliser directly 
stamp of mass. One thus cuts out these elements in linear elements which themselves are lumpés. 
This is applied to the quadratic elements 2D in Code_Aster, but not to the elements 
quadratic 3D, not for reasons of method but because automatic cutting is 
difficult to implement in 3D. 
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3.2  
Method of diagonalisation: Integration with the nodes of the elements 
If the elementary matrix of mass is calculated by numerical integration, its terms are written under 
the form [bib8] 
NR 
M = 
C 
NR NR FD W (C 
NR NR 
ij 
 
I 
J 
Q 
I 
J) Q  
 
q=1 
C 
where NR 
C 
NR 
I 
J is evaluated at the qième point of integration 
and Wq is the weight of integration associated with this point. 
Classically, the points of integration are the points of Gauss; the position of the NR points and their 
weight 
are defined so that the diagram integrates the polynomials of 2N-1 degree exactly. If one 
chooses the points of integration to the nodes of the element, one obtains: Mij = 0 for I J. This 
method of integration is also called method of Newton-Dimensions. 
Notice 1: Axisymmetric problems: 
If the points of integration are with the nodes, one will have, for any type of element, of the null masses 
on the axis of symmetry. 
Indeed, M = 
C NR NR 
R 
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2 
Dr. dz 
ij 
I J 
M  
 
2 
C 
W Jac R (X 
ij 
ij 
I 
I) 
If the point of integration I is a node of the axis, R (xi) = 0 and the corresponding mass is null. 
For the axisymmetric elements, the method of integration to the nodes is thus not 
adapted close to the axis. In this case, it is necessary to integrate into the points of Gauss the elements 
which touch 
the axis of revolution, by using usual modeling (AXIS). 
Notice 2: other possible methods of diagonalisation: 
Other methods are studied in [bib1], in particular to test diagonaliser them 
quadratic elements. In practice, it are not retained at present in 
Code_Aster. 
· Mise on a diagonal term scale ([bib9], [bib10]): Hinton suggests the scaling of 
diagonal terms of the consistent matrix M, so that total mass of 
the element is preserved. It is noted that the lumpées masses are always positive, even 
for the elements quadrangles to 8 and 9 nodes. 
· Sommation by line ([bib10]): One summons the values of Mij per line and one concentrates it 
result on the diagonal. Unfortunately, this process can lead to masses 
negative, in particular for the quadrangle with 8 nodes. 
Notice 3: 
For the quadratic elements, one notes in [bib1] that, even while diagonalisant with 
method of scaling of the diagonal terms, one obtains oscillations. One thus cannot 
not to use these elements within the framework of the diagonalisation (i.e. for a grid 
relatively coarse with respect to the speed of the thermal transient). 
One can of course use the quadratic elements in thermics, with the proviso of adapting the smoothness 
grid with the stiffness of the thermal shock. 
Handbook of Reference 
R3.06 booklet: Machine elements and thermal for the continuous mediums 
HI-75/00/006/A 

Code_Aster ® 
Version 
5.0 

file:///Z|/process/refer/refer/p180.htm (17 of 19)10/2/2006 2:51:47 PM



file:///Z|/process/refer/refer/p180.htm

Titrate:  
Diagonalisation of the thermal matrix of mass 
Date:  
29/08/00 
Author (S): 
J.M. PROIX 
Key: 
R3.06.07-A 
Page: 
10/18 
4  
Implementation in Code_Aster 
In order to eliminate the oscillations from the temperature in space and time, modelings AXIS_DIAG, 
PLAN_DIAG and 3D_DIAG carry out the diagonalisation of the matrices of mass during calculation 
thermal 
linear (THER_LINEAIRE). The diagonalisation is not operational for THER_NON_LINE 
currently. To guarantee the effectiveness of it, it was seen that it should be carried out on linear elements. 
If the grid is linear, one carries out simply a diagonalisation of the matrices of 
mass by integration with the nodes. 
In the case of a quadratic grid, in 2D, one carries out a thermal calculation ISO-P2: calculation on one 
QUAD9 is brought back to a calculation on 4 QUAD4; in the same way, one passes from a TRIA6 to 4 
TRIA3.  
This makes it possible not to lose the smoothness of the discretization of the grid, as well for the solution 
of 
thermal problem that for that of the mechanical problem. Indeed, one shows in [bib1] that 
this solution is preferable with that which consists in carrying out thermal calculation on linear meshs 
who are based on the nodes tops of the quadratic meshs (what is normal since 
discretization is finer). 
Modelings available are thus: 
4.1 Modelings  
2D 
Modeling 
PLAN_DIAG 
AXIS_DIAG 
Net 
Element 
Element 
TRIA3 
THPLTL3 
THAXTL3 
QUAD4 
THPLQL4 
THAXQL4 
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SEG2 
THPLSL2 
THAXSL2 
TRIA6 
THPLTL6 
THAXTL6 
QUAD9 
THPLQL9 
THAXQL9 
SEG3 
THPLSL3 
THAXSL3 
Comments on elementary calculations 2D: 
For the linear elements: terms of mass (matrix to the first member and vector with the second 
member) are lumpés by integration with the nodes. The new elements have options of calculations 
elementary identical to the traditional elements. The only modified elementary options are thus 
MASS_THER and CHAR_THER_EVOL. 
For the quadratic elements: calculation is ISO-P2. Calculation on an element QUAD9 (resp. TRIA6) 
is brought back has a calculation on 4 linear elements QUAD4 (resp. 4 TRIA3) whose terms of mass are 
lumpés by the preceding method. The matrices and vectors of each of the 4 linear elements are 
assembled on the level of the elementary routine of calculation. By homogeneity, on the elements of 
edges, 
one calculates the elementary terms on 2 SEG2, then one assembles. 
Elements THPLTL6, THAXTL6, THPLQL9, THAXQL9 have the functions of form of the elements 
linear in which they are cut out. 
Caution: 
There is no element associated with mesh QUAD8. Consequently, if the grid is composed of 
quadratic meshs, it is initially necessary to change the QUAD8 into QUAD9 using 
order CREA-MAILLAGE: 
CREA_MAILLAGE (MODI_MAILLE: (OPTION: “QUAD8_9”)). 
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Into axisymmetric: if elements of the grid touch the axis, one should not integrate into the nodes which 
find on the axis. It is thus necessary to isolate this layer from elements and to affect modeling AXIS to 
him. 
4.2 Modeling  
3D 
Modeling 
3D_DIAG 
Net 
Element 
HEXA8 
THER_HEXA8_D 
PENTA6 
THER_PENTA6_D 
TETRA4 
THER_TETRA4_D 
PYRAM5 
THER_PYRAM5_D 
QUAD4 
THER_FACE4_D 
TRIA3 
THER_FACE3_D 
Comments on elementary calculations 3D: 
For the linear elements: as in 2D, terms of mass (matrix to the 1st member and vector 
with the 2nd member) are lumpés by integration with the nodes (3rd family of points of Gauss). 
For the quadratic elements, it would be necessary to cut out those in linear elements. This cutting is 
delicate to implement, because it results in creating a new element (PENTA18) with nodes with 
medium of each quadrilateral face (and it would also be necessary to create a new element PYRAM14). 
One diagonalise thus currently only the linear elements 3D. 
With regard to the pyramids with 5 nodes, integration with the nodes was tested but 
do not function well. Cf [§ 3.1.1.3] (it is not known if all the extra-diagonal terms are negative).  
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modeling “3D_DIAG” exists for the pyramids with 5 nodes but it is identical to modeling 
“3D”. In any case these element are minority in a grid 3D: it are generated only 
by the voluminal free maillor of GIBI, which creates some with the need of them to supplement the grid 
hexaedric. 
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5  
Thermal calculation of a cylinder subjected to a cold shock 
One illustrates on a numerical example what was shown previously; namely that 
diagonalisation is effective to check the principle of the maximum. 
One takes as a starting point the the industrial example of the cooling of a moulded elbow: a shock is 
applied 
cold thermics (289°C with 20°C) on a fissured elbow. During the transient of cooling, 
temperature calculated in certain nodes reached 310° without diagonalisation of the matrices of mass. For 
the example treated here, one restricts with a hollow roll of the same dimension than the elbow on which 
one 
apply a cold thermal shock. 
5.1 Data 
A presumedly infinite hollow roll is studied. Like there is no dependence compared to Z (cylinder 
infinite), one limits the study to a plane calculation. By reason of symmetry, one nets only one portion of 
structure. 
C 
M2 
D 
Rint 
Rint = 417 mm 
45° 
Rext = 496 mm 
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Rext 
Z 
In M1 
B 
Co-ordinates of the points: 
X (mm) 
y (mm) 
Z (mm) 
M1 
436.75 
0. 
0. 
M2 
436.75 cos 45° 
436.75 sin 45° 
0. 
Calculations are carried out on a linear grid (meshs TRIA3-QUAD4): 
M2 
M1 
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Characteristics of the grid: 
A number of nodes: 90 
Numbers and type of meshs: 64 TRIA3, 32 QUAD4 
Characteristics of material: 
= 19.97 W/m °C 
CP = 4.89488 106 J/m3 °C 
Limiting conditions and loading: 

file:///Z|/process/refer/refer/p190.htm (3 of 15)10/2/2006 2:51:48 PM



file:///Z|/process/refer/refer/p190.htm

To ensure invariance by rotation, one forces conditions of null heat flow on faces AB 
and CD. The external wall is supposed perfectly insulated. On internal skin AD, the transfer 
thermics between the cylinder and the fluid is modelled by a coefficient of high convectif exchange: 
H = 40.000 W/m2 °C. 
The cold thermal shock applied to the moulded elbows is represented by a linear variation of 
temperature of the fluid circulating in the pipe: 289°20° in 12 S. In order to accentuate the problem of 
going beyond of the maximum and thus to better highlight the influence of the diagonalisation, one 
adopt a more brutal shock: 289° 20° in 1 S. 
Tfluide 
289° 
20° 
T 
10 S 11 S 
The following discretization in time is adopted: 
T = 0 S 
with T = 10 S, 
1 step of time 
T = 10 S 
with T = 11 S, 
2 steps of time 
T = 11 S 
with T = 25 S, 
7 steps of time 
T = 25 S 
with T = 60 S, 
10 steps of time 
Numerically, the value retained for the parameter of the discretization in time is = 0,57. 
5.2 Results 
The following figures show the profiles of temperature in the thickness of the cylinder at the moment 
t=15s 
(moment when the goings beyond of the maximum are largest) without diagonalisation of the matrices of 
mass. 
One gives also the temporal evolution T (T) to the M1 nodes and m2 located at a quarter thickness of 
internal skin. 
Without diagonalisation, one notes that the temperature oscillates in time and in space exceed the value 
maximum of 289° at the beginning of the transient. 
With diagonalisation on the linear elements, one observes a regular solution without going beyond 
maximum. 
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A similar study was undertaken on linear elements 3D (tetrahedron to 4 nodes, pentahedron with 6 
nodes, hexahedron with 8 nodes). The results lead to the same conclusions: with diagonalisation, 
the oscillations of the temperature disappear for calculation on the linear elements 3D. 
Complementary remark concerning thermomechanical calculation: 
Another study was carried out in [bib1] estimating the consequences of the diagonalisation 
thermics on the mechanical results. It is noted that calculation ISO-P2 (elements quadratic 
divided into linear elements, whose matrices of mass are lumpées) provides results 
satisfactory. One eliminates the space oscillations from the temperature. But in the studied case, with one 
relatively coarse grid, the mechanical solution remains not very precise. Although the thermal solution 
that is to say correct, to improve the solution in constraints, the grid should in any case be refined. 
For meshs TRIA3, the diagonalisation leads to a regular solution without going beyond of 
maximum: 
EDF 
Mechanical department and Digital Models 
Electricity 
from France 
CHANGE OF the TEMPERATURE TO the QUARTER Of the THICKNESS - MESH TRIA3  
320 
Thermal calculation 
of a subjected cylinder 
has a cold shock 
DT 289 --> 20 in 1s 
310 
1 
M 
D 
300 
HAVE 
O 
NR 
WITH 
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20 
22 
24 
26 
28 
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EDF 
Mechanical department and Digital Models 
Electricity 
from France 
PROFILE OF TEMPERATURE IN the THICKNESS - LINEAR GRID - ELEMENTS TRIA3  
294.365 
Thermal calculation 
of a subjected cylinder 
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250 
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T 
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R 
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M 
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E 
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T 
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50 
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For meshs QUAD4, the diagonalisation leads to a regular solution without going beyond of 
maximum: 
EDF 
Mechanical department and Digital Models 
Electricity 
from France 
CHANGE OF the TEMPERATURE TO the QUARTER Of the THICKNESS - MESH QUAD4  
320 
Thermal calculation 
of a subjected cylinder 
has a cold shock 
DT 289 --> 20 in 1s 
310 
2 
M 
D 
300 
HAVE 
O 
NR 
WITH 
E 
R 
290 
U 
WITHOUT LUMPING 
AT 
LUMPING 
PER 
M 
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6 Conclusion 
Modelings AXIS_DIAG, PLAN_DIAG and 3D_DIAG are proposed in order to solve them 
problems of going beyond of the maximum with oscillation of the solution in space and time which 
appear during certain transitory thermal calculations with abrupt variation of the loading. 
At the discrete level, the analysis leads to a sufficient condition of not-oscillation on the step of 
discretization in time which must belong with an interval: 
T 
T T 
min 
max 
where the values of tmin and tmax depend on the coefficients of matrices of mass and rigidity 
thermics as well as parameter of the discretization in time. 
In practice, if the oscillations come from a step of too large time (T > tmax), it is suggested 
choice of an implicit scheme in time (=) 
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1. If the steps of time are too small, the diagonalisation 
matrix of mass can make it possible to remove the oscillations. 
For the linear elements, one shows that the diagonalisation makes it possible indeed to avoid them 
oscillations of the solution. For the quadratic elements, a direct diagonalisation is not enough with 
to avoid the oscillations. For this type of element, one cuts out them in linear elements, and one carries 
out one 
diagonalisation of the linear elements resulting by integration with the nodes (this is carried out only 
in 2D for the moment). 
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Finite elements treating the quasi-incompressibility  
 
 
 
 
 
Summary:  
 
In certain situations, the mechanical behavior of material imposes that voluminal dilation remains  
null, in other words that the deformation is done with constant volume: isotropic elasticity with 
coefficient of  
POISSON equal to 0.5, perfect plastic flows analyzes limit of it…  
 
One proposes here to treat this condition of “incompressibility” or “quasi-incompressibility” while 
using  
a valid formulation as well in the compressible case in the quasi-incompressible case. For that,  
one uses a variational formulation with 3 fields where the unknown factors are displacement, 
deformation  
voluminal and the multiplier of associated Lagrange (which would correspond to the pressure in the 
case  
incompressible). Two versions of this formulation are proposed: one for the small deformations, the 
other  
valid in the presence of great deformations.  
After some recalls on the difficulties which raise the resolution of the incompressible problems, one 
describes  
the mixed finite element established (in 3D and 2D, plan and axisymmetric), and one also present the 
large ones  
lines of integration in Code_Aster (modeling INCO).  
 
 
This modeling is necessary to practise the limiting analyses and to model behaviors  
rubber bands for Poisson's ratios close to 0.5. It can also be useful in the case of  
modelings generating of strong plastic deformations and for which traditional modelings  
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can be insufficient and generate oscillations of constraints.  
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1  
Difficulties related to the treatment of the incompressibility  
 
In certain situations, the mechanical behavior of material imposes that the deformation  
makes with constant volume. The materials having this property of not-dilatancy are often  
qualified “incompressible” materials. We will see that these problems pose two types of  
difficulties. The first difficulty is related to the writing of the condition of incompressibility, second is  
dependent on the numerical problems which this constraint generates. These difficulties are found when 
it  
material is quasi-incompressible.  
One reasons here in small disturbances but the problem remains the same one within the framework of  
finished transformations.  
 
1.1  
Incompressible” and “quasi-incompressible” behaviors “  
 
Within the framework of the mechanics of the continuous mediums, deformation of an isochoric type is  
characterized by the fact that the gradient of the transformation F is such as det F = 1. If one places 
oneself  
within the framework of the small disturbances, the preceding condition is reduced to:  
 
div U = 0 = tr ()  
 
The tensor is thus only deviatoric:  
D 
= .  
 
It results from it that in the case of isotropic materials, the invariant tr (or det F) does not intervene in  
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the expression of the density of free energy; thus in the case of incompressible elasticity in HPP,  
one has simply:  
D 
D 
 
() = µ.  
This density makes it possible to express only the deviatoric part of the tensor of the constraints:  
D 
D 
= 2µ  
In fact, the constraint is defined in a constant close p, which is opposite average pressure:  
= 2µ D + pId  
 
 
 
 
 
 
 
éq 1.1-1  
Note:  
 
· incompressible isotropic elasticity is of course a borderline case of isotropic elasticity with  
a Poisson's ratio = E - 1 tending towards 0.5.  
2µ 
· it does not have there that the elastic materials whose Poisson's ratio is equal or  
slightly lower than 0.5 which utilizes the condition of incompressibility. Thus, it  
G 
 
intervenes also in the case of plastic rigid material  
= 0. Indeed, one  
tr  
 
G 
has in this case: & =  
; 0; G 0; G = 0  
 
What leads to the condition of incompressibility tr& = 0.  
 
In addition, in the case of elastoplasticity, when plastic deformations  
become largely higher than the elastic strain, one finds itself in one  
almost incompressible case with tr 0.  
 
Lastly, materials checking a relation of behavior of the type NORTON-HOFF (law  
used for calculations of analysis limits [R7.07.01]) show also the characteristic  
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of incompressibility:  
N 
( 
1 
v) = ( 
D 
eq) 
. 
with N 1 and > 0  
3 
where  
= 
. D.D 
eq 
is the equivalent constraint of Von Mises.  
2 
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1.2  
Some possible numerical solutions  
 
If one wants to treat the condition of incompressibility exactly, we saw it, the constraint is not  
completely given starting from the deformation (cf [éq 1.1-1]). It is thus necessary to use one  
mixed formulation, i.e. to introduce (at least) another unknown factor of the problem which will allow  
to determine the tensor of the constraints completely. Several alternatives are possible, more  
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simple consisting in imposing the condition of incompressibility using a multiplier of Lagrange,  
who is then the pressure p.  
 
Note:  
 
If one chooses a procedure of penalization, one is reduced to the quasi-incompressible case  
and thus with the difficulties evoked below.  
 
One also can, in particular in the case of linear elasticity, to choose to return material  
slightly compressible. In this way, the constraint is entirely defined starting from displacement  
and the use of a mixed formulation is not essential any more. On the other hand, the resolution of these  
problems with the traditional finite elements in displacement, raises numerical difficulties. In  
effect, the kinematic constraint that a deformation with constant volume represents is very strong, even  
too much strong if the degrees of freedom of the element are not important enough. Thus, the triangle 
with  
3 nodes can present phenomena of blocking, i.e. the “grid” cannot  
to deform. In a less extreme way, majority of the elements traditional, in particular linear,  
comprise in an abnormally rigid way. New elements must thus be used in order to  
“to slacken” the system. These elements can be based on various types of formulation:  
 
·  
only in displacement  
·  
mixed: displacements/forced, displacements/pressures, deformations/forced,  
voluminal displacements/pressures/dilations…  
 
In all the cases, if guard there is not taken, one can have numerical difficulties. Several tracks  
are used to facilitate the deformation of the elements:  
 
·  
to use under-integration makes it possible to improve the results but it presents one  
disadvantage: it can lead to the appearance of parasitic modes or hourglass. For  
to solve this problem, one can is to enrich the matrix by rigidity thanks to matrices of  
stabilization which comes to neutralize the hourglass modes, is to use methods of  
projection which consists in projecting in a smaller space the condition of incompressibility  
in order to eliminate the phenomena of blocking. Most known is the method B-Bar [bib1],  
·  
to enrich the element using additional degrees of freedom: one speaks then about methods with  
increased deformations, incompatible modes,] [bib2]…  
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1.3  
Option selected and frameworks of application  
 
We chose here to choose a formulation which covers theincompressible one as well  
(until the incompressible one) that the compressible one. For that, the tr term is treated like a variable  
independent. With the multiplier of Lagrange associated, that led to a formulation with 3 fields.  
A version great deformations was also developed on the same principle. In this case,  
variable independent related to the condition of incompressibility is not any more tr but det F.  
 
The advantage of this formulation is qu `it makes it possible to use in a transparent way all the laws of  
behavior elastoplastic available in Aster (not need to separate the deviatoric part  
and the spherical part of the tensor of the constraints). It is thus not limited to elasticity or to  
the elastoplasticity of Von Mises. On the other hand, one will not be able to treat the case where the 
coefficient of  
Poisson is strictly equal to 0.5, because one uses for the calculation of the elastic constraint the term  
 
E 
tr, whose denominator is null when = 0.5.  
1 
(+ 1  
)( - 2 ) 
 
 
Consequently, this formulation INCO must be used:  
 
·  
to deal with the limiting analysis problems for which one supposes that the flow is done  
with constant volume [R7.07.01],  
·  
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to deal with elastic problems whose Poisson's ratio is higher than 0.45.  
 
This formulation can also be used:  
 
·  
to deal with the problems where the plastic deformations are important, which generates  
oscillations on the level of the constraints (example: in the case of calculations on test-tubes  
notched). Of course, this formulation being more expensive than the formulation in displacement  
traditional, it is to be held for the case posing problem and where one is interested in the values of  
constraints.  
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2  
Mixed variational formulation of the problem  
 
2.1  
Formulation within the framework of the small deformations  
 
That is to say a solid subjected to:  
 
·  
a field of displacement D 
U on D  
·  
a field of effort G on NR  
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·  
a voluminal field of effort F on  
 
In the traditional case of the finite elements in displacement (modeling 3D or D_PLAN or AXIS in  
Code_Aster), when the problem derives from an energy, the solved problem is as follows:  
 
to find  
D 
U V with checking the relation of behavior, which minimizes the potential energy:  
 
 
1 
U 
( ) = 
.  
D - fu  
D - gud  
2  
 
NR 
 
As we explained to [§1], this formulation is not appropriate when one seeks with  
to bring closer the incompressible solution, i.e. of the condition div U = 0 or tr = 0. For  
to circumvent this difficulty, a solution is to separately treat the spherical part of the tensor of  
deformations (the part which poses numerical problems) and its deviatoric part. One will have  
thus:  
G 
1 
(U, G) = D (U) + I where D (U) = (U) 
D 
- (tr (U))I and G = tr (U) 
D 
 
éq 2.1-1  
3 
3 
The preceding problem is thus reduced to the resolution of a problem to 2 variables, U and G, under  
constraint G = tr. It can be brought back to the resolution of an unconstrained problem by introducing 
one  
multiplier of Lagrange p; it is written:  
 
to find  
D 
U V, p and G (problem of point-saddle), such as:  
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( 
 
G 
 
 
L U, p, G) 
D 
= 
. 
(U) + I 
 
D 
(pdivu G) D F ud 
gu D 
 
 
éq 2.1-2  
3 
 
+ 
- 
 
 
 
 
 
- 
-  
 
 
NR 
This problem can be solved, by writing the conditions of optimality:  
L 
 
= (D 
+ pi). D - F U  
D - G U  
D = 
 
D 
 
 
0 
U  
 
NR 
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L 
 
= (divu - G) p D = 
 
0 
 
éq  
2.1-3  
p  
 
L 
 
= 
1 tr - p 
 
G D = 
 
0 
 
G 
3 
 
 
 
Note:  
 
·  
the first equation corresponds to the equilibrium equation,  
·  
the second equation translates the kinematic relation binding G to U,  
·  
the third equation gives the expression of the multiplier of Lagrange p,  
·  
when the problem does not derive from an energy, one can directly use the system  
equations [éq 2.1-3].  
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2.2  
Formulation in great deformations  
 
It is possible to extend the preceding variational formulation [éq 2.1-2] to the great deformations.  
The principle is identical, but one is based in this case on the decomposition of the tensor gradient of  
transformation F proposed by Flory [bib3]:  
1 
1 
F = S 
S 
- 
F F with F 
3 
= J I 
and F 
3 
= J 
F and J = det F 
D 
 
 
The problem is brought back there still to a problem of point saddle:  
to find  
D 
U V, G and p not saddle of the Lagrangian one:  
 
L (U, p, G) = [W (13 
G F)] - 
 
D 
+ p (J - G) 
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D 
- FUD 
U 
G D  
éq 2.2-1  
0 
- 
0 
 
- 
 
 
 
 
0 
0 
NR 
where W is the deformation energy expressed according to the variation of the gradient of  
transformation F.  
The choice which was made here is to write the deformation energy on the configuration - i.e. with  
beginning of the step of time. One notes classically:  
· F the gradient of the transformation of 0 with -  
· F the gradient of the transformation of - with.  
 
- 
- 
One has then: F = F F and J = J J  
 
This problem can be solved as in small deformations by writing the conditions of optimality.  
Derivation does not raise difficulties particular to condition of only remembering:  
W 
 
1 
T 
= and = F, being the first tensor of the constraints of Piola-Kirchhoff.  
F 
 
J 
The system to be solved is thus the following:  
 
 
 
13 
 
L 
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= G  
 
 
D 
+ pi. U D - F ud - G U D = 
 
D 
X 
 
 
0 
U 
J  
 
 
 
 
 
NR 
L 
 
= (J - G) p  
D 
= 
 
0 
0 
 
p  
 
0 
 
 
- 
23 
 
L 
J J  
1 
 
= 
Tr - p G D = 
 
0 
G 
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-  
 
 
0 
3 G G  
 
 
 
0  
 
 
With regard to obtaining the tangent matrix, it of course asks a little more calculation  
that in small deformations.  
K 
K 
K 
 
uu 
up 
ug  
K = Kup K pp K pg  
K 
K 
K 
 
ug 
pg 
gg  
 
For the Kuu term, the method used is the same one as that used in [bib4] or [R5.03.21].  
principle consists in deriving with fixed configuration, then to choose as configuration that which 
coincides  
with the current configuration at the moment of calculation, i.e. This matrix is not a priori  
symmetrical. But in practice, a symmetrical tangent matrix is used. Other derivations  
do not pose particular problems.  
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To simplify the writing of the various terms, one is brought to define the following tensors:  
 
= 
 
H 
the algorithmic tangent matrix given by the law of behavior  
 
1 
G 
3 
 
 
 
 
 
 
F 
J  
 
 
 
1 
P = H - I 
(I: H) which corresponds to some extent to the deviatoric part of the matrix  
3D  
D 
algorithmic tangent  
 
1 
J 3 
 
D 
T = P: F 

file:///Z|/process/refer/refer/p200.htm (14 of 29)10/2/2006 2:51:48 PM



file:///Z|/process/refer/refer/p200.htm

+ 
 
 
 
 
G  
 
 
Finally, the tangent matrix is made up of the following terms:  
 
K 
= 
uu 
[div U 
-  
U 
eq 
eq 
X]:  
v 
 
D 
X 
( 
géométriqu 
 
rigidity 
E) 
 
G 2/3  
1 
 
+  
 
P: - U 
- div U 
T:  
v 
 
 
 
 
D 
( 
comporteme 
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of 
 
rigidity 
NT) 
J  
 
3 
 
X 
X 
 
K 
= tr 
up 
(U 
X) p 
 
 
 
D 
 
1 G 2/3 
K 
= 
ug 
 
 
T: + U 
G 
 
 
 
D 
 
3 J  
X 
 
K 
= 
pp 
0 
K 
= - p 
G 
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pg 
 
D O 
O 
1 G 2/3 - 
G  
1/ 3  
 
 
 
K 
= 
 
 
G 
gg 
 
 
 
 
 
- 2tr + Id: H F ×  
 
 
 
D 
-  
9g J  
J 
J 
 
 
 
 
 
 
 
 
 
3  
Discretization by mixed finite elements  
 
3.1  
Choice of the discretization  
 
When a mixed formulation is used, it is necessary to discretize at the same time the space of  
displacements, of the multiplier of Lagrange p and “swelling” G. The experience gained on  
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mixed elements, in particular 2 fields for the incompressible elements, makes it possible to know that  
discretization of these fields cannot be unspecified, under penalty of obtaining phenomena  
oscillations (in particular on the level of the pressures) or phenomena of blocking (elements  
not being able to become deformed or too rigid). Thus it is necessary to have a number of points of 
Gauss  
of pressure sufficiently important to check the condition of incompressibility almost everywhere and one  
a number of points of sufficiently low Gauss of pressure to have more degrees of freedom with  
to calculate that constraints to be checked. One of the conditions necessary to obtain results  
satisfactory is the checking by the finite element considered of condition LBB (LADYJENSKAIA,  
BREZZI, BABUSKA). One can find in [bib5] and [bib6] of the examples of elements satisfying  
condition LBB.  
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Here the problem is a little different since the formulation contains 3 fields. We are  
inspired by the uses of this kind of formulation (e.g. [bib7]), by using an element of the type P2/P1/P1.  
In other words, displacement is quadratic, the pressure and swelling is both  
linear.  
The finite elements used are thus the following:  
 
in 2D:  
U  
triangle with 6 nodes  
\  
quadrilateral with 8 nodes  
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p, G  
triangle with 3 nodes  
\  
quadrilateral with 4 nodes  
 
 
 
 
 
in 3D:  
U  
tetrahedron with 10 nodes  
\  
cubic with 20 nodes \ pentahedron with 15 nodes  
 
p, G  
tetrahedron with 4 nodes  
\  
cubic with 8 nodes \ pentahedron with 6 nodes  
 
For each type of element, one uses only one family of points of Gauss:  
 
·  
3 points for the triangles  
·  
9 points for the quadrilaterals  
·  
4 points for the tetrahedrons  
·  
27 points for the cubes  
·  
6 points for the pentahedrons  
 
 
3.2  
Writing of the discrete problem  
 
That is to say U.E. , EP and Ge, vectors of the elementary nodal unknown factors (resp. displacement, 
pressure and  
swelling). If Nq and Nl are related to forms (respectively quadratic and linear)  
associated the finite element considered:  
 
E 
U = NR U  
Q 
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E 
p = NR p  
L 
E 
G = NR G  
L 
3.2.1 Writing in small deformations  
B is the traditional matrix of derivation making it possible to pass from  
E 
U with:  
 
E 
= DRUNK  
 
In the formulation, one distinguishes Dev. and dil, which leads us to define the Bdev operators and  
tr  
B 
D 
dil such as: 
E 
= B 
U 
Dev. 
and  
E 
= B U 
dil 
 
3 
 
 
The discretized form of the equations of the problem [éq 2-3] is written:  
 
T 
D 
U 
F = B  
( 
+ pi 
 
D) D = 
ext. 
F  
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F = 
T 
NR (dil 
B U - L 
NR G) D = 0 
p 
L 
 
 
F = 
T 
NR (1 tr - p) D = 0 
G 
L 
 
3 
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The tangent matrix of the problem is symmetrical and is based on the following terms:  
 
F 
K 
= 
U = 
T 
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uu 
B 
DB 
 
E 
Dev. 
Dev. 
 
D 
U 
 
F 
K 
= 
U = 
up 
B 
NR 
 
E 
T 
dil 
 
D 
 
L 
p 
 
F 
1 
K 
= 
U = 
T 
ug 
(B 
D) NR 
 
E 
Tr Dev. 
 
D 
 
L 
G 
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3  
F 
K 
= 
p = 0 
pp 
 
E 
p 
F 
K 
= 
p = - 
pg 
NR NR 
 
E 
T 
 
D 
 
L 
L 
G 
 
F 
1 
K 
= 
G = 
gg 
NR 
(D) NR 
 
E 
Ttr 
 
D 
 
L 
L 
G 
9  
 
3.2.2 Writing in great transformations  
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One notes D the matrix of derived from the functions of form (quadratic) on the current configuration  
and D on the configuration -, that is to say:  
E 
E 
U = U 
- 
D 
U D U 
X 
and 
X 
= 
 
In addition, one defines the constraint of balance eq and the size Q by the following relations:  
1 
2 
G 
3 
- 
3 
D 
1 J J 
 
eq =  
+ pId and Q = 
tr - p  
J 
 
-  
 
 
3 G G 
 
 
is here the tensor of the constraints resulting from the law of behavior.  
 
The vector of the interior forces is written in form the following discretized form:  
 
 
F = 
U 
D D 
eq 
 

file:///Z|/process/refer/refer/p200.htm (24 of 29)10/2/2006 2:51:48 PM



file:///Z|/process/refer/refer/p200.htm

 
F = 
p 
T 
NR (J - L 
NR G)  
D 
L 
0  
0 
F = 
G 
T 
NR Q  
D 
L 
0  
0 
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4 Integration in Code_Aster of the finite elements  
incompressible  
 
4.1  
General presentation of the incompressible element  
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The finite elements are integrated in Code_Aster in 2D plane deformations, in axisymmetric 2D  
and in 3D. 3 modelings are accessible by using the following options for AFFE_MODELE:  
 
·  
“3D_INCO” for the 3D,  
·  
“D_PLAN_INCO” for the 2D in plane deformations,  
·  
“AXIS_INCO” for the axisymmetric 2D.  
 
In the catalogue of the elements, the incompressible elements can apply to the meshs:  
 
Meshs  
A number of nodes in displacements  
A number of nodes in pressure  
TRIA6 6  
3  
QUAD8 8  
4  
HEXA20 20  
8  
TETRA10 10  
4  
PENTA15 15  
6  
 
In the routines of initializations of the incompressible elements, one defines:  
 
·  
1 only family of points of GAUSS (the first family of points of GAUSS) [R3.01.01],  
·  
2 families of functions of forms respectively associated with displacements (functions with  
forms of degree 2) and under the terms of pressure (functions of forms of degree 1).  
 
Let us take as example the element tetraedric with 10 nodes: degrees of freedom in displacement  
are carried by all the nodes, on the other hand, only the 4 nodes tops have the degrees of  
freedom p and G.  
 
 
 
 
The accessible components for field DEPL are thus  
 
·  
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displacements: DX, DY and DZ in 3D with all the nodes,  
·  
pressure: NEAR for the nodes top,  
·  
swelling: GONF for the nodes top.  
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4.2  
Use of modeling  
 
By choice, modeling INCO is accessible only with STAT_NON_LINE and option COMP_INCR.  
Under this key word, the version small deformations is accessible by using DEFORMATION=' PETIT',  
the version great deformations by using DEFORMATION=' SIMO_MIEHE'.  
 
It is thus not possible to use modeling INCO with the orders:  
 
·  
MECA_STATIQUE  
·  
CALC_MATR_ELEM/CALC_VECT_ELEM/ASSE_MATRICE/ASSE_VECTEUR/RESO_LDLT  
·  
STAT_NON_LINE (COMP_ELAS =…)  
 
 
Note:  
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For the moment, only the tangent matrix can be used for the phase of prediction.  
However, of new developments in Code_Aster, should return the matrix  
soon accessible rubber band.  
 
 
4.3  
Formulation of the elementary terms of the second member  
 
The loads can be gravity, of the surface forces distributed, the pressures. Terms  
elementary are calculated in a traditional way for the degrees of freedom of displacement and one 
affects  
the zero value for the degrees of freedom of pressure and swelling.  
 
 
4.4  
Calculation of the strains and the stresses  
 
In this formulation, it is advisable to distinguish the stress field resulting from the law from behavior  
 
D 
=  
ldc, of the stress field which checks balance and which is defined by the relation  
Id 
p 
ldc + 
 
it is the latter field which is stored in SIEF_ELGA as well as the relation binding the multiplier p and  
ldc.  
In short, the components of SIEF_ELGA are:  
 
· SIXX, SIYY, SIZZ, SIXY in 2D like SIXZ and SIYZ in 3D: components of the tensor  
D 
=  
Id 
p 
ldc + 
,  
 
1 
 
· SIP which is equal to tr  
- p 
ldc 
in small deformations,  
3 
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2 
1 J - J 
3 
or  
tr  
p in great transformations.  
-  
ldc - 
 
 
3 G G 
 
 
It is also possible to recompute EPSI_ELGA_DEPL, which is the field of deformation to the direction  
traditional.  
 
One can also carry out a calculation of limiting load with POST_ELEM.  
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5 Validation  
 
 
5.1  
Incompressible elastic case  
 
Test SSLV130 (cf [V3.04.130]) makes it possible to check the validity of modeling in the case of one  
roll elastic incompressible subjected to an internal pressure. Its equivalent into large  
deformations also exist: test SSNV112 (cf [V6.04.112]).  
 
 
5.2 Case  
elastoplastic  
 
The goal of this example is to illustrate the contribution of modeling INCO if the deformations  
plastics are important compared to the elastic strain. One studies for that one  
notched sample into axisymmetric, subjected to an imposed displacement. Geometry and it  
loading are represented on the figure below. The grid consists of 548 TRI6.  
 
U0 
E 
D 
F 
C 
With 
B 
 
Appear 5.2-a: Geometry and boundary conditions  
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The behavior of material is of elastoplastic type with isotropic work hardening  
linear (VMIS_ISOT_LINE). The parameters are as follows:  
 
·  
E = 200.000 MPa  
·  
= 0.3  
·  
y = 200 MPa  
·  
AND = 1000 MPa  
Handbook of Reference  
R3.06 booklet: Machine elements and thermal for the continuous mediums  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Finite elements treating the quasi-incompressibility  
 
 
Date:  
14/04/05  
Author (S):  
S. MICHEL-PONNELLE, E. Key LORENTZ  
:  
R3.06.08-D Page  
: 14/16  
 
 
On the figure [Figure 5.2-b], one compares the constraint yy obtained on way FC (cf [Figure 5.2-a])  
with traditional modeling AXIS and modeling AXIS_INCO.  
EDF 
Mechanical department and Digital Models 
Electricity 
SIGMAyy 
from France 
300 
250 
200 
150 
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AXIS 
AXIS_INCO 
100 
50 
0 
0 
1 
2 
3 
4 
5 
agraf 26/02/2002 (c) EDF/DER 1992-1999 
 
Appear 5.2-b: yy along line FC  
 
It is seen very clearly that the solution obtained with formulation INCO makes it possible to be freed 
from  
parasitic oscillations.  
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Finite elements of joint in plane 2D  
 
 
 
 
 
Summary:  
 
Description of the finite element of joint plane 2D allowing to model the creation of a crack along one  
predetermined way.  
Presentation of the geometry, definition of the jump of displacement in the element, change of 
reference mark: room with  
the total element/, calculation of the interior efforts as well as tangent matrix.  
 
Handbook of Reference  
R3.06 booklet: Machine elements and thermal for the continuous mediums  
HT-66/03/005/A  

Code_Aster ®  
Version  
7.2  
 
Titrate:  
Finite elements of joint  
 
 
Date:  

file:///Z|/process/refer/refer/p210.htm (6 of 20)10/2/2006 2:51:49 PM



file:///Z|/process/refer/refer/p210.htm

19/09/03  
Author (S):  
J. LAVERNE Key  
:  
R3.06.09-B Page  
: 2/6  
 
 
1 Geometry  
 
The element of joint is a quadrangle with four nodes (QUAD4) with two small sides and two large  
what makes it possible to define a local reference mark in the element: N is a normal unit vector at a 
large side  
and T a tangent vector with this one.  
The local classification of the nodes must be done obligatorily as on [Figure 1-a], the side [1,2]  
must correspond to a large side.  
Option MODI_MAILLAGE key words ORIE_CONTACT initially developed for the elements of  
contacts makes it possible to impose this classification.  
 
 
2 
N 
T 
3 
1 
Y  
4  
X  
 
Appear 1-a: Element of joint  
 
The element of joint has two points of Gauss positioned as on the SEG2 of reference:  
The first PG1 in - 3/3 and the second PG2 in 3/3 on the segment [- 1,1] with for weight 1  
each one.  
 
 
 
2  
Change of reference mark  
 
To be able to pass from the total reference mark (X, Y) to the local reference mark to the element (N, 
T) we introduce  
stamp rotation R. This matrix applied to a vector expressed in the total reference mark gives sound  
expression in the local reference mark.  
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cos 
sin  
R =  
 
where is the angle between the two reference marks.  
- sin cos  
 
y - 
- 
2 
y1 
x2 X 
one has  
1 
cos = 
and sin = - 
 
L 
L 
 
with L = 12 and (1 
X, 1 
y) and (x2, y2) co-ordinates of nodes 1 and 2.  
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3  
Jump of displacement in the element  
 
Let us note U = (U, v) 
loc  
loc 
loc 
U 
= 
I 
I 
I 
and  
(U 
, v 
) 
I 
I 
I 
displacements with node I respectively in  
total reference mark (X, Y) and in the local reference mark (N, T).  
 
With the change of reference mark one a:  
loc 
Ui = RUi  
 
One definite jumps of normal and tangent displacement in the element on each point of Gauss  
starting from the components of the displacement of the four nodes in the local reference mark:  
 
[U] g=C U U 
1 C 
U 
U 
N 
G (loc - 
loc 
1 
4 ) + ( - 
G) (loc - 
loc 
2 
3 ) 
[ 
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U] g= C v 
v 
1 C 
v 
v 
T 
G (loc - loc 
1 
4 ) + ( - 
G) (loc - 
loc 
2 
3 ) 
 
 
with g=1,2 the list of the points of Gauss and C1 and C2 coefficients:  
1  
3  
1  
3  
C 
C 
1 = 
1+ 
, 
2 = 
 
 
 
 
 
1- 
 
 
2  
3  
2  
3  
 
One can rewrite the jump in matric form:  
 
G 
[ 
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U] 
U 
G 
[] N 
loc 
=  
 
 
 
 
 
 
 
 
 
 
éq 3-1  
[ 
= B D 
U] 
G 
G  
T  
 
with loc 
loc 
loc 
loc 
loc T 
D 
= U 
( 
, v 
,…, U 
, v 
) 
1 
1 
4 
4 
 
 
 
C 
0 

file:///Z|/process/refer/refer/p210.htm (11 of 20)10/2/2006 2:51:49 PM



file:///Z|/process/refer/refer/p210.htm

1 - C 
0 
C -1 
0 
- C 
0 
G 
G 
G 
G 
 
and B = 
 
G 
 
 
 
 
0 
C 
0 
1 - C 
0 
C -1 
0 
- C 
G 
G 
G 
G 
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4 Efforts  
interiors  
 
~ 
That is to say R matrix 8 × 8 which makes it possible to express the components of displacement to the 
four nodes  
in the local reference mark: loc 
loc 
loc 
loc 
loc T 
D 
= U 
( 
, v 
,…, U 
, v 
) 
1 
1 
4 
4 
starting from the components of displacement  
with the four nodes in the total reference mark:  
T 
D = U 
(, v,…, U, v) 
1 
1 
4 
4 
.  
 
R O O O 
 
 
loc 
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~ 
~ 
O R O O 
There are D 
= D 
R with R =  
 
O O R O 
 
 
 
 
O O O R 
 
where R is matrix 2 × 2 of change of reference mark defined into 2) and O matrix 2 × 2 null.  
 
 
The interior efforts in the element of joint are defined by a vector with eight components noted int 
F  
and checking the relation:  
 
E =. 
D 
S 
int 
F  
 
where ES = 
([U]) dl 
 
is energy in the element of joint.  
, 
1 
[ 2] 
(see Doc. of the law of behavior Barenblatt [R7.02.11]).  
 
one a:  
 
([U])  
ES =  
U 
 
, 
1 
[ 2] 
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[U] [] dl 
 
loc 
= 
B D dl 
 
according to the definition of (Doc. [R7.02.11]) and according to [éq 3-1].  
, 
1 
[ 2] 
= 
~ 
 
loc 
~ 
Br D dl 
 
since D 
= D 
R  
, 
1 
[2] ~T T 
= 
R B D dl 
 
 
, 
1 
[ 2] 
 
 
One deduces the interior efforts from them:  
F = 
~ 
RT BT dl  
 
 
 
 
 
 
 
éq 4-1  
int 
,1[2] 
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one can evaluate this integral:  
 
L 
F = 
~ T T 
R B with the weights of the points of Gauss = =.  
int 
G 
G 
G 
1 
2 
G =, 
1 2 
2 
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5 Matrix  
tangent  
 
The term which it is necessary to calculate in the tangent matrix is the derivative of the interior efforts 
by report/ratio  
with displacements (matrix 8 × 8).  
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~ 
The interior efforts are given by: F 
= 
T 
T 
int 
[R B dl  
, 
1 2] 
 
int 
F 
~ T T [U] 
From where  
= 
R B 
dl  
D 
[ ,12] 
[U] D 
 
[U] 
loc 
~ 
~ 
like [U] = data base 
= B D 
R then  
= Br  
D 
 
 
 
and one obtains:  
F 
~ 
 
T 
T 
~ 
int 
 
 
= 
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R B 
Br dl  
 
 
 
 
 
 
 
éq 5-1  
 
, 
1 
[ 2] 
D 
[U] 
F 
~ 
 
T 
T  
 
~ 
that one can evaluate:  
int = R B 
B R  
G 
G  
 
 
 
G 
D 
G =, 
1 2 
[ 
U] G 
L 
with the weights of the points of Gauss = = 
.  
1 
2 
2 
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Despite everything the potential of the linear isoparametric quadrilateral element for calculation by 
finite elements,  
the application of a traditional bilinear formulation to define its field of displacement led to  
poor results. If under integration of the element allows to improve its performances, it makes  
however to appear parasitic modes which make calculations unstable. This document shows them  
principal stages of a method of stabilization of calculations named “assumed strain method” and 
explains  
the way in which it was established in code Code_Aster the computer. Many results resting on  
the stabilized element are compared and commented on in order to conclude on the performances 
from the method.  
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1  
Setting at fault of the element 2D QUAD4:  
 
In order to propose the need for a more powerful plane element, we carried out calculations  
being based on two cases tests, which make it possible to highlight blockings of the element  
isoparametric quadrilateral with 4 nodes.  
 
1.1  
Case test n°1  
 
The first series of calculations results from the modeling of a beam fixed and subjected to an effort  
of shearing fsy at its loose lead [Figure 1.1-a]. This beam has the characteristics  
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material following: E = 100, = 0.4999. This case test takes as a starting point that written in [bib4] 
(assumption of  
plane deformations).  
 
 
 
y  
 
Boundary conditions:  
 
 
 
Displacements on AD:  
 
 
D  
C  
 
Ux (A) = Uy (A) = 0  
 
Ux (D) = 0  
 
fsx = 8*L*y/B ²  
 
fsx  
 
X  
O  
 
fsy  
B  
Efforts on BC:  
 
 
 
Fy = fsy = 1 - 4*y ² /B ²  
 
Fx = 0  
 
 
With  
 
B  
 
 
Geometry:  
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L  
 
L = 100  
 
B = 50  
Appear 1.1-a  
 
 
We carried out this calculation seven times by multiplying the number of meshs on each edge by two  
each time:  
 
 
 
Etc  
 
 
 
 
1  
2 X 2  
4 X 4  
 
 
(A Number of meshs on an edge)  
 
 
With the exit of each calculation, we brought the arrow out of C with that closer to the solution  
“exact” of the theory of the beams of Timoshenko.  
 
[Figure 1.1-b] shows us that the convergence of calculation towards the theoretical solution is largely  
insufficient taking into account the number of meshs used for modeling.  
However, by carrying out calculations in plane constraints, we note that the results of  
calculation converge towards the theoretical solution satisfactorily ([Figure 1.1-c], convergence  
quadratic).  
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Convergence of the Q4 element  
(Deformation planes) 
Plane deformations 
Exact solution (Tim bone henko) 
4,5 
4 
3,5 
3 
He Vc  
2,5 
ê 
C 
Fl 
2 
1,5 
1 
0,5 
0 
0 
10 
20 
30 
40 
50 
60 
70 
NR 
 
Appear 1.1-b: convergence of plane element QUAD4 in deformation  
 
CONVERGENCE OF the Q4 ELEMENT 
(Plane Constraints) 
Exact solution (Timoshenko) 
5 
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4,5 
4 
3,5 
ARROW Vc  
3 
2,5 
0 
2 
4 
6 
8 
10 
NR 
 
Appear 1.1-c: convergence of element QUAD4 in plane constraints  
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This request is said to dominant inflection. Through the first series of calculations, we put  
in obviousness impossibility for the QUAD4 of representing the modes of deformation in inflection  
[Figure 1.1-d] in plane deformation and for a coefficient close to 0,5. This results in one  
excessive rigidity of the element due under the terms of shearing of the operator discretized gradient.  
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QUAD4  
QUAD8  
 
(important shearing)  
 
 
Appear 1.1-d  
 
 
1.2  
Case test n°2  
 
The second series of calculation is based on the modeling of a notched sample [Figure 1.2-a]  
solicited by an imposed displacement.  
Imposed displacement: Dy = 1  
 
 
Characteristics material:  
 
 
 
= 0.4999  
5  
 
E = 200 Gpa  
 
 
 
 
y = 0,1  
 
AND = 10  
 
 
Criterion of plasticity:  
5  
 
 
 
Von Mises, plasticity with 
linear isotropic work hardening.  
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1  
 
 
 
E 
 
T  
 
y  
 
 
E  
 
 
 
Appear 1.2-a  
 
For the posting of the results, each QUAD4 was cut out in 4 zones containing each one a point  
of Gauss. It is the value of the constraint in this point which we post.  
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Reference solution: QUAD8_INCO  
(element treating the incompressibility perfectly).  
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yy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution QUAD4:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yy  
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The results show that the QUAD4 converges only at the price of strong oscillations of constraints with  
centre of each element. If these oscillations make it possible the element to put in agreement its  
nodal displacements and its plastic deformation with constant volume, they return the results  
unrealistic persons.  
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2  
Under integration of the QUAD4  
 
Despite everything the potential of the isoparametric quadrilateral element for calculation by 
elements  
stop, the application of a traditional bilinear formulation to define its field of  
displacement, leads to poor results. This is explained by various reasons:  
 
· it has an excessive rigidity (“lock”), at the time of a request of which the cross-bending part  
is important.  
· the traditional bilinear formulation of the field of displacement is very sensitive to the distortion  
grid and presents severe “  
locking  
” when one applies it to a material  
incompressible.  
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A solution with these problems of numerical blocking consists in calculating the matrix of rigidity by  
the intermediary of a reduced integration. The principle of this method is to consider at the time of  
numerical diagram of integration less points of integrations than one usually should not any for  
to evaluate the matrices of exact rigidity of the element. On the basis of isoparametric element 
QUAD4  
[R3.03.02], one modifies the number of points of integration as well as the weight and the co-
ordinates of these  
the last, to create the under-integrated element which we will name in this document: QUAS4  
 
 
 
 
 
 
 
 
 
 
 
 
QUAD4 QUAS4  
 
 
 
A number of points of integration: 4  
 
A number of points of integration: 1  
 
 
 
Weight of each point: 1  
 
Weight of the point: 4  
 
 
 
 
 
 
1 
1 
 
Co-ordinates: (X, y) = (0,0)  
Co-ordinates: (X, y) = (+ 
, +/- 
)  
3 
3 
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2.1 Formulation  
 
In the center, the operator discretized gradient used to calculate the matrix of rigidity is form  
following:  
T 
B 
0  
X 
 
B = Bc =  
T 
0 
B y  
 
 
 
 
 
 
 
éq 2.1-1  
T 
T  
B y B X  
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With  
T 
 
bx = 
NR 
NR, X (0) = 
= = 0 
X 
éq  
2.1-2  
T 
 
by = 
NR 
NR, y (0) = 
= = 0 
y 
 
and NR represents (N1, N2, N3, N4), the vector of the functions of form. Let us recall that the vectors  
B represent the simplest shape of the operator discretized gradient under-integrated introduced by  
Hallquist [bib1] and which is based on the evaluation of derived from the isoparametric functions of 
form with  
the origin of the reference frame (,)  
 
That is to say:  
 
btx = 1 ([y2 - y4), (y3 - 1 
y), (y4 - y2), (1 
y - y3)] = Constant on 
 
 
element 
2A 
 
éq  
2.1-3  
bty = 1 ([x4 - x2), (1 
X - x3), (x2 - x4), (x3 - 1 
X)] = Constant on 
 
 
element 
2A 
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With = (1 2). (x2 - x4) (.y3 - y) 
1 + (x3 - X) 
1 * (y4 - y2): Surface of the element  
The matrix of rigidity is written:  
 
T 
K E = Kc = A. Bc. C. Bc éq  
2.1-4  
C being:  
 
· is the elastic matrix of behavior for calculations in elasticity  
· is the tangent matrix for the plastic designs. Let us note that during such calculations, it is  
the integration of the law of behavior at the point of Gauss (in the center in our case) which  
determine the value of the coefficients of C.  
 
Finally, the internal forces are written:  
 
T 
F 
= Ke. 
int 
U = Bc. C éq  
2.1-5  
U: Vector of nodal displacements.  
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2.2  
Failure of calculation in Aster: parasitic modes  
 
The calculations launched on the case test n°1 with such an element fail. The stage of the calculation 
which consists with  
to reverse K E to determine displacement nodal cannot be crossed. Indeed, in the center,  
stamp rigidity is singular. By posting the core of K E, we note that his dimension  
is not any more three but five. Two vectors were added to the core and returned the inversion of  
stamp impossible rigidity. Appearance of these two additional vectors in the core of  
K E is directly related to the fact that we choose the center like only point of integration.  
In other words, there are two fields of nodal displacements others that the fields of displacement  
corresponding to the rigid movement of solid cancelling the internal forces. These modes represent  
modes out of sand glass of the QUAD4 [Figure 2.2-a]. Thereafter, one of the stages of stabilization 
will consist  
to enrich the operator gradient discretized in order to return K E invertible.  
 
 
 
 
 
 
 
Modes of rigid solid  
Modes out of sand glass  
 
(hourglass modes)  
 
 
Dim de Ker [K 
 
E] = 3 + 2  
 
Appear 2.2-a  
 
2.3  
Graphic interpretation of the problem involved in under integration  
 
The problem of the under-integration of the QUAD4 is related to its modes of nodal displacements out 
of sand glass  
(request in inflection). [Figure 2.3-a] shows us that, on such modes, the co-ordinates of  
center remain unchanged. If this is in agreement with the theory of the beams (i.e in pure inflection, 
xx =  
0 on neutral fibre), the classical theory of the finite elements do not make it possible to differentiate 
deformed state  
and not deformed of an element in such a case. Therefore these modes are also called  
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modes with null energy, which on the level of Code_Aster, make calculations unrealizable.  
 
 
 
 
 
 
 
 
Appear 2.3-a  
 
This problem originates in a value of the nonsignificant deformation in the center of  
deformation of the QUAD4. The next chapter will describe the step which will allow us  
to calculate the deformation of the QUAD4 whatever the modes of displacement of these nodes.  
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3  
Stabilization of the QUAD4 at a point of Gauss  
 
The stabilization of the QUAS4 takes place in two stages:  
 
1) To enrich the operator gradient discretized Bc and to thus allow to calculate the energy of  
deformation related to the modes of displacements out of sand glass (hourglass modes);  
2) To interpolate a field of deformation/constraints allowing to account for  
deformation/of the constraints on the whole of the element while integrating the QUAD4 into  
center (assumed strain stabilization).  
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3.1  
Variational principle of the problem  
 
That Ci is drawn from the weak form of the variational principle of Hu-Washizu:  
 
( 
T 
, &,) = 
&.  
D + 
T 
 
. 
 
T 
ext. 
& D 
D 
& 
F 
éq  
3.1-1  
 
 
 
(S -) - 
. 
= 0 
 
 
 
With  
& (X, T) = B (X) .d& (T)  
 
Stabilization “Assumed strain” is based on the fact that the postulated constraint is selected  
orthogonal with the difference between the symmetrical part of the gradient speed and the rate of 
deformation.  
Consequently, that enables us to write:  
 
T 
D 
&. 
T 
B.  
D - 
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T 
D 
&. ext. 
F 
= 0 
 
 
E 
 
And thus that:  
F int =  
T 
B. (&)  
D 
 
E 
 
 
3.2  
Enrichment of the operator discretized gradient  
 
To enrich the operator gradient discretized Bc consists in making a new operator B of it while adding 
to him  
a third component which, like bx and by, is a vector of IR4. However, like  
the initial operator Bc correctly calculates the gradient of the linear fields of displacement,  
new component must be orthogonal with the latter. Stages of the calculation of this operator  
nouveau riche are detailed in the paragraph [§1.2] of the document joint entitled: “Report  
bibliographical”.  
 
Note: In this report, the new operator B connects the tensor rate of deformation & and it  
vector nodal speeds d&i. This formulation allows us in the continuation of the report of  
to reason in term of increments of displacement, and consequently to deal with problems  
incrémentaux, carried out on several steps of time. For the elastic designs (solutions obtained in  
a step of time) we formulate the problem starting from nodal displacements: the operator B connects  
then tensor of the nodal deformations and displacements ui.  
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The new operator B is based on the expression of the field of displacement of the QUAD4 written by  
Belytschko and Bachrach [bib2]:  
 
ui = (T 
T 
T 
T 
+ X B 
. X + y B 
. y + H) ui  
éq  
3.2-1  
And is written:  
T 
T 
B 
H  
0 
 
X + 
 
, X 
 
B = Bc + Bn =  
T 
0 
B y + 
T 
H, y  
éq  
3.2-2  
T 
T 
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T 
T  
 
B y + H, y  
B X + H, X  
 
With:  
= 1/ [ 
4 T - (tT .x) bx - (tT .y) by], = 1 [ 
4 H - (T 
H .x) bx - (T 
H .y) by] 
1 
btx = 
([y2 - y4), (y3 - y1), (y4 - y2), (y1 - y3)] 
2A 
 
1 
bty = 
([x4 - x2), (x1 - x3), (x2 - x4), (x3 - x1)] 
2A 
H =  
 
 
, are the co-ordinates of reference. ui is the vectors of nodal displacements and H are them  
values taken by the function H with the four nodes.  
T 
D = [ux, uy]  
Let us note what can be expressed directly according to the nodal co-ordinates:  
 
X ( 
2 y3 - y) 
4 + X ( 
3 y4 - y) 
2 + X ( 
4 y2 - y) 
3  
 
 
1 X ( 
3 
1 
y - y)  
4 + X ( 
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4 y3 - y) 
1 + X ( 
1 y4 - y) 
3  
= 
éq  
3.2-3  
4 X ( 
4 
1 
y - y) 
2 + X ( 
1 y2 - y) 
4 + X ( 
2 y4 - y)  
 
1  
X ( 
1 y3 - y) 
2 + X ( 
2 
1 
y - y) 
3 + X ( 
3 y2 - y) 
1  
 
The shape [éq 3.2-2] of the operator B is equivalent to that of the QUAD4. However this writing  
particular of the operator allows to differentiate the terms to be integrated into the center and the 
terms of  
stabilization. It is only while intervening on the value of these terms of stabilization that us  
let us can improve the performances of the element.  
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3.3  
Interpolation of the field of deformation:  
 
The general shape of a field “assumed strain” within a QUAD4 is given by Belytschko and  
Bindeman [bib3]. It is following form:  
 
 
Q E H 
Q E H 
 
 
+ 
 
 
X (center) 
X 1, X + y 2, y 
+ 
 
 
X (center) 
X (stab) 
 
assumed strain 
 
=  
+ Q E H 
Q E H 
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y (center) 
X 2, X + 
 
y 1, y 
=  
+ 
éq 3.3-1  
 
 
y (center) 
y (stab) 
 
2 
+ Q E H 
Q E H 
2 
2 
xy (center) 
X 3, y + y 3, X  
 
+ 
xy (center) 
xy (stab)  
 
 
 
 
With:  
qx =. ux  
qy =. uy 
 
and 1 
E, e2, 3 
E which vary according to the consideration physics of each author [Table 3.3-1].  
Each triplet of values characterizes an element and gives place to a particular interpolation of  
deformation:  
 
Element  
e1 e2 e3  
QUAD4  
1 0 1  
ASMD  
1/2 -1/2 1  
ASBQI  
1 - 0  
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ASOI  
1 -1 0  
ASOI (1/2)  
1/2 -1/2 0  
Table 3.3-1  
Thus we can deduce the expression from the operator discretized gradient rising from the field from  
deformation supposed ((stab)) element. We note this new Bn operator.  
 
 
T 
H X  
0  
, 
 
QUAD4: 
Bn = 0 
T 
, 
H y  
 
T 
T  
, 
H y  
, 
H X  
 
T 
H, X  
- 
T 
H  
 
, y 
 
ASBQI: 
Bn = - 
T 
T 
H, X  
H, y  
éq  
3.3-2  
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0 
0 
 
 
1 
T 
1 
T  
 
, 
H X  
-, hy  
2 
2 
 
ASOI (1/2): 
Bn = - 1 
T 
1 
T 
H 
X  
H y  
2 , 
2 , 
 
 
0 
0 
 
 
 
 
 
Handbook of Reference  
R3.06 booklet: Machine elements and thermal for the continuous mediums  
HT-66/04/002/A  

Code_Aster ®  
Version  
7.2  
 
Titrate:  

file:///Z|/process/refer/refer/p230.htm (4 of 23)10/2/2006 2:51:50 PM



file:///Z|/process/refer/refer/p230.htm

Quadrangular plane element under integrated stabilized  
 
 
Date:  
03/09/04  
Author (S):  
NR. TARDIEU, Key S. LIMOUZI  
:  
R3.06.10-A Page  
: 12/22  
 
 
This writing enables us to test the various elements easily.  
The matrix of rigidity is written then in the following way:  
 
stab 
K E = Kc + K 
 
éq  
3.3-3  
 
With:  
T 
K C = B C B 
 
D 
 
C 
C 
 
= 
A.B 
 
D.C. Bc éq  
3.3-4  
E 
And  
 
K stab = T 
Bc 
 
C Bn D + T 
Bn 
B 
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C C D + 
D T 
Bn 
B 
 
C N D  
 
 
 
E 
E 
E 
 
éq  
3.3-5  
4 
=  
( 
JAC I) (T 
. 
B. C. B (I) 
C 
N 
+ T 
B (I). C. 
N 
Bc + T  
B (I). C. B (I) 
N 
N 
) 
i=1 
 
Finally we calculate the forces intern in the following way:  
 
int 
F 
= B. (C. ((center) + (stab))) 
4 
éq  
3.3-6  
=  
( 
JAC I). (( 
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Bc + Bn (I) 
 
) 
( 
 
. 
 
C (  
. C + stab (I)))) 
i=1 
 
Notes:  
Although the calculation of K stab requires a sum on the four points of Gauss, the integration of  
law of behavior which determines the value of the terms of C, is carried out in the center. In addition, 
them  
equations [éq 3.3-4] and [éq 3.3-6] shows us that calculations remain relatively bulky. One  
solution with this problem (not yet established in Code_Aster) consists in carrying out calculations in  
placing itself in a reference mark turning with the element (cf [§3.4] of the bibliographical report). This 
has  
for advantage:  
 
· to remove the calculation of the cross terms: Bc. C. Bn and Bn. C. Bc;  
· better a treatment of blocking in transverse shearing;  
· a writing of the law of behavior adapted better to the problems including of  
geometrical non-linearities.  
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4  
Integration of the element in Code_Aster  
 
Element QUAS4, has two families of points of Gauss. The first family consists of one  
not being in the center and whose weight is worth four. Elementary calculations are done naturally  
with the first family. The calculated options are identical to that calculated by the QUAD4. One  
thus calculate in the center of the element the internal constraints and variables, as well as the behavior  
tangent. Within the framework of a post treatment, each element presents constant fields.  
 
The second family is identical to that of the traditional QUAD4 and comprises 4 points of Gauss. She is  
used to calculate the matrix of stabilization. To store the forces of stabilization, one adds to  
stress field at the point of Gauss 6 components.  
 
This element is activated by choosing modelings “C_PLAN_SI” or “D_PLAN_SI” in  
AFFE_MODELE for meshs QUAD4. Only calculations in small deformations are possible. It  
remain an important limitation: in version 7.2, two types of stabilization are programmed:  
ASBQI and ASOI (1/2), but are not accessible by a key word in the command file. It  
is necessary to activate them to modify parameter PROJ in routine NMAS2D.  
 
 
5  
Description of the contribution of element QUAS4  
 
In order to evaluate the contribution of element QUAS4, we used it to carry out calculations of the cases 
tests  
number one and two (cf [§3]).  
 
5.1  
Case test n°1 (SSLP106)  
 
Convergence of calculation towards the theoretical solution 
(calculation in elastic strain with = 0,4999) 
ASOI (1/2) 
Timoshneko solution 
QUAD4 and QUAS4 
4,5 
4 
3,5 
Vc 
3 
2,5 
2 
0 
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Among the elements appearing in [Table 3.3-1], only element ASOI (1/2) could be established with  
success. Moreover calculations converge only for the case test of the right beam, modelled by one  
regular grid. Same the calculations carried out on a divergent voluntarily deformed grid  
[Figure 5.1-a].  
 
 
 
 
 
 
 
 
Regular grid  
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Irregular grid  
 
Convergence of calculation  
Divergence of calculation  
Appear 5.1-a  
 
Concerning the calculations carried out on a regular grid, we note a clear improvement of  
results. The theoretical solution is reached with a network of sixty four elements. This us  
reasonably allows to say that the blocking of element QUAD4 disappeared. This test corresponds to  
test SSLP106 of the base of tests of Code_Aster.  
 
5.2  
Case test n°2 (SSNP123)  
 
Recall of the problem: With a mesh of the type QUAD4, calculation reveals the important ones  
oscillations of constraints on the grid. We will compare the exits results of the grid  
QUAD4 with those of grid QUAS4:  
 
Calculation in elasticity in the plan: isovaleurs of  
yy 
 
 
 
 
 
 
 
 
 
 
 
 
 
· QUAD4  
· QUAS4  
 
· = 0,4999  
· = 0,4999  
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Plastic designs in the plan: isovaleurs of  
yy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
· QUAD4  
· QUAS4  
 
· = 0,3  
· = 0,3  
 
 
Each computing time indicated is an average carried out on three launching.  
For the visualization of the results, each QUAD4 was divided into four zones containing each one one  
not Gauss. The QUAS4 as for them are not redivisés.  
The tests carried out are voluntarily severe (near to 0,5). Indeed the goal here is to reach them  
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limits of element QUAD4 in order to note the performances of the new element.  
 
 
5.3 Comments  
 
We note through this series of calculations that the results obtained with elements QUAD4  
comprise strong oscillations of constraints. Results resulting from calculations resting on  
QUAS4 do not have almost any more oscillations. When they appear, they are very localised.  
That it is for the QUAD4 or the QUAS4, displacement calculated with node A are identical.  
Indeed, the operator gradient discretized of the QUAS4 is deduced from the field of deformation of 
the QUAD4  
(cf [éq 3.2-2]). Consequently, that it is with a grid with one or the other of these elements, the 
structure  
have same rigidity.  
 
Taking into account the severity of the test and in order to account to us for the quality of the 
provided results  
by the QUAS4, we carried out calculations being pressed on quadratic meshs such as  
QUAD8, QUAS8 (QUAD8 under integrated with 4 points of Gauss) or the QUAD8_INCO,  
element treating the incompressibility perfectly. The comparison of elements with interpolation  
quadratic with elements with linear interpolation little direction has. Such tests were carried out  
in order to have a reference solution and they allowed us to purely make an assessment  
qualitative on element QUAS4.  
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Results of reference: calculations in elasticity in the plan with quadratic elements  
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· QUAD8  
· QUAS8  
 
· = 0,4999  
· = 0,4999  
 
· Dy (A) = 6,0E-2  
· Dy (A) = 6,01E-2  
 
· Durée of calculation: 5,6 S  
· Durée of calculation: 3,9 S  
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· QUAD8_INCO  
 
· = 0,4999  
 
· Dy (A) = 6,01E-2  
 
· Durée of calculation: 5,5 S  
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Plastic designs with quadratic elements  
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· QUAD8  
· QUAS8  
· = 0,3  
· = 0,3  
· Dy (A) = 1,01E-1  
· Dy (A) = 1,01E-1  
· Durée of calculation: 17 S  
· Durée of calculation: 13,1 S  
· QUAD8_INCO  
· = 0,4999  
· Dy (A) = 1,01E-1  
· Durée of calculation: 34,4 S  
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A refinement of the grid for each calculation at summer carried out. This refinement consists in 
doubling it  
a many meshs present on each stop notch. We summarize the results in  
following tables:  
 
Elastic design Ground ref.: Depl.  
deformation plan  
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6,01E-02  
 
 
 
 
Node A  
= 0,4999  
 
 
 
 
 
 
 
Numbers  
504  
2016  
8064  
Meshs  
 
Time computing Depl Node A Time computing Depl Node A Time computing Depl Node A 
QUAD8_INCO  
5,5 6,01E-02  
18 6,01E-02  
 
 
QUAD8  
5,6 6,00E-02  
15,5 6,01E-02  
 
 
QUAD8 IF  
3,9 6,01E-02  
10,2 6,01E-02  
 
 
QUAD4  
3,3 2,70E-02  
8,4 3,60E-02  
 
 
QUAS4  
2,72 2,70E-02  
5,77 3,60E-02 17,3  
4,77E-02  
 
Table 5.3-1: Calculations in elasticity = 0,4999  
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Calculation  
deformation  
Ground ref.: Depl.  
plane plastic  
Node A  
1,01E-01  
 
 
 
 
= 0,3  
 
 
 
 
 
 
 
Numbers  
504  
2016  
8064  
Meshs  
Depl Node  
Depl Node  
 
Time computing Depl Node A Time computing 
Computing time  
With  
With  
QUAD8  
17 1,01E-01 75,1 1,01E-01  
 
QUAD8 IF  
13,1 1,01E-01 62,8 1,01E-01  
 
QUAD4  
6,6 9,32E-02 22 1,00E-01  
 
QUAS4  
6,5 9,18E-02 17,33 1,00E-01 133,2 1,01E-01  
Table 5.3-2: Plastic designs = 0,3  
 
Calculation  
deformation  
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Ground ref.: Depl.  
plane plastic  
Node A  
1,01E-01  
 
 
 
 
= 0,4999  
 
 
 
 
 
 
 
Numbers  
504  
2016  
8064  
Meshs  
Depl Node  
 
Time computing Depl Node A Time computing 
Computing time Depl Node A 
With  
QUAD8_INCO  
34,4 1,01E-01 240,8 1,01E-01  
 
QUAD8  
21,7 8,84E-02 88,17 1,01E-01  
 
QUAD8 IF  
20,6 1,01E-01 87,83 1,01E-01  
 
QUAD4  
5,1 2,06E-02 13,07 2,25E-02  
 
QUAS4  
4,28 2,06E-02 9,87 2,25E-02 43,75 2,79E-02  
 
Table 5.3-3: Plastic designs = 0,4999  
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In addition, we traced the value of the constraint yy along a segment AB crossing the notch  
for a basic grid with 504 meshs.  
 
 
 
 
 
 
 
 
 
 
 
 
B  
With  
 
 
 
 
 
 
Value of the constraint along AB  
 
 
Plastic designs (= 0,3) 
 
 
 
350 
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300 
 
 
250 
 
 
 
] 200 
 
Pa 
 
[ 
1M 150 
 
[ 
 
yy  
 
100 
 
 
50 
 
 
 
0 
 
0 
1 
2 
3 
4 
5 
6 
 
-50 
 
 
X-coordinate 
 
 
 
QUAS4 
QUAD4 
QUAD8 
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QUAS8 
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Value of the constraint along AB  
 
 
Plastic designs (= 0,4999) 
 
 
1500 
 
 
 
1000 
 
 
 
500 
 
 
 
yy [Mpa] 
0 
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0 
1 
2 
3 
4 
5 
6 
 
-500 
 
 
 
-1000 
 
X-coordinate  
 
 
 
QUAS4 
QUAD4 
QUAD8_INCO 
QUAS8 
QUAD8 
 
 
Comments on the results  
 
Qualitative aspects:  
 
· In spite of the richness of the field of displacement of mesh QUAD8, the majority of the results  
oscillations present.  
· In spite of under integration of the QUAS8, the oscillations appears on meshs QUAS8  
for certain plastic designs.  
· Whatever the element used (except for the QUAD8_INCO), under integration remains  
essential, particularly for the materials of which approaches 0,5.  
· These calculations lead us to establish the following report: the QUAS4 remains stable with respect 
to  
oscillations whatever the parameters of calculation used.  
 
Quantitative aspect:  
 
We always note that the value of the displacement of node A resulting from a grid QUAS4 remains  
between 3 and 5 times weaker than the reference solution (slow convergence). This value remains  
nevertheless identical to that calculated with a grid QUAD4.  
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The profiles traced along the notch enable us to affirm that the values of constraints  
calculated with a grid QUAS4 are of much better quality than those calculated with one  
grid QUAD4. By taking the computing times of the QUAD4, mesh QUAS4 allows a reduction  
substantial of the duration of calculation:  
 
 
Saving of time (time of ref. = time QUAD4)  
Grid  
 
504  
2016  
= 0,3  
26% 35%  
Elasticity  
= 0,4999  
18% 31%  
= 0,3  
16% 21%  
Plasticity  
= 0,4999  
18% 24%  
 
Let us notice in the passing that the savings of time seem to increase with the number of meshs. In  
plasticity in particular, this saving of time depends as a large majority on the iteration count of 
Newton  
necessary to the convergence of calculation within each step of time.  
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6 Conclusions  
 
In elasticity as in plasticity, that it is for materials of which is worth 0,3 or 0,5, the new one  
element QUAS4 remains stable and the always realistic results, without any oscillations of constraints.  
This, we noted it, is far from being the case for the QUAD4. The stability of this new element  
vis-a-vis cases tests as severe as those presented in this report/ratio is comparable with that of  
quadratic element QUAD8 under integrated.  
 
On the other hand, this element with the convergence of a linear element in terms of a number of DDL. 
It is necessary  
thus to net with a sufficient smoothness to collect the gradients of constraints of the solution  
sought. This refinement necessary must be put out of balance with the saving of time induced by  
under-integration.  
 
On the treated examples, the QUAS4 allowed a saving of time of significant calculation of about 20%  
on average for laws of elastic and elastoplastic behaviors. Let us note that these laws are  
relatively inexpensive to integrate. Savings of time much more important are awaited  
for laws more difficult to integrate.  
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1 Introduction 
One is interested in what follows to the mechanical modeling of mean structures to average surface 
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of particular geometry: 
· hulls with symmetry of revolution around the axis 0y, 
· hulls with invariant unspecified sections along the axis 0z. 
More particularly, one limits oneself if mechanical parameters (materials, loadings) 
are independent of a direction of space (the circumference for the hulls of revolution, the axis 0z  
for hulls C_PLAN and D_PLAN). 
For the resolution of chained thermomechanical problems, one must use before the finite element 
of thermal hull describes in [R3.11.01] according to case's in its axisymmetric version, or its version 
plane invariant according to 0z. 
One gives hereafter first of all a progress report on the description of the mechanical model: 
kinematics, law of 
thermoelastoplastic behavior. Then one presents the selected finite element, the interpolation and 
method of integration. 
One gives finally some numerical results of application, by comparison with solutions 
analytical. 
2 Problem  
continuous 
The geometry is defined in a unidimensional way: 
· by the meridian line in the plan (0xy) for a hull of revolution, 
· by the section of the hull in the plan (0xy) for an invariant hull in Z. 
In this last case, by analogy with the two-dimensional problems, one considers two cases: 
· the case “forced plane”, i.e. that of a free hull according to the direction 0z, or 
that of an arc in the 0xy plan, 
· the case “plane deformations”, i.e. when displacements according to the direction 0z 
are null. 
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Description of the geometry, kinematics 
One considers a hull of revolution of axis 0y, or an invariant hull according to the axis 0z. For all 
two, average surface is defined by the curve = AB in the 0xy plan: is a meridian line 
for the hull of revolution, or the section for the invariant hull according to 0z. 
y 
O 
X 
Z 
Appear 2.1-a: Hull of revolution 
y 
T 
B 
N  
m  
 
!! 
 
E 
S 
y O 
· 
E 
X 
With 
Z  
ex 
Appear 2.1-b: Meridian line 
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y 
O 
X 
Z 
Appear 2.1-c: Hull with invariant section according to 0z 
 
The curve = AB is parameterized by the curvilinear X-coordinate S. One will note the derivative 
partial S 
by: , S. 
In a point m of one defines the local reference mark (N, T, ez) by: 
Om 
T = 
, S; N T = ez. 
Om, S 
One notes also the angle such as: 
N = cos E 
 
 
X + sin E Y. 
The curve of is defined by: 
1 = - n.t =  
R 
, S 
, S 
In the case of the hull of revolution, the position on the parallel passing by m is noted.  
tangent vector on this parallel is E. For the meridian line located in the 0xy plan, = 0 and 
E 
= - E 
 
 
Z. The radius of curvature of the parallel in m is: 
R 
R =  
where R is X-coordinate X of the point m of. 
cos 
On the other hand, for an invariant hull according to Z this parallel is a right generator, directed 
according to ez, 
of null curve. 
The transformations kinematics of the hull are defined by displacement U of the point m of 
surface average, as by rotation S of normal N at the point Mr. the vector U can be 
expressed in local base: 
U () = U () .T () + ( 
W) .n 
S 
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S 
S 
S 
(S). 
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Or in Cartesian base: 
U () = U (S) E + U (S) E 
S 
X 
X 
y 
y. 
The deformations of the hull associated with this transformation (U, S) are determined by: 
· a membrane tensor of deformation E, 
· a tensor of variation of curve K, 
· a vector of deformation of distortion tranverse. 
This last appears in the theory of hulls of HENCKY-MINDLIN-NAGHDI and not in that of 
COIL. According to displacement U and rotation S, these sizes are expressed (cf [bib1]): 
Case 
Hull of revolution 
Invariant hull according to 0z 
U expressed in 
W 
W 
base local 
E = U 
ss 
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S +  
, 
E = U +  
R 
ss 
, S 
R 
(N, T, ez) 
1 
E  
= (- U sin + W cos) 
R 
Kss = S 
, S 
Kss = S 
, S 
sin 
K = - 
 
R 
S 
U 
U 
S = S + Ws -  
, 
S = + W -  
R 
S 
, S 
R 
U expressed in 
E = U 
ss 
y, S cos - ux, S sin  
E = U 
ss 
y, S cos - ux, S sin  
base total 
( 
U 
E, E 
, E 
E 
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X 
= 
X 
y 
Z 
) 
 
 
R 
Kss = S 
, S 
Kss = S 
, S 
sin 
K = - 
 
R 
S 
S = S + ux, S cos + uy, S sin 
S = S + ux, S cos + uy, S sin 
Note: 
The change of direction of the curvilinear X-coordinate S does not modify the values of: 
S, Ess 
E 
, 
, 
but the sign changes of,  
U,  
W,  
R,  
K,  
K 
ss 
. 
Within the framework of the theory of COILS, the condition S = the 0 (normals with the hull remain 
it afterwards 
deformation) results in a direct relation between rotations S and the slope W, S. Them 
components of the tensor variation of curve are according to displacement in the local base:  
U 
R 
K = - W 
, S 
+  
- U 
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, S 
ss 
ss 
 
, 
R 
R2 
sin  
U 
K 
 
=  
W 
 
-  
R 
, S 
 
 
 
R  
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If displacement is expressed in total base: 
1 
K  
=  
U 
 

file:///Z|/process/refer/refer/p240.htm (11 of 17)10/2/2006 2:51:51 PM



file:///Z|/process/refer/refer/p240.htm

sin - U 
cos - U 
 
cos  
- U 
ss 
 
sin 
R (X, S 
y, S 
) X, ss 
y, ss 
sin 
K =  
(U cos + U 
X S 
y 
S sin 
, 
, 
) 
R 
It is noticed that the expression of the variations of curve according to displacement in theory of 
COIL is rather complicated and that it utilizes derivative second. If one is required 
interpolation conforms i.e. here C1, this requires the use of finite elements of high degree. 
The tensors E, K 
,  
allow to express the three-dimensional deformation in the thickness. 
H H 
On [Figure 2.1-d], one indicates by x3 the position in the thickness -,  
compared to fibre 
 
2 2 
average, at the point m, of curvilinear X-coordinate S on. 
S 
!! 
 
T  
 
x3 
N  
!! 
 
m  
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H 
+ 
2 
R 
H 
- 2 
 
Appear 2.1-d 
In a point thickness, displacement is expressed in total reference mark: 
U (S, X)  
3 
= (U (S)  
-  
(S) .x  
sin 
3 
(S) 
) .e + ( 
U (S)  
+ (S) .x cos 
3 
(S 
X 
S 
X 
y 
S 
)).ey 
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Page: 
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In order to take account of the variation of metric in the thickness (due to the curve of surface 
average), one defines the functions: 
X 
X 
 
3 
3 
S (x3) = 1 +  
; (x3) = 1 +  
.cos 
R 
R 
For a sufficiently thin hull, this correction is negligible: 
S  
1 
 
 
;  
 
 
1 
In practice this correction carried out if MODI_METRIQUE: “YES” in AFFE_CARA_ELEM 
[U4.42.01] is useless if the reports/ratios H R and H R, when they exist, are lower than 1 
 
15. 
In theory of HENCKY-MINDLIN-NAGHDI, the components of the tensor of deformation are: 
 
1 
 
ss (S, x3) =  
(Ess + X K 
3 ss) 
S 
 
 
1 
 
(S, x3) =  
(E + x3  
K)  
 
(only in the case hull of revolution) 
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1 
sx 
= 
3 (S, x3)  
 
 
2 
S 
 
S 
2.2 Balance  
thermoelastoplastic 
It is considered that the material constitutive of the hull is thermoelastoplastic isotropic. One makes 
the usually allowed assumption that the transverse normal constraint is null: X X 0. The law of 
3 3 
behavior most general is written then: 
 
HT 
 
 
 
11 
11 
C 11 
11 
C 22 
0 
11 - 11 
 
 
 
 
 
HT 
22 = C2211 
C2222 
0 
22 - 22  
 
 
 
 
1 
0 
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0 
X  
 
11 
C X X 1 
 
3 
3 3 
3 
X 
where C (, µ) of Cijkl components is the local matrix of behavior in plane constraints and µ 
represent the whole of the internal variables when the behavior is nonlinear. In the continuation 
index 1 makes reference to the curvilinear X-coordinate and 2 with or Z. With the three-dimensional 
deformations 
defined above, one associates the components of the tensor then forced: 
· in the case of a hull of revolution: 
 
=  
 
HT 
HT 
ss 
Cssss (ss - 
+  
ss) 
Css (- 
) 
 
 
=  
 
HT 
HT 
 
 
C ss (ss - ss +  
) 
 
C 
( - ) 
 
sx = C 
ssx 
X sx  
3 
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3 3 
3 
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· in the case hull invariant according to direction Z and free in Z (“forced plane”): 
 
C 
C 
 
 
sszz zzss 
HT 
ss = (Cssss - 
) (ss - ss) 
Czzzz 
 
 
zz = 0 
 
sx = C 
ssx 
X sx 
3 
3 3 
3 
 
· in the case hull invariant according to direction Z and blocked in Z (“plane deformations”): 
 
=  
 
HT 
ss 
Cssss (ss - ss) 
 
 
=  
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HT 
zz 
Czzss (ss - ss) 
 
sx = Cssx X sx 
3 
3 3 
3 
One draws the expression from it from the elastic energy of deformation, which one will deduce the 
matrix from rigidity in 
function of the kinematics of hull seen in the paragraph [§2.1]: 
· in the case hull of revolution: 
1 
2 H 
 
/2 
W él = 
2 
2 
 
 
 
( 
) 
 
 
 
 
2 
2 
 
 
 
 
 
1 . 
 
 
2  
 
0 
- /2 [Cssss ss + C 
+ Css + C ss ss 
+ Cssx X sx 
+ 

file:///Z|/process/refer/refer/p250.htm (2 of 34)10/2/2006 2:51:51 PM



file:///Z|/process/refer/refer/p250.htm

- rdsd dx 
H 
3 3 
3] (S 
) 
3 
 
· in the case invariant hull according to Z, in “plane constraints”: 
h/2 
1  
 
C 
C 
 
=  
 
W él 
sszz zzss 
 
(C 
 
 
2 
2 
ssss - 
) ss + 2Cssx X  
.dsdx 
 
3 3 
sx 
S 
3 
2  
C 
3 
 
- 2  
zzzz 
H 
 
· in the case invariant hull according to Z, in “plane deformations”: 
H 
1  
/2 
W él = 

file:///Z|/process/refer/refer/p250.htm (3 of 34)10/2/2006 2:51:51 PM



file:///Z|/process/refer/refer/p250.htm

2 
 
 
 
 
2 
2 
 
. 
2  
 
- /2 [Cssss ss + Cssx X 
3 3 
sx 
S dsdx3 
H 
3 ] 
Note: 
In thermoelasticity, if one notes E the modulus YOUNG and the Poisson's ratio, one a: 
E 
E 
E 
C 
= 
; C 
= 
I (, J 
iiii 
iijj 
) {1, } 
2; C 
= 
1 - v2 
1 - v 
X X 
2 
11 3 3 
1 + v 
Handbook of Reference 
R3.07 booklet: Machine elements on average surface 
HI-75/00/006/A 

Code_Aster ® 
Version 

file:///Z|/process/refer/refer/p250.htm (4 of 34)10/2/2006 2:51:51 PM



file:///Z|/process/refer/refer/p250.htm

5.0 
Titrate:  
Axisymmetric thermoelastic hulls and 1D 
Date:  
06/12/00 
Author (S): 
P. MASSIN, F. VOLDOIRE, C.SEVIN 
Key: 
R3.07.02-B 
Page: 
10/32 
The following sizes are defined: 
· the membrane rigidity of a hull of revolution: 
[ 
H 
2 + - 1  
C 
C  
C] 
S 
ssss 
ss 
=  
.  
dx 
ij 
 
; who is worth: 
 
 
 
C 
C 
 
3 
 
- h/2 
I 
J 
 
ss 
 
 
Eh 1  
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1 
2 
-  
in elasticity and absence of correction of metric in the thickness; 
1 
 
 
· the rigidity of coupling membrane-inflection of a hull of revolution: 
H 
[ 
2 
+ -1 C 
C  
B] =  
X 
S 
ssss 
ss 
. 
.  
dx 
ij 
3  
 
 
, which is null in elasticity and in 
H 
 
C 
C 
3 
 
 
I 
J 
- 
 
ss 
 
 
2 
absence of correction of metric in the thickness; 
· the rigidity of inflection of a hull of revolution: 
H 
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[ 
2 
+ - 1 C 
C  
D]  
= 
x2 
S 
ssss 
ss 
.  
.  
dx 
ij 
3 
 
 
, which is worth: 
H 
 
C 
C 
3 
 
 
I 
J 
- 
 
ss 
 
 
2 
Eh3 
1  
2  
 
12 1 
( - )  
in elasticity and absence of correction of metric in the thickness; 
1 
 
 
· the transverse rigidity of distortion of a hull of revolution: 
H 

file:///Z|/process/refer/refer/p250.htm (7 of 34)10/2/2006 2:51:51 PM



file:///Z|/process/refer/refer/p250.htm

2 
+ - 1 
G 
S 
 
= 
 
 
. C 
dx 
sx 
, which is worth: 
H 
ssx X 
3 
3 
2 
3 3 
 
- 
S 
2 
Eh 
1  
+ in elasticity and absence of correction of metric in the thickness. 
For an invariant hull according to direction Z, one considers in these expressions only the terms 
ij = ss; moreover one must replace there (S + -) 
1 by S: the coefficients thus are defined 
C D, B D 
, D D 
C 
C 
C 
ss 
ss 
ss 
and C, B 
, D 
ss 
ss 
ss 
for the case, respectively, plane deformations or of 
plane constraints. In elasticity, the coefficients DC, B C 
, Cd. 
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ss 
ss 
ss 
, are the products of the coefficients 
C D, B D 
, D D 
ss 
ss 
ss 
by 1 
2 
-. Lastly, the coefficient of transverse rigidity of distortion Gsx is 
3 
identical for three modelings to the correction of metric near. 
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One can thus express elastic energy according to the tensors of deformations of hull: 
E, K 
,  
by: 
· for a hull of revolution: 
1 
2 
W él = 
2 
 
2 
2 
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2 
2 
2 
2 0 [Css Ess + Bss Ess Kss + Dss Kss + C E 
+ B E 
K 
+ D K 
 
 
+ 2 (Cs E 
ss E + Bs (E 
 
ss K + E 
K 
ss) + Ds K 
ss. K) 
Gsx3 2  
+ 
S r.ds.d 
2 
 
 
· for an invariant hull according to Z in “plane constraints”: 
1  
Gsx 
 
W él 
C 
2 
C 
C 
 
=  
C 
 
2 
3 
2 
ss E ss + 2Bss E ss. Kss + Dss Kss +  
S .ds 
2  
2 
 
· for an invariant hull according to Z in “plane deformations”: 
1  
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Gsx 
 
W él 
D 
2 
D 
D 
 
=  
C 
 
2 
3 
2  
ss E ss + 2Bss E ss. Kss + Dss Kss +  
S .ds 
2  
2 
 
For these expressions, it is necessary to add the potential associated with the thermal stresses, which will 
be one 
contribution to the second member (whom one will express below in total reference mark): 
· in the case hull of revolution: 
2 H 
 
/2 
( 
Lth 
réf 
) = 
 
 
 
 
 
 
 
 
T - T 
C 
+ C 
+ C 
+ C 
rd dx ds 
V 
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3 
0 
- H [( 
) (ssss ss) ss (ss 
) )] 
 
2 
expression which for an isotropic elastic behavior becomes: 
2 
H 
/2  
sin 
 
HT 
E 
réf vx 
 
 
( 
L 
 
 
 
3  
 
 
V) = 
 
 
sin 
cos 
 
 
(T - T) - vx, S 
+ vy, S 
+ X 
S, S - 
S 
rd dx ds 
1-  
 
R 
 
 
 
R 
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3 
 
0 
- h/2  
 
 
· in the case invariant according to Z in “plane constraints”: 
H 
/2  
 
 
 
HT 
réf 
CsszzCzzss 
( 
L 
 
V) = 
 
(T - T) Cssss - 
ss dx ds 
 
 
C 
3 
 
 
- /2  
zzzz 
 
H 
 
expression which for an isotropic elastic behavior becomes: 
h/2 
HT 
 
réf 
( 
L V) =  
 
sin cos 3 
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E T - T 
- v, 
+ v, 
+ X 
dx ds 
3 
- 
, 
h/2 [ 
( 
) (X S 
y S 
S S)] 
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· in the case invariant according to Z in “plane deformations”: 
H 
 
/2 
Lth 
réf 
( 
=  
 
T - T 
C 
dx ds 
V) 
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3 
- /2[ ( 
) ssss ss 
H 
] 
expression which for an isotropic elastic behavior becomes: 
H 
 
/2 
HT 
 
E 
réf 
 
( 
L 
 
 
3 
V) =  
 
(T - T) 
1 
(- vx, ssin +vy, scos + X S, S) dx 
ds 
 
 
3 
 
- 
 
/2 - 
H 
 
 
In these three expressions, one deliberately neglected the correction of metric in the thickness 
(terms in S, seen for rigidity). Moreover the temperature T which appears is defined by 
thermal model of hull with three fields (cf [R3.11.01]): 
 
X 2 
 
X  
X  
X  
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X  
T (S X) = T m (S) 
3 
1- 
 
T S (S) 3 
3 
1 
T I 
,  
. 
 
 
(S) 3 
 
1 3 
3 
 
 
H + 
+ 
2h  
H + 
- 
+ 
2h  
H 
 
 
 
 
From the whole of these expressions, one deduces the tensors from generalized efforts NR and M 
(efforts 
normal and bending moments) associated the generalized deformations E and K by the principle of 
virtual work. They are related to the tensor of the three-dimensional constraints by: 
h/2 
NR 
=  
dx 
 
- H  
/ 
3 
2 
h/2 
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M 
=  
X.  
3  
dx 
 
- H 
 
/ 
3 
2 
(where one neglected the variations of metric in the thickness). 
Note: 
Transverse energy of shearing 
The model of hull presented above, said HENCKY-MINDLIN-NAGHDI, rests on one 
kinematic assumption: the parameters W and S indicate the normal displacement of the point 
m of average surface and the rotation of normal vector N. 
One also frequently finds the model known as of REISSNER which rests on an assumption 
statics of the distribution of stresses shear transverse. Parameters 
kinematics deduced W and S in this model are weighted averages in 
the thickness of normal displacement and local rotations. If one wishes to place oneself in it 
tally, it is enough to affect the coefficient = 5/6 at the end of transverse energy of shearing 
(in 2s). (cf [bib7], [bib9]). 
Lastly, if one wants, for a thin hull, to be located within the framework of the model of 
LOVE-KIRCHHOFF, one can neutralize the energy of shearing with a great value of 
(which penalizes the condition S = 0), for example 106 H/R, where H is the thickness and R 
a characteristic radius of curvature or a distance characteristic of the loadings: 
(cf [bib 2]). In practice the user can inform the value of under key word A_CIS of 
order AFFE_CARA_ELEM [U4.42.01]. 
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3  
Formulation of the finite element. Discretization 
3.1  
Description of the selected finite element 
3.1.1 Motivations 
The choice of framework HENCKY-MINDLIN-NAGHDI to describe the kinematics of hull, presented 
to 
paragraph [§2], led to expressions of the deformations where the derivative are limited to order 1, 
contrary to the model of LOVE-KIRCHHOFF. This offers the advantage of being able to use an element 
finished of a nature limited while ensuring conformity. The natural choice is the element of 
LAGRANGE P2, 
isoparametric, which makes it possible to have a fine representation of a curved geometry and the maid 
estimates of the constraints. 
The degrees of freedom are of course displacements and rotations. 
As it is known as previously, the model of LOVE-KIRCHHOFF can be recovered by penalization 
for a very large parameter affecting the transverse energy of shearing. 
This formulation joined the category of the finite elements of hulls known as “degenerated”, i.e. built 
by injecting the kinematics of hull in elements of three-dimensional continuous mediums: 
cf [bib10]. 
As for all the finite elements of hulls, of the particular aspects must be analyzed: the catch 
in account of the rigid modes and risks of blocking of membrane or shearing. 
In the case of the axisymmetric hull of revolution, there is only one rigid mode: translation according to 
the axis of symmetry 0y. 
On the other hand, in the case of the invariant hull according to the direction 0z, there are three rigid 
modes: two 
translations in the plan (X 0y) and rotation around 0z. 
So that the finite element is powerful, it is necessary that the approximations retained for 
description of displacement ensure an exact representation of the state of null deformations (mode 
rigid). In practice, as the concept of rigid mode is defined compared to the total reference mark one 
decides 
thus to describe displacements in total base (E, E 
X 
y), in which rigid modes 
(functions closely connected) are represented by the selected interpolation.  
As for the risks of blocking out of membrane and transverse shearing, usual treatment 
consist in a selective numerical integration (cf [bib2]), but the practice reveals that these 
phenomena seldom appear for the hulls of revolution. 
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3.1.2 General presentation of the element 
The selected element of reference is quadratic, isoparametric with three nodes and three degrees of 
freedom 
by node. These degrees of freedom are: 
U, U 
X 
y: 
components of displacement U in total reference mark, 
S: 
rotation around ez of normal N. 
See [Figure 3.1.2-a]. 
This element is a generalization of the element of plane beam curved. It is well adapted to 
discretization of the hulls with meridian curve R variable, cf [bib2]. 
U 
y 
 
U X 
N.1 
N.3 
N.2 
· 
· 
· 
T-1 
0 
+1 
!! 
 
 
N  
Appear 3.1.2-a: Element of reference 
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The functions of form (basic) are the polynomials of LAGRANGE: 
-1 +  
+  
" 
1  
NR  
2 
1 () =  
; " 
NR  
2 () =  
; " 
NR  
3 () = 1-  
2 
2 
3.1.3 Transformations finite element/finite element of reference 
y 
y 
-1 
0 
+1 
2 
N2 
· 
· 
· 
 
y 
N3 
N1 
N3 
N2 
3 
y 
N1 
1 
X 
X 
X 
2 
x3 1 
The geometry is interpolated using the co-ordinates (X, y 
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I 
I) of the three nodes N1, NR 3, N2: 
3 
3 
X () = X NR " 
I 
I () 
 
y 
 
; ( 
)  
=  
y NR 
I 
I 
 
" () 
I =1 
I =1 
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In the same way using the ddl (U, U 
X 
y 
, 
S 
 
on the nodes, one a: 
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I 
I 
I) 
3 
3 
U 
=  
" 
X ()  
 
U NR 
X 
I;  
=  
"  
I 
() uy () 
U 
NR 
y 
I 
I 
( ) 
I =1 
I =1 
3 
= " 
S ()  
 
NR 
S 
I  
I 
( ) 
I =1 
One also needs the jacobien of the transformation: 
( 
ds 
2 
2 
m) =  
() = (X,) + (y,)  
D 

file:///Z|/process/refer/refer/p250.htm (22 of 34)10/2/2006 2:51:52 PM



file:///Z|/process/refer/refer/p250.htm

And of the vectors of the local base: 
1 
T () =  
X  
y 
m (  
 
 
X +  
 
) ( 
E 
E 
 
, 
 
, 
Z) 
( 
1 
N) =  
y 
X 
m (  
 
 
X -  
 
) ( 
E 
E 
 
, 
 
, 
Z) 
Finally: 
y, 
- X, 
cos  
=  
m ( 
= 
)  
;  
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sin  
m () 
The meridian curve is obtained by: 
1 
 
= - (n.t,) D 
1 
. 
=  
X. y 
 
 
- y. X 
3 
R 
ds 
m () (, 
, 
, 
, ) 
Because of the P2 interpolation, the derivative second which appears below express with the assistance 
co-ordinates of the three nodes by: 
X 
= X  
1 + X  
2 - 2. X y 
 
3 
= y  
1 + y  
2 - 2. y 
, 
, 
3 
3.1.4 Surface numerical integration 
For numerical integrations along the element one uses a numerical formula of integration with 
four points of GAUSS, single for all the terms to be integrated. This formula reveals them 
blockings mentioned in the paragraph [§3.1.1] in the event of extremely localised plasticization. One 
thus advise to avoid the use of these elements in plasticity for the moment. The formula 
of numerical integration at four points of Gauss will be replaced later on by a formula with 
two points of Gauss supposed to avoid these nuisances. 
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3.1.5 Numerical integration in the thickness 
For an elastic behavior, insofar as it is admitted that one limits oneself to characteristics 
uniform rubber bands in the thickness, rigidities [C], [B] 
, [D 
ij 
ij 
ij] 
and Gsx defined in the paragraph 
3 
[§2.2] are calculated exactly. 
For a non-linear behavior, one subdivides the initial thickness in NR layers thicknesses 
identical numbered in the direction of the normal to the average surface of the element. For each 
sleep one uses three points of integration. The points of integration are located in higher skin of 
sleep, in the middle of the layer and in lower skin of layer. For NR layers, the number of points 
of integration is of 2N+1. One advises to use from 3 to 5 layers in the thickness for a number of 
points of integration being worth 7, 9 and 11 respectively. 
For each layer, one calculates the state of the constraints (11,22,12) and the whole of the variables 
interns, in the middle of the layer and in skins higher and lower of layer, from 
local plastic behavior and of the local field of deformation (11,22,12). The positioning of 
points of integration enables us to have the rightest estimates, because not extrapolated, in skins 
lower and higher of layer, where it is known that the constraints are likely to be maximum.  
plastic behavior does not include/understand for the moment the terms of transverse shearing which 
are treated in an elastic way, because transverse shearing is uncoupled from the behavior 
membrane in plane constraints. 
Cordonnées of the points 
Weight  
 
1/3 
1 = -1 
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4/3 
2 = 0 
 
1/3 
3 = +1 
1 
N 
y () D = 
 
I y (I) 
-1 
i=1 
Formulate numerical integration for a layer in the thickness in plasticity  
For a thermoelastic behavior, one uses integration, by layer in the thickness 
H 
H 
-, + described previously in the non-linear field, of the thermomechanical terms seen 
 
2 
2  
in the paragraph [§2.2]. It is then necessary to use STAT_NON_LINE with a behavior 
rubber band. 
Note: 
One already mentioned with [§2.2]. and in [R3.07.04] that the value of the coefficient of correction in 
transverse shearing for the elements of hull was obtained by identification of 
elastic complementary energies after resolution of balance 3D. This method is not 
more usable in elastoplasticity and the choice of the coefficient of correction in shearing 
transverse is posed then. The transverse terms of shearing are thus not affected 
by plasticity and are treated elastically, for want of anything better. If one places oneself in 
theory of Coils-Kirchhoff for a value of this coefficient of 106 h/R (H being the thickness of 
the hull and R its average radius of curvature) transverse terms of shearing 
become negligible and the approach is more rigorous. 
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3.2  
Formulation of the elementary terms 
3.2.1 Mass, centre of gravity, stamps inertia 
In the case of the hulls of revolution, the mass is worth: 
2 h/2 (+ - dx rd ds 
2 
2 
3 
= 
hrd ds = 
H R ds 
- 
1 
2 
H 
S 
 
 
 
) 
 
 
0 
 
 
/ 
 
 
 
 
0 
 
 
 
 
where is the presumedly constant density of the element. 
The position of the centre of inertia is given in the Oxyz reference mark of [§2.1] by: 
xG = 0 
 
H2  
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1 cos 
yr ds + 
sin 
rds 
 
 
+ 
12 
 
 
 
 
 
 
R 
R  
y 
 
G = 
R ds 
 
zG = 0 
The terms of the matrix of inertia compared to O in the Oxyz reference mark of [§2.1] have then for 
expression: 
x2 
h3 
cos2  
 
I 
= 2 H ( 
+ y2) + 
(sin2 + 
+ X 
cos + 2 y 
sin) rds 
xx/O 
2 
12 
2 
 
 
 
h3 
 
1 
cos 
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I 
= 2 hx2 + 
(cos2 + 2 X 
cos) rds 
yy/O 
where = 
+ 
. 
 
R 
R 
 
12 
 
 
x2 
h3 
cos2  
 
I 
= 2 H ( 
+ y2) + 
(sin2 + 
+ X 
cos + 2 y 
sin) rds 
zz/O 
2 
12 
2 
 
 
In the case of the invariant hulls according to 0z, the mass is worth: 
h/2  
- 
= 
h/2 
sdx ds 
3 
H ds. 
 
 
The position of the centre of inertia is defined in the Oxy reference mark of [§2.1] by: 
 
H2 
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cos 
X ds + 
 
ds 
 
 
12  
 
R 
X 
 
 
G = 
ds 
 
 
H2 
sin 
y ds + 
 
ds 
 
 
12  
 
R 
y 
 
 
G = 
ds 
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The terms of the matrix of inertia compared to O in the Oxyz reference mark of [§2.1] have then for 
expression: 
 
h3 
 
I 
= hy2 + 
(sin2 + 2 y 
sin) ds 
xx/O 
 
12 
 
 
 
 
h3 
 
I 
= I 
= hxy + 
(sin cos + X 
sin + y 
cos) ds 
xy/O 
yx/O 
 
12 
 
 
 
1 
where = 
. 
 
h3 
 
R 
I 
= H 
x2 + 
(cos2 + 2 X 
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cos) ds 
yy/O 
 
12 
 
 
 
 
h3 
 
I 
= H (x2 + y2) + 
(1 + 2 X 
cos + 2 y 
zz/O 
sin) ds 
 
12 
 
 
 
H2 
h3 
Terms in  
for the centres of inertia and  
for the matrices of inertia are not taken in 
12 
12 
count in the programming. That amounts neglecting the variation of metric with the curve in 
the calculation of these terms. 
3.2.2 Stamp of mass 
2 h/2 
 
The term: v. , 
, of kinetic energy is treated while considering 
- h/2 
(S x3) v (S x3) rdx D 
3 ds 
0 
constant density in the thickness and the correction of metric due to the curve 
negligible. The intégrande is burst in three terms: 
·  
H (U .u + U .u 
kinetic energy of 
X 
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X 
y 
y) 
translation 
h3 
·  
 
 
kinetic energy of 
S.S 
12 
rotation 
h3 
·  
 
sin 
- 
+ 
 
+  
cos 
+ 
kinetic energy of 
12 
((U U) 
(U U 
X S 
X S 
y S 
y S) 
coupling, with: 
1 
cos 
= +  
R 
R 
for the case axisymmetric hull of revolution. 
1 
= for the case invariant hull according to 0z (moreover in this case the integral disappears 
R 
2 rd 
 
). 
0 
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3.2.3 Second member of centrifugal force 
In the case of the hulls of revolution, a vector rotation is considered: =. 
2nd y, carried by 
the axis of revolution. The term of the second corresponding member is: 
2 
 
h/2 
2 
2 .r U - 
X  
. 
X 
S 
3 sin 
dx3rd ds 
 
 
 
- h/2 
(  
) 
 
0 
= 2 H2 2 
2 
R .u D 
X 
 
 
ds 
0 
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(one neglects the correction of metric in the thickness). 
In the case of invariant hulls according to 0z, one considére a vector rotation: =. 
3rd Z, 
perpendicular in the plan of the section. 
The second member is then: 
H  
2 . 
+ . 
 
 
3 (X U 
y U) ds 
X 
y 
3.2.4 Second member of gravity 
In the case of the hulls of revolution, gravity is directed according to E Y. 
The second member is: 
2 gh U R 
 
y 
 
D ds 
0 
In the case of the invariant hulls according to 0z, this one is directed in the plan 
X 0y: G = G E + G 
X 
X 
y E Y. 
The second member is: 
H G .e + G .e D S 
 
(X X 
y 
y) 
3.2.5 Second member of distributed loads 
These distributed loads can be two forces in the plan (X 0y) and couples it M Z carried by the axis 
0z. Two forces, which one considers that they are applied to average surface, will be able 
to be provided in total reference mark (E, E 
X 
y) or room (T, N). The second member is: 
2 (F U + F U + M) rdds 
X 
X 
y 
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y 
Z 
S 
0 
2 
(in invariant hull according to Z, the integral  
rd 
 
disappears). 
0 
Note: 
The specific actions are treated as nodal forces where they are applied, 
since they work in the ddl of the finite element. 
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3.3  
Calculation of the strains and the stresses 
After resolution, one with the possibility with operator CALC_ELEM [U4.81.01] of calculating with the 
nodes them 
elementary fields according to: 
· generalized deformations E 
, K 
 
: option DEGE_ELNO_DEPL, 
· three-dimensional deformations on average fibre and in skins internal and external 
(with or without correction of curve): option EPSI_ELNO_DEPL, 
· three-dimensional constraints on average fibre and in skins internal and external 
(with or without correction of curve): option SIGM_ELNO_DEPL in linear elasticity, 
· generalized efforts NR 
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, M 
 
(with or without correction of curve): option 
EFGE_ELNO_DEPL in linear elasticity. 
These values with the nodes are obtained by extrapolation starting from the values at the points of 
GAUSS of  
the element, according to the exposed method in [bib4] [R3.06.03]. 
Lastly, one can have also the values NR 
, M 
 
at the points of GAUSS of the element: option 
SIEF_ELGA_DEPL in linear elasticity. 
No postprocessing of constraints or generalized efforts is for the moment available for 
nonlinear behaviors materials. 
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4  
Validation - Case test 
One considers hereafter, to judge capacities of this formulation, some examples of application 
(cf [bib10]). 
4.1  
Roll under internal pressure 
One studies a vertical roll subjected to a pressure interns p constant on the part y < 0, and null 
on y > 0: to see [Figure 4.1-a]. 
L/2 
C 
R 
+ L/10 
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B2 
B 
X 
- L/10 
B1 
p 
- L/2 
With 
Figure 4.1 - a: Rolls under axisymmetric pressure 
The ray is: R = 4 m, the thickness T = 0.25 m, the length L = 10 Mr. Celle-ci is selected so that 
the effects edge free in y = ± L/2 are negligible on the solution (into axisymmetric, L must 
1 
to check:  
L > 3 Rt = 3 m here). 
2 
The material is elastic (E  
=  
1 Pa 
,  
 
= . 
0 ) 
3 . 
The boundary conditions are: p = 1N/m2, vertical displacement of A null. 
One chooses the solution obtained by model LOVE-KIRCHHOFF. 
To reach it numerically, one takes as coefficient of shearing: = 106, to inhibit 
the distortions S. the analytical solution is: 
P 
P 
for y 
0: U (y)  
 
(2nd y 
cos y 
y 
 
= 
- 
),  
 
 
cos sin 
4 
S (y) = 
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E 
3 
( 
y - 
y 
X 
) 
8 D 
8 D 
P 
P 
for y 
0: U (y)  
 
E y 
cos y 
- y 
 
= 
,  
 
 
cos 
sin 
4 
S (y) = 
E 
3 
( 
y + 
y 
X 
) 
8 D 
8 D 
And 3 
And 
with D = 12 1-2 
(), 44=DR2. 
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The efforts generalized are (sin =) 
 
0 : 
And 
p 
NR 
 
= U 
 
- y 
 
X 
(y) M 
 
;  
= Of 
ss 
X (y)  
= E 
 
sin y 
R 
 
4 2 
The three-dimensional constraints are: 
NR 
M 
X 
M X 
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= + 
3 
 
 
; ss  
=  
ss 3 
12 
12 
, D 
'where:  
T 
T3 
T3  
 
Pr  
E y 
 
 
X 
3 
 
(y, X) = 1 -  
cos y 
3 
+  
2 
sin y 
 
3 
 
T  
2  
T 
1 - 2 
 
for y 0:  
 
 
Pr X 
ss 
3 
(y, X 
3 
) = . 
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E y 
sin y 
3 
 
 
T 
T 
 
1 - 2 
 
Pr E y 
 
 
X 
3 
 
(y, X) =  
cos y 
3 
-  
2 
 
sin y 
3 
 
 
T 
2 
 
T 
1 - 2 
 
for y 0:  
Pr X 
ss 
 
3 
(y, X 
3 
) = . 
 
E y 
sin y 
3 
 

file:///Z|/process/refer/refer/p260.htm (9 of 21)10/2/2006 2:51:52 PM



file:///Z|/process/refer/refer/p260.htm

 
T 
T 
 
1 - 2 
For a regular grid of one hundred meshs and two hundred nodes, one finds: 
Reference 
Aster 
% difference 
Ux displacement 
Not A 
63.9488 
63.922 
0.042 
Not B 
32.000 
32.005 
0.015 
Not C 
0.05120 
0.08755 
Rotation S 
Not A 
0.06583 
0.04057 
Not B 
41.133 
41.165 
0.078 
Normal effort NR 
Not B 
2.0000 
2.0003 
0.015 
Not B1 (in L/10) 
3.84429 
3.8442 
0.002 
Mss moment 
Not B1 
4.01497 102 
4.013 102 
0.05 
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Appear 4.1-b: Arrow of the cylinder under pressure 
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Appear 4.1-c: Rotation of the cylinder under pressure. 
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Appear 4.1-d: Bending moments axial cylinder under pressure 
4.2  
Plate circular embedded under uniform pressure [V3.03.100] 
One considers the plate of ray R = 1 m, thickness T = 0,1 m (see [Figure 4.2-a] below) 
embedded on its circumference. 
y 
R 
p 
p 
0 
X 
D 
With 
R/2 
Appear 4.2-a 
The material is elastic (E  
= 1 P 
. has 
,  
 
= . 
0 ) 
3. The pressure is: p  
= 1 NR 
.  
/m2.  
The boundary conditions are: in 0:  
. , 
S 
= 0 in  
A: U  
= U 
X 
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y = 0. , S = 0. 
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5 
One is interested in the solutions of the models of REISSNER =  
 
 
and of LOVE-KIRCHHOFF (one 
6 
will take = 106). 
The analytical solution is for the arrow: 
pR4  
X 2  
X 2 
 
U 
1 
1 
 
y (X) = -  
-  
 
 
 
. 
64D  
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R  
-  
 
 
 
 
R 
+  
And 3 
16 T 2 
1 
5 
with  
D =  
 
 
 
0 for the solution 
12( 
= 
 
= 
= 
1 - 2 
) ;  
 
if  
;  
 
5  
R 
1- 
6 
LOVE-KIRCHHOFF. 
pR2 X 
The distortion is indeed: S (X) = -  
. 
16D 2 
pR2 
 
X 2  
Rotation  
1 
 
S is: S (X) =  
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X 
-  
 
. 
16D 
 
 
 
 
R  
The variations of curve are (sin  
= + ) 
 
1 : 
pR2  
X 2  
K 
X 
1 3 
 
ss () =  
- 
-  
16D  
 
 
 
R  
pR2  
X 2  
K (X) = - 
 
1 
 
-  
 
16D  
 
 
 
R  
The bending moments are (sin  
= + ) 
 
1 : 
pR2  
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X 2 
 
M 
X 
3  
1  
ss () =  
( 
+ ) 
(  
) 
 
16 
 
 
 
R - 
+  
pR2  
X 2 
 
M (X)  
 
=  
( 
1 + 3) 
( 1 ) 
 
 
16 
 
 
 
R - 
+  
The constraints are written: 
 
E 
ss (X, X) =  
X [K 
3 
+ 
2 
3 
ss (X) 
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K (X)] 
1 -  
 
 
E 
(X, X) =  
X [ 
3 
+ 
2 
3 
 
K (X) K (X)] 
1 -  
ss 
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One notices independence in rotation, variations of curve and moments 
bending. In center 0 of the plate: 
pR4 
pR2 
uy () 
0 = - 
(1 +), M () 0 = M 
ss 
 
( ) 
0  
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= - 
( 1 + ), 
64D 
16 
pR2 
K () 
0 = K 
ss 
 
( ) 
0  
 
= - 
. 
16D 
2 
 
E T Pr 
ss (, 
0 ±t/2) =  
( , 
0 ±t/2) = # 
. 
1 - 2 16D 
It is noticed that one is in compression in higher skin of plate. 
pR2 
pR2 
With embedding a: M ss (R) =  
; M (R) =  
. 
8 
8 
S 
uy 
Appear 4.2-b: Arrow, rotation of an embedded circular plate 
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For a regular grid of 10 meshs (21 nodes) one finds: 
Reference 
Aster 
% difference 
Uy displacement 
 
5 
101.827 
101.7769 
0.049 
Not D =  
 
 
 
6 
LOVEKIRCHHOFF 
95.9765 
95.0395 
0.978 
 
5 
178.424 
178.368 
0.031 
Point 0 =  
 
 
 
6 
LOVEKIRCHHOFF 
170.625 
169.761 
0.507 
Rotation S 
 
5 
256.001 
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0.024 
Not D =  
 
 
 
6 
LOVEKIRCHHOFF 
255.94 
257.123 
0.462 
Variation of Kss curve 
 
5  
173.406 
1.60 
Not D =  
 
6  
LOVEKIRCHHOFF 
170.625 
162.765 
4.61 
Variation of curve K 
 
5  
514.001 
0.024 
Not D =  
 
6  
LOVEKIRCHHOFF 
511.875 
512.242 
0.46 
Mss moment 
 
5  
0.081751 
+0.617 
Point 0 =  
 
6  
0.08125 
LOVEKIRCHHOFF 
0.081394 
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0.18 
 
5  
0.12373 
1.02 
Not A =  
 
6  
0.125 
LOVEKIRCHHOFF 
0.10717 
14.3 
Moment M 
 
5  
0.081751 
0.617 
Point 0 =  
 
6  
0.08125 
LOVEKIRCHHOFF 
0.081394 
0.18 
 
5  
0.037121 
1.01 
Not A =  
 
6  
0.03750 
LOVEKIRCHHOFF 
0.032146 
14.3 
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It is noticed that solution LOVE-KIRCHHOFF (= 106) is less quite approximate than that by 
 
5 
REISSNER =  
 
 
at the variations of curve and the time bending. On the other hand, them 
6 
displacements and rotations are well calculated. 
These differences are due to the relative thickness of this plate, with respect to the coarseness of the grid 
chosen. The figures hereafter show the comparison of the solutions analytical and numerical, in 
case LOVE-KIRCHHOFF, on grids of 10 and 100 elements. 
- K 
Kss 
Figure 4.2 - C: Variations of curve of an embedded circular plate 
The layout of the variations of curve K 
and K 
ss  
illustrate the fact that these two components are not 
not approximate in the same manner: first is linear since derived from a function of form 
P2, while second is constant per pieces. 
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4.3 Axisymmetric modal analysis of a thin spherical envelope 
[V2.03.007] 
One considers a sphere, of average radius Rm = 2.5 m, thickness T = 0.10 Mr. 
The material is elastic (E = 200000 MPa, = 0,3), of density = 7800 kg/m3. 
y 
R 
X 
Appear 4.3-a: Sphere 
One studies his axisymmetric free vibrations within framework LOVE-KIRCHHOFF (= 106). 
One uses a grid made up of 40 meshs and 81 nodes. One is interested in the frequencies included/
understood 
between 220 and 375 Hz. Compared to the reference solution [V2.03.007] one finds like 5 first 
frequencies: 
N° 
1 
2 
3 
4 
5 
Reference 
237.25 
282.85 
305.2 
324.2 
346.8 
Aster 
237.32 
282.78 
304.95 
323.7 
346.2 
Table 4.3-a: Frequencies of the axisymmetric modes 
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5 Conclusion 
The finite elements that we propose were selected with a quite particular aim: structural analysis 
thin axisymmetric, or of orthogonal sections of infinite hulls with independence in 
direction Z, with the concern of obtaining a good precision on the membrane and flexional solution all 
by having a simple element of establishment and not too expensive. 
The choice of the degrees of freedom allows a good representation of the boundary conditions. 
Moreover, 
this displacement formulation and rotation lead to elements of smaller degree: elements 
are P2 out of membrane and P2 in inflection. It appears that they are easy to handle and that their 
formulation 
allows to use a structure of pre and post simple processor, favours considerable for  
to carry out rather fine grids (unidimensional) and to easily display the results (on 
a simple curve). Selected kinematics: formulation of HENCKY-MINDLIN-NAGHDI, in 
displacements and rotations of average surface makes it possible to utilize the energy of shearing 
transverse (interesting for the hulls average thickness). 
This energy can be affected of a factor of correction: if one wants to place oneself in theory of 
REISSNER, it is enough to choose = 5/6 instead of 1 (but of course, the arrow W and rotations  
in this theory only weighted averages in the thickness are). Moreover, the formulation of 
hull of LOVE-KIRCHHOFF (for the very mean structures) can be simulated by penalization of 
condition of nullity of the transverse distortion, by choosing a factor = 106 × H L, H being 
the thickness and L a characteristic distance (radius of curvature, zone of application of the loads…). 
The non-linear behaviors in plane constraints are available for these elements. One announces 
however that the constraints generated by the transverse distortion are treated elastically, fault 
of better. Indeed, the taking into account of a transverse shearing constant not no one on the thickness 
and 
determination of the correction associated on rigidity with shearing compared to a model 
satisfying the boundary conditions are not possible and thus return the use of these 
elements, when transverse shearing is nonnull, rigorously impossible in plasticity. In 
any rigour, for nonlinear behaviors, it would thus be necessary to use these elements in 
tally of the theory of Coils-Kirchhoff. 
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Elements corresponding to the machine elements exist in thermics; chainings 
thermomechanical are thus available with finite elements of thermal hulls to three nodes 
described in [R3.11.01] according to case's in its axisymmetric version, or its invariant plane version 
according to 
0z. 
In the case-test treated, the phenomena of blocking did not appear. Decomposition of 
the deformation energy will make it possible, where necessary, to integrate in a selective way the terms 
persons in charge for blocking, such a modification not having to raise particular difficulties. One 
more detailed study must of course be undertaken on this subject, as for the numerical methods to use 
to avoid this blocking when the thickness becomes low. 
The possible developments are: 
· anisotropy in order to be able to treat the multi-layer hulls, 
· problems of buckling, 
· decomposition in Fourier series to study nonaxisymmetric problems of 
hulls of revolution, 
· the taking into account a variable thickness… 
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thin curves or plane. In fact plane elements do not take into account the geometrical curve 
structures, contrary to the elements of hull which are curved: it results from it from the parasitic 
inflections which 
can be reduced by using more elements in order to be able to approach the geometries correctly 
curves. The formulation is thus simplified by it and numbers it degrees of freedom reduced. These 
elements are 
considered as being among most precise for the calculation of displacements and the modal analysis. 
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1 Introduction 
The elements of hulls and plates are particularly used to model structures 
thin where the relationship between dimensions (characteristic thickness/length) is with more than 1/10. 
They thus intervene particularly in fields like the civil engineering, the interns of heart 
REFERENCE MARK, vibratory analysis ..... One limits oneself to the framework of small 
displacements and the small deformations. 
Contrary to the elements of hull, the plane elements of plate do not make it possible to take in 
hope the geometrical curve of the structure to be represented and induce parasitic inflections. It is 
thus necessary to use a great number of these elements in order to approach correctly 
geometry of the structure, and this, more especially as it is curved. On the other hand, one gains in 
simplicity 
of formulation and the number of degrees of freedom is reduced. In addition, the formulations “Discrete  
Shear " (DST, DSQ and Q4g) or “Discrete Kirchhoff” (DKT and DKQ) of kinematics, with or without 
transverse distortion respectively, allow good results in terms of displacements and 
of modal analysis. 
The way in which these elements in Code_Aster like certain receipts are established 
of use are given to [§5] present note. 
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2 Formulation 
2.1  
Geometry of the elements plates [bib1] 
For the elements of plate one defines a surface of reference, or surfaces average, planes (plane X y 
for example) and a thickness H (X, y). This thickness must be small compared to the different one 
dimensions (extensions, radii of curvature) of the structure to be modelled. [Figure 2.1-a] below 
illustrate our matter. 
Solid 3D 
Z 
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H 
Y 
B 
X 
L 
R1 
R2 
Thickness H < L, B, R1, R2 
Z 
y 
H 
N 
X 
 
B 
L 
Plate 
Appear 2.1-a 
One attaches to average surface a reference mark orthonormé local Oxyz associated with the tangent 
plan with 
structure different from total reference mark OXYZ. The position of the points of the plate is given by 
Cartesian co-ordinates (X, y) of average surface and rise Z compared to this surface. 
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2.2  
Theory of the plates 
These elements are based on the theory of the plates in small displacements and small deformations 
according to 
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which: 
2.2.1 Kinematics 
The cross-sections which are the sections perpendicular to average surface remain right;  
material points located on a normal at not deformed average surface remain on a line 
in the deformed configuration. It results from this approach that the fields of displacement vary 
linearly in the thickness of the plate. If one indicates by U, v, W displacements of a point 
Q (X, y, Z) according to X, y and Z, one has the kinematics of Hencky-Mindlin thus: 
U (X, y, Z) U (X, y) 
(X, y  
y 
) 
U (X, y) 
(X, y  
X 
X 
) 
 
 
 
 
 
 
 
 
U (X, y, Z) = v (X, y) + Z (X, y) = v (X, y) + Z (X, y 
y 
X 
y 
) 
 
U (X, y, Z) W (X, y)  
 
0 
 
W (X, y  
 
Z 
) 
 
 
 
 
0 
 
where U, v, W are displacements of average surface and X and there rotations of this surface by 
report/ratio with two axes X and y respectively. One prefers to introduce two rotations 
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X (X, y) = y (X, y), y (X, y) =  
- X (X, y). 
The three-dimensional deformations in any point, with kinematics introduced previously, are 
thus given by: 
xx = exx + zxx 
yy = eyy + Z yy 
2xy = xy = 2exy + 2zxy  
2xz = X 
2yz = y 
where E, E 
and E 
xx 
yy 
xy is the membrane deformations of average surface, X and there them 
deformations associated with transverse shearings, and xx, yy, xy deformations of inflection 
average surface, which is written: 
Handbook of Reference 
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U 
exx = X 
 
v 
eyy = y 
v 
 
U 
2exy = 
+ 
X 
 
y 
X 
 
xx = X 
y 
yy = y 
 
X 
 
y 
 
2 xy = 
+ 
y 
X 
 
W 
X = X 
+ X 
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W 
 
y = y + y 
Note: 
In the theories of plate the introduction of X and makes it possible it to symmetrize the formulations of 
deformations and will see we it thereafter the equilibrium equations. In the theories of hull 
one uses X and y rather and the associated couples M X and M y compared to X and Y. 
2.2.2 Law of behavior 
The behavior of the plates is a behavior 3D in “plane constraints”. The constraint 
transversal zz is null bus regarded as negligible compared to the other components of 
tensor of the constraints (assumption of the plane constraints). The most general law of behavior 
is written then as follows: 
xx  
xx  
E 
 
0 
xx  
xx  
 
 
 
 
 
 
 
 
 
yy 
 
 
yy  
E 
 
0 
yy  
yy  
 
 
 
 
2nd, 2  
 
and = 0  
xy 
= C (,) xy = This + zC + C 
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with E = 
xy 
= 
. 
 
 
xy  
 
xz  
X  
0  
0  
X  
 
 
 
 
 
 
 
 
 
yz  
y  
0  
0  
y  
where  
( 
C,) is the matrix of local tangent rigidity combining forced plane and distortion 
transverse and represents the whole of the internal variables when the behavior is nonlinear. 
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For behaviors where the distortions are uncoupled from the deformations of membrane and from 
inflection, ( 
C,) is put in the form: 
H 
0  
C =  
 
0 H 
 
 
where  
( 
H,) is a matrix 3x3 and ( 
H,) a matrix 2x2. One will remain within the framework of this 
assumption. 
For an isotropic homogeneous linear behavior elastic, one has as follows: 
1 v 
0 
0 
0 
 
 
 
v 1 
0 
0 
0 
1 - 
 
 
v 
 
E 
0 0 
0 
0 
C = 
 
2 
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1 - v2  
K 1 
(- v) 
 
0 0 
0 
0 
 
 
2 
K 1 
( -  
v) 
 
0 0 
0 
0 
2 
 
 
where K is factor of transverse correction of shearing whose significance is given to 
following paragraph. 
Note: 
One does not describe the variation thickness nor that of the transverse deformation zz that one 
can however calculate by using the preceding assumption of plane constraints. In addition 
no restriction is made on the type of behavior that one can represent. 
2.2.3 Taking into account of transverse shearing [bib2] 
The taking into account of transverse shearing depends on factors of correction determined a priori by  
energy equivalences with models 3D, so that rigidity in shearing 
transverse of the model of plate is nearest possible to that defined by the theory of elasticity 
three-dimensional. Two theories including the deformation due to the shearing action exist and are 
presented in [bib2]. 
2.2.3.1 the theory known as of Hencky 
This theory as that of Coils-Kirchhoff which results from this immediately rests on 
kinematics presented to [§2.2.1]. The relation of behavior is usual and the factor of 
correction of shearing is worth k=1. 
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Note: 
The model of Coils-Kirchhoff (DKT and DKQ): When one does not take into account the distortions 
transverses X and y in the theory of Hencky, the model obtained is that of Coils-Kirchhoff. 
Two rotations of average surface are then related to displacements of surface 
average by the following relation: 
W 
X = - X 
W 
y = - y 
2.2.3.2 the theory known as of Reissner (DST, DSQ and Q4g) 
The second theory, known as of Reissner, is developed starting from the constraints. Variation of 
stress membrane (xx, yy and xy) is supposed to be linear in the thickness like in the case of 
the theory of Hencky where that results from the linearity of the variation of the deformations of 
membrane with 
the thickness. However, whereas one supposes, in the theory of Hencky, the constant distortion in 
the shear thickness and thus stresses, which violates the boundary conditions xz=yz=0 on 
faces higher and lower of the plate because of law of behavior stated than the §2.2.2., one 
use within the framework of the theory of Reissner the equilibrium equations to deduce the variation 
from it from 
shear stresses in the thickness of the plate, by observing the conditions in particular 
of balance on the faces higher and lower of plate. Energy interns model afterwards obtained 
resolution of the equilibrium equations in 3D, for inflection only, with the variation of 
plane constraints according to Z, reveals, for an elastic material, a relation between the efforts 
resulting and rotations and the arrow averages. It is in this relation that the factor appears of 
correction of shearing of k=5/6 instead of 1 in the relation which binds the sharp effort to the distortion 
for a homogeneous and isotropic plate. Determination of the factors of correction of shearing 
for orthotropic plates or laminated plates is left in appendix. 
2.2.3.3 Equivalence of the approaches Hencky-Coils-Kirchhoff and Reissner 
If one assimilates the slopes of average surface X, y with the averages of the slopes in the thickness of 
the plate and the arrow W with the average arrow, the only difference between the theory of Hencky and 
that of 
Reissner is the coefficient of transverse correction of shearing of 5/6 instead of 1. This difference 
is due to the fact that the starting assumptions are of different nature and especially that the variables 
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chosen are not the same ones. Indeed, the arrow on average surface is not equal to 
average of the arrows on the thickness of the plate. It is thus normal that relations of 
behavior which utilizes different variables are not identical. 
The fact of having to solve on the level finite elements of the problems in displacements rather than of 
problems in constraints by interpolation of displacements leads us to use the approach 
equivalent in displacements of the problem of Reissner formulated in constraints. 
2.2.3.4 Remarks 
Because of preceding equivalence one presents here only the model in displacement for all them 
elements. In the facts elements DKT and DKQ are based on the theory of Hencky-Coils-Kirchhoff and  
the elements DST, DSQ and Q4 are based on the theory of Reissner. 
The determination of the factors of correction rests within the framework of an other theory, that of 
Mindlin, 
on equivalences of Eigen frequency associated the mode of vibration by transverse shearing. 
One then obtains k=2/12, value very close to 5/6 for the DST elements, DSQ and Q4 in the case 
isotropic. 
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Within the framework of plasticity the problem of the choice of the coefficient of correction of shearing 
transverse arises because the equivalent approach in displacements of the problem of Reissner 
formulated in 
constraints utilizes the non-linearity of the behavior. One cannot thus deduce some, like 
it is the case for elastic materials a value of the coefficient of correction of shearing 
transverse. Plasticity is thus not developed for these elements. 
3  
Principle of virtual work 
3.1  
Work of deformation 
The general expression of the work of deformation 3D for a plate is worth: 
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h/2 
W 
(+ + + + D 
) V 
def = xx xx 
yy yy 
xy xy 
X xz 
y yz 
S - h/2 
where S is average surface and the position in the thickness of the plate varies between h/2 and +h/2. 
3.1.1 Expression of the resulting efforts 
By adopting the kinematics of [§2.2.1], one identifies the work of the interior efforts: 
W 
E NR 
+ E NR + 2nd NR + M + M + 2 M + T + T) dS 
def = (xx xx 
yy 
yy 
xy 
xy 
xx 
xx 
yy 
yy 
xy 
xy 
X X 
y y 
S 
where: 
NR  
 
M  
 
/2  
 
/2  
 
xx +h xx  
xx +h xx  
T 
h/2 
X  
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+ 
xz  
NR = NR yy = yy dz; M = Myy = yyzdz; T = = 
 
dz. 
T 
 
 
 
y  
yz  
- h/2  
 
 
- h/2 
 
NR 
- h/2 
xy  
xy  
Mxy  
xy  
NR, NR, NR 
xx 
yy 
xy is the efforts resulting from membrane (in N/m); 
M, M, M 
xx 
yy 
xy is the efforts resulting from inflection or moments (in NR); 
T, T 
X 
y, are the efforts resulting from shearing or sharp efforts (in N/m); 
3.1.2 Relation efforts resulting-deformations 
The expression of the work of deformation is also written: 
h/2 
h/2 
W 
[ ( 
C,) D 
] V 
[eCe Z 
 
EC. 
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zCe Z  
2 C C D 
] V 
def = 
= 
+ 
+ 
+ 
+ 
 
 
S - h/2 
S - h/2 
where ( 
C,) is the local matrix of behavior. 
Handbook of Reference 
R3.07 booklet: Machine elements on average surface 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Elements of plate DKT, DST, DKQ, DSQ, Q4g 
Date:  
12/01/01  
Author (S): 
P. MASSIN 
Key: 
R3.07.03-A 
Page: 
11/54 
By using the expression obtained for Wdef in the preceding paragraph one finds the relation following 
between the resulting efforts and the deformations: 
NR = H E + H 
m 
MF  
+h/2 
+h/2 
+h/2 
M = H E + H 
2 
MF 
F with H 
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= 
Hdz, H 
= 
Hzdz, H = 
H 
m 
 
MF 
 
F 
Z dz 
T = H 
- h/2 
- h/2 
- h/2 
ct 
G11 
0  
and: Hct =  
 
0 
G22 
and: 
E  
 
xx  
xx  
X  
E = eyy, = yy, =  
 
 
 
 
y  
2exy  
2xy  
The matrices H, H and H 
m 
F 
ct is the matrices of rigidity out of membrane, inflection and shearing 
transverse, respectively. The Hmf matrix is a matrix of rigidity of coupling between 
membrane and the inflection. 
For an isotropic homogeneous elastic behavior of plate these matrices have as an expression: 
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1 v 
0  
3 
1 v 
0  
Eh 
Eh 
kEh 1 
 
0 
H 
= 
 
 
v 1 
0 
, H = 
 
 
v 1 
0 
, H 
m 
F 
ct = 
 
, and 
1- 2  
v 
1-  
v 
12 1 
( - 2  
v) 
1-  
v 
2 1 
(+ v) 0 
 
1 
 
0 0 
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0 0 
2  
 
 
2  
Hmf = 0 bus there is material symmetry compared to the z=0 plan. 
For an orthotropic material, the behavior is given in appendix. 
3.1.3 Energy interns elastic of plate 
Taking into account the preceding remarks, energy interns elastic plate is expressed more 
usually for this kind of geometry in the following way: 
1 
int = 
[E (H E 
m + H 
) 
MF 
+ (H E 
MF + H) 
F 
+ H 
 
] dS. 
2  
ct 
S 
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3.1.4 Remarks 
Relations binding H, H, H 
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with H and H 
with H 
m 
F 
MF 
ct 
are valid whatever the law of 
elastic behavior, with anelastic deformations (thermoelasticity, plasticity,….). 
For a plate made up of NR orthotropic layers in elasticity, matrices 
H, H, H 
and H 
m 
F 
MF 
ct is written: 
NR 
NR 
NR 
NR 
1 
H = H H, H 
3 
3 
I 
= H H, H 
I I 
= (zi+1 - Z) H, H 
I 
= H H 
m 
I 
MF 
I 
F 
I 
ct 
I 
I  
3 
 
i=1 
i=1 
i=1 
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i=1 
1 
where: H = Z +1 - Z, = (Z +1 + Z 
I 
I 
I 
I 
I 
I) and H, H 
and 
2 
I 
I 
the matrices H represent 
H for the layer 
I. 
The homogenisation for multi-layer hulls can lead to matrices of rigidity of 
membrane and of inflection nonproportional of the type: 
C 
C 
0  
D 
D 
0  
1111 
1122 
 
1111 
1122 
 
G11 
0  
H = C 
C 
1122 
2222 
0, H = D 
D 
1122 
2222 
0, H 
m 
F 
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ct =  
 
0 
G22  
 
0 
0 
C1212  
 
0 
0 
D1212 
for which one cannot find equivalent values of the Young modulus and thickness 
allowing to find the traditional expressions of rigidity, cf [bib7]. 
3.2  
Work of the forces and couples external 
The work of the forces and couples being exerted on the plate is expressed in the following way: 
+h/2 
+h/2 
W 
F. D 
U V 
F. D 
U.S. 
F. D 
U zds 
ext. = 
v 
+ 
S 
+ 
 
 
C 
S - h/2 
S 
C - h/2 
where F, F, F 
v 
S 
C are the voluminal, surface efforts and of contour being exerted on the plate, 
respectively. C is the part of the contour of the plate on which the efforts of contour FC are 
applied. With the kinematics of [§2.2.1], one determines as follows: 
W 
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(F U + F v + F W + C + C) dS + (U + v + W + +) ds 
ext. =  
X 
y 
Z 
X X 
y y 
X 
y 
Z 
X X 
y y 
S 
C 
= (F U + F v + F W + C - C) dS + (U + v + W + -) ds 
X 
y 
Z 
y X 
X y 
X 
y 
Z 
y X 
X y 
S 
C 
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13/54 
· where are present on the plate: 
F, F, F 
X 
y 
Z: surface forces acting according to X, y and Z 
+h/2 
F = 
. dz 
I 
+ 
F E 
F .e 
v 
I 
S 
I where ex and E are there the basic vectors of the tangent plan and E Z them 
- h/2 
normal vector. 
C, C 
X 
y: surface couples acting around axes X and Y. 
+h/2 
H 
C = 
ze F E dz 
I 
+ ± E  
( 
). 
( 
F) .e 
Z 
v 
I 
Z 
S 
I where E, E, E are the basic vectors 
2 
X 
y 
Z 
- h/2 
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previously definite. 
· and where are present on the contour of the plate: 
X, y, Z: linear forces acting according to X, y and Z 
+h/2 
I = 
. dz 
F E 
C 
I 
where ex, ey, ez are the basic vectors previously definite. 
- h/2 
X, y: linear couples around axes X and Y. 
+h/2 
I = 
zez F E dz 
( 
). 
C 
I 
where E, E, E 
X 
y 
Z are the basic vectors previously definite. 
- h/2 
Note: 
The moments compared to Z are null. 
3.3  
Principle of virtual work 
It is written in the following way: W 
= W 
ext. 
def for all virtual displacements and rotations 
acceptable. 
3.3.1 Kinematics of Hencky 
With this kinematics, it results after integration by parts of work of deformation them 
equilibrium equations static of the following plates: 
NR 
+ NR 
+ F 
xx, X 
xy, y 
X = 0, 
· For the efforts: NR 
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+ NR 
+ F 
yy, y 
xy, X 
y = 0, 
T 
+ T 
+ F 
X, X 
y, y 
Z = 0. 
M 
+ M 
- T + C 
xx, X 
xy, y 
X 
y = 0, 
· For the couples: M 
+ M 
- T - C 
yy, y 
xy, X 
y 
X = 0. 
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as well as the boundary conditions following on contour C of S: 
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NR N + NR N 
xx X 
xy y = X, 
U = U, 
NR N + NR N 
yy y 
xy X = y, 
v = v, 
T N + T N 
X X 
y y = Z 
, 
or W = W, 
M N + M N 
 
 
xx X 
xy y = y, 
X = y, 
M N + M N 
yy y 
xy X = - X. 
y = - X. 
where nx and ny are the cosine directors of the normal with C directed towards the outside of the plate. 
The physical interpretation of these efforts (NR, T and M) starting from the preceding equations is given 
below: 
Z 
Ty 
Myy 
P 
P 
Tx 
Nyy 
Myx 
y 
Nyx 
Nxy 
Mxx 
X 
Nxx 
Mxy 
Appear 3.3.1-a: Efforts resulting for an element from plate 
Note: 
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NR, NR 
xx 
yy represents the tractive efforts and NR xy plane shearing. M xx and M yy  
the couples of inflection and M xy represent the torque. Tx and Ty, are the efforts of 
transverse shearing. 
3.3.2 Kinematics of Coils-Kirchhoff 
One recalls that within the framework of this kinematics, one with the following relation binding the 
derivative of 
W 
X = - X 
arrow with rotations:  
W. After a double integration by parts of the work of deformation, 
y = - y 
one obtains the following equilibrium equations static: 
NR 
+ NR 
+ F 
xx, X 
xy, y 
X = 0, 
· For the efforts of membrane: NR 
+ NR 
+ F 
yy, y 
xy, X 
y = 0, 
· For the transverse shearing and bending stresses: 
M 
+ 2 M 
+ M 
+ F + C 
- C 
xx, xx 
xy, xy 
yy, yy 
Z 
y, X 
X, y = 0, 
M 
+ M 
- T + C 
xx, X 
xy, y 
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X 
y = 0, 
M 
+ M 
- T - C 
yy, y 
xy, X 
y 
X = 0. 
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as well as the boundary conditions on contour C and with the angular points O of contour C of S: 
NR N + NR N 
xx X 
xy y = X 
, 
U = U, 
NR N + NR N 
yy y 
xy X = y, 
v = v, 
T + M 
N 
NS, S = Z 
- N, S, 
or W = W, 
Mnn = S, 
= - W 
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N 
N = S. 
, 
M (O+) - M (O) = - [(O+) - (O 
NS 
NS 
N 
N 
-)]. 
T = T N + T N 
N 
X X 
y y, 
with M 
= M N2 + 2 M N N + M N2 
nn 
xx X 
xy X y 
yy y, 
. 
M 
= - M N N + M (N2 - N2) + M N N 
NS 
xx X y 
xy 
X 
y 
yy X Y. 
Surface average S 
S 
Contour 
Million (+) 
S Million (-) 
Discontinuity 
Appear 3.3.2-a: Boundary condition with angular points for an element of plate 
Note: 
The kinematics of Coils-Kirchhoff implies that on the contour of the plate the shearing force 
transverse is related to the torque. It is noted that the order of the equilibrium equations of 
inflection is higher than with the kinematics of Hencky. Thus, to choose the kinematics of 
Coil-Kirchhoff come down to increase the degree of the functions of interpolation because a regularity 
is needed 
larger for the terms of arrow compared to the terms of membrane because of presence 
from derived seconds of the arrow in the expression of the work of the deformations. No element 
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of plate of Code_Aster does not use this kinematics. One can thus have differences between 
results obtained with the elements of Code_Aster and the analytical results obtained in  
using the kinematics of Coils-Kirchhoff for structures with angular contours. 
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3.3.3 Principal boundary conditions met [bib1] 
S 
Surface average S 
y 
nx 
Contour 
X 
ny 
N 
S, S 
N, N 
Appear 3.3.3-a: Boundary condition for an element of plate 
The boundary conditions frequently met are gathered in the table which follows. They 
are given for the kinematics of Hencky in the reference mark defined by S and the normal external with 
plate: 
Embedding 
Simple support 
Free edge 
Symmetry compared to 
Antisymetry by 
an axis S 
report/ratio with an axis S 
U = 0, 
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one = 0, 
one = 0, 
custom = 0, 
v = 0, 
W = 0, 
 
W = 0, 
S = 0. 
W = 0, 
N 
= 0. 
N 
= 0. 
S 
= 0, 
N 
= 0. 
 
= 
= 
S = 0, 
S 
0 , 
S 
0 , 
N = 0, 
 
= 0, 
= 0, 
S = 0. 
N 
Z 
S = 0. 
Z = 0, 
N = 0. 
S = 0, 
N = 0 
U = one + vn; U = - one + vn 
N 
X 
y 
S 
y 
X, 
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= N + N; = - N + N 
N 
X X 
y y 
S 
X y 
y X, 
= N2 +  
2 
N N + N2 
N 
X X 
xy X y 
y y, 
with: = - N N + (N2 - N2) + N N 
S 
X X y 
xy 
X 
y 
y X y, 
= N2 + 2 N N + N2 
N 
X X 
xy X y 
y y, 
= - N N + (N2 - N2) + N N 
S 
X X y 
xy 
X 
y 
y X Y. 
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S =  
- , 
Note: one has  
N. 
N = S. 
4  
Numerical discretization of the variational formulation 
exit of the principle of virtual work 
4.1 Introduction 
By exploiting the law of behavior, the virtual work of the interior efforts is written (with Hmf =0 
until [§4.4], which does not remove anything with the general information following results, but allows 
to reduce them 
notations): 
Wint = eH E + H + H 
m 
F 
ct dS 
( 
) 
S 
U 
 
 
 
 
 
, X 
 
 
X, X 
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W, X + X  
with: E =  
v, y, =  
y, y 
, =  
. 
 
 
 
 
W, y + y  
U, y + v, X  
X, y + y, X  
It results from it that the elements of plate are elements with five degrees of freedom per node. These 
degrees of freedom are displacements in the plan of the element U and v, except plan W and both 
rotations X and Y. 
The elements DKT and DST are triangular isoparametric elements. Elements DKQ, DSQ 
and Q4 are quadrilateral isoparametric elements. They are represented below: 
4 
3 
3 
1 
y 
2 
1 
2 
X 
Appear 4.1-a: Real elements 
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18/54 
The elements of reference are presented below: 
 
 
(0,1) 
(-1,1) 
(1,1) 
3 
4 
3 
1 
2 
(0,0) 
(1,0) 
 
 
1 
2 
(1,-1) 
(-1,-1) 
Appear 4.1-b: Elements of reference triangle and quadrangle 
One defines the reduced reference mark of the element as the reference mark (,) of the element of 
reference. The local reference mark 
element, in its plan (X, y) is defined by the user. The X1 direction of this local reference mark is 
projection of a direction of reference D in the field of the element. This direction of reference D is 
chosen by the user who defines it by two nautical angles in the total reference mark. The normal NR with 
plan of the element (12 13 for a triangle numbered 123 and 12 14 for a numbered quadrangle 
1234) fix the second direction. The vector product of the two vectors previously definite 
Y1=N X1 makes it possible to define the local trihedron in which will be expressed the generalized 
efforts 
representing the state of stresses. The user will have to take care that the selected reference axis 
do not find parallel with the normal of certain elements of plate. By defect, direction of 
reference D is axis X of the total reference mark of definition of the grid. 
The essential difference between elements DKT, DKQ on the one hand and DST, DSQ, Q4 on the other 
hand comes 
owing to the fact that for the first the transverse distortion is null is still = 0. The difference between Q4 
and elements DST and DSQ comes from a choice different of interpolation for the representation of 
transverse shearing. 
4.2  
Discretization of the field of displacement 
If one discretizes the fields of displacement in the usual way for elements 
isoparametric i.e.: 
NR 
NR 
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NR 
NR 
NR 
U = NR U, v = NR v, W = NR W, = NR, = NR 
I I 
I I 
I I  
X 
I xi 
y 
I yi, 
i=1 
i=1 
i=1 
i=1 
i=1 
and that one introduces this discretization into the variational formulation of [§4.1] it a blocking results 
from it 
in transverse shearing analyzed in [bib1] which returns the solution in inflection controlled by the effects 
of 
transverse shearing, and not by the inflection, when the thickness of the plate becomes small by report/
ratio 
with its characteristic dimension. 
To cure this disadvantage the variational form presented in introduction is slightly 
modified so that: 
W 
1 
int = 
eH E 
m + Hf + Hct dS = 
eH E 
m + Hf + TH 
T dS 
 
 
- 
( 
) 
( 
) 
ct 
S 
S 
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where are deformations of substitution checking = in a weak way (integral on the sides of 
J 
the element) and such as T = Hct. One checks thus that on the sides ij of the element (S -) 
S ds = 
 
0 
I 
with S = W, S + S. 
Two approaches are then possible; in the first, that of the element Q4, one uses 
bilinear discretization of the fields of displacement and the fact that is constant on the sides of 
the element. The relations on the sides ij then make it possible to express the values of on the sides in 
function of the degrees of freedom of inflection. In the second approach, which is that of the elements of 
the type 
DKT and DST, one uses the weak formulation of the preceding paragraph which makes it possible to 
bind the inflection to 
shearing forces to deduce the interpolation from it from the terms of inflection. 
4.2.1 Approach  
Q4g 
It rests on the linear discretization of the fields of displacement presented above: 
NR 
NR 
NR 
NR 
NR 
U = NR U, v = NR v, W = NR W, = NR, = NR 
I I 
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I I 
I I 
X 
I xi 
y 
I yi, 
i=1 
i=1 
i=1 
i=1 
i=1 
where the functions Nor are given below. 
Nor (i=1, N) 
 
Q4 
i=1 with 4 
4 
3 
1 
N1 (,) = 
1 
(-) 1 
( - ) 
4 
1 
NR (,) = 
1 
(+) 1 
( - ) 
 
2 
4 
1 
NR 3 (,) = 
1 
(+) 1 
( + ) 
4 
1 
2 
1 
NR 4 (,) = 
1 
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(-) 1 
( + ) 
4 
Functions Nor for the Q4 elements 
Note: 
1 
One also notes Nor (,) = (1+ I 
) (1+ I 
) with (, 
1 , 
2 , 
3) = (-, -) and 
4 
4 
111 1 
( , 
1 , 
2 , 
3 ) = (- ,- , , ) 
4 
1 111 . 
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4.2.2 Approach DKT, DKQ, DST, DSQ 
Like T = M, + M 
and T  
, 
= M, + M 
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X 
xx X 
xy y 
y 
yy y 
xy, X and M = Hf one deduces from it that is defined 
according to the derived seconds of X and y via two equilibrium equations internal 
and of the law of behavior in inflection. The discretization retained for X and y, such as S is 
quadratic on the sides and N linear, then utilizes of the quadratic functions of forms 
incomplete in the form: 
NR 
2 NR 
NR 
2 NR 
X = Nk xk + xk 
P K, y = Nk yk + yk 
P K with P = PC and P = P S 
xk 
K K 
yk 
K K 
K =1 
K = NR +1 
K =1 
K = NR +1 
where Ck and Sk are the cosine and directing sines on the side ij to which belongs the node K defined by: 
/ 
C = X/L = (X - X)/L; S = y/L = (y - y)/L; L = (x2 + y2 1 2 
K 
ji 
K 
J 
I 
K 
K 
ij 
K 
J 
I 
K 
K 
ji 
ji) 
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. 
Note: 
To introduce the preceding discretization amounts adding like degrees of freedom to the element of 
rotations K in the middle of the sides K of the element. Indeed, rotations S and N such as: 
C 
S  
S 
X  
=  
 
S - C 
N 
y  
are quadratic for S and linear for N with: 
S = (1 - S) if + ssj + 4s (1 - S  
) K; N = (1 - S) nor + snj where 0 S = S/Lk 1. 
1 
1 
One observes thus that: sk = S (S =) = (if + sj) + K. 
2 
2 
J 
It is the relation (S -) 
S ds = 
 
0 with S = W, S + S which will make it possible to eliminate the degrees from 
I 
freedom additional and to express them according to displacements and of nodal rotations. 
sk 
sj 
K 
nj 
if 
nor 
1/2 (si+sj) 
I 
K 
J 
S 
I 
J 
S 
Variation of S 

file:///Z|/process/refer/refer/p290.htm (9 of 45)10/2/2006 2:51:54 PM



file:///Z|/process/refer/refer/p290.htm

Variation of N 
Appear 4.2.2-a: Variations of S and N 
Handbook of Reference 
R3.07 booklet: Machine elements on average surface 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Elements of plate DKT, DST, DKQ, DSQ, Q4g 
Date:  
12/01/01 
Author (S): 
P. MASSIN 
Key: 
R3.07.03-A 
Page: 
21/54 
Nor (i=1, N) 
Pi (i=n+1,2n) 
DKT, DST 
i=1 with 3 
i=4 with 6 
 
NR (,) = = 1 - -  
P (,) = 4 
3 
1 
4 
NR (,) =  
P (,) = 4 
5 
2 
5 
6 
NR 3 (,) =  
P6 (,) = 4 
1 
4 
2 
 
DKQ, DSQ 
i=1 with 4 
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i=5 with 8 
 
1 
1 
4 
7 
3 
NR 
2 
1 (, ) = 
1 
(-) 1 
( - ) 
P (,) = 
1 
(-) 1 
( - ) 
4 
5 
2 
1 
1 
NR (,) = 
1 
(+) 1  
( - ) 
P 
2 
(,) = 
1 
(-) 1 
( + ) 
8 
6 
2 
6 
 
4 
2 
1 
1 
NR 
2 
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3 (, ) = 
1 
(+) 1 
( + ) 
P (,) = 
1 
(-) 1 
( + ) 
4 
7 
2 
1 
5 
2 
1 
1 
NR 
2 
4 (, ) = 
1 
(-) 1 
( + ) 
P (,) = 
1 
(-) 1 
( + ) 
4 
8 
2 
Functions Ni and pi for elements DKT, DST, DKQ, DSQ 
4.3  
Discretization of the field of deformation 
The matrix jacobienne J (,) is: 
NR 
NR 
 
 
NR X 
NR y  
X 
y 
I, I  
 
, 
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, 
,  
 
I 
I 
J 
J 
i=1 
i=1 
11 
12  
J =  
= 
= 
NR 
NR 
 
. 
X 
y 
, 
,  
 
 
 
J 
J 
NR X 
NR y  
21 
22  
I, I  
 
 
I, I 
i=1 
i=1 
 
 
Moreover: 
 
 
 
X 
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J 
J 
11 
12  
1 
1 J22 
- J 
 
12  
- 
=  
J 
 
front  
EC. J =  
= J =  
 
or J = det J = J J 
- J J 
 
 
J 
J 
 
11 22 
12 21 
21 
22  
J - J 
J 
21 
11  
y 
 
 
It is pointed out that the field of displacement is discretized by: 
W  
W  
 
0 
 
U 
NR 
 
the U.K.  
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NR 
K 
2 NR 
 
 
 
 
 
= NR,  
K ( 
) 
and = NR  
(,) + [P  
( ,)  
], the term enters 
v 
X 
K 
xk 
xk 
K 
=1 
vk 
K 
 
k=1 
 
 
K = NR +1 
 
 
 
P 
y 
yk  
yk  
( ,) 
hooks being present for the elements of the type DKT, DST, but not for the Q4 elements. 
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4.3.1 Discretization of the membrane field of deformation: 
NR 
NR 
E 
= U, = NR (,) the U.K. 
, 
= (J NR 
11 
, + J 
NR 
) the U.K. 
xx 
X 
K X 
K 
12 
K, 
, 
 
K =1 
K =1 
NR 
NR 
E 
= v, = NR (,) vk 
, 
= (J NR 
21 
, + J 
NR 
) v K 
yy 
y 
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K y 
K 
22 
K, 
, 
 
K =1 
K =1 
NR 
2nd 
= U, + v, = 
NR 
(,) the U.K. 
, 
+ NR (,) vk 
xy 
X 
y 
K y 
K, X 
K =1 
NR 
= (J NR 
K 
K 
21 
, + J 
NR 
K  
22 
K,) U + (J NR 
11 
K + J NR 
) 
, 
12 
K, 
v 
 
K =1 
Maybe in matric form: 
E  
xx 
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NR 
 
 
U  
E 
K 
yy = B 
 
U 
= is the membrane field of displacement to the node K 
 
 
mk 
K where the U.K. 
v  
2nd 
K 1 
K 
 
= 
xy  
and: 
J NR 
11 
K, + J NR 
0 
 
 
12 
K, 
 
Bmk =  
0 
J NR 
21 
K, + J 
NR 
22 
K,  
 
 
J NR 
21 
K, + J 
NR 
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J NR 
22 
K, 
11 
K, + J 
NR 
12 
K,  
u1  
 
 
v 
1  
The matrix of passage of the membrane deformations to the field of displacement U 
 
 
m =!  
U 
NR  
 
v  
NR  
in the plan of the element is written as follows: B [3×2N = (B 
B 
m 
] 
m1 “ 
mn). 
4.3.2 Discretization of the transverse distortion 
4.3.2.1 For the Q4g elements 
One linearly discretizes the constant field by side so that: 
1-  
1 
12 
+ 34 
 
 
 
 
+ 
 
 
 
= = 2 
2 

file:///Z|/process/refer/refer/p290.htm (19 of 45)10/2/2006 2:51:54 PM



file:///Z|/process/refer/refer/p290.htm

. 
 
1-  
1 
23 
-  
 
 
 
41  
+ 
 
2 
2 
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+1 
( - ( 
W +)) 
D = 0; 
, 
-1 
By using the relations then:  
, 
+1 
( - ( 
W +)) 
, 
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D = 0 
-1 
1 
ij = (wj - I 
W + I +  
 
 
J); 
2 
it is established that:  
for (ij) = (12,34) and (kp) = (23,41). 
1 
kp 
= 
(wp - wk + p + K); 
2 
By deferring the two results above in the expression of, one establishes that: 
w1  
 
 
 
1  
 
 
 
1  
 
 
= = B U where U =! and B = (B, B 
 
1 " 
) 
 
 
 
NR 
 
 
 
wN  
 
NR  
 
 
 
 
NR  
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NR K, K NR K, 
0 
 
with B K =  
. 
NR K, 
0 
K Nk,  
w1  
 
 
x1  
 
 
y1 
I  
J 
J 
11 
12 xi  
 
 
Like  
=  
 
one deduces from it that = B U 
=! and 
 
F where U F 
I  
J 
J 
21 
22 yi  
W  
NR 
 
 
xN  
 
 
 
yN  
NR K, K Nk J 
, 
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11 
K Nk J 
, 
12  
B = (B, B 
 
 
) 
1 " 
NR with B K =  
. 
NR 
K, K NR K J 
, 
21 
K Nk J 
, 
22  
X J 
J 
11 
12  
Finally:  
=  
 
= B U with B 
= jB 
 
 
= 
C 
F 
C [2×3N] 
. 
y  
J 
J 
21  
22  
Handbook of Reference 
R3.07 booklet: Machine elements on average surface 
HI-75/01/001/A 

Code_Aster ® 

file:///Z|/process/refer/refer/p290.htm (23 of 45)10/2/2006 2:51:54 PM



file:///Z|/process/refer/refer/p290.htm

Version 
5.0 
Titrate:  
Elements of plate DKT, DST, DKQ, DSQ, Q4g 
Date:  
12/01/01 
Author (S): 
P. MASSIN 
Key: 
R3.07.03-A 
Page: 
24/54 
4.3.2.2 For the elements of the type DKT, DST 
With regard to the transverse distortions one deduces from 
T = M, + M 
and T 
, 
= M, + M 
X 
xx X 
xy y 
y 
yy y 
xy, X with M = H F that T = H F, xx where: 
T, xx = (X, xx X, yy X, xy y, xx y, yy y, xy) and 
H 
H 
2H 
H 
H 
H 
11 
33 
13 
13 
23 
12 + H33  
H F =  
 
 
where H 
H 
H 

file:///Z|/process/refer/refer/p290.htm (24 of 45)10/2/2006 2:51:54 PM



file:///Z|/process/refer/refer/p290.htm

H 
ij is the terms (I, J) of 
13 
23 
12 + H 
H 
H 
2H 
33 
33 
22 
23 
 
Hf. 
NR 
2 NR 
NR 
NR 
 
= NR (,) + P (,) = NR (,) + (j2 P 
2 
2 
11 
+ J J P 
11 12 
+ J P 
) 
, 
X, xx 
K, xx xk 
xk, xx K 
K, xx xk 
xk, 
xk  
, 
12 xk  
, 
K 
K =1 
K = NR +1 
K =1 
K = NR +1 
NR 
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2 NR 
NR 
NR 
 
= NR (,) + P (,) = NR (,) + 
2 
2 
(J P 
 
, + 2 J 
J P, + J P 
) 
, 
X, yy 
K, yy xk 
xk, yy K 
K, yy xk 
21 xk 
21 22 xk 
22 xk, 
K 
K =1 
K = NR +1 
K =1 
K = NR +1 
NR 
2 NR 
 
 
 
, 
= NR (,) 
, 
+ P (,) 
X xy 
K xy 
xk 
xk, xy 
K 
K =1 
K = NR +1 
NR 
NR 
= NR (,) 
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, 
+ (J J P, + [J J + J J] P, + J J P), 
K xy 
xk 
11 21 xk 
11 22 
12 21 
xk 
11 21 xk, 
K 
K =1 
K = NR +1 
NR 
2 NR 
NR 
NR 
 
 
(,) + P (,) = NR (,) + (j2 P 
2 
2 
11 
+ J J P 
11 12 
+ J P 
) 
 
 
12 
 
, 
= 
NR 
y xx 
K, xx 
yk 
yk, xx 
K 
K, xx 
yk 
yk, 
yk, 
yk, 
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K 
K =1 
K = NR +1 
K =1 
K = NR +1 
NR 
2 NR 
NR 
NR 
 
= NR (,) + P (,) = NR (,) + (j2 P 
2 
2 
J J P 
+ J P 
) , 
21  
+ 
y, yy 
K, yy 
yk 
yk, yy 
K 
K, yy 
yk 
yk, 
21 22 
yk, 
22 
yk, 
K 
K =1 
K = NR +1 
K =1 
K = NR +1 
NR 
2 NR 
 
= NR (,) + P (,) 
y, xy 
K, xy 
yk 
yk, xy 

file:///Z|/process/refer/refer/p290.htm (28 of 45)10/2/2006 2:51:54 PM



file:///Z|/process/refer/refer/p290.htm

K 
K =1 
K = NR +1 
NR 
NR 
= NR (,) + (J J P + [J J + J J] P + J J P) 
K, xy 
yk 
11 21 yk, 
11 22 
12 21 
yk, 
11 21 yk, 
K 
K =1 
K = NR +1 
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that is to say still in matric form that: 
X, xx  
 
 
X, yy  
 
T = H X, xy = 
F y, xx 
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y, yy 
 
y, xy 
0 
j2 NR 
2 J J NR 
j2 NR 
0 
 
11 
K  
, 
+ 11 12 K  
, 
+ 12 K, 
 
 
0 
j2 NR 
2 J J NR 
j2 NR 
0 
 
21 
K  
, 
+ 21 22 K, + 22 K  
, 
W  
NR 0 
J J NR 
[J J 
J J] NR 
J J NR 
0 
 
K 
 
 
11 21 
K  
, 
+ 11 22 + 12 21 K  
, 
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+ 
H 
11 21 
K  
,  
 
 
 
 
F 
= 0 
0 
j2 NR 
2 J J NR 
+ j2 NR 
xk 
K 1 
11 
K  
, 
+ 11 12 K, 
12 
K, 
 
 
 
0 
0 
j2 NR 
+ 2 J J NR 
+ j2 NR 
yk  
21 
K, 
21 22 
K, 
22 
K, 
 
 
 
0 
0 
J J NR 
+ [J J + J J] NR 
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+ J J NR 
 
11 21 
K, 
11 22 
12 21 
K, 
11 21 
K,  
 
C (j2 P 
+ 2 J J P + j2 P) 
 
K 
11 K, 
11 12 K, 
12 K  
,  
 
 
C (j2 P 
2 
2 
) 
 
K 
21 K, 
+ J J P 
21 22 K, 
+ 
 
 
J P 
22 K  
, 
 
2 NR 
C (J J P 
[ 
] 
) 
K 
11 21 K, 
+ J J 
11 22 + J 
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J P 
12 21 
K, 
+ J J P 
+ H 
 
 
11 21 K  
, 
 
= 
F K  
S (j2 P 
2 
2 
) 
K 
11 K, 
+ J J P 
11 12 K, 
+ J P 
K = NR +1 
 
 
12 K  
, 
 
 
S (j2 P 
2 
2 
) 
 
K 
21 K, 
+ J J P 
21 22 K, 
+ 
 
 
J P 
22 K  
, 
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S (J J P 
[ 
+ J J] P 
) 
K, + 
 
J J P 
K 
11 21 K, 
+ 
 
J J 
11 22 
12 21 
11 21 K,  
C P 
K 
K,  
 
 
C P 
W  
K K, 
NR 
K 
2 
 
 
NR 
C P  
NR 
2 NR 
H  
K 
K, 
P 
 
H T 
 
+ H T T H P U 
H T T 
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B U 
B 
 
 
 
F 
2 
ck 
K = 
F 
F 
F 
+ F 2 
= C F + 
F 
2 
 
 
H 
P U 
F 
F K  
xk + 
 
 
 
K = 
S P 
F 
F K 
 
F K 
 
C 
K =1 
K = NR 1 
 
 
+ 
K K,  
 
K 
 
=1 
K = NR +1 
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yk  
 
 
S P 
K 
K,  
 
S P 
K 
K,  
 
2 
2 
J 
J 
2 J J 
 
T 
11 
12 
11 12 
 
 
2 
0  
where T 
(T 
T 
2 
2 
= 
C NR + 
) 
( 
) 
1 “c2 NR and T2 =  
 
= J 
J 
2 J J 
 
with T 
. 
0 
T 
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2 
21 
22 
21 22 
2  
 
 
 
j11 j21 j12 j22 j11 j22 + 12 
J j21 
J 
We use then the relation (S -) 
S ds = 
 
0 with S = W, S + S for each side ij of 
I 
the element which makes it possible to obtain K since she is still written: 
L 
2 
W - W 
K 
+ 
(C + S + C + S) + L = L 
J 
I 
K xi 
K yi 
K xj 
K yj 
K K 
K sk where: 
2 
3 
 
-1 
- 
= (C 
S) = (C 
S) H T = (C 
S) H 1 [B U + B 
] 
sk 
K 
K  
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K 
K 
ct 
K 
K 
ct 
 
C 
 
F 
C 
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The relation above is still written in matric form: WITH = A U 
 
W 
F 
L 
0 
0 
NR 1 
LN 1CN 1 LN 1SN 1 
2  
+ 
 
+ 
+ 
+ 
+  
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with: With 
= 
0 
0 
# 
- 
H -1B 
 
 
 
! 
! 
ct 
 
3 
C 
 
0 
0 
L2N L2 C 
NR 
2 
L 
NR 
2 S 
N2 NR  
and: 
- 2 L C 
L 
S 
2 
L 
C  
L 
S 
0 
0 
0 
 
NR +1 NR +1 
NR +1 NR +1 
NR +1 NR +1 
NR +1 NR +1 
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0 
0 
0 
- 2 L C 
L S 
2 
L C 
L S 
 
K +1 K +1 
K +1 K +1 
K +1 K +1 
K +1 K +1  
0 
0 
0 
0 
0 
0 
- 2 L 
C 
L 
S 
 
2 NR -1 2 NR -1 
2 NR -1 2 NR -1 
 
 
1 2 
L C 
L S 
0 
0 
0 
0 
 
" 
" 
 
With 
2 NR 
2 NR 
2 NR 

file:///Z|/process/refer/refer/p290.htm (40 of 45)10/2/2006 2:51:54 PM



file:///Z|/process/refer/refer/p290.htm

2 NR 
= - 
W 
2  
0 
0 
0 
" 
 
 
 
 
0 
0 
0 
" 
 
 
2 
L 
C 
L 
" 
S 
 
2 NR -1 2 NR -1 
2 NR -1 2 NR -1 
 
 
 
“-2 L C 
L S 
 
 
2 NR 
2 NR 
2 NR 
2 NR 
L C 
L 
S 
 
NR +1 
NR +1 
NR +1 NR +1 
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1- 
+  
! 
! 
H B 
ct 
C 
 
L C 
L S 
 
 
2 NR 
2 NR 
2 NR 
2 NR 
Thus = 
 
front  
EC. 
1 
= 
- 
WITH U 
With 
WITH A 
F 
W, which implies T = [B + B A 
U 
] 
C 
C 
 
F. 
Note: 
For the DST elements, this expression is simplified a little since B 
= 0 because of linearity of 
C 
functions of form NR (k=1,2,3). 
K 
This expression is simpler for elements DKT and DKQ since they are without transverse distortion, 
1 0 
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0 
 
 
i.e. = 0, which implies A = 
 
0 #  
0 and 
 
0 0 1 
- 2/LN 
C 
+1 
NR 
S 
+1 
NR 
2/L 
+1 
NR 
C 
+1 
NR 
S 
+1 
NR + 
0 
0 
0 
1 
" 
 
 
0 
0 
0 
- 2/L 
 
K 
C 
+1 
K 
S 
+1 
K 
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2/L 
+1 
K 
C 
+1 
K 
S 
+1 
K +1 
" 
 
0 
0 
0 
0 
0 
0 
- 2/L 
 
2 NR 
C 
-1 
2 NR 
S 
-1 
2 NR -1 
" 
 
 
3 
2/L 
C 
S 
0 
0 
0 
0 
 
" 
" 
" 
With 
2 NR 
2 NR 
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2 NR 
W = - 4  
0 
0 
0 
" 
 
 
 
 
0 
0 
0 
" 
 
 
2/L 
" 
 
2 NR 
C 
-1 
2 NR 
S 
-1 
2 NR -1 
 
 
 
 
 
“- 2/L2N 
C2N 
S2N 
 
It is also noticed that for elements DKT the expression of the efforts sharp is calculated from 
balance and not starting from the behavior (on the basis of the behavior one would find a value zero 
sharp efforts what would not make it possible to carry out balance!). It results from it according to the 
§3.1.1 from  
transverse stress shear nonnull in the thickness of the plate that one is in formulation 
DKT or DST. 
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4.3.3 Discretization of the field of deformation of inflection: 
4.3.3.1 For the Q4g elements 
The relation binding the deformations of inflection to the field of displacement of inflection is written: 
NR 
NR 
xx = X, X = j11x, + j12x, = j11 Nk, xk + j12 Nk,  
 
 
 
xk, 
K =1 
K =1 
NR 
NR 
yy = y, y = j21y, + j22y, = j21 Nk, yk + j22 Nk,  
 
 
 
yk, 
K =1 
K =1 
NR 
NR 
 
2 xy = y, X + X, y = j11y, + j12y, + j21x, + j22x, = J NR 
21 
K  
, xk + j22 NR K, xk 
K 1 
= 
K 1 
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= 
NR 
NR 
+ 11 
J Nk, yk + 12 
J Nk, yk. 
K 1 
= 
K 1 
= 
That is to say still in matric form: 
 
 
 
xx 
W 
NR 
 
 
K 
 
 
yy = B fk U fk where U fk = xk represents the field of displacement of inflection to the node K, 
 
 
 
 
 
K 
2 
1 
= 
xy  
yk  
with: 
0 J NR 
0 
 
11 
K, + J 
NR 
12 
K 
 
, 
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B fk = 0 
0 
J NR 
21 
K, + J 
NR 
22 
K. 
0 J NR 
 
 
21 
K, + J 
NR 
22 
K 
J NR 
, 
11 
K, + J 
NR 
12 
K,  
w1  
 
 
x1  
 
y 
1  
The matrix of passage of the field of displacement of inflection U F =! with the deformations of 
W  
NR 
 
 
xN  
 
 
 
yN  
inflection is written then: B 
= B, B 
F [× N] 
(F “fN) 
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4.3.3.2 For the elements of the type DKT, DST: 
The relation binding the deformations of inflection to the field of displacement of inflection is written: 
NR 
2 NR 
NR 
2 NR 
xx = X, X = j11, 
12 
, 
( 
11  
, 
, ) 
( 
12  
, 
 
X + J X = J 
NR K xk + 
xk 
P K + J 
NR K xk + 
xk 
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P, K), 
K =1 
K = NR +1 
K =1 
K = NR +1 
NR 
2 NR 
NR 
2 NR 
 
 
, 
21 
, 
22 
, 
( 
21  
, 
, ) 
( 
22  
yy = there y = J y + J y = J 
NR K yk + 
yk 
P K + J 
NR K, yk + 
Pyk, K), 
K =1 
K = NR +1 
K =1 
K = NR +1  
 
2 xy = y, X + X, y = j11y + J 
, 
12 y 
+ J 
, 
21x 
+ J 
, 
22 X, = 
NR 
2 NR 
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NR 
2 NR 
NR 
2 NR 
J ( 
21 NR 
+  
+ 22  
+  
+ 11  
+  
K, xk 
xk 
P, K) J ( 
NR K, xk 
xk 
P, K) J ( 
NR K, yk 
yk 
P, K) 
K =1 
K = NR +1 
K =1 
K = NR +1 
K =1 
K = NR +1 
NR 
2 NR 
+ J ( 
12 NR 
+ P 
K, 
yk 
yk, K). 
 
 
K =1 
K = NR +1 
For elements DKT, DKQ: 
In matric form the preceding relation is also written by introducing the relation = A U  
F: 
 
B 
B 
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xx 
j11  
X + j12  
X 
 
 
 
yy =  
j21B  
y + j22B  
y 
U F = B F 3×3N U 
[ 
] 
F where 
 
 
 
 
2 xy 
J 
11B  
y + j12By + j21B  
X + j22B  
X  
w1  
 
 
x1  
 
y 
1  
U F =! represent the field of displacement in inflection for the element with: 
W  
NR 
 
 
xN  
 
 
 
yN  
6 NR 
P +1C 
, 
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NR 
6P 
+1 
2 NR C 
, 
2 NR 
3 
B 
2 
2 
 
X = ( 
- 
, N1, - (NR 
P +1C 
, 
NR +1 + P2 NR C 
, 
2 NR), 
4 LN 
4L 
+1 
2 NR 
4 
3 
- (NR 
P +1C 
, 
NR 
S 
+1 NR +1 + P2N C 
, 
2 NR S2 NR), 
, 
4 
" 
6 NR 
P +K C 
, 
NR +k 
6 NR 
P +k-1C 
, 
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NR +k 1 
3 
- 
-, NR 
2 
2 
K  
, - 
(NR 
P +K C 
+ P 
C 
), 
4 L 
, NR +k 
NR +k -1  
, 
NR +k -1 
NR +k 
4 LN+k- 
4 
1 
3 
- (PN+k C 
S 
, 
+ P 
NR +K NR +K 
NR +K -1 C 
S 
, 
NR +K -1 NR +K -1), 
4 
" 
(K = 2. , NR)) 
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6 NR 
P +1C 
, 
NR 
6P 
+1 
2 NR C2 
3 
B 
, 
NR 
2 
2 
 
X 
= ( 
- 
, N1, - (NR 
P +1C 
, 
NR +1 + P2 NR C 
, 
2 NR), 
4LN 
4L 
+1 
2 NR 
4 
3 
- (NR 
P +1C  
, 
NR 
S 
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+1 NR +1 + P2N C 
, 
2 NR S2 NR), 
, 
4 
" 
6 NR 
P +K C 
, 
NR +k 
6 NR 
P +k-1C 
, 
NR +k 1 
3 
- 
-, NR 
2 
2 
K  
, - 
(NR 
P +K C 
+ P 
C 
), 
4L 
, NR +k 
NR +k -1  
, 
NR +k -1 
NR +k 
4LN+k- 
4 
1 
3 
- (PN+k C 
S 
, 
+ P 
NR +K NR +K 
NR +K -1 C 
S 
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, 
NR +K -1 NR +K -1), 
4 
" 
(K = 2. , NR)) 
6 NR 
P +1S 
, 
NR 
6P 
+1 
2 NR S 
, 
2 NR 
3 
B y = ( 
- 
, - (NR 
P +1C 
, 
NR 
S 
+1 NR +1 + P2 NR C 
, 
2 NR S2 NR), 
4 LN 
4 L 
+1 
2 NR 
4 
3 
NR 
2 
2 
1  
, - 
(NR 
P +1 S 
, 
NR +1 + P2 NR S 
, 
2 NR), 
, 
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4 
" 
6 NR 
P +K S 
, 
NR +k 
6 NR 
P +k-1S 
, 
NR +k 1 
3 
- 
-, - (NR 
P +K C 
, 
NR 
S 
+ P 
C 
S 
), 
4 L 
+k NR +k 
NR +K -1, NR +K -1 NR +K -1 
NR +k 
4LN+k- 
4 
1 
3 
NR 
2 
2 
K, - 
(NR 
P +K S 
, NR +K + NR 
P +k 
S 
-1, NR +k-1), 
4 
" 
(K = 2. , NR)) 
6 NR 
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P +1S 
, 
NR 
6P 
+1 
2 NR S2 
3 
B 
, 
NR 
y = ( 
- 
, - (NR 
P +1C 
, 
NR 
S 
+1 NR +1 + P2 NR C 
, 
2 NR S2 NR), 
4 LN 
4 L 
+1 
2 NR 
4 
3 
NR 
2 
2 
1  
, - 
(NR 
P +1S 
, 
NR +1 + P2 NR S 
, 
2 NR), 
, 
4 
" 
6 NR 
P +K S 
, 
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NR +k 
6 NR 
P +k-1S 
, 
NR +k 1 
3 
- 
-, - (NR 
P +K C 
, 
NR 
S 
+ P 
C 
S 
), 
4 L 
+k NR +k 
NR +K -1, NR +K -1 NR +K -1 
NR +k 
4LN+k- 
4 
1 
3 
NR 
2 
2 
K, - 
(NR 
P +K S 
, NR +K + NR 
P +k 
S 
-1, NR +k-1), 
4 
" 
(K = 2. , NR)) 
For elements DST, DSQ: 
The relation binding the deformations of inflection to the field of displacement in inflection is also 
written under 
matric form: 
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xx 
W 
NR 
2 NR 
 
 
K  
 
 
yy = B fk U fk + B fkU fk where U F K = xk and U F K 
= K represent it 
 
 
 
 
 
K = 
K = NR 
2 
1 
1 
+ 
xy  
yk  
field of displacement of inflection to the node K, so that: 
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11 
K, + J 
NR 
 
12 
K  
 
, 
 
B F K = 0 
0 
J NR 
 
21 
K, + J 
NR 
 
22 
K  
, and 
 
 
0 J NR 
 
21 
K, + J 
NR 
 
22 
K 
J NR 
 
, 
11 
K, + J 
NR 
 
12 
K  
,  
 
J 
 
11 xk 
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P, + J 
 
12 xk 
P  
 
, 
 
B F K =  
J 
 
21 yk 
P, + J 
 
22 yk 
P, 
. 
 
 
J 
11 yk 
P, + J 
 
12 yk 
P, + J 
 
21 xk 
P, + J 
 
22 xk 
P, 
w1  
 
x1  
 
y 
1  
The matrix of passage of the field of displacement of inflection U 
= (U 
F 
F,) 
with U F =! and 
W  
NR 
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xN  
 
 
yN  
 
1  
=! with the deformations of inflection is written then: 
 
NR  
B 
= (B, B 
, B 
, 
, B 
) 
" 
 
 
" 
 
= (B 
, B 
F [× NR] 
F 
F NR 
F (NR +) 
F 
NR 
F [× NR] 
F [× NR]) 
3 4 
1 
1 
2 
3 3 
3 
. 
4.4  
Stamp rigidity 
The principle of virtual work is written in the following way: W 
= W 
ext. 
int is still in elasticity 
UT K U = F U in matric form where K is the matrix of rigidity coming from the assembly 
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in the total reference mark of the whole of the elementary matrices of rigidity. 
4.4.1 Stamp elementary rigidity for the Q4g elements 
 
W eint =  
[E ( 
Hme + Hmf) + 
(Hmf E + H F) +  
Hct D 
] S = 
E 
T T 
T 
T 
T 
T 
T 
T 
( 
UmBmHmBmUm +UmBmHmf B F U F +U F B F Hmf BmUm +U F B F H F B F U F 
E 
+ T T 
U B H B U) dS 
F 
C 
ct 
C 
F 
= 
T 
T 
U (B H B dS 
T 
T 
T 
T  
m m m m) Um + U (B H B dS 
F F 
F 
F 
) U F + U (B H B dS) U 
m m MF 
F 
F 
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E 
E 
E 
+ UT (BT H B dS) U 
F F MF m 
m 
E 
+ UT (BT H B dS) U 
T 
T 
T 
T 
T 
F C ct C 
F = the U.K.U 
m 
m 
m + the U.K.U 
F 
F 
F + the U.K. 
U 
m 
MF 
F + the U.K. 
U 
F 
Fm 
m + the U.K.U 
F 
C 
F 
E 
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with K 
= K T 
MF 
Fm. 
Um 
This is still written: W E 
int = (Um, U F) K 
 
U 
where 
F  
K 
K 
[ 
m2 NR ×2 NR] 
MF [2 NR ×3N] 
 
K 
 
 
[5N ×5N] = 
is the matrix of rigidity of the element. 
K T 
K 
 
+ K 
MF [3N ×2 NR] 
F [3N ×3N] 
[ 
C 3N ×3N]  
4.4.2 Stamp elementary rigidity for elements DKT, DKQ 
Since the relation = 0 is satisfied, one can write: 
 
W eint =  
E ( 
Hme + Hmf) + 
(Hmf E + H F) dS = 
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E 
T T 
T 
T 
T 
T 
T 
T 
( 
UmBmHmBmUm +UmBmHmf B F U F +U F B F Hmf BmUm +U B H B U) dS 
F 
F 
F 
F 
F 
= 
E 
T 
T 
U (B H B dS 
T 
T 
T 
T 
m m m m) Um + U (B H B dS 
F F 
F 
F 
) U F + U (B H B dS 
m m MF 
F 
) U F 
E 
E 
E 
+ UT 
T 
T 
T 
T 
T 
F (B F Hmf B mdS) U m 
U 
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mKmUm 
U 
F K F U F 
U 
mKmf U F 
U 
F K fmU 
 
= 
+ 
+ 
+ 
m 
E 
with K 
= K T 
MF 
Fm. 
Um 
K 
K  
[ 
m2 NR ×2 NR] 
MF [2 NR ×3N]  
This is still written: W E 
 
 
int = (Um, U F) K 
 
= 
U 
where K [5N×5N] 
T 
F  
K 
K 
MF [3N×2N] 
F [3N ×3N]  
is the matrix of rigidity of the element. 
4.4.3 Stamp elementary rigidity for elements DST, DSQ 
 
W E = 
E (H E + H 
) + 
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(H E + H) + 
- 
TH 
T 
1 
= 
 
int 
m 
MF  
 
 
MF 
F  
 
dS 
ct 
E 
T T 
T 
T 
T 
T 
T 
T 
(U B H B U + U B H B U + U B H B U + 
 
U B H B U 
m 
m 
m 
m 
m 
m m MF F F F F MF m m F F F F F 
E 
+  
T 
T 
-1 
T 
T 
-1 
T 
T 
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U 
B H 
B U + U B H 
B 
+ 
- 
B H 
B 
1 
U + TBT 
-1 
) dS = 
C H 
B 
ct 
C 
F 
C 
ct 
C 
F 
 
F 
 
C 
ct 
C 
 
C ct C F 
UT (BTH B dS) U 
T 
T 
T 
T 
T 
T 
+ 
( 
dS) 
+ 
( 
dS) 
+ 
( 
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dS 
 
 
 
 
) 
m 
m 
m 
m 
m 
U 
B H B 
U 
F 
F 
F 
F 
F 
U 
B H B 
U 
m 
m 
MF 
F 
F 
U 
B H B 
U 
F 
F 
MF 
m 
m 
E 
E 
E 
E 
+  
T 
T 
-1 
T 
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T 
-1 
T 
U 
T 
( 
dS) 
+ 
( 
dS 
- 
) + 
 
 
1 
( 
+  
B dS U 
T BT H - 
) 
( 
B 
1 
dS  
 
 
) = 
F 
B fH B 
ct 
 
U 
C 
F 
 
U F B fH B 
ct 
C 
 
 
B H 
C 
ct 
C 
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F 
C 
ct 
C 
E 
E 
E 
E 
UTK U + UT K U + UTK U + UT K U + UT K U + UT K 
T 
+ K U 
T 
+ K  
m 
m 
m 
F 
F 
F 
m 
MF 
F 
F 
Fm 
m 
F 
 
F 
F 
 
 
F 
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It is also known that U 
= (U 
F 
F,) 
from where it results that: 
K 
= BT H B 
F 11 
F F F dS 
 
; 
K 
K 
S 
F 11 
F 12  
K 
 
 
T 
F = 
with: K 
= B H B dS; 
K T 
K 
 
 
F 12 
F 
F 
F 
F 12 
22  
S 
K 
= BT H B 
F 22 
F F F dS 

file:///Z|/process/refer/refer/p300.htm (30 of 48)10/2/2006 2:51:55 PM



file:///Z|/process/refer/refer/p300.htm

 
. 
S 
K 
= BT H B 
MF 11 
m MF F dS 
 
; 
K 
= (K 
K 
S 
MF 
MF 11 
MF 12) with: K 
= BT H B 
MF 12 
m MF F dS 
 
. 
S 
K 
= K T 
Fm 
MF. 
Using the fact that = WITH one deduces from it that: 
F 
Wint = T 
T 
T 
T 
UmK mUm + U fK F U F + UmKmf 
U F + U fK Fm 
Um where: 
K 
T 
T 
T 
T 
( 
) 
( 
) 
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( 
) 
F = K F 11 + K + A 
K 
 
F 22 + K 
With 
C 
+ K F 12 + K 
With 
 
+ A 
K 
 
F 12 + K. 
Kmf = Kmf 11 + K 
With 
MF 12 
 
Um  
This is still written: W E 
int = (Um, U F) K 
 
U 
where 
F  
K 
K 
[ 
m2 NR ×2 NR] 
m 
F [2N×3N] 
K 
 
 
[5N ×5N] = 
is the elementary matrix of rigidity for an element 
K T 
 
K 
MF [3N ×2 NR] 
F [3N ×3N]  
of plate. 
4.4.4 Assembly of the elementary matrices 
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The principle of virtual work for the whole of the elements is written: 
nbelem 
W = We = T 
int 
int 
U KU where U is the whole of the degrees of freedom of the discretized structure and 
e=1 
K comes from the assembly of the elementary matrices. 
4.4.4.1 Degrees of freedom 
The process of assembly of the elementary matrices implies that all the degrees of freedom are 
expressed in the total reference mark. In the total reference mark, the degrees of freedom are three 
displacements 
compared to the three axes of the total Cartesian reference mark and three rotations compared to these 
three axes. 
One thus uses matrices of passage of the local reference mark to the total reference mark for each 
element. However one 
saw previously that the degrees of freedom of the elements of plate are two displacements 
in the plan of the plate, displacement except plan and two rotations. These rotations not being 
exactly rotations compared to the axes of the plate since 
X (X, y) = y (X, y), y (X, y) =  
- X (X, y) it is necessary to hold account of it with the level of the assembly for 
to reveal the good degrees of freedom xi, yi. 
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4.4.4.2 Rotations  
fictitious 
Rotation compared to the normal with the plate is regarded as not being a degree of freedom. 
To ensure compatibility between the passage of the local mode the total mode, a degree is thus added 

file:///Z|/process/refer/refer/p300.htm (33 of 48)10/2/2006 2:51:55 PM



file:///Z|/process/refer/refer/p300.htm

of additional freedom room of rotation to the plate which is that corresponding to rotation by 
report/ratio with the normal in the plan of the element. This implies an expansion of the blocks of 
dimension (5,5) 
matrix of local rigidity in blocks of dimension (6,6) by adding a line and a column 
correspondent with this rotation. These additional lines and these columns are a priori null. One 
then carry out the passage of the matrix of local rigidity extended to the matrix of total rigidity. 
In the preceding transformation, one was satisfied to add rotations compared to the normals 
in the plan of the elements without modifying the deformation energy. The contribution to the energy 
brought by 
these additional degrees of freedom is indeed null and no rigidity is associated for them. 
The matrix of total rigidity thus obtained presents the risk however to be noninvertible. For 
to avoid this nuisance it is allowed to allot a small rigidity to these additional degrees of freedom 
on the level of the matrix of widened local rigidity. Practically, one chooses it between 106 and 103 
times it 
diagonal minor term of the matrix of rigidity of local inflection. The user can choose it 
multiplicative coefficient COEF_RIGI_DRZ itself in AFFE_CARA_ELEM; by defect it is worth 105. 
4.5  
Stamp of mass 
The terms of the matrix of mass are obtained after discretization of the variational formulation 
following: 
+h/2 
W ac 
U U 
$ 
$ 
mass = 
$ dzdS = (U 
 
m $$ U + $v$ v + $ W W) + (U 
MF $ $ + v 
X 
$$ y + X U + y v) 
- h/2 S 
S 
+ $ 
$ 
F (X X + y) dS 
y 
+h/2 
+h/2 
+h/2 
with  
2 
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m = 
dz,  
 
MF = 
zdz, and  
 
F = 
Z dz 
 
. 
- h/2 
- h/2 
- h/2 
Note: 
If the plate is homogeneous or symmetrical compared to z=0 then MF =0. One considers in 
continuation of the talk that it is always the case. 
4.5.1 Stamp of traditional elementary mass 
4.5.1.1 Element  
Q4g 
The discretization of displacement for this isoparametric element is: 
the U.K.  
 
 
NR 
vk  
U = 
W  
NR K K =1,…, NR 
K 
K =1 
xk  
 
yk  
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The matrix of mass, in the base where the degrees of freedom are gathered according to the directions of 
translation and of rotation, has then as an expression: 
M 
0 
0 
M 
m 
MF 
0  
 
 
0 
M 
0 
0 
M 
 
m 
MF  
M 0 
0 
M 
= 
0 
0  
 
m 
T 
 
M 
0 
0 
M 
MF 
F 
0  
0 
MT 
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0 
0 
M 
 
MF 
F  
with: M 
= NTNdS, M 
= NT dS and  
NR 
M = NT NR 
m 
m 
MF 
MF 
F 
F 
dS and NR = (NR 
NR 
1 “K). 
S 
S 
S 
4.5.1.2 Elements of the type DKT, DST 
W  
W  
 
0 
 
NR 
K 
2 NR 
 
 
 
 
 
Like = NR  
(,) + P 
X 
K 
xk 
xk  
( ,)  
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K where = WITH F one deduces from it that: 
k=1 
 
k=N+1 
 
 
 
P 
y 
yk  
yk  
( ,) 
W  
NR  
( ,) 
0 
0 
W  
NR 
K 
K 
 
 
 
 
= NR 
 
(,) NR 
 
(,) NR 
X 
kxw 
kxx 
kxy  
(,) xk. 
k=1 
 
 
 
NR 
 
 
 
(,) NR 
 
(,) NR 
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y 
kyw 
kyx 
kyy  
(,) yk  
The membrane part of the elementary matrix of mass is the same one as for Q4 with k=3 with the place 
from 4 in NR. The inflection part is composed of the blocks kp (kth line and pième column) following: 
NR 
/ 
 
kxw NR pxw + NR kyw NR pyw + m NR K NR p 
F Nkxw NR pxx + Nkyw NR pyx Nkxw NR pxy + Nkyw NR pyy 
 
 
F  
NR kxx NR pxw + Nkyx NR pyw 
NR kxx NR pxx + Nkyx NR pyx 
NR kxx NR pxy + Nkyx NR pyy  
 
 
NR 
 
kxy NR pxw + NR kyy NR pyw 
NR kxy NR pxx + Nkyy NR pyx 
NR kxy NR pxy + Nkyy NR pyy  
4.5.2 Stamp of improved elementary mass 
As the arrow of a flexbeam can be represented with difficulty by an approximation 
linear, one can enrich the functions by form for the terms of inflection. This approach is used 
in Code_Aster for the elements of type DKT, DST and Q4 where functions of form used 
in the calculation of the matrix of mass of inflection are of order 3. The interpolation for W is written as 
follows: 
NR 
W = NR 
(,) W 
( - ) 
1 
+1 
+ NR 
(,) W 
( - ) 
1 
+2 
, + NR 
(,) W 
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K 
NR 
K 
K 
NR 
K 
(K -) 
1 NR +3 
, K 
 
K =1 
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where the functions of form are given for the triangle and the quadrangle in the following table: 
DKT, DST 
DKQ, DSQ, Q4 
 
 
3 
4 
7 
3 
5 
6 
1 
4 
2 
 
8 
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6 
 
1 
5 
2 
Interpolation 
= 1- -  
i=1 with 12 
for W 
i=1 with 9 
1 
NR 
2 
2 
(,) = 
1 
(- 1 
)( - )(2 - - - - ) 
NR 
2 
3 
1 
8 
1 (,) = 3 - 2 + 2 
1 
NR 
2 
2 
2 (,) = +/2 
N2 (,) = 
1 
(- 1 
) (- 1 
)( - ) 
8 
NR 
2 
3 (,) = +/2 
1 
NR 
2 
(,) = 
1 
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(- 1 
) (- 1 
)( - ) 
NR 
2 
3 
3 
4 (,) = 3 
- 2 + 2 
8 
NR 
2 
1 
2 
2 
5 (, ) = (-1 + ) -  
NR 4 (,) = 
1 
(+ 1 
)( - )(2 - - + - ) 
8 
NR 
2 
6 (,) = +/2 
1 
NR 
2 
(,) = - 
1 
(+ 1 
) (- 1 
)( - ) 
NR 
2 
3 
5 
7 (,) = 3 - 2 + 2 
8 
NR 
2 
1 
2 
8 (,) = +/2 
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NR 6 (,) = 
1 
(+) 1 
( - )(1- ) 
8 
NR 
2 
9 (, ) = (-1 + ) -  
1 
NR (,) = (1+) (1+) (2 
2 
2 
- - + + ) 
7 
8 
1 
NR (,) = - (1+) (1+) (1 
2 
- ) 
8 
8 
1 
NR (,) = - (1+) (1+) (1 
2 
- ) 
9 
8 
1 
NR (,) = (1 -) (1+) (2 
2 
2 
- - - + ) 
10 
8 
1 
NR (,) = (1 -) (1+) (1 
2 
- ) 
11 
8 
1 
NR (,) 
12 
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= (1) (1) (1 
2 
- 
+ 
- ) 
8 
Functions of interpolation for the arrow of elements DKT, DST, DKQ, DSQ and Q4G, 
in dynamics and modal. 
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4.5.2.1 Elements of type DKT 
One knows that in the approximation of one Coils-Kirchhoff has X = - W, X and y = - W, there of any 
point of 
the element. 
Because of discretization stated above one a: 
NR 
W = NR 
(,) W 
( - ) 
1 
+1 
+ (J NR 
11 
( - ) 
1 
+ (,) 
2 
+ J NR 
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(,))W 
21 
( - ) 
1 
+3 
, 
+ (J NR 
K 
NR 
K 
K 
NR 
K 
NR 
xk 
12 
(K -) 
1 NR + (,) 
2 
K =1 
+ J NR 
(,))W 
22 
(K -) 
1 NR +3 
, yk 
W, K 
 
J 
J 
11 
12 W, xk  
since:  
=  
 
 
W 
. 
, K 
 
J 
J 
21 
22 W 
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, yk  
This is still written: 
NR 
W = NR  
(,) W 
( - ) + 
+ NR (-) + (,) + NR 
K 
NR 
K 
K 
NR 
xk  
(K 
-) N+ (,) 
1 
1 
1 
2 
1 
3 
yk 
K =1 
NR (K) 1N+ (,) 
1 
= NR (K) 1N+ (,) 
1 
where: NR (K) 1N+ (,) 
2 
= - J NR 
11 
(K -) 
1 NR + (,) 
2 
- J NR 
21 
(K -) 
1 NR + (,) 
3 
. 
NR (K) 1N+ (,) 
3 
= - J NR 
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12 
(K -) 
1 NR + (,) 
2 
- J NR 
22 
(K -) 
1 NR + (,) 
3 
By not taking account of the effects of inertia, the matrix of mass has the following form thus: 
M 
0 
0  
m 
 
M = 0 
Mm 
0 where M = NR NR 
F 
m dS. 
0 
0 
M  
 
S 
F  
4.5.2.2 Elements of the DST type 
It is known that for these elements one has X = X - W, X and y = y - W, there where the distortion is 
constant on the element. 
Like: 
NR 
W = NR 
(,) W 
( - ) 
1 
+1 
+ (J NR 
11 
( - ) 
1 
+ (,) 
2 
+ J NR 
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(,))W 
21 
( - ) 
1 
+3 
, 
+ (J NR 
K 
NR 
K 
K 
NR 
K 
NR 
xk 
12 
(K -) 
1 NR + (,) 
2 
K =1 
+ J NR 
(,))W 
22 
(K -) 
1 NR +3 
, yk 
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one can also write: 
NR 
W = NR  
(,) W 
( - ) 
1 
+1 
+ NR (-) 1 + (,) 
2 
+ NR 
K 
NR 
K 
K 
NR 
xk 
(K 
-) 1N+ (,) 
3 
yk 
K =1 
+ (J11 + J) NR 
12 
( - )1 + (,) 
2 
+ (J21 + J) NR 
X 
y 
K 
NR 
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X 
22 y (K -) 
1 NR + (,) 
3 
NR (K) 1N + (,) 
1 
= NR (K) 1N+ (,) 
1 
where: NR (K -) 1N + (,) 
2 
= - J NR 
11 (K -) 
1 NR + (,) 
2 
- J NR 
21 (K -) 
1 NR + (,) 
3 
, 
NR (K) 1N + (,) 
3 
= - J NR 
12 (K -) 
1 NR + (,) 
2 
- J NR 
22 (K -) 
1 NR + (,) 
3 
NR 
NR 
(,) 
1 
1 
= NR 
(K -) NR + 
(K -) 
1 NR 
(,) 
+1 
K =1 
NR 
NR 
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(,) 
1 
2 
= NR 
(K -) NR + 
(K -) 
1 NR 
(,) 
+2 
K =1 
NR 
NR 
(,) 
1 
3 
= 
NR 
(K -) NR + 
(K) 1N (,) 
+3 
K =1 
w1  
w1  
 
 
 
x1 
 
 
x1  
 
 
 
y1 
 
 
y 
 
 
 
1  
X 
and  
= 
- 
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H 1 [B + B A  
]! = T! . 
 
ct 
C 
C 
 
W 
y  
W  
W  
NR 
NR 
 
 
 
 
xN  
xN  
 
 
 
 
yN  
yN  
One obtains the interpolation for W then: 
NR 
W = NR  
(,) W 
( - ) + 
+ NR (-) + (,) + NR 
K 
NR 
K 
K 
NR 
xk 
(K 
-) N+ (,) 
1 
1 
1 
2 
1 
3 
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yk 
K =1 
NR (K) 1N+ (,) 
1 
= NR (K) 1N+ (,) 
1 
+ 
(J T (, 
1 (K 
11 W 
 
- ) 
1 NR +) 
1 + J T (2, (K 
12 
W 
 
- ) 
1 NR +) 
1) NR 
(J) 1N+ (,) 
2 
+ 
(J T (, 
1 (K 
21 W 
- ) 
1 NR +) 
1 + J T (2, (K 
22 W 
- ) 
1 NR +) 
1) NR 
(J) 1N+ (,) 
3 
NR (K) 1N+ (,) 
2 
= NR (K) 1N+ (,) 
2 
+ 
where:  
(J T (, 
1 (K 
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11 W 
 
- ) 
1 NR + 2) + J T (2, (K 
12 
W 
 
- ) 
1 NR + 2)) NR 
(J) 1N+ (,) 
2 
+ 
(J T (, 
1 (K 
21 W 
- ) 
1 NR + 2) + J T (2, (K 
22 
W 
 
- ) 
1 NR + 2)) NR 
(J) 1N+ (,) 
3 
NR (K) 1N+ (,) 
3  
= NR (K) 1N+ (,) 
3 
+ 
(J T 
1 
(, (K -1) NR + 3) + J T (2, (K - 1) NR + 3)) NR 
11 W 
 
12 W 
(J 1 
-) NR +2  
( ,) + 
(J T 
1 
(, (K - 1) NR + 3) + J T (2, (K - 1) NR + 3)) NR 
21 W 
22 
W 
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(J 1 
-) NR +3  
( ,) 
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By not taking account of the effects of inertia, the matrix of mass has the following form thus: 
M 
0 
0  
m 
 
M = 0 
M m 
0 where M = 
NN dS 
 
 
. 
 
 
F 
m 
0 
0 
M 
 
S 
F  
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4.5.2.3 Elements of the Q4g type 
One proceeds in the same way that for the elements of the DST type but with: 
w1  
 
x1  
 
 
y1 
X  
 
 
= B! where B 
 
C 
C is the matrix established with [§ 4.3.2.1]. 
y  
W  
NR 
 
 
xN  
 
 
yN  
4.5.2.4 Notices 
One neglects in the form of the elementary matrix of mass the terms of inertia of 
rotation  
$ 
+ $ 
F (X X there y dS 
) 
because the latter are negligible [bib3] compared to the others. In 
S 
effect a multiplicative factor of h2/12 the dregs to the other terms and they become negligible for one 
thickness report/ratio over characteristic length lower than 1/20. 
4.5.3 Assembly of the elementary matrices of mass 
The assembly of the matrices of mass follows same logic as that of the matrices of rigidity.  
degrees of freedom are the same ones and one finds the treatment specific to normal rotations to 
plan of the plate. For modal calculations utilizing at the same time the calculation of the matrix of 
rigidity 
and that of the matrix of mass, it is necessary to take a rigidity or a mass on the degree of rotation 
normal in the plan of the plate from 103 to 106 times smaller than the diagonal minor term of the matrix 
of rigidity or mass for the terms of inflection. That makes it possible to inhibit the modes being able to 
appear 
on the additional degree of freedom of rotation around the normal in the plan of the plate. By 
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defect, one takes a rigidity or a mass on the degree of normal rotation in the plan of plate 105 
time smaller than the diagonal minor term of the matrix of rigidity or mass for the terms of 
inflection 
4.5.4 Stamp of lumpée diagonal mass 
The use of a matrix of lumpée diagonal mass has two advantages: it is simpler with 
to implement numerically and it converges better. However the results are worse 
that with the traditional diagram for which the error is minimal [bib5]. 
Handbook of Reference 
R3.07 booklet: Machine elements on average surface 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Elements of plate DKT, DST, DKQ, DSQ, Q4g 
Date:  
12/01/01 
Author (S): 
P. MASSIN 
Key: 
R3.07.03-A 
Page: 
39/54 
The matrix of mass is made diagonal, for the degrees of translation, according to a technique of 
lumping near to that developed by Hinton [bib6]. The advantage of this method is of always 
to produce positive coefficients of mass, contrary to other methods like the summation  
terms in column [bib5]. One uses the diagonal coefficients of the elementary matrix of mass 
in the total reference mark by making sure that the total mass is well represented in each of the three 
directions of translation: 
dS 
m 
m = M 
S 
xi 
X 
xi; X = NR 
Mxj 
j=1 
dS 
m 
m = M 
S 
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yi 
y 
yi; ; y = NR 
Myj 
j=1 
dS 
m 
m = M 
S 
zi 
Z 
zi; Z = NR 
M 
zj 
j=1 
where Mxi, Myi, Mzi are the diagonal terms of the elementary matrix of mass in the total reference mark, 
MT 
0  
in each of the three directions of translation. The matrix of mass obtained: m =  
 
0 
m  
m 
0 
0  
X 
 
 
with m = 0 
m 
T 
y 
0 and m = 0 are diagonal. 
 
0 
0 
m  
Z  
Note: 
The creation of a matrix of diagonal mass in the directions of rotation with a technique 
analogue with that of the terms of translation (coefficients I are then the coefficients 
previously defined in three directions X, y and Z) is inappropriate for the modal analysis and 
the results obtained are for the moment better with a matrix of reduced diagonal mass 
with the only degrees of translation. The difficulty of the use of this matrix arises then in 

file:///Z|/process/refer/refer/p310.htm (10 of 29)10/2/2006 2:51:56 PM



file:///Z|/process/refer/refer/p310.htm

dynamics, when it is necessary to reverse the matrix of mass. One thus considers for the moment of 
to make diagonal only the terms of translation and to preserve a matrix of mass 
m supplements for the terms of rotation. 
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4.6  
Numerical integration for elasticity 
For the triangular elements DKT, DST where [H] is constant, the matrices of rigidity are obtained 
exactly with three points of integration of Hammer since [B] is linear in. 
Cordonnées of the points 
Weight  
 
1/6 
1 = 1/6; 1 = 1/6 
 
1/6 
2 = 2/3; 2 = 1/6 
 
1/6 
3 = 1/6; 3 = 2/3 
1 - 
1  
N 
y (,) D D 
= 
 
iy (I, I) 
0 0 
i=1 
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Numerical formulas of integration on a triangle (Hammer) 
For the elements quadrangle an integration of Gauss 2x2 is used. 
Cordonnées of the points 
Weight  
 
1 
1 = 1 / 
3; 1 = 1 3 
 
1 
2 = 1 / 
3; 2 = -1/3 
 
1 
3 = -1 / 
3; 3 = 1 3 
 
1 
3 = -1 / 
3; 3 = -1/3 
1 - 
1  
N 
y (,) D D 
= 
 
iy (I, I) 
0 0 
i=1 
Numerical formulas of integration on a quadrangle (Gauss) 
4.7  
Numerical integration for plasticity 
Integration on the surface of the element is supplemented by an integration on the thickness of 
behavior since: 
+h/2 
+h/2 
+h/2 
H = 
Hdz H 
, 
= 
Hzdz, H = 
H2 
m 
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MF 
 
F 
Z dz 
 
where H is the plastic matrix of behavior 
- h/2 
- h/2 
- h/2 
local.  
The initial thickness is divided into NR identical layers thicknesses. There are three points of integration 
by 
sleep. The points of integration are located in higher skin of layer, in the middle of the layer and 
in lower skin of layer. For NR layers, the number of points of integration is of 2N+1. One 
advise to use from 3 to 5 layers in the thickness for a number of points of integration being worth 7, 9 
and 11 respectively. 
For rigidity, one calculates for each layer, in plane constraints, the contribution to the matrices of 
rigidity of membrane, inflection and coupling membrane-inflection. These contributions are added and 
assemblies to obtain the matrix of total tangent rigidity. 
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For each layer, one calculates the state of the constraints (xx, yy, xy) and the whole of the variables 
interns, in the middle of the layer and in skins higher and lower of layer, from 
local plastic behavior and of the local field of deformation (xx, yy, xy). The positioning of 
points of integration enables us to have the rightest estimates, because not extrapolated, in skins 
lower and higher of layer, where it is known that the constraints are likely to be maximum. 
Cordonnées of the points 
Weight  

file:///Z|/process/refer/refer/p310.htm (13 of 29)10/2/2006 2:51:56 PM



file:///Z|/process/refer/refer/p310.htm

 
1/3 
1 = -1 
 
4/3 
2 = 0 
 
1/3 
3 = +1 
1 
N 
y () D = 
 
iy (I, I) 
-1 
i=1 
Formulate numerical integration for a layer in the thickness 
Note: 
One already mentioned with [§2.2.3] that the value of the coefficient of correction in shearing 
transverse for the elements DST, DSQ and Q4 was obtained by identification of energies 
complémenatires elastic after resolution of balance 3D. This method is not usable any more 
in elastoplasticity and the choice of the coefficient of correction in transverse shearing is posed then. 
Plasticity is thus not developed for these elements. 
4.8  
Discretization of external work 
The variational formulation of work external for the elements of plate is written  
: 
 
W 
= (F U + F v + F W + m + m) dS + (X 
U + y 
v + Z 
W + X 
µ X + 
 
 
y 
µ) ds 
ext. 
X 
y 
Z 
X 
X 
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By taking account of a linear discretization of displacements, one can write for an element: 
NR 
 
W E = (F NR 
ext. 
X K (,) U + F NR 
K 
y 
K (,) 
 
v + F NR 
K 
Z 
K (,) 
 
 
wk 
K =1S 
+ m NR 
X 
K (,)  
+ m NR 
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xk 
y 
K (,)  
) dS  
yk 
+  
(NR 
X K (,) 
the U.K. + NR 
y 
K (,) 
vk + NR 
Z 
K (,) 
wk 
C 
+ µ NR 
X 
K (, 
) xk + µ NR 
y 
K (, 
)) ds 
yk 
NR  
= 
 
F NR 
 
 
(,) dS + NR 
y K (,) 
X 
K (,) dS + NR 
X K (,) ds F NR 
y 
K  
ds 
K =1 S 
C 
S 
C 
F NR 
Z K (,) dS + NR 
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Z K (,) ds m NR 
X K (,) dS + µ NR 
X K (,) ds 
S 
C 
S 
C 
m NR 
E 
y K (,) dS + µ NR 
y K (,) ds) the U.K. 
S 
C 
NR 
E 
E 
E 
E 
= K 
F The U.K. = F U 
K =1 
The variational formulation of the work of the efforts external for the unit of the elements is written 
then: 
Nb elem 
W = We = FU = T T 
ext. 
ext. 
U F where U is the whole of the degrees of freedom of the structure 
e=1 
discretized and F comes from the assembly of the vectors forces elementary. 
As for the matrices of rigidity, the process of assembly of the vectors forces elementary 
imply that all the degrees of freedom are expressed in the total reference mark. In the total reference 
mark, 
the degrees of freedom are three displacements compared to the three axes of the total Cartesian 
reference mark 
and three rotations by report/ratio these three axes. One thus uses matrices of passage of the local 
reference mark 
with the total reference mark for each element. 
Note: 
The external efforts can also be defined in the reference mark user. One then is used 
stamp passage of the reference mark user towards the local reference mark of the element to have the 
expression of 
these efforts in the local reference mark of the element and to deduce the vector from it forces 
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elementary room 
corresponding. For the assembly one passes then from the local reference mark of the element to the 
total reference mark. 
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4.9  
Taking into account of the thermal loadings 
4.9.1 Thermoelasticity of the plates 
The temperature is represented by the model of thermics to three fields according to [R3.11.01]: 
T (X, x3) = T m ( 
X). P1 (x3) + T S (X). P2 (x3) + Ti 
 
 
 
(X). P3 (x3), 
with: P (X 
- H/2, +h/2 
J 
3): three polynomials of LAGRANGE in the thickness: ] 
[ : 
2 
X 
X 
P (X) = 1 - (2x/H); P 
3 
3 
2 (x3) = 
(1+2x /h 
3 
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); P3 (x3) = - (1-2x /h 
1 
3 
3 
3 
) ; 
H 
H 
From the representation of the temperature above, one obtains: 
· the average temperature in the thickness: 
1 +h/2 
1 
T (X) = 
T  
m 
S 
I 
 
, 
= 
4 
3 
3 
+ 
+ 
 
; 
- h/2 (X 
X 
 
) dx 
T 
X 
T X 
T X 
H 
6 ( 
( ) ( ) ( ) 
· the average variation in temperature in the thickness: 
%( 
12 + 2 
) 
H 
T X 
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= 
T 
; 
2 - 2 (X, X X dx 
3 
3 
3 = T S X 
- T I X 
H 
 
) 
( ) ( ) 
H 
Thus the temperature can be written in the following way: 
~ 
T (X, x3) = T (X) + T% (X). X/H + T 
3 
(X, X 
 
 
 
 
3) such as: 
h/2 ~ 
H2 
T 
 
( 
/ 
~ 
X, X 
 
3 = 0 
= 0 
 
. 
- 2 
) ; 
X T X X 
H 
- H 
3 ( 
, 
/ 
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3 
2 
) 
If the temperature is indeed closely connected in the thickness one has, ~ 
T = 0. 
Code_Aster treats three different thermoelastic situations, where characteristics 
thermoelastic E, depend only on the average temperature T in the thickness: 
· the case where the material is thermoelastic isotropic homogeneous in the thickness; 
· the case where the plate models an orthotropic grid (concrete reinforcing steels); 
· the case where the behavior of the plate is deduced from a thermoelastic homogenisation, 
cf [bib7]. 
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For the elements of plate in thermoelasticity, the heating effects are taken into account by 
the intermediary of generalized efforts, out of membrane and inflection. Thus, in the case of a plate 
homogeneous, knowing the dilation coefficient, the generalized thermal efforts are defined in 
to leave the plane constraints in the thickness by: 
+h/2 
+h/2 
NR ther = 
C 
ther 
 
dx3 = 
. C 
réf 
 
- 
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/2 
 
- H 
 
- H 
(T T) dx 
 
 
3 
2 
+h/2 
+h/2 
M ther = 
X C 
ther 
3 
 
dx3 = 
.x C 
réf 
 
3 
- 
 
/2 
 
- H 
 
- H 
(T T) dx 
 
 
3 
2 
V ther 
 
= 0 
Maybe in the homogeneous isotropic thermoelastic case in the thickness: 
Eh 
NR ther =. C 
. . 
- 
H 
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(T Tréf) =. 
. 
2 (T - T réf) 
; 
 
 
 
1-  
H2 
Eh2 
M ther =. C 
. 
T 
 
% = . 
.  
% 
; 
= . 
0 
12 
( 
12 1 - 2) T 
V ther 
 
 
The thermal constraints of origin withdrawn from the usual mechanical constraints are calculated 
in three positions (sup., moy. and inf.) in the thickness: 
ther 
 
 
. E 
= 
2 ( 
réf 
T - T 
+ T%. X/H 
3 
) 
 
1-  
 
In the case deduced from the thermoelastic homogenisation, cf [bib7], the thermal efforts generalized 
are defined by the general relation, starting from the “correctors” of membrane, those of 
inflection, and that of dilation udil, like averages on representative elementary volume 
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(cell Z): 
~ 
NR ther = 
C 
 
 
.. 
- 
+ % 
. 
/ 
3 
+ 
, 3  
+  
. U 
; 
 
(T Tréf T (X) Z H T (X X  
 
) 
dil 
 
ij ( 
) Cijkl kl () Z 
Z 
~ 
M ther = 
Z. C 
 
 
. 
3 
. - 
+ % 
. 
/ 
3 
+ 
, 3  
+  
. U 
; 
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(T Tréf T (X) Z H T (X X 
 
) 
dil 
 
ij ( 
) Cijkl kl () Z 
Z 
V ther 
 
= 0 
In this case when one limits oneself to the orthotropic situations without coupling inflection-membrane, 
one 
~ 
neglect the role of T (X, X 
 
3) on the corrector udil, and it is thus found that the thermal efforts which 
appear to the second member have as an expression: 
NR ther =. H m 
 
. 
- 
 
; 
(T 
T réf)  
M ther =. H F 
. T 
% 
; V ther 
 
= 0 
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One cannot however go up with the complete three-dimensional constraints: it would be necessary of 
to know the “correctors” within the basic cell having been used for the determination of 
coefficients of homogenized behavior. 
In the thermoelastoplastic situations, or for the hulls (elements of the family 
COQUE_3D), it is necessary to evaluate the three-dimensional constraints, of which constraints 
thermics, in each point of integration in the thickness. 
Note: 
To go up with the complete three-dimensional constraints is not immediate for the hulls 
multi-layer (laminated) because it is necessary to know layer by layer the state of stress; in elasticity, 
this one results from the state of deformation and the behavior on the level of each layer. 
4.9.2 Chaining  
thermomechanics 
For the resolution of chained thermomechanical problems, one must use for thermal calculation 
finite elements of thermal hull [R3.11.01] whose field of temperature is recovered like 
input datum of Code_Aster for mechanical calculation. It is necessary thus that there is compatibility 
between 
thermal field given by the thermal hulls and that recovered by the mechanical plates. It 
the last is defined by the knowledge of 3 fields TEMP_SUP, TEMP and TEMP_INF given in skins 
lower, medium and higher of hull. 
The table below indicates compatibilities between the elements of plate and the elements of hull 
thermics: 
Modeling 
Net 
Finite element 
to use 
Net 
Finite element 
Modeling 
THERMICS 
with 
MECHANICS 
HULL 
QUAD4 THCOQU4 
////////////// 
QUAD4 
MEDKQU4 
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DKT 
/////////////// 
MEDSQU4 
DST 
///////////// 
MEQ4QU4 
Q4 
HULL 
TRIA3 
THCOTR3 
/////////////// 
TRIA3 
MEDKTR3 
DKT 
///////////// 
MEDSTR3 
DST 
Note: 
The nodes of the thermal elements of hulls and mechanical plates must 
to correspond. The grids will be identical. 
The elements of thermal hulls surface are treated like plane elements by 
projection of the initial geometry on the level defined by the first 3 tops. 
The chaining with definite multi-layer materials via order DEFI_COQU_MULT [U4.23.03] 
is not available for the moment. 
The thermomechanical chaining is also possible if one knows by experimental measurements 
variation of the field of temperature in the thickness of the structure or certain parts of 
structure. In this case one works with a chart of temperature defined a priori; the field of 
temperature is not given any more by three values TEMP_INF, TEMP and TEMP_SUP of thermal 
calculation  
obtained by EVOL_THER. It can be much richer and contain an arbitrary number of points 
of discretization in the thickness of the hull. Operator DEFI_NAPPE allows to create such profiles 
temperatures starting from the data provided by the user. These profiles are affected by 
order AFFE_CARTE (cf the case-test hsns100b). It will be noted that it is not necessary for calculation 
mechanics that the number of points of integration in the thickness is equal to the number of points of 
discretization of the field of temperature in the thickness. The field of temperature is 
automatically interpolated at the points of integration in the thickness of the elements of plates or of 
hulls. 
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4.9.3 Case-test 
The case-tests for the thermomechanical chaining enters of the thermal elements of hulls and of 
elements of plate are the hpla100e (elements DKT) and hpla100f (elements DKQ). It is about a cylinder 
heavy thermoelastic hollow in uniform rotation [V7.01.100] subjected to a phenomenon of dilation 
thermics where the fields of temperature are calculated with THER_LINEAIRE by a calculation 
stationary. 
Z 
IH 
Re 
Interior ray IH = 19.5 mm  
External ray Re = 20.5 mm  
Not F  
R = 20.0 mm  
Thickness  
H = 1.0 mm  
Height  
L = 10.0 mm 
R 
Z 
NR 
K 
Z 
Q 
J 
P 
D 
C 
y 
H  
M 
+ 
L 
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X 
With 
B 
R 
F 
Thermal dilation is worth: T () - Tref () = 05 
. (T + T 
S 
I) + 2. (T + T 
S 
I) (R - R)/H 
 
with: 
·  
T = 0 5 
. °C, T = -0 5 
. ° C, T 
= 0. °C 
S 
I 
ref. 
·  
T = 01 
. ° C, T = 01 
. ° C, T 
= 0. ° C 
S 
I 
ref. 
One tests the constraints, the efforts and bending moments in L and Mr. the results of reference are 
analytical. One obtains very good results whatever the type of element considered. 
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5  
Establishment of the elements of plate in Code_Aster 
5.1 Description  
: 
These elements (of names MEDKTR3, MEDSTR3, MEDKQU4, MEDSQU4 and MEQ4QU4) rest on 
meshs TRIA3 and plane QUAD4. These elements are not exact with the nodes and it is necessary to net 
with 
several elements to obtain correct results. 
5.2  
Introduced use and developments: 
These elements are used in the following way: 
· AFFE_MODELE (MODELING: “DKT”.) for the triangle and the quadrangle of the type DKT 
· AFFE_MODELE (MODELING: “DST”.) for the triangle and the quadrangle of the DST type 
· AFFE_MODELE (MODELING: “Q4G”.) 
One calls upon routine INI079 for the position of the points of Hammer and Gauss on the surface of 
plate and the corresponding weights. 
· AFFE_CARA_ELEM (HULL: (THICKNESS: “EP” 
ANGL_REP: ('' '') 
COEF_RIGI_DRZ: “CTOR”) 
To make postprocessings (forced, generalized efforts,…) in a reference mark chosen by the user 
who is not the local reference mark of the element, one gives a direction of reference D defined by two 
angles 
nautical in the total reference mark. The projection of this direction of reference in the field of the fixed 
plate 
a X1 direction of reference. The normal in the plan into fixed one second and the vector product of both 
vectors previously definite makes it possible to define the local trihedron in which the efforts will be 
expressed 
generalized and constraints. The user will have to take care that the selected reference axis is not found 
not parallel with the normal of certain elements of plate of the model. By defect this direction of 
reference is axis X of the total reference mark of definition of the grid. 
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Value CTOR corresponds to coefficent that the user can introduce for the treatment of the terms of 
rigidity and of mass according to normal rotation in the plan of the plate. This coefficient must be 
sufficiently 
small not to disturb the energy balance of the element and not too small so that matrices of 
rigidity and of mass are invertible. A value of 105 is put by defect. 
· ELAS: (E: NAKED Young: ALPHA:. RHO:. ) 
For a homogeneous isotropic thermoelastic behavior in the thickness one uses key word ELAS 
in DEFI_MATERIAU where the coefficients E are defined, Young modulus, Poisson's ratio, 
thermal dilation coefficient and RHO density. 
· ELAS_ORTH (_FO): ( 
E_L: ygl. E_T: ygt. G_LT: glt. G_TZ: gtz. .NU_LT: nult. 
ALPHA_L: L. ALPHA_T: T.) 
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For an orthotropic thermoelastic behavior whose axes of orthotropism are L, T and Z with 
isotropy of axis L (fibres in the direction L coated by a matrix, for example) the seven should be given 
independent coefficients ygl, longitudinal modulus Young, ygt, transverse modulus Young, glt, 
modulus of rigidity in the plan LT, gtz, modulus of rigidity in plan TZ nult, coefficient of 
Poisson in plan LT and the dilation coefficients thermal L and T for thermal dilation 
longitudinal and transverse, respectively. The orthotropic behavior is not available 
that associated the key word DEFI_COQU_MULT which makes it possible to define a multi-layer 
composite hull. 
For only one orthotropic material, one will thus use DEFI_COQU_MULT with only one layer. If one 
wish to use ELAS_ORTH with transverse shearing, it is necessarily necessary to employ  
DST modeling. If modeling DKT is used, transverse shearing is not taken into account. 
· ELAS_COQUE (_FO): ( 
MEMB_L: C1111. MEMB_LT: C1122. MEMB_T: C2222. MEMB_G_LT: C1212.  
FLEX_L: D1111. FLEX_LT: D1122. FLEX_T: D2222. FLEX_G_LT: D1212.  
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CISA_L: G11…. CISA_T: G22…. ALPHA:. RHO:. ) 
This behavior was added in DEFI_MATERIAU to take into account matrices of rigidity 
nonproportional in rigidity and inflection, obtained by homogenisation of a multi-layer material. 
The coefficients of the matrices of rigidity are then introduced with the hand by the user into the 
reference mark 
user defined by key word ANGL_REP. The thickness given in AFFE_CARA_ELEM is only 
used with the density defined by RHO. ALPHA is thermal dilation. If one wishes 
to use ELAS_COQUE with transverse shearing, it is necessarily necessary to employ modeling 
DST. If modeling DKT is used, transverse shearing is not taken into account. 
· DEFI_COQU_MULT: (LAYER: THICKNESS: “EP” 
MATER: “material” 
ORIENTATION: ('')) 
This key word makes it possible to define a multi-layer composite hull on the basis of the sub-base 
towards 
roadbase starting from its characteristics sleeps by layer, thickness, type of material 
constitutive and orientation of fibres compared to a reference axis. The type of constitutive material is 
product by operator DEFI_MATERIAU under key word ELAS_ORTH. is the angle of the first 
direction of orthotropism (longitudinal direction or direction of fibres) in the tangent plan with the 
element by report/ratio 
with the first direction of the reference mark of reference defined by ANGL_REP. By defect is null, if 
not it must be 
provided in degrees and must lie between 90º and + 90º. 
· AFFE_CHAR_MECA (DDL_IMPO: ( 
DX:. DY:. DZ:. DRX:. DRY:. DRZ:. DDL of plate in the reference mark 
total. 
FORCE_COQUE: (FX:. FY:. FZ:. MX:. MY:. MZ:. ) They are the efforts 
surface on elements of plate. These efforts can be given in the total reference mark or 
in the reference mark user defined by ANGL_REP. 
· FORCE_NODALE: (FX:. FY:. FZ:. MX:. MY:. MZ:. ) It is about 
efforts of hull in the total reference mark. 
5.3  
Calculation in linear elasticity: 
The matrix of rigidity and the matrix of mass (respectively options RIGI_MECA and MASS_MECA) 
are integrated numerically. It is not checked if the mesh is plane or not. Calculation holds account 
owing to the fact that the terms corresponding to the DDL of plate are expressed in the local reference 
mark of 
the element. A matrix of passage makes it possible to pass from the local DDL to the total DDL. 
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Elementary calculations (CALC_ELEM) currently available correspond to the options: 
· EPSI_ELNO_DEPL and SIGM_ELNO_DEPL which provide the strains and the stresses 
with the nodes in the reference mark user of the element in lower skin, with semi thickness and in 
higher skin of plate, the position being specified by the user. These values are stored 
in the following way: 6 components of strain or stresses: 
· EPXX EPYY EPZZ EPXY EPXZ EPYZ or SIXX SIYY SIZZ SIXY SIXZ SIYZ 
· DEGE_ELNO_DEPL: who gives the deformations generalized by `element to the nodes to 
to leave displacements in the reference mark user: EXX, EYY, EXY, KXX, KYY, KXY, 
GAX, GAY. 
· EFGE_ELNO_DEPL: who gives the efforts generalize by element with the nodes from 
displacements: NXX, NYY, NXY, MXX, MYY, MXY, QX, QY. 
· SIEF_ELGA_DEPL: who gives the efforts generalize by element at the points of Gauss with 
to leave displacements: NXX, NYY, NXY, MXX, MYY, MXY, QX, QY. 
· EPOT_ELEM_DEPL: who gives the elastic energy of deformation per element from 
displacements.  
· ECIN_ELEM_DEPL: who gives the kinetic energy by element. 
Finally one calculates also option FORC_NODA of calculation of the nodal forces for operator 
CALC_NO. 
5.4  
Plastic design 
The matrix of rigidity is there too integrated numerically. One calls upon the option of calculation 
STAT_NON_LINE in which one defines in the level of the nonlinear behavior the number of 
layers to be used for numerical integration. All laws of plane constraints available in 
Code_Aster can be used. 
STAT_NON_LINE (…. 
COMP_INCR: (RELATION: '' 
COQUE_NCOU: “A NUMBER OF LAYERS”) 
....) 
Elementary calculations (CALC_ELEM) currently available correspond to the options: 
· EPSI_ELNO_DEPL which provides the deformations by element to the nodes in the reference mark 
user starting from displacements, in lower skin, with semi thickness and in higher skin 
of plate. 
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· SIGM_ELNO_COQU which makes it possible to obtain the stress field in the thickness by element 
with the nodes for a given layer and a position requested (in lower skin, in the medium 
or in higher skin of layer). These values are given in the reference mark user. 
· SIEF_ELNO_ELGA which makes it possible to obtain the efforts generalized by element with the 
nodes in 
the reference mark user. 
· VARI_ELNO_ELGA which calculates the field of internal variables and the constraints by element 
with the nodes for all the layers, in the local reference mark of the element. 
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6 Conclusion 
The finite elements of plate plans which we describe here are used in the structural analyses 
thin, in small displacements and deformations, of which the thickness report/ratio over characteristic 
length 
is lower than 1/10. As these elements are plane, they do not take into account the curve of 
structures, and it is necessary to refine the grids if this one would be important. 
It is elements for which strains and stresses in the plan of the element 
vary linearly with the thickness of the plate. Moreover, the distortion associated with shearing 
transverse is constant in the thickness of the element. Two types of elements of plate exist:  
elements DKT, DKQ for which the transverse distortion is null and the elements DST, DSQ and Q4 
for which it remains constant and nonnull in the thickness. One advises to use the second type 
elements when the structure to be netted has a thickness report/ratio over characteristic length included/
understood 
between 1/20 and 1/10 and first in the remainder of the cases. When the transverse distortion is not 
null, the elements of DST plate, DSQ and Q4 do not satisfy the equilibrium conditions 3D and them 
boundary conditions on the nullity of stresses shear transverse on the faces higher 
and lower of plate, compatible with a constant transverse distortion in the thickness of 
plate. It results from it thus that on the level from the behavior a coefficient from 5/6 for a plate 
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homogeneous the usual relation between the constraints and the distortion transverses corrects in order to 
to ensure the equality enters energies of shearing of the model 3D and the model of plate to distortion 
constant. In this case, the arrow W has as an interpretation average transverse displacement in 
the thickness of the plate. 
The non-linear behaviors in plane constraints are available for the elements of plate 
DKT and DKQ only. Indeed the rigorous taking into account of a constant transverse shearing 
not no one on the thickness and the determination of the correction associated on rigidity with shearing 
by 
report/ratio with a model satisfying the equilibrium conditions and the boundary conditions are not  
possible and thus the use of the DST elements, DSQ and rigorously impossible Q4 return in 
plasticity. 
Elements corresponding to the machine elements exist in thermics; chainings 
thermomechanical are thus available except, for the moment, laminated materials. 
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Appendix 1 orthotropic Plates 
For an orthotropic material like that represented below, composed for example of fibres of direction L 
coated with a matrix, whose axes of orthotropism are L, T and Z with isotropy of axis L, the expression 
for 
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matrices H and H in the reference mark of orthotropism previously definite becomes: 
H 
H 
0  
LL 
LT 
 
GLZ 
0  
HL = H 
H 
LT 
TT 
0 and HL =  
 
0 
GTZ  
 
0 
0 
GLT  
E 
E 
E 
H 
L 
= 
; H 
T 
L 
LL 
TT = 
G 
= 
1-  
LZ 
LTTL 
1 - LTTL 
2 1 
(+ LZ) 
with  
and  
. 
E  
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E  
E 
H 
T LT 
L TL 
T 
LT = 
= 
G 
= 
1-  
TZ 
LTTL 
1 - LTTL 
2 1 
(+ TZ)  
The knowledge of the five independent coefficients E, E, G 
, G 
L 
T 
LT 
TZ, LT is sufficient to determine 
coefficients of the matrices H and H since: 
AND 
 
LT 
TL = 
and G 
= G. 
E 
LZ 
LT 
L 
If one indicates by the angle between the reference mark of orthotropism and the principal axis of the 
reference mark defined by the user in 
means of ANGL_REP one establishes that: 
H = TTH T 
T 
1 
L 1 and H 
= T H T 
 
2 
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L 
2 
C2 
S 2 
CS 
 
 
 
C 
S 
with: T 
2 
2 
1 = S 
C 
- CS and T2 =  
 
= cos, = sin 
X L 
- 
where C 
S 
and = (,) like 
S C 
 
- CS CS C2 - S2 
2 
2 
 
 
indicated on the figure below. 
Z 
L 
 
X 
T 
In the case of forced initial of thermal origin, we have moreover: 
L T 
 
 
 
 
T 
HT = - T H 
1 

file:///Z|/process/refer/refer/p320.htm (10 of 23)10/2/2006 2:51:57 PM



file:///Z|/process/refer/refer/p320.htm

L T T 
 
 
0  
where L and T are the dilation coefficients thermal in the directions L and T and T the variation of 
temperature. 
Handbook of Reference 
R3.07 booklet: Machine elements on average surface 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Elements of plate DKT, DST, DKQ, DSQ, Q4g 
Date:  
12/01/01 
Author (S): 
P. MASSIN 
Key: 
R3.07.03-A 
Page: 
53/54 
Appendix 2 Factors of transverse correction of shearing for 
orthotropic or laminated plates 
The Hct matrix is defined so that the surface density of transverse energy of shearing obtained in 
the case of the three-dimensional distribution of the constraints resulting from the resolution of balance 
is equal to that 
model of plate based on the assumptions of Reissner, for a behavior in pure bending. One must 
thus to find Hct such as: 
1 +h/2 
1 
1 
 
+h/2 
xz  
H-1 
-1 
= TH T 
 
 
ct 
= Hct with = 
and T = 
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dz = H 
 
. 
2 
2 
2 
 
ct 
yz  
- h/2 
- h/2 
To obtain Hct one uses the distribution of following Z obtained starting from the resolution of the 
equations 
of balance 3D without external couples: 
Z 
Z 
= - ( 
with xz =  
= 0 for z=±h/2. 
, + 
) D; 
, 
= - ( , + 
) D 
 
 
xz 
xx X xy y yz 
xy X yy, y  
yz 
- h/2 
- h/2 
If there is no coupling membrane inflection (symmetry compared to z=0), constraints in 
plan of element xx, yy, xy in the case of have as an expression a behavior of pure inflection: 
= zA (Z) M with A Z = H Z H 1 
( ) 
() - F. 
If ( 
H Z) and Hf do not depend on X and y one can determine Hct. Indeed: 
Mxx, X - Mxy, y  
 
 
Tx Mxx, X + Mxy, y  
M xy, X - M 
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yy, y  
(Z) = D (Z) T 
 
 
1 
+ D (Z) 
2 
where T =  
= 
and = 
T 
 
M 
 
y  
Mxy, X + M yy, y  
 
yy, X 
 
 
M xx, y 
 
like: 
Z 
With 
With 
With 
With 
11 + 
33 
13 + 
32  
D = -  
 
D, 
1 
2 A 
With 
With 
With 
h/2 
31 + 
23 
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22 + 
33  
- 
Z 
With 
With 
With 
With 
With 
With 
11 - 
33 
13 - 
2 
2 
32 
12 
31 
D = -  
D. 
2 
2 A 
With 
With 
With 
With 
With 
h/2 
31 - 
23 
33 - 
2 
2 
22 
32 
21 
- 
+h/2 
C = 
DTH 1 
- D 
11 
1 1dz; 
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- h/2 
1 +h/2 
1 
+h/2 
1 
 
T C 
C 
11 
12  
T 
It results from it that  
- 
H 
T 
-1 
= 
T 
with: C = 
D H D 
 
dz; 
2 
2 C 
C 
12 
1 
 
2 
12 
22  
- h/2 
- h/2 
+h/2 
C 
= 
DTH 1 
- D 
22 
2 2dz 
- h/2 
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1 +h/2 
1 
As in addition  
-1 
- 
H 
1 
1 
- 
= 
TH T one proposes to take H = C to satisfy them as well as possible 
2 
2 
ct 
ct 
11 
- h/2 
two equations whatever T and. 
+h/2 
By comparing Hct thus calculated with H 
H 
ct = dz one reveals the coefficients of correction of 
- h/2 
following transverse shearing: K = H11/H 11; K 
= H12/H 12; K = H22/H 22 
1 
ct 
ct 
12 
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ct 
ct 
2 
ct 
ct. 
For a homogeneous, isotropic or anisotropic plate, one finds as follows: Hct =kh H with k=5/6. 
Note: 
This method is valid only when the composite plate is symmetrical compared to z=0. 
· For a multi-layer material, one establishes that: 
NR 
i-1 
I 
H 
1 
1 
1 
C 
= I (H AT 
2 
2 
p p 
- Z AT) H-1 
I 
( 
 
H With 
p p 
- Z A 
11 
p 
I 
p 
I 
I) + 
4 
2 
2 
i=1 
p=1 
p=1 
i-1 
I 
1 
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1 
3 
3 
- 
1 
1 
2 
2  
- 
(zi+1 - Z) [ATH 1 
I 
( 
 
H With 
p p 
- Z A 
I 
) + (H AT 
p p 
- Z AT) H 1A 
I 
p 
I 
p 
I 
I 
 
I] 
24 
2 
2 
p=1 
p=1 
1 
+ 
(z5 
5 
T 
-1 
i+1 - zi) A H 
With 
80 
I 
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I 
1 
WITH + A 
WITH + A 
11 
33 
13 
32  
where: H = Z +1 - Z, = (Z +1 + Z 
I 
I 
I 
I 
I 
I) and A 
 
for 
2 
I represents the matrix A + A 
WITH + A  
31 
23 
22 
33 
layer I. 
· Validity of the choice H 
= C-1 
ct 
11 can be examined a posteriori when one has an estimate of 
solution (fields of displacements and plane constraints, in particular). One can then estimate 
the variation enters the two estimates on energy. A step of calculation in two stages for 
multi-layer plates and hulls (with Hct diagonal and two coefficients k1 and k2) was besides 
developed by Noor and Burton [bib11] [bib12]. 
· Danslecasde an isotropic or anisotropic homogeneous plate the equality between two energies is 
satisfied in a strict sense since D2 = 0. The choice makes above is then valid and no examination has 
posteriori is not necessary. 
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Finite elements of voluminal hulls  
 
 
 
 
 
Summary:  
 
With an aim of supplementing the library of finite elements of plate plans [R3.07.03] currently 
available  
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in Code_Aster (DKT, DST, Q4G…), one proposes to introduce two finite elements of voluminal hull 
or  
three-dimensional [bib1]. This new modeling COQUE_3D [U1.12.03] makes it possible to carry out 
calculations of  
structures hull of an unspecified form with a better approximation of the geometry and  
kinematics.  
 
One will limit oneself to the framework of linear kinematics. One thus remains in small displacements 
and small  
deformations. No restriction is made on the type of behavior in plane constraints.  
 
The two elements which are introduced are the quadratic element quadrangle Hétérosis with 9 nodes 
and sound  
triangular equivalent with 7 nodes. The formulation of the continuous problem is done in Cartesian 
co-ordinates, it  
who allows to avoid explicit calculations of the curves. These two elements have as a correspondent 
the element  
linear of hull with 3 nodes presented in the document [R3.07.02].  
 
These two new elements are validated on existing case-tests of plate, and on three new cases 
tests of hull developed in the documentation of validation and whose principal conclusions are  
presented briefly here.  
 
This note also presents in appendix how to take into account the anisotropy of materials.  
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1 Introduction  
 
One introduces into Code_Aster two finite elements of hull voluminal with shearing  
transverse (the quadrange with 9 nodes MEC3QU9H and the triangle with 7 nodes MEC3TR7H) in 
calculation of  
structures hull of an unspecified form. To represent this type of structures, one used until  
present with Code_Aster of the elements of plate with plane facets which induced inflections  
parasites and of the too restrictive hulls of revolution on the type of structure [R3.07.02].  
development was carried out for isotropic materials with linear kinematics. They cannot  
thus to be used that within the framework of small displacements and small deformations. This  
formulation can be extended to anisotropic materials [Appendix 1] and to nonlinear kinematics  
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[R3.07.05].  
 
For the resolution of chained thermomechanical problems, one must use the elements before  
stop thermal hull with 7 and 9 nodes described in [R3.11.01].  
 
One develops hereafter the mechanical continuous problem by describing the kinematics of hull of 
the type  
Hencky-Mindlin-Naghdi (assumption of the cross-sections or plane) supplemented by a distortion  
transverse and the thermoelastoplastic law of behavior. Thanks to a parameter of penalization  
one can pass from a theory with shearing to a theory without shearing. One presents then  
the selected finite elements which are isoparametric quadratic elements making it possible to have one  
fine representation of a curved geometry and good estimates of the constraints. The interpolation and  
the method of integration are also described.  
 
One validates finally the development on some cases of test.  
 
The nonlinear kinematics of these hulls is treated in the reference material [R3.07.05].  
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2 Formulation  
 
2.1  
Geometry of the hull  
 
For the elements of voluminal hull one defines a surface of reference, or surfaces  
average, left (of curvilinear co-ordinates 1 2 for example) and a thickness ( 
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H 1 2)  
measured according to the normal on the average surface. This thickness must be small compared to  
other dimensions (extensions, radii of curvature) of the structure to be modelled. The figure [Figure 2.1- 
has] below illustrates our matter.  
 
Solid 3D 
Z 
H 
Y 
B 
X 
L 
R1 
R2 
Thickness H < L, B, R1, R2 
2 
N, 3 
H 
E, X 
3 
3 
1 
E, X 
2 
2 
O 
 
E, X 
1 
1 
 
 
Appear 2.1-a  
 
The position of the points of the hull is given by the curvilinear co-ordinates (1 2) of surface  
average and rise 3 compared to this surface. (O, ek) is the total Cartesian reference mark,  
associated axes (xk).  
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2.1.1 Geometrical description of average surface  
 
Local natural base and bases Cartesian local  
 
That is to say P an unspecified point of the average surface of reference, one a:  
 
COp = x0k (1 
, 2 
) ek  
 
One defines the vectors has natural local base of the tangent plan out of P with, attached to P by:  
 
COp 
has = 
= COp 
 
 
,  
 
 
 
and one defines unit normal N by:  
 
a1 has 
N = 
2 
a1 a2  
 
3 is the variable of position in the thickness associated with N.  
 
(has, has, has 
1 
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2 
3) constitutes the natural base attached to P.  
 
The curvilinear frame of reference (1 2) not being inevitably orthogonal, the base (A) is not  
thus not inevitably orthogonal (and even orthonormée). A local base is thus defined  
orthonormée T K as follows:  
 
has 
T 
1 
= 
, T = N T 
T = N 
1 
 
has 
2 
1 
3 
1 
 
and one notes (S, S 
1 
2) the frame of reference associated to (T, T 
1 
2 ) .  
 
Calculation of the tensor of curve  
 
The tensor of curve is related to the variation of the normal on. It is defined by its components  
mixed:  
 
N = - C.A. 
, 
 
 
or by its components covariantes: C 
= - .n has, = n.a 
 
 
 
 
. This tensor is symmetrical  
since has 
= has 
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, 
 
. Its trace tr C is the average curve and its determinant the curve  
Gaussian.  
Handbook of Reference  
R3.07 booklet: Machine elements on average surface  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Finite elements of voluminal hulls  
 
 
Date:  
14/04/05  
Author (S):  
X. DESROCHES Key  
:  
R3.07.04-B Page  
: 7/42  
 
 
2.1.2 Description of the geometry of the hull  
 
That is to say Q an unspecified point of, volume of the hull thickness H considered constant, one a:  
 
 
OQ + COp + PQ = COp + 3 H N  
2 
 
where 3 [- 1,] 
1 .  
 
 
 
 
3  
1, 2 , 
H 
 
 
2 constitutes a curvilinear frame of reference of.  
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One can also write OQ according to his components (xk) in the total base (ek):  
 
OQ = X E 
K 
K  
 
Local natural base, bases orthonormée local and tensor metric  
 
As for P, one defines the natural base of space 3D (gk) attached to Q by:  
 
OQ 
H 
g1 G 
G = 
= + N has 
G 
2 
3 
, 
, 
3 = 
= N 
 
 
 
 
 
 
2 
g1 g2 
 
As (gk) is not inevitably orthogonal, one defines a local base orthonormée (Tk) like  
follows:  
 
G 
T 
1 
= 
, T = N T 
, T = N 
1 
 
G 
2 
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1 
3 
1 
 
and one notes (xk) the frame of reference associated with (Tk).  
 
One will call (Tk) the local orthonormée base, and (xk) the co-ordinates in this base  
orthonormée local.  
 
By definition, one a:  
 
OQ X J 
T = 
= 
E 
J 
= T E 
K 
~ 
~ 
J 
K 
J 
 
 
xk 
xk 
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: 8/42  
 
 
X J 
J 
with  
T components of (Tk) in the total base (E J). (They are also them  
X 
~ = K 
K 
components of the matrix of passage of (Tk) with (E J) since the matrix of passage is  
J 
orthogonal. Thus if T = T E 
K 
K 
K 
J one has also E 
= T T 
K 
J 
J).  
 
One defines the metric tensor G associated with Q by his components deduced from the scalar products  
vectors of the local orthonormée base:  
 
Gij = I 
T. Tj  
 
This tensor G is worth the Id identity.  
 
2.1.3 Notice  
 
The figures [Figure 2.1.3-a] and [Figure 2.1.3-b] illustrate the geometrical magnitudes mentioned  
above.  
 
2 
t2 
N 
a2 a1, T1 
P 
1 
 
 
Appear 2.1.3-a  
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T1 
3 
T1 
 
N 
1 
Q 
P 
 
 
Appear 2.1.3-b  
 
It should be noted that two local orthonormées bases, that associated average surface (tk) and  
the other with the volume of the hull (Tk) are confused only when the curve is null. In it  
cases the elements of hull are comparable to elements of plate  
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2.2  
Theory of the plates and the hulls  
 
These elements are based on the theory of the plates and the hulls according to which:  
 
2.2.1 Kinematics  
 
2.2.1.1 Field of displacement  
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The cross-sections which are the sections perpendicular to average surface remain right;  
material points located on a normal at not deformed average surface remain on a line  
in the deformed configuration. It results from this approach that the fields of displacement vary  
linearly in the thickness of the hull.  
 
If one notes Q', the position of Q after deformation, one a:  
 
OQ' = OQ + QQ' = OQ + U (Q)  
 
where the field of displacement chosen, corresponding to the kinematics of Hencky-Mindlin, is written:  
 
 
U (Q) = ( 
U P) + 3 H (P) with (P) .n = 0  
2 
 
where U (P) and (P) are respectively the vector displacement and the vector rotation of P, projection  
of Q on the average surface of the hull. The fact that (P) .n = 0 indicates that one does not take in  
count in this kinematics rotations of the hull around its normal.  
 
Notation:  
 
One notes ~ the quantities expressed in the local Cartesian bases (tk) or (Tk) for the points  
P and Q respectively. It results from it that:  
 
· the vector three-dimensional displacement U can be written U = ~ 
U T 
K K or U = U.E. 
K K,  
where it is expressed respectively in its local orthonormée base or the base  
Cartesian total,  
· the vector displacement of average surface U can be written U = ~u T 
K K or  
U = U.E. 
K 
K according to whether it is expressed in its local orthonormée base or in the base  
Cartesian total,  
· the vector rotation of average surface is written = ~ 
T in its orthornormée base  
local. being the rotation of normal N (on average surface), one also writes = N  
with, vector rotation of average surface, such as = ~ 
T. The equivalence of both  
~ 
~ 
~ 
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~ 
formulations shows that 1 =, 
2 
2 =  
- 1.  
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2.2.1.2 Expression of the three-dimensional deformations  
 
The tensor of deformation is calculated in the local orthonormée Cartesian base (Tk). It is defined  
like the half-difference of the metric tensors associated the local orthonormées bases afterwards and  
before deformation. The metric tensor associated this base in the not-deformed state is simply  
OQ' 
the Id identity, while the metric tensor of the deformed state is Gij = T'.T 
I 
'J with You K = ~ 
 
.  
xk 
 
The components of the tensor of deformation in (Tk) are thus given by:  
 
~ 
~ 
U 
U  
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~ 
1  
 
 
 
 
 
 
= 
~ + ~ 
2  
 
X 
 
X  
~ 
~ 
 
~ 
1 U U  
 
3 
3 = 
~ + ~  
2 x3 
 
X  
 
The equations above are linear relations deformation-displacements. Variables of  
~ 
displacement are components the U.K.  
 
The components ~ 
kl of the tensor ~ can be also expressed according to the components in  
U p 
total reference mark. Indeed as in the total reference mark  
xm 
= I 
J 
I 
J 
K 
L 
~ 
K 
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L 
ije E 
= ijT T T T 
K L 
= klT T one thus deduces from it immediately that:  
~ 
 
I 
J 
kl = ijT T 
K L. (ek) and (Tk) are the bases contravariantes associated (ek) and (Tk)  
respectively such as: I.E.(internal excitation) .e 
I 
J = ij 
and T. T 
E 
T 
J = ij. As the bases (K) and (K) are  
orthonormées, their associated bases contravariantes are confused with themselves. Thus of  
J 
J 
even manner that one had T = T E 
K 
J 
K 
K 
J one finds T 
= T E 
K 
.  
If one notes T = T I E 
K 
~ 
K 
L 
~ 
K I T then T T: = T 
kl 
T =. For the continuation one indicates by ~ 
 
the form of the tensor of the deformations in the local orthonormé reference mark and by the expression 
of  
even tensor in the total reference mark. The relation of passage of the one with the other is given above 
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in  
term of tensors.  
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Note:  
 
J 
The Tk terms contain the terms of curve of the hull.  
 
One notes in the relations deformation-displacements that the component ~ 
33 is not  
determined by kinematics. This is to be associated the assumption nullity constraints  
transverse normals ~ 
33 = 0 justified by the behavior of the hulls.  
 
In the literature (see for example [bib3]), the modeling of the hulls by the approach based on  
curvilinear components ~ 
U of displacement reveals explicitly the sizes of  
K 
curve on the level of the form of the tensor of deformation [bib5]. Like, in general,  
geometry of the hull is not known explicitly, one must thus determine  
numerically the geometrical characteristics that are the vectors has, G 
 
,… and them  
curves C. With the finite element method it is necessary to derive them twice  
functions of form (see page 20 of [bib5] and [R3.07.02]) to calculate C. This can return  
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their vague calculation according to the family of the functions of selected form. The made error 
depends on  
these last (linear, quadratic, cubic polynomials….) and becomes independent of  
refinement of the grid. A formulation utilizing derivation first functions of  
form (calculation of slopes) does not present this disadvantage. Thus the consequent error with 
calculations  
terms of curve in a formulation based on the curvilinear approach does not decrease  
with the refinement of the grid whereas for the formulation described above it becomes small  
by increasing the number of finite elements. Within sight of the preceding observations, approach known 
as  
curvilinear was not followed.  
 
2.2.2 Law of behavior  
 
The behavior of the hulls is a behavior 3D in “plane constraints”. It binds the components  
constraints and deformations, in the form of vectors, in the local orthonormée base.  
transverse constraint ~ 
33 is null bus regarded as negligible compared to the others  
components of the tensor of the constraints (assumption of the plane constraints). The law of 
behavior  
most general is written then as follows:  
 
~ 
~ 
~ 
 
HT  
11  
11 - 11 
~  
~ 
~  
 
 
HT 
22  
22 - 22  
~ 
~ 
 
 
 
12 
= ( 
C, µ) 
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~ 
12 
 
 
~  
 
 
~ 
13  
 
 
 
1 
~  
 
~ 
 
 
23  
 
2 
 
 
~ 
where ( 
C, µ) is the local matrix of behavior in plane constraints and µ represents the unit  
variables intern when the behavior is nonlinear.  
 
For behaviors where the transverse distortions are uncoupled from the deformations from  
~ 
membrane and of inflection, ( 
C, µ) is put in the form:  
 
~ 
~ H 
0  
C =  
~  
0 H  
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~ 
~ 
where H (, µ) is a matrix of behavior of membrane-inflection 3x3 and H (,) 
µ a matrix of  
transverse behavior of distortion 2x2. The two phenomena being uncoupled one can too  
to write the behavior in the form:  
 
~ 
~ 
MF ~ 
MF  
~ = ( 
C,) ~ with:  
 
µ 
 
 
~ 
~ 
~ 
 
HT 
11 
11 -  
11 
~ 
~ 
~ 
~ ~ 
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13 
1  
HT 
~ 
~ 
~ 
MF = 22 = H (, µ) ~ 
~ 
22 - 22 = H (, µ) ~ 
 
MF and ~ = ~ = H (,) 
 
~ = H (,) ~ 
 
 
 
 
~  
 
~ 
 
µ 
23  
 
µ  
2  
12  
 
 
12  
 
One will remain from now on within the framework of this assumption.  
 
For an isotropic homogeneous linear behavior elastic, one has as follows:  
 
1 v 
0 
0 
0 
 
 
 
v 1 
0 
0 
0 
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1- 
 
 
v 
 
~ 
E 
0 0 
0 
0 
C = 
 
2 
 
2  
K (1 - v) 
1- 
 
v 0 0 0 
0 
 
 
2 
K (1 - v) 
0 0 
0 
0 
 
 
2 
 
 
where K is factor of transverse correction of shearing whose significance is given in  
reference material of the elements of plate [R3.07.03], and [bib4] for more details. It  
coefficient is worth 5/6 for a theory of the Reissner type and 1 within the framework of the theory of  
Hencky-Mindlin. Lastly, if one chooses K very large, one brings back oneself to a theory of the type 
Coils-Kirchhoff.  
One neutralizes the transverse distortion by penalization of associated energy by taking K = 106 h/R  
(H being the thickness of the hull and R its average radius of curvature).  
 
Always in the isotropic case, the two only nonnull components of ~ 
HT are ~th 
II for i=1,2,  
such as:  
~ 
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HT 
réf 
II 
= (T - T 
)  
 
where is the thermal dilation coefficient and T T réf 
- 
the difference in supposed temperature  
known.  
 
Note:  
 
One does not describe the variation thickness nor that of the transverse deformation ~ 
33 that one  
can however calculate by using the preceding assumption of plane constraints. In addition  
no restriction is made on the type of behavior in plane constraints which one can  
to represent.  
Same manner as T T: = ~ 
one can deduce some (): 
MF = 
: 
~ 
T 
T 
Tmf = MF and  
( ) : 
= 
: 
~ 
T T 
T =, which makes it possible to find ~mf and ~ starting from the tensor of  
deformations in the total reference mark.  
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3  
Principle of virtual work  
 
3.1  
Work of deformation  
 
In 3D the expression of the work of deformation is written:  
 
h/2 
h/2 
h/2 
~ 
W 
= 
( ~ ~ 
D 
) V 
 
= 
( ~ ~ 
C ~ D 
) V 
 
= 
(Pr PsC P p Pq 
D 
) V 
def 
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ij ij 
ij ijkl kl 
rs I K ijkl K L pq 
S - h/2 
S - h/2 
S - h/2 
 
h/2 
h/2 
= 
(C 
D 
) V 
 
= 
(D 
) V 
rs rspq pq 
ij ij 
S - h/2 
S - h/2 
 
It is checked that this expression is invariant compared to the base in which the tensors are  
expressed. One chooses for the continuation of this document all to express in the local base (Tk) in  
knowing that one passes from the local tensor of behavior to the total tensor of behavior by  
p 
Q 
relation C 
= 
~ 
P R P Sc 
P P 
rspq 
I 
K 
ijkl K 
L.  
 
The general expression of the work of deformation 3D for the element of hull is worth:  
 
h/2 
h/2 
h/2 
h/2 
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W 
= 
( ~ ~ 
D 
) V 
 
= 
( ~~ ~ 
 
C D 
) V 
 
= 
( ~ ~ ~ 
H 
D 
) V 
 
+ 
( ~ ~ ~ 
H D 
) V 
def 
MF 
MF 
 
 
 
S - h/2 
S - h/2 
S - h/2 
S - h/2 
 
where S is average surface and the position in the thickness of the hull varies between h/2 and +h/2. It  
in the expression of the work of deformation a contribution of deformation appears in  
membrane-inflection and a contribution of transverse shearing strain.  
 
3.1.1 Energy interns elastic hull  
 
It is expressed in the following way:  
 
1 
E 
 
2 
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2 
2 
2 
2 
int = 
[ 
( ~ 
~ 
~ ~ 
 
+ 22 + 2 ) 
11 22 + G (~ 
12 + K (~ 
~ 
1 +))]FD  
2 
1 - 2 11 
2 
 
S 
E 
where K is the factor of correction in transverse shearing defined in paragraph 2 and G = 2 1 (+.  
) 
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3.1.2 Expression of the resulting efforts  
 
One notes:  
 
NR  
~ 
 
M  
~ 
 
11 +h/2 11  
11 +h/2 11  
T +h/2 ~ 
1 
13 
NR = NR 
~ 
~ 
22 = 22 dz; M = M 22 = 22 zdz; T =  
=  
dz 
T 
~ 
2  
 
.  
23  
 
 
 
 
 
/ 
~  
NR 
/2 
~ 
- H 2 
- h/2 
12  
H 
 
12 
- 
M12  
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12  
 
NR, NR, NR 
11 
22 
12 are the generalized efforts of membrane (in N/m);  
M, M, M 
11 
22 
12 are the generalized efforts of inflection or moments (in NR);  
T, T 
1 
2, are the generalized efforts of shearing or sharp efforts (in N/m);  
 
The expression of the resulting efforts that one gives here is an approximate expression which does 
not hold  
count curve of the hull (cf p.316 of [bib3]). The error made on these efforts is then in  
H2/R where 1/R is the average curve. When the hull becomes plane, expressions given  
above are exact and the significance of the resulting efforts can be found in [R3.07.03].  
We will not develop more this aspect in addition documented well in [bib3] because the theory of  
hull used here does not rest on a resulting generalized deformations formulation/efforts but  
on three-dimensional/forced a deformations formulation.  
 
3.2  
Work of the forces and couples external  
 
The work of the forces being exerted on the voluminal hull is expressed in the following way:  
 
+h/2 
+h/2 
W 
F. D 
U V 
F. D 
U.S. 
F. D 
U zds 
ext. = v 
+ S 
+ C 
 
S - h/2 
S 
C - h/2 
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where F, F, F 
v 
S 
C are the voluminal, surface efforts and of contour being exerted on the hull,  
respectively. C is the part of the contour of the hull on which the efforts of contour FC are  
applied.  
 
has) Loads given in the total reference mark:  
 
With the kinematics of [§2.2.1], one determines as follows:  
 
~ 
~ 
W 
(F U 
 
+ C) dS + (U 
 
+) ds = (F U 
 
+ C (T 
2 1 - T))dS 
ext. = 
I I 
I I 
I I 
I I 
I I 
I 
I 
1 2i 
S 
C 
S 
 
+ 
~ 
~ 
~ 
~ 
(U 
 
+ (T 
2 1 - T))ds 
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1 2 
= (F U 
 
+ C (T 
2 1 - T))dS 
1 2 
+ (U +) ds 
I I 
I 
I 
I 
I I 
I 
I 
I 
C 
S 
C 
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· where are present on the hull:  
 
F, F, F 
1 
2 
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3 :  
surface forces acting along the axes of the reference mark  
Cartesian total  
+h/2 
 
F = 
. dz 
I 
F E + F .e 
v 
I 
S 
I  
where I.E.(internal excitation) are the vectors of the total Cartesian base.  
- h/2 
C, C, C 
1 
2 
3 :  
surface couples acting around the axes of the reference mark  
total.  
+h/2 
H 
 
C = 
Z 
. dz 
I 
F E ± F .e 
v 
I 
S 
I where E 
2 
I are the vectors of the total Cartesian base.  
- h/2 
 
· and where are present on the contour of the hull:  
 
1,2 ,3 :  
linear forces acting along the axes of the reference mark  
Cartesian total.  
+h/2 
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where E 
I = 
. dz 
F E 
C 
I 
 
I are the vectors of the total Cartesian base.  
- h/2 
1, 2 , 3 :  
linear couples acting around the axes of the total reference mark.  
+h/2 
 
 
where E 
I = 
Z. dz 
F E  
C 
I 
 
I are the vectors of the total Cartesian base.  
- h/2 
 
Note:  
 
One also notes and the linear distributions of force and moment applied to  
contour of the finite element.  
 
b) Loads given in the local reference mark:  
 
One has then:  
 
3 
~ 
~ 
~ 
3 ~ 
~ 
~ 
Wext = (F T u.a. ~ 
 
C) dS 
( 
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T U 
 
 
) ds 
I I + 1 
1 + 
2 
2 
+  
I I + 
1 
1 + 
2 
2 
= 
S 
i=1 
C 
i=1 
 
3 
3 
( ~ 
~ 
~ 
~ 
~ 
~ 
F T U 
C 
~ 
 
 
C 
~) dS 
( 
T U 
 
 
) ds 
I I + 1 2 - 
2 1 
+  
I I + 
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1 2 - 
2 1 
S 
i=1 
C 
i=1 
 
~ ~ ~ 
Forms of F, F, F 
1 
2 
3 and ~, ~, ~ 
C C C 
1 2 
3 are the analogues of the expressions obtained for  
F, F, F 
1 
2 
3 and C, C, C 
1 
2 
3 by replacing I.E.(internal excitation) by Ti.  
 
Note:  
 
For the couple C, the contribution ~ 
c3 associated N is null in theory of hull.  
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3.3  
Work of the inertias  
 
Work due to the quantities of acceleration is written:  
 
.. 
W ac = OQ'.OQ' FD  
 
 
where is the density.  
 
.. 
It is supposed that OQ', the vector of acceleration of the Q' point are following form:  
 
.. 
OQ' = & 
U.E. 
0 
K 
K + [X E 
K 
K]  
 
where one neglected the forces of Coriolis and the correction of metric in the thickness.  
 
D 2U 
One notes & 
U 
K 
K = 
O, E (by  
dt 2, and is the uniform vector of rotation of the total reference mark ( 
K) 
report/ratio with a Galiléen reference mark which in the same beginning O as the total reference 
mark).  
 
One expresses in the total base (ek):  
 
= kek  
 
For virtual displacement OQ', one a:  
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OQ' = U.E. 
K 
K  
 
Work due to the quantities of acceleration becomes then:  
 
W ac 
U 
0 
ac 
ac 
= K ek [U&k ek + (xk ek)]FD = W +W 
mass 
hundred  
 
 
with:  
W ac 
= 
U U& FD 
mass 
K K  
 
 
and:  
W ac = 
U 
 
0 
K E K [(xk ek)]FD 
hundred 
 
 
 
3.4  
Principle of virtual work  
 
For a static loading, he is written in the following way: W 
= W 
ext. 
def where Wext is the sum  
various elementary work, corresponding to the various loadings.  
 
In harmonic dynamics (calculations of clean modes), the principle of virtual work  
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give: W 
+ W ac 
ext. 
mass = 0  
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4  
Numerical discretization of the variational formulation  
exit of the principle of virtual work  
 
4.1 Introduction  
 
This chapter is devoted to the discretization of the various terms of energy introduced into the chapter  
precedent. The choice of framework HENCKY-MINDLIN-NAGHDI to describe the kinematics of 
hull,  
presented at the paragraph [§2] led to expressions of the deformations where the derivative are limited  
with order 1, contrary to the model of LOVE-KIRCHHOFF. One can thus use a finite element  
of a nature limited while ensuring conformity (see p.110 [bib7]).  
 
The degrees of freedom are 3 displacements in the total reference mark and 2 rotations in local 
reference mark.  
 
The selected elements are isoparametric quadrangles or triangles. The quadrangle is  
represented below. The quadrangles give the best results (see p.202 [bib8]).  
better choice consists in taking for these elements of the quadratic functions of interpolation (see  
p.224 of [bib8]) in order to correctly modelling the effects of membrane, inflection and shearing.  
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According to the results based on many case-tests of the literature, the best alternative is it  
quadratic isoparametric quadrangle, which makes it possible to have a fine representation of a 
geometry  
curve and of good estimates of the constraints. One chooses among the elements with functions  
quadratic the element hétérosis (Q9H) whose displacements are approached by the functions  
of interpolation of the Sérendip element and rotations by the functions of the element of Lagrange  
(cf Annexe3). This choice is justified hereafter.  
 
2 
2 
3 
4 
= 
7 
3 
1 
3 
3 
7 
3 
8 
4 
= - 
1 
P 
1 
1 
1 
6 
8 
6 
1 
5 
2 
5 
2 = 1 
- 
1 
2  
 
Appear 4.1-a: Representations of the isoparametric quadrangle  
Handbook of Reference  
R3.07 booklet: Machine elements on average surface  

file:///Z|/process/refer/refer/p340.htm (16 of 30)10/2/2006 2:51:59 PM



file:///Z|/process/refer/refer/p340.htm

HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Finite elements of voluminal hulls  
 
 
Date:  
14/04/05  
Author (S):  
X. DESROCHES Key  
:  
R3.07.04-B Page  
: 18/42  
 
 
The figure [Figure 4.1-b] summarizes the three families of elements previously named.  
 
Sérendip element 
Element of Lagrange Hétérosis Element 
~ 
U,  
K 
 
~ 
 
Appear 4.1-b: Families of finite elements for the isoparametric quadrangle  
 
Risks of bloquage or locking of membrane or shearing appear when  
the thickness of the hull becomes small compared to its radius of curvature and that functions  
of interpolation are of a too low nature. To solve them a selective numerical integration is used  
[bib6]. For certain types of boundary conditions (embedding) with the Sérendip element it  
locking persists in spite of selective integration. Moreover, for the element of Lagrange, this type  
of integration leads to singularities in the matrix of rigidity. The element Hétérosis Q9H with  
selective integration does not encounter the problems mentioned and seems being more  
powerful for the modeling of the very thin hulls (see p.224 [bib8]). It should be noted that this  
element has a mode of deformation without associated energy if it is used only. This mode  
disappears when one uses more than two elements [bib7].  
For the elements triangle, the element Hétérosis T7H is essential for the same reasons but proves  
definitely less powerful (see paragraph 5 concerning the validation).  
 
One decides to carry out all calculations of discretization in the total Cartesian base.  
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4.2  
Discretization of the geometrical terms  
 
The co-ordinates x0k of a point P of average surface are interpolated by the functions of form  
in the following way:  
 
Nb1 
x0 = NR 1 () x0 
K 
I 
ik 
i=1 
 
 
( ) 
where the Nb1 number and functions of form NR 1 
0 
I 
depend on the type of element chosen, and xik is them  
co-ordinates with node I of the element.  
 
The vectors covariants has (attached to the point P) are then given by:  
 
Nb1 () 1 
= Nor x0 E has 
 
ik 
K 
i=1 
 
 
 
 
J 
The calculation of the Tk vectors is avoided because the Tk components contain the sizes of curve  
whose calculation is often vague Co 
 
Mrs. it was shown in the paragraph [§2.2.1].  
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In order to avoid the presence of the terms of curve, one writes:  
 
Nb1 
N = NR () 1 N 
I 
I  
i=1 
 
where nor is the normal vector with the nodes of the element.  
 
4.3  
Discretization of the field of displacement  
 
One adopts the following writing for displacement at the point Q:  
 
Nb1 
Nb2 
 
U = NR () 1 U.E. + 3 NR (2) 
~ 
~ 
H 
I 
ik 
I 
I (T 
i2 I -  
T 
K 
1 
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i1 i2) 
2 
i=1 
i=1 
 
 
(2) 
where T are evaluated with the nodes, and where it is observed that the functions of interpolation Ni 
and them  
~ 
Nb2 for rotations numbers are a priori different from those used for displacements the U.K.  
 
By expressing Ti according to their components in the total Cartesian base, one obtains:  
 
Nb1 
Nb2 
 
U = NR () 1 U.E. + 3 NR (2) 
~ 
~ 
H 
I 
I (T 
i2 I K 
1 + T 
I 
ik K 
i1 i2k) ek 
2 
i=1 
i=1 
 
 
One calculates then the various elementary terms, in order to obtain the complete discretized 
formulation.  
In the continuation one uses the convention of summation of Einstein, while having with the spirit 
that the number  
~ 
interpolations is Nb1 for x0, N, U 
K 
K, and Nb2 for, T.  
 
4.3.1 Element Hétérosis Q9H  
 
With this element, the number of interpolations for the geometry (x0k, N) and displacements the U.K. 
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are  
Nb1=8 (nodes tops and mediums on the sides), while the number of interpolations for T and  
~ 
rotations is Nb2=9 (nodes tops and mediums on the sides + barycentre). The number of degrees  
of freedom total of the element is thus Nddle=3x8+2x9=42.  
 
Functions of interpolation NR (1) 
(2) 
I 
and Ni respectively for the geometry and displacements, and for  
rotations, can be found for example in [bib2] and are quoted in appendix 2.  
 
The elementary vector of displacement can be put in the following form:  
 
~ 
qe = ( 
~ ~ 
~ ~ 
~ 
~ 
U, U, U,…, U, U, U,…, 
11 
12 
13 
11  
12 
i1 
i2 
i3 
i1 
i2 
91 
9 
2 ) 
I =, 
1 8  
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4.3.2 Element triangle T7H  
 
With this element Nb1=6 (nodes tops and mediums on the sides) and Nb2=7 (nodes tops and mediums  
sides + barycentre). The number of degrees of freedom total of the element is Nddle=3x6+2x7=32.  
 
( ) 
1 
The 6 functions of interpolation Nor which are traditional can be found in [bib2] and are  
(2) 
quoted in appendix 4. On the other hand the 7 Ni are it much less and their expressions are  
data in Appendix 3.  
 
The elementary vector of displacement can be put in the following form:  
 
~ 
qe = ( 
~ ~ 
~ ~ 
~ 
~ 
U, U, U,…, U, U, U,…, 
11 
12 
13 
11 
12 
i1 
i2 
i3 
i1 
i2 
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71 
7 
2 ) 
I =, 
1 6  
 
4.3.3 Notice  
 
One notices on the level of the elementary vector ~ 
qe the presence of terms associated with the local base and  
at the total base.  
 
4.4  
Discretization of the field of deformation  
 
The field of deformation is expressed like the symmetrized gradient of the field of displacement:  
 
 
1 
=  
S U = (U + U T)  
2 
Like:  
 
U 
= [ 
NR  
] qe 
( ) 
( ) ~ 
X 
X 
 
one thus has:  
 
 
U = NR 
qe 
( ) 
~ 
X  
 
 
where NR gathers the functions of form NR () 
1 

file:///Z|/process/refer/refer/p340.htm (23 of 30)10/2/2006 2:51:59 PM



file:///Z|/process/refer/refer/p340.htm

(2) 
I 
and Ni 
and matrices of passage Ti K 
, is  
X 
the reverse of the jacobien J and ~ 
qe is the vector of the degrees of freedom to the nodes (translations the U.K. and  
~ 
rotations).  
 
Taking into account these relations and of ~ 
= T T, one obtains the components of the tensor of  
deformation in the local reference mark:  
 
~ 
~ ~ 
= B qe  
 
~ 
where B is the matrix of interpolation of ~ 
, such as:  
 
~ 
B = T T S J -  
1 
( 
NR)  
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Note:  
 
If one takes again the expression of  
Nb1 
Nb2 
( ) 
1 
3 
(2) 
~ 
~ 
U (X) = NR U.E. + 
NR H 
I 
I (T 
i2 I K 
1 + T 
I 
ik 
K 
i1 i2k) ek = U (X) + U (X) 
T 
R 
one notices  
2 
i=1 
i=1 
that the terms of membrane are contained in the first part U T () 
X of U (X) and that them  
terms of inflection are contained in the second part U R () 
X of U () 
X. Terms of  
~ 
~ ~ 
 
E 
m = B m Q 
transverse shearing come from the two contributions. One obtains as follows: ~ 
~ 
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~ 
 
E  
F = B F Q where  
~ 
~ ~ 
= B qe 
 
 
~ 
B = T SJ-1 NR 
m 
MF 
1 () 
~ 
H 
B = T SJ -1 [ 
 
NR 
F 
MF 
3 
2 ()] by simple decomposition of the expression ~ 
~ ~ 
= B qe. One calls  
2 
~ 
B = T SJ- 
 
 
1 
( 
NR) 
membrane part of the deformation projection on the membrane-inflection part of the field of  
deformation room of the symmetrized gradient of the translations in the total reference mark. Part is 
called  
inflection of the deformation projection on the membrane-inflection part of the field of deformation  
room of the symmetrized gradient of rotations in the total reference mark. One calls transverse 
distortion  
projection on the shearing part of the local field of deformation of the gradient symmetrized of  
total displacement.  
 
4.5  
Stamp rigidity  

file:///Z|/process/refer/refer/p340.htm (26 of 30)10/2/2006 2:51:59 PM



file:///Z|/process/refer/refer/p340.htm

 
The principle of virtual work is written in the following way: W 
= W 
ext. 
def is still  
UT K U UT 
= 
F in matric form where K is the matrix of rigidity coming from the assembly  
in the total reference mark of the whole of the elementary matrices of rigidity. At the elementary level  
discretization of the work of deformation is written with the preceding notations:  
 
1 
 
~ ~ ~ 
~ 
W el = ~et 
T 
Q 
B C B det J D 
 
D D ~e 
~et 
E ~e 
def 
Q = Q K Q 
1 
2 
3 
 
-1Ar 
 
where Ar is the area of reference of the element.  
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4.5.1 Decomposition of the elementary matrices  
 
This matrix of rigidity includes/understands three contributions due to the deformations of 
membrane, of inflection  
~ E 
~ E 
~ E 
~ 
and of transverse distortion. One has as follows: K 
K + K + K E 
= m 
F 
with:  
 
1 
~ E 
~ T 
~ 
K = 
B H B det J D D 
1 D 
2 
; 
m 
m 
m 
3 
-1Ar 
1 
~ E 
~ T 
~ 
K = 
B H B det J D D 
1 D 
2 
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; 
F 
F 
F 
3 
 
-1Ar 
1 
~ E 
~ T 
~ 
K = 
B H B det J D 
 
 
 
D 
1 D 
2 
. 
 
3 
-1Ar 
 
4.5.2 Assembly of the elementary matrices  
 
The principle of virtual work for the whole of the elements is written:  
 
nbelem 
W 
= We 
T 
def 
def = U KU where U is the whole of the degrees of freedom of the discretized structure  
e=1 
and K comes from the assembly of the elementary matrices.  
 
4.5.2.1 Degrees of freedom  
 
The process of assembly of the elementary matrices implies that all the degrees of freedom are  
expressed in the total reference mark. In the total reference mark, the degrees of freedom are the 
three  
displacements compared to the three axes of the total Cartesian reference mark and three rotations 
compared to  
these three axes. One thus uses, for the degrees of freedom of rotation, of the matrices of passage of  
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locate local orthonormé T with the total reference mark for each element.  
 
4.5.2.2 Rotations  
fictitious  
 
Rotation compared to the normal with the hull is not a true degree of freedom. To ensure  
compatibility between the passage of the local reference mark to the total reference mark, one thus 
adds a degree of freedom  
additional room of rotation to the hull which is that corresponding to rotation compared to  
normal on the average surface of the element. This implies an expansion of the blocks of dimension 
(5,5)  
matrix of local rigidity in blocks of dimension (6,6) by adding a line and a column  
correspondent with this rotation. These additional lines and these columns are a priori null. One  
then carry out the passage of the matrix of local rigidity extended to the matrix of total rigidity.  
In the preceding transformation, one was satisfied to add rotations compared to  
normals on the surface of the elements without modifying the deformation energy. The contribution 
to energy  
brought by these additional degrees of freedom is indeed null and no rigidity is to them  
associated.  
The matrix of total rigidity thus obtained presents the risk however to be noninvertible. For  
to avoid this nuisance it is allowed to allot a small rigidity to these degrees of freedom  
additional on the level of the matrix of widened local rigidity. Practically, one chooses it between 10 
6 and 103 times the diagonal minor term of the matrix of rigidity of local rotation. The user can  
to choose this multiplicative coefficient COEF_RIGI_DRZ itself in AFFE_CARA_ELEM; by defect it  
is worth 105.  
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4.6  
Stamp of mass  
 
The virtual work of the effects of inertia can be expressed in the form:  
 
W ac = &U (Q). U (Q 
mass 
) D  
 
 
It is supposed that the deformations and displacements remain sufficiently small so that the normal  
on the average surface of the hull remains unchanged.  
With these assumptions, we can write the field of virtual displacement:  
 
 
H 
U (Q  
)( , 
1 , 
2 ) 
3 = U (P  
)( , 
1 ) 
2 + 3 
 
( , 
1) N 
2 
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( , 
1 ) 
2  
2 
 
and the field of acceleration:  
 
& 
H 
U (Q) (, 
2 ) 
1 
3 = &u (P) (,) 
2 +  
& 
3 
(,) N ( 
2 
, ) 
1 
1 
1 2  
2 
 
In this expression, we neglected the gyroscopic terms.  
 
4.6.1 Discretization  
displacement for the matrix of mass  
 
At the point Q, one takes as interpolation of the field of displacement:  
 
U  
 
N 
N 
 
 
Nb 
I1 
0 
- 
Nb 
I 3 
I 2 
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1 
2 
I1 
 
 
H 
 
 
 
 
 
U ( 
 
Q) (, 
1 
2 
1 , 
2 ) 
3 = NR I  
( , 
1 ) 
2 U I 2 - 3 
NOR (, 1) 2 nI3 
0 
- nI1  
 
I 2  
2 
I 1 
= 
 
 
I 1 
= 
U 
N 
N 
 
 
I 3  
- I2 
I1 
0 I3 
 
For the field of acceleration, the interpolation is written:  
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U  
0 
I 
- N 
N 
 
 
1 
Nb 
& 
& 
1 
Nb 
I 3 
I 2 
 
2 
I1 
 
 
H 
 
 
& 
 
 
U (Q) (, 
1 
2 
2) = NR ( 
3 
I,) 
1 
1 
2 &uI 2 -  
NR ( 
3 
I,) 
N 
0 
I 
- nor & 
1 
2  
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3 
1 
 
I2  
2 
I 1 
= 
 
 
 
I = 
 
 
& 
1 
uI  
 
- N 
N 
0  
I 
I 
& 
3 
2 
1 
I3  
 
We rewrite the two preceding equations in the matric form:  
 
U (Q,) 
 
NR ue 
)( 1 2 3 = 
 
&U (Q 
,) NR 
2 
3 = 
& 
ue 
) (1 
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where NR is the matrix of interpolation, whose expression is:  
 
 
 
 
1 0 0 
0 
- nI3 nI2  
0 
- 
 
 
nNb23 
nNb22  
 
 
 
H 
 
 
1 
2 
 
H 
 
 
NR = NEITHER 0 1 0 - 3 NOR N 
0 
I 3 
- nI1  
- 
2 
 
 
3 NNb2 N 
0 
Nb23 
- nNb21  
 
 
2 
 
 
2 
0 0 1 
- N 
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N 
0 
 
 
 
 
 
I 2 
I1 
 
- 
 
 
N 
N 
0 
Nb22 
Nb21 
 
I =, 
1 
1 
Nb 
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The vector ue is the elementary nodal vector of displacements in the total reference mark which is put  
in the following form:  
 
E 
U = (U, U, U,…, U, U, U,…, 
, 
, 
I = Nb  
11 
12 
13 
11 
12 
13 
1 
I 
i2 
i3 
1 
I 
i2 
i3 
Nb21 
Nb22 
Nb23) 
, 
1 
1 
 
4.6.2 Stamp of elementary mass  
 
With the preceding notations, the virtual work of the effects of inertia is put in the matric form  
following:  
 
Winertie 
and 
E E 
mass 
= U M u&  
 
with Me the matrix of coherent mass which can be expressed in the form:  
 
Me = 
NTN det (J 
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())D D D 
3 
1 
2 
3  
E 
 
 
It is important to note that because of the curve, a coupling of the terms of translation with those  
of rotation is possible (indeed, det (J ()) 
3 
is not constant in the thickness).  
 
4.6.3 Assembly of the elementary matrices of mass  
 
The assembly of the matrices of mass follows same logic as that of the matrices of rigidity.  
degrees of freedom are the same ones and one finds the treatment specific to normal rotations to  
surface hull. Although the matrix of coherent mass is built in the total reference mark, it  
remain singular compared to the rotation of the normal in each node. We need  
to supply this matrix on the basis of the variational form:  
 
Nb2 
Winertie = m 
N 
I.E.(internal excitation) (N I N I  
) &I  
I =1 
 
where is selected constant for me by element and calculated according to the formula:  
 
m 
Cm 
E = 
max  
 
mmax being the major term due to rotations (in the local reference mark of the element) on the 
diagonal  
matrix Me. It is thus to note that with this intention it was necessary to bring back the contribution  
the rotations initially expressed in the total reference mark of the element, the local reference mark of  
the element by change of reference mark.  
 
For modal calculations utilizing at the same time the calculation of the matrix of rigidity and that of  
stamp of mass, it is necessary to take a mass on the degree of normal rotation on the surface of the 
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hull  
being worth C time the diagonal minor term of the matrix of mass for the terms of rotation in  
locate local, where C is worth between 106 and 103. One chooses to confuse the values of this 
coefficient with  
those of the COEF_RIGI_DRZ for the equivalent operation on the matrix of rigidity. By defect C is 
worth  
thus 105. That makes it possible to inhibit, during a modal analysis, the modes being able to appear 
on  
additional degree of freedom of rotation around the normal on the surface of the hull.  
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4.7  
Numerical integration for elasticity  
 
4.7.1 Integration  
surface  
 
For the element Hétérosis Q9H the inflection part of the matrix of stiffness is integrated classically  
with 9 points of Gauss while the parts membrane and shearing are obtained by integration  
reduced with 4 points by Gauss.  
 
For element T7H, by analogy with Q9H, the matrix of stiffness is obtained with 7 points  
of integration of Hammer for the inflection part and 3 points of integration of Hammer for the parts  
shearing and membrane.  
 
Cordonnées of the points  
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Weight  
1 = 1/ 3;1 = 1/ 3  
9/80  
2 = has; 2 = has  
155 + 15 
With =  
 
6 + 15 
2400 
has = 
 
21 
3 = 1 - 2a; 3 = has  
With  
4 = has; 4 = 1 - 2a  
With  
 
31/240 - With  
5 = B; 5 = B  
B = 4/7 - has  
6 = 1 - 2b; 6 = B  
31/240 - With  
7 = B; 7 = 1 - 2b  
31/240 - With  
1 - 
1  
N 
y ( 
,) D D 
= I y  
(I, I)  
0 0 
i=1 
 
Normal numerical formulas of integration on triangle T7H (Hammer)  
 
X-coordinates of the points  
Weight  
Ordinates of the points  
Weight µ  
1 = - 3 / 5  
5/9  
1 = - 3 / 5  
5/9  
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= 
2 = 0  
8/9  
2 0  
8/9  
3 = + 3 / 5  
5/9  
2 = + 3 / 5  
5/9  
1 1 
N 
N 
y ( 
,) dd = iµj y (I, J)  
- - 
1 1 
i=1 j=1 
 
Normal numerical formulas of integration 3x3 on quadrangle Q9H (Gauss)  
 
The principle of reduced integration consists in evaluating the membrane and shearing strains  
at the points of reduced integration and to extrapolate them at the points of traditional integration. 
This returns to  
to suppose that these deformations are bilinear on element Q9H and linear on the T7H.  
functions of form chosen to make this extrapolation are related traditional to form  
bilinear of the quadrangle with 4 nodes for the Q9H and linear of the triangle with 3 nodes for the 
being worth T7H  
1 at the points of reduced integration.  
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For more details on the principle of reduced or selective integration, one can refer to [bib6].  
 
Cordonnées of the points  
Weight  
1 = 1 / 6;1 = 1 / 6  
1/6  
2 = 2 / 3;2 = 1/ 6  
1/6  
3 = 1 / 6;3 = 2 / 3  
1/6  
1 - 
1  
N 
y (,) D D 
= 
 
I y  
(I, I)  
0 0 
i=1 
 
Numerical formulas of integration reduced on triangle T7H (Hammer)  
 
For the elements quadrangle an integration of Gauss 2x2 is used.  
 
Cordonnées of the points  
Weight  
1 = 1/ 3;1 = 1/ 3  
1  
2 = 1/ 3;2 = -1/ 3  
1  
3 = -1/ 3;3 = 1/ 3  
1  
3 = -1/ 3;3 = -1/ 3  
1  
1 1 
N 
y ( 
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,) dd = I y (I, I)  
- - 
1 1 
i=1 
 
Reduced numerical formulas of integration 2x2 on quadrangle Q9H (Gauss)  
 
 
4.7.2 Integration in the thickness  
 
Integration in the thickness is made with three points for the two elements.  
 
Cordonnées of the points  
Weight  
1 = -1  
1/3  
2 = 0  
4/3  
3 = +1  
1/3  
1 
N 
y ( 
) D = I y (I)  
-1 
i=1 
Formulate numerical integration in the thickness in elasticity  
 
4.8  
Numerical integration for plasticity  
 
The principle of surface integration remains the same one as in elasticity, but the initial thickness is  
divided into NR identical layers thicknesses. There are three points of integration per layer. Points  
of integration are located in higher skin of layer, in the middle of the layer and in lower skin  
of layer. For NR layers, the number of points of integration is of 2N+1. One advises to use of 3  
with 5 layers in the thickness for a number of points of integration being worth 7, 9 and 11 
respectively.  
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For rigidity, one calculates for each layer, in plane constraints, the contribution to the matrices of  
rigidity of membrane, inflection and transverse distortion. These contributions are added and  
assemblies to obtain the matrix of total tangent rigidity.  
 
For each layer, one calculates the state of the constraints (11,22,12) and the whole of the variables  
interns, in the middle of the layer and in skins higher and lower of layer, from  
local plastic behavior and of the local field of deformation (11,22,12). The positioning of  
points of integration enables us to have the rightest estimates, because not extrapolated, in skins  
lower and higher of layer, where it is known that the constraints are likely to be maximum.  
plastic behavior does not include/understand for the moment the terms of transverse shearing which  
are treated in an elastic way, because transverse shearing is uncoupled from the behavior  
membrane in plane constraints.  
 
Cordonnées of the points  
Weight  
1 = -1  
1/3  
2 = 0  
4/3  
3 = +1  
1/3  
1 
N 
y ( 
) D =  
I y (I)  
-1 
i=1 
 
Formulate numerical integration for a layer in the thickness in plasticity  
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Note:  
 
One already mentioned with [§2.2.2] that the value of the coefficient of correction in shearing  
transverse for the elements of plate and hull was obtained by identification of  
elastic complementary energies after resolution of balance 3D. This method is not  
more usable in elastoplasticity and the choice of the coefficient of correction in shearing  
transverse is posed then. The transverse terms of shearing are thus not affected  
by plasticity and are treated elastically, for want of anything better. If one places oneself in  
theory of Coils-Kirchhoff for a value of this coefficient of 106 h/R (H being the thickness of  
the hull and R its average radius of curvature) transverse terms of shearing  
become negligible and the approach is more rigorous.  
 
4.9  
Discretization of elementary work for the loadings  
 
4.9.1 Discretization  
elementary of the work of the forces and external couples being exerted  
on average surface  
 
According to the paragraph [§3.2], one recalls that one has for these efforts and couples:  
 
W = (fu + C) dS 
ext. 
 
S 
 
where S is the average surface of the hull.  
 
For the first term of this expression one has as follows:  
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4.9.1.1 Loads given in the total reference mark  
 
 
1 
2 
~ 
~ 
2 
W 
= 
F NR 
[ 
U + C NR  
( 
T 
2 1 - T 
)] det 
1 2 
J°  
D 1  
D 
ext. 
K 
I 
ik 
K 
J 
J 
J K 
J 
J K 
 
H 
2 
Ar 
 
with det J° = det J (3 =) 
0  
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4.9.1.2 Loads given in the local reference mark  
 
 
1 
1 
2 
~ 
~ 
2 
W 
= [  
F NR T NR U +  
C T NR  
( 
T 
2 1 - T 
)] det 
1 2 
J°  
D 1  
D 
ext. 
J J K 
I 
ik 
K 
J 
J 
J K 
J 
J K 
 
H 
2 
Ar  
 
4.9.2 Discretization  
elementary of the work of the forces and external couples being exerted  
on contour  
 
According to the paragraph [§3.2], one recalls that one has for these efforts and couples:  
 
W = (U +) ds 
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ext. 
 
C 
 
where C is the average contour of the hull. and linear distributions of force and moment  
applied to the contour of the hull in the total reference mark.  
 
1 
2 
~ 
~ 
The discretization gives then: W 
=  
[NR U + NR  
( 
T 
2 1 - T 
D 
)] S 
ext. 
K 
I 
ik 
K 
J 
J 
J K 
j1 j2k 
 
C 
 
4.9.3 Discretization of the term of gravity  
 
One has for this term:  
 
1 
 
 
3 
2 
~ 
~ 
Wpes =  
G U (Q D 
) V = gkU (Q D 
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) V 
K 
= G [NR 
K 
I U + 
NR 
ik 
J  
( 
T 
j2 J K 
1 - T 
D 
)] V 
j1 j2k 
 
2 
E 
E 
E 
 
That is to say: W 
= G NR  
1 U FD 
pes 
K 
I 
ik 
by supposing negligible the second term of expression Ci  
E 
above.  
 
 
4.9.4 Discretization of the term of pressure  
 
It is supposed that the pressure p is applied to the average surface of the hull. One has then:  
 
W 
= ep 
 
N U (P D 
) S = ep 
(has has) U (P) 
1 
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2 
 
D 1  
D 
near 
2  
With 
With 
R 
R 
 
where e=±1 according to whether p is applied in internal or external skin.  
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Like A 
= E has 
1 
 
K K, this is still written: W 
= epN 
 
U v  
D 1  
D 
near 
I 
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ik K 
2  
Ar 
v J ° J ° - J ° J °  
1 
12 23 
13 22 
 
 
where v = J ° J ° - J ° J ° J ° 
, 
= J 
2 
13 21 
11 23 
ij 
ij (3 
= ) 
0 .  
 
 
v  
° ° 
° 
°  
J J - J J 
3 
11 22 
12 21  
 
4.9.5 Discretization of the terms of centrifugal inertia  
 
One adds with the expression of the field of accelerations of the paragraph [§4.6] the corresponding 
term  
with the accelerative forces centrifuges if the total reference mark (O, ek) is in uniform rotation by  
report/ratio with a Galiléen reference mark which in the same beginning O as the total reference 
mark. The expression of the field  
accelerations becomes as follows:  
 
& 
H 
U (Q) (, 
2 ) 
1 
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3 = &u (P) (,) 
2 +  
& 
3 
(,) N ( 
2 
,) + [COp] 
1 
1 
1 2 
 
2 
 
where one neglected the forces of Coriolis and the correction of metric in the thickness.  
 
One expresses in the total base (ek): = K ek.  
 
By taking again the expression of: W inertia = &U (Q). U (Q D 
) the contribution of the terms is identified  
 
of centrifugal inertia: W inertia 
0 
hundred 
= U.E. [(X E) D] V 
K K 
K K 
by neglecting the terms of rotation  
E 
in virtual displacement. The terms of mass are unchanged compared to [§4.6].  
 
Like one a:  
 
x0 
=  
x0 
= x0 
E 
E 
E 
E 
K 
K 
p 
p 
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K 
K 
p 
K 
qpk E Q  
 
where eqpk is the permutation of Lévi-Strauss.  
 
One also writes:  
 
(x0 E) = E 
E 
x0 
K 
K 
qpk 
srq 
R 
p 
K E K  
 
From where it results from it that:  
 
1 
W inertia = 
U 
NR () 1 E 
E 
x0 NR () 1 det J D D 
1 D 
hundred 
 
is 
I 
qpk srq 
R 
p 
jk 
J 
2 3  
-1Ar 
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4.9.6 Taking into account of the loadings of thermal dilation  
 
One treats only the case where the thermoelastic characteristics E, depend only on  
average temperature T in the thickness. Moreover, the material is thermoelastic isotropic  
homogeneous in the thickness.  
 
The variational formulation of work due to thermal dilations is written:  
 
1 
+ 
1 
+ 
HT 
~ 
~ 
~th 
~T 
~ T ~ ~th 
~T 
~ T ~ 
W = - ( 
C  
- 
) FD = Q 
B C 
J 
= Q 
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B C 
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E 
det  
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E 
(T T réf) det  
D 
 
D 
 
D 
1 
2 
3 
 
1 
2 
3 
 
1 
- A 
1 
- A 
E 
R 
R 
The temperature is represented by the model of thermics to three fields according to [R3.11.01]:  
 
T (, 3) = T m ( 
). P1 (3) + T S (). P2 (3) + Ti 
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(). P3 (3),  
 
with: Pj (3): three polynomials of LAGRANGE in the thickness: ] - 1, + [ 
1 :  
 
2 
 
 
P () = 1 - (); P 
3 
3 
2 (3 
) = (1+ 3 
); P 
1 3 
3 
3 (3 
) = - (1 - 3 
) ;  
2 
2 
 
From the representation of the temperature above, one obtains:  
 
· the average temperature in the thickness:  
1 +1 
1 
T () = 
T 
(, 3) D 3 = 4 
;  
2 -1 
(Tm () +Ts () +Ti 
 
 
 
 
( ) 
6 
· the average variation in temperature in the thickness:  
$ 
+1 
T () = 3 T 
( , 
3) D 
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3 
3 = T S () - T I 
 
 
 
( ) ;  
-1 
 
Thus the temperature can be written in the following way:  
 
~ 
T (,) = T () + T$ (). /2 + T (, 
3 
3 
3) such as:  
+1~ 
1 
+ 
T 
( 
~ 
, 
3 ) = 0 ; 
T 
3 ( , 
3 ) = 0 .  
1 
- 
1 
- 
 
~ 
If the temperature is indeed closely connected in the thickness one has, T = 0.  
 
It is necessary to evaluate the three-dimensional thermal stresses, in each point of integration  
in the thickness. These constraints of thermal origin withdrawn from the mechanical constraints  
usual are calculated at the points of integration in the thickness by:  
 
~ther 
. 
 
E 
réf 
 
= 
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4.9.7 Assembly  
 
The variational formulation of the work of the efforts external for the unit of the elements is written  
then:  
 
nbelem 
W = We = T 
ext. 
ext. 
U F where U is the whole of the degrees of freedom of the discretized structure and  
e=1 
F comes from the assembly of the vectors forces elementary.  
 
As for the matrices of rigidity, the process of assembly of the vectors forces elementary  
imply that all the degrees of freedom are expressed in the total reference mark. In the total reference 
mark,  
the degrees of freedom are three displacements compared to the three axes of the total Cartesian 
reference mark  
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and three rotations compared to these three axes. Matrices of passage of the reference mark are thus 
used  
room with the total reference mark for rotations of each element.  
 
Note:  
 
The external efforts can also be defined in the reference mark user. One then is used  
stamp passage of the reference mark user towards the local reference mark of the element to have the 
expression  
of these efforts in the local reference mark of the element and to deduce the vector from it elementary 
room forces  
corresponding. For the assembly one passes then from the local reference mark of the element to the 
total reference mark.  
 
 
 
5 Validation  
 
To judge relevance of thick the hull formulation, few examples of application  
according to relate to as well linear statics as the calculation of clean modes. Three new cases  
tests relating to the two finite elements described in the preceding parts were integrated in  
Code_Aster. They come to enrich the case-tests by the elements of plate already present in  
environment of Code_Aster. Most of these case-tests were indexed in [bib10].  
 
The three new case-tests, two in statics plus one in dynamics, are traditional examples  
of validation drawn from [bib3]. Reference solutions, analytical or numerical, resulting from [bib3]  
are compared with the numerical results given by Code_Aster. For more information on these  
case-tests, one will refer to the documentation of validation indicated in reference.  
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5.1  
Case test in linear statics  
 
5.1.1 Static case test n° 1  
 
The first case test is that of a cylindrical panel subjected to its own weight [V3.03.107].  
 
This test makes it possible to highlight effects of membrane more important than those of inflection. It  
allows to measure the performance of the elements hulls compared to elements DKT or DKQ of which  
the interpolation out of membrane is linear.  
 
5.1.2 Static case test n° 2  
 
The second case test is that of a helicoid hull subjected to two concentrated types of loading  
[V3.03.108].  
 
The helicoid shape of the hull makes it possible to study the geometrical representation of the finite 
elements.  
The concentrated loadings can be:  
 
· in the plan: the influence due to the effects of membrane is then not important and it  
behavior dominating is that due to the inflection,  
· except plan: the effects of membrane affect the behavior of the hull.  
 
5.2  
Case test in dynamics  
 
This case test is a simplified model of paddle of compressor, which is in fact a cylindrical panel  
[V2.03.102].  
 
This test highlights the performances of the elements in dynamic behavior by the data  
frequencies and clean modes.  
 
The frequencies and clean modes of the paddle are experimental values which are used as results  
of reference.  
 
 
6 Chaining  
thermomechanics  
 
6.1 Description  
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For the resolution of chained thermomechanical problems, one must use for thermal calculation  
finite elements of thermal hull [R3.11.01] whose field of temperature is recovered like  
input datum of Code_Aster for mechanical calculation. It is necessary thus that there is compatibility 
between  
thermal field given by the thermal hulls and that recovered by the mechanical hulls. It  
the last is defined by the knowledge of 3 fields TEMP_SUP, TEMP and TEMP_INF given in skins  
lower, medium and higher of hull.  
 
The table below indicates compatibilities between the elements of mechanical hull and hull  
thermics.  
 
Modeling Nets  
Finite element  
to use with Mesh Element  
finished  
Modeling  
THERMICS  
MECHANICS  
HULL QUAD9  
THCOQU9  
//////////////  
QUAD9 MEC3QU9H COQUE_3D  
HULL TRIA7  
THCOTR7 ///////////////  
TRIA7 MEC3TR7H COQUE_3D  
Handbook of Reference  
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Note:  
 
· The nodes of the thermal elements of hulls and mechanical hulls must  
to correspond. The grids for thermics and mechanics will thus have the same number  
and the same type of meshs.  
· The elements of thermal hulls surface are treated like plane elements by  
projection of the initial geometry on the level defined by the first 3 tops.  
 
The thermomechanical chaining is also possible if one knows by experimental measurements  
variation of the field of temperature in the thickness of the structure or certain parts of  
structure. In this case one works with a chart of temperature defined a priori; the field of  
temperature is not given any more by three values TEMP_INF, TEMP and TEMP_SUP of thermal 
calculation  
obtained by EVOL_THER. It can be much richer and contain an arbitrary number of points  
of discretization in the thickness of the hull. Operator DEFI_NAPPE allows to create of such  
profiles of temperatures starting from the data provided by the user. These profiles are affected by  
order AFFE_CARTE (cf case-test HSNS100B). It will be noted that it is not necessary for  
mechanical calculation that the number of points of integration in the thickness is equal to the number of 
points  
of discretization of the field of temperature in the thickness. The field of temperature is  
automatically interpolated at the points of integration in the thickness of the elements of hulls.  
 
6.2 Case-test  
 
The case-tests for the thermomechanical chaining enters of the thermal elements of hulls and of  
mechanical elements of hulls are the HPLA100C (elements MEC3QU9H) and HPLA100D (elements  
MEC3TR7H). It is about a heavy thermoelastic hollow roll in uniform rotation [V7.01.100]  
subjected to a phenomenon of thermal dilation where the fields of temperature are calculated with  
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THER_LINEAIRE by a stationary calculation.  
 
Z 
IH 
Re 
Interior ray IH = 19.5 mm  
External ray Re = 20.5 mm  
Not F  
R = 20.0 mm  
Thickness  
H = 1.0 mm  
Height  
L = 10.0 mm 
R 
Z 
NR 
K 
Z 
Q 
P 
J 
y 
D 
C 
H  
M 
+ 
L 
R 
With 
B 
X 
F 
 
 
Thermal dilation is worth: T () - Tref () = 0 5 
. (T + T 
S 
I) + 2. (T + T 
S 
I) (R - R)/H 
 
 
with:  
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·  
T = 0 5 
. °C, T = -0 5 
. °C, T 
= 0. °C 
S 
I 
ref. 
 
·  
T = 01 
. ° C, T = 01 
. ° C, T 
= 0. ° C 
S 
I 
ref. 
 
 
One tests the constraints, the efforts and bending moments in L and Mr. the results of reference are  
analytical. One obtains very good results whatever the type of element considered.  
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7  
Establishment of the elements of hull in Code_Aster  
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7.1 Description  
 
These elements (of names MEC3TR7H and MEC3QU9H) are pressed on meshs TRIA7 and curved 
QUAD9.  
These elements are not exact with the nodes and it is necessary to net with several elements to obtain  
correct results.  
 
7.2  
Introduced use and developments  
 
These elements are used in the following way:  
 
MA = CREA_MAILLAGE (GRID: MAILINI  
MODI_MAILLE: (OPTION: “QUAD8_9”  
ALL: “YES”)…)  
 
One calls upon a routine MODI_MAILLE of modification of the grid to pass from the elements  
quadrangles with 8 nodes with the elements quadrangles with 9 nodes or many elements triangles to 6  
nodes with the elements triangles with 7 nodes.  
 
AFFE_MODELE (MODELING: “COQUE_3D”…) for the triangle and the quadrangle  
 
One calls upon routine INI080 for the position of the points of Hammer and Gauss on the surface of  
the corresponding hull and weights.  
 
AFFE_CARA_ELEM (HULL: (THICKNESS: “EP”  
ANGL_REP: ('' '')  
COEF_RIGI_DRZ: “CTOR”)  
 
To make postprocessings (forced, generalized efforts,…) in a reference mark chosen by  
the user who is not the local reference mark of the element, one defines the X1 direction of the reference 
mark user  
like the projection of a direction of reference D on the surface of the element. This direction of  
reference D is chosen by the user who defines it by two nautical angles in the total reference mark.  
The normal NR on the surface of the element fixes the second direction at the point of observation 
concerned.  
vector product of two vectors previously definite Y1=N X1 makes it possible to define the local trihedron  
in which will be expressed the generalized efforts representing the state of stresses. The user  
will have to take care that the selected reference axis is not found parallel with the normal of some  
elements of hull. By defect, the direction of reference D is axis X of the total reference mark of definition 
of  
grid.  
Value CTOR corresponds to coefficent that the user can introduce for the treatment of the terms  
of rigidity and mass according to normal rotation on the surface of the hull. This coefficient must be  
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sufficient small not to disturb the energy balance of the element and not too small so that  
the matrices of rigidity and mass are invertible. A value of 105 is put by defect.  
 
ELAS: (E: NAKED Young: ALPHA:. RHO:. )  
For a homogeneous isotropic thermoelastic behavior in the thickness one uses the key word  
ELAS in DEFI_MATERIAU where the coefficients E are defined, Young modulus, coefficient of  
Poisson, thermal dilation coefficient and RHO density.  
 
AFFE_CHAR_MECA (DDL_IMPO: (  
DX:. DY:. DZ:. DRX:. DRY:. DRZ:. DDL of hull in the total reference mark.  
FORCE_COQUE: (FX:. FY:. FZ:. MX:. MY:. MZ:. ). They are the efforts  
surface on elements of hull. These efforts can be given in the total reference mark or  
in the reference mark user defined by ANGL_REP.  
 
FORCE_NODALE: (FX:. FY:. FZ:. MX:. MY:. MZ:. ). They are the efforts  
hull in the total reference mark.  
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7.3  
Calculation in linear elasticity  
 
The matrix of rigidity and the matrix of mass (respectively options RIGI_MECA and MASS_MECA)  
are integrated numerically in the TE0401 and TE0406, respectively. Calculation takes account of  
fact that the terms corresponding to the DDL of rotation of hull are expressed in the local reference 
mark of  
the element. A matrix of passage makes it possible to pass from the local DDL to the total DDL.  
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Elementary calculations (CALC_ELEM) currently available correspond to the options:  
 
· EPSI_ELNO_DEPL and SIGM_ELNO_DEPL which provide the strains and the stresses  
with the nodes in the reference mark user of the element in lower skin, with semi thickness and in  
higher skin of hull, the position being specified by the user. Calculation is carried out in  
the TE0410. One stores these values in the following way: 6 components of deformation or  
constraints,  
· EPXX EPYY EPZZ EPXY EPXZ EPYZ or SIXX SIYY SIZZ SIXY SIXZ SIYZ,  
· EFGE_ELNO_DEPL: who gives the efforts generalize by element with the nodes from  
displacements: NXX, NYY, NXY, MXX, MYY, MXY, QX, QY. This option is calculated  
in the TE0410,  
· SIEF_ELGA_DEPL: who gives the constraints by element to the points of Gauss in  
locate local element starting from displacements: SIXX, SIYY, SIZZ, SIXY, SIXZ,  
SIYZ. This option is calculated in the TE0410,  
· EPOT_ELEM_DEPL: who gives the elastic energy of deformation per element from  
displacements. This option is calculated in the TE0401,  
· ECIN_ELEM_DEPL: who gives the kinetic energy by element. This option is calculated in  
the TE0401,  
 
Finally the TE0416 calculates also option FORC_NODA of calculation of the nodal forces for the 
operator  
CALC_NO.  
 
7.4  
Plastic design  
 
The matrix of rigidity is also integrated numerically, by layers, in the TE0414. One calls upon  
the option of calculation STAT_NON_LINE in which one defines in the level of the nonlinear behavior it  
a number of layers to be used for numerical integration. All laws of plane constraints  
available in Code_Aster can be used.  
 
STAT_NON_LINE (….  
COMP_INCR: (RELATION: ''  
COQUE_NCOU: “A NUMBER OF LAYERS”)  
....)  
 
Elementary calculations (CALC_ELEM) currently available correspond to the options:  
 
· EPSI_ELNO_DEPL which provides the deformations by element to the nodes in the reference mark  
user starting from displacements, in lower skin, with semi thickness and in skin  
higher of hull. This option is calculated in the TE0410,  
· SIGM_ELNO_COQU which makes it possible to obtain the stress field in the thickness by element  
with the nodes for a given layer and a position requested (in lower skin, with  
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medium or in higher skin of layer). These values are given in the reference mark  
user. This option is calculated in the TE0415,  
· SIEF_ELNO_ELGA which makes it possible to obtain the efforts generalized by element with the nodes 
in  
the reference mark user. This option is calculated in the TE0415,  
· VARI_ELNO_ELGA which calculates the field of internal variables and the constraints by element  
with the nodes for all the layers, in the local reference mark of the element. This option is  
calculated in the TE0415.  
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8 Conclusion  
 
The finite elements of hull curves which we describe here are used in the structural analyses  
thin curves whose thickness report/ratio over characteristic length is lower than 1/10. Two  
finite elements of voluminal hull being pressed on quadrangular and triangular meshs were  
introduced into Code_Aster. They were selected with a quite particular aim: to be able to represent 
one  
complete behavior of curved structures whereas until now one could only use  
elements with plane facets which induced parasitic inflections and required to refine them  
grids.  
 
It is elements for which strains and stresses in the plan of the element  
vary linearly with the thickness of the hull. Selected kinematics is a kinematics hull  
of Hencky-Mindlin-Naghdi type allowing to utilize the transverse energy of shearing.  
distortion associated with transverse shearing is constant in the thickness of the element.  
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variable correction on the coefficient K of shearing transverse offers a flexibility in use  
allowing to pass from the theory of HENCKY-MINDLIN-NAGHDI for k=1, with that of REISSNER  
for k=5/6 and with that of LOVE_KIRCHHOFF (for very mean structures) if a value is chosen  
K equalizes à106 × H/L H being the thickness and L a characteristic distance (radius of curvature  
means, zone of application of the loads….). As in this last case, one uses a method of  
penalization to make small the terms of shearing transverse, one can, if a value is taken  
K too important, to make singular the numerical system. In this case, it is necessary to decrease the 
value of  
K.  
 
The default value of K is 5/6. It is generally used when the structure to be netted has one  
thickness report/ratio over characteristic length ranging between 1/20 and 1/10. For thicknesses more  
weak where the transverse distortion becomes low one can want to use a value of k=106 × H/L  
(to be able to make comparisons with elements of plate DKT for example). When  
transverse distortion is nonnull, the elements of hull do not satisfy the equilibrium conditions  
3D and boundary conditions on the nullity of stresses shear transverse on the faces  
higher and lower of hull, compatible with a constant transverse distortion in  
the thickness of the hull. It results from it thus that on the level from the behavior a coefficient from 5/6 
for  
a homogeneous hull corrects the usual relation between the constraints and the transverse distortion of  
way to ensure the equality enters energies of shearing of the model 3D and the model of hull to  
constant distortion. In this case, the arrow ~ 
u3 has as an interpretation average transverse displacement  
in the thickness of the hull and not the displacement of the average surface of the hull.  
 
For structures low thickness in order to avoid the phenomena of blocking, one uses  
under-integration reduced for the parts membrane and shearing of the matrix of rigidity. The choice  
on the finite elements went on the elements quadrangle Hétérosis Q9H and triangle T7H. Indeed,  
among the finite elements with quadratic functions of interpolation, the performance of the Hétérosis 
element  
Q9H is known. It is in particular higher than that of the elements Sérendip Q9S or the elements  
of Lagrange Q9. This performance rests however on the selective integration of the element with  
reduced integration of the terms of membrane and shearing on the one hand, and normal integration of  
terms of inflection in addition. By analogy with Q9H, one took the finite element T7H like element of  
triangular form. However, as far as possible, one will use the Q9H rather than the T7H which is  
definitely less powerful.  
 
The non-linear behaviors in plane constraints are available for these elements. One  
announce however that the constraints generated by the transverse distortion are treated  
elastically, for want of anything better. Indeed the rigorous taking into account of a transverse shearing  
constant not no one on the thickness and the determination of the correction associated on rigidity with  
shearing compared to a model satisfying the equilibrium conditions and the boundary conditions  
are not possible and thus return the use of these elements, when transverse shearing  
is nonnull, rigorously impossible in plasticity. Rigorously, for behaviors not  
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linear, it would thus be necessary to use these elements within the framework of the theory of Coils-
Kirchhoff.  
 
Elements corresponding to the machine elements exist in thermics; chainings  
thermomechanical are thus available with finite elements of thermal hulls to 7 and 9  
nodes. Extensions of the preceding formulation presented in appendix allow also the catch  
in account of the anisotropy of materials and kinematic non-linearity. This second extension  
is operational in Code_Aster and is the subject of a reference material [R3.07.05].  
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Appendix 1 Extension to anisotropic materials not  
programmed  
 
It is considered that the hull consists of an orthotropic material, axes of orthotropism ~ 
~ 
xk associated the base  
kk. The law of behavior in these axes is written:  
 
~ 
~ 
~ 
~ 
~ 
~ 
= Sk  
(6x) 
1 
(6x6) (6x) 
1 
 
~ 
where S is the matrix of flexibility of the component K.  
 
Are ~ 
and ~, tensors of strain and stresses in the axes ~xk, one a:  
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~ T ~~ 
=  
Q Q 
~ T ~~ 
= QQ  
 
where Q = [T, T, T 
1 
2 
3 ] 
(Q 
. 
) is the matrix of the cosine directors of T 
/k 
ij = T K 
I 
J 
K in the base K K.  
K 
 
In vectorial form, one a:  
 
~ 
~ ~~ 
=  
T 
~ 
~~~ 
= T  
 
~ 
where the components of T are defined according to those of Q.  
 
Conversely, one a:  
 
~ 
~ 
~ -1~ 
= T  
~ 
~ 
~ -1~ 
= T  
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therefore, one obtains:  
 
~ 
~ ~~ ~ -1~ 
= TS T 
K 
 
 
that one writes:  
 
~ 
~ ~ 
= Sk  
 
To be coherent with the assumption of plane constraint ~ 
33 = 0, one write:  
 
~ 
~ 
~ 
R = Skr R  
(5x) 
1 
(5x) 
5 (5x) 
1 
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with the symbol R like tiny room, which gives:  
 
~ 
~ ~ 
~ 
~ 
 
-1 
R = Ck  
, 
R 
C = S 
K 
Kr 
 
 
that one récrit by omitting the symbol R,  
 
~ 
~ ~ 
= Ck  
The elastic deformation energy W el is:  
 
1 
1 
~ ~ ~ 
W el 
T ~ E 
T 
Q 
B C B det J D D D ~e 
= 
 
Q  
2 
K 
1 
2 
3 
-1Ar 
 
If the hull consists of Nc layers, each layer being regarded as a component K, then:  
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2e+ H 
Nc 
K 
1 
~ ~ ~ 
W el 
T ~ E 
T 
= Q  
B C B det J D D D 
~ E 
 
K 
Q  
2 
1 
2 
3 
K =12e- H Ar 
K 
 
where E 
+ 
K and ek are the X-coordinates of the limits lower and higher of the layer K thickness  
E = e+ - E 
- 
+ 
K 
K 
K, with e1 = - h/2 and E Nc = h/2.  
 
While posing:  
+ 
E 
K 
K + - 
E 
E 
 
K 
3 = 
+ 
, 
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- 11, 
3 
3 
[ 
]  
H 
H 
one a:  
Nc 
1 
E 1 
~ ~ ~ 
W el 
T ~ E 
K 
T 
= 
 
det (1, 2, 
~ 
Q 
B C B 
J 
Q 
K 
 
 
3) D 
D 
D 
E  
2 
H 
1 
2 
3 
K =1 
-1Ar 
 
In the same way, for work due to thermal dilations W HT, one a:  
 
~ 
~k 
K 
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K 
K 
HT = (T, 
1 
T, 
2 
T, 
3 
0 0 ) 
0  
 
where the ki are the dilation coefficients thermal of the layer K in the axes of orthotropism (~~xk).  
 
With the relation:  
~ K 
~ ~~ 
 
K 
HT = T HT  
one obtains:  
1 
T ~ 
~ 
W HT 
T ~ E 
Q B ( 
~ K 
=- 
- Ck HT) det J D D D 
1 
2 
3 
 
-1Ar 
That is to say:  
Nc E 1 T ~ ~ 
W HT T ~ E 
K 
~ K 
= Q  
B C det J D D D 
 
 
H 
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K 
HT 
1 
2 
3 
h=1 
-1Ar 
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Appendix 2 Functions of form for element Q9H  
 
These functions are given on page 174 of [bib8].  
 
A2.1 Functions of form for the translations  
 
8 functions of the shape of incomplete Lagrange of the element quadrangle Q9H [A2.2-a Figure] for  
the interpolation of displacements the U.K. are:  
 
1 
·  
NR () 
1 (, 1 2) = (- 1+ +) (1+) (1+) I 
I 
I 
1 1 
2i 2 
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I 
1 1 
2i 
= , 
1 2, , 
2 
3 4  
4 
1 
·  
NR () 
1 ( , 
2 
1 2 
) = (1 -) (1+) I 
I 
1 
2i 
= , 
2 
5 7  
2 
1 
·  
NR () 
1 ( , 
2 
1 
2 
) = (1 -) (1+) I 
I 
2 
I 
= , 
1 1 
6 8  
2 
 
1 = 1 
- 
I = 1 8 
, 4 
I 
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, ; 
2 = -1 I = 15, 2 
I 
, ; 
with: 1 = 0 I = 5 7 
I 
, ; 
and 2 = 0 I = 6 8 
I 
, ; 
.  
1 = +1 I = 2 6, 3 
I 
, . 
2 = +1 I = 3 7, 4 
I 
, . 
 
A2.2 Functions of form for rotations  
 
9 functions of the shape of Lagrange of the element quadrangle Q9H [A2.2-a Figure] for the 
interpolation of  
~ 
rotations are:  
 
-  
NR (2) (, 
P 
1 
2 
) = NR () NR 
I 
I 
1 
I () 
2 where Nor () 
Pr 
P =  
for p=1,2 and where R describes the whole of both  
laughed Pr 
- Pi 
nodes aligned with node I in the direction P.  
 
1 = 1 
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- 
I = 1 8 
, 4 
I 
, ; 
2 = -1 I = 15, 2 
I 
, ; 
One a: 1 = 0 I = 5 7 
I 
, ; 
and 2 = 0 I = 6 8 
I 
, ; 
.  
1 = +1 I = 2 6, 3 
I 
, . 
2 = +1 I = 3 7, 4 
I 
, . 
 
 
 
2 
2 
(0,1) 
4 
(0,1) 
7 
3 
4 
7 
3 
(1,0) 
8 
9 
(1,0) 
8 
(0,0) 
6 
 
(0,0) 
6 
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1 
1 
1 
5 
2 
1 
2 
5 
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Appendix 3 Functions of form for element T7H  
 
A3.1 Functions of form for the translations  
 
6 functions of form of triangular element T7H [A3.2-a Figure] for the interpolation of displacements  
the U.K. are given on page 175 of [bib8]:  
·  
NR 1 
( ) 
1 (1 
, 2 
) = 2 
(2 2 
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-1)  
·  
NR 1 
( ) 
2 (1 
, 2 
) = (2 -1)  
·  
NR 1 
( ) 
3 (1 
, 2 
) = 1(2 1 -1)  
·  
NR 1 
( ) 
4 (1 
, 2 
) = 4 2 
 
·  
NR 1 
( ) 
5 (1 
, 2 
) = 4 1  
·  
NR 1 
( ) 
6 (1 
, 2 
) = 4 1 2 
 
where: = 1 - 1 - 2  
 
A3.2 Functions of form for rotations  
~ 
7 functions of form of triangular element T7H [A3.2-a Figure] for the interpolation of rotations  
are:  
( ) 
1 
· N2 ( 
(2) 
1 
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, 2 
) = 2 
(2 2 
-) 1+ NR 
1 
7 
 
9 
( ) 
1 
· N2 ( 
(2) 
1 
, 2 
) = (1 - 1 
- 2 
) [(21 - 1 - 2) -] 1+ NR 
2 
7 
 
9 
( ) 
1 
· N2 ( 
(2) 
1  
, 2 
) = 1 (2 1 -) 1 + NR 
3 
7 
 
9 
( ) 
4 
· N2 ( 
(2) 
1 
, 2 
) = 4 2 
(1 - 1 
- 2 
) - NR 
4 
7 
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9 
( ) 
4 
· N2 ( 
(2) 
1 
, 2 
) = 4 1 
(1 - 1 
- 2 
) - NR 
5 
7  
9 
( ) 
4 
· N2 ( 
(2) 
1 
, 2 
) = 4 - NR 
6 
1 2 
7  
9 
with:  
· NR (2) 
7 (1 
, 2 
) = 27 1 2 
(1 - 1 - 2 
)  
 
 
2 
2 
(0,1) 
(0,1) 
1 
1 
6 
6 
4 
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4 
7 
(1,0) 
(1,0) 
2 
2 
(0,0) 
5 
3 
 
(0,0) 
5 
3 
 
1 
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We present in this document the theoretical formulation and the numerical establishment of a finite 
element of  
voluminal hull for analyses into nonlinear geometrical. This approach must make it possible to take 
in  
count great displacements and great rotations of mean structures, of which the thickness report/ratio 
on  
characteristic length is lower than 1/10. One will take care that these rotations remain lower than 2.  
 
This formulation is based on an approach of continuous medium 3D, degenerated by the introduction 
of  
kinematics of hull in plane constraints in the weak form of balance. The measurement of the 
deformations  
that we retain is that of Green-Lagrange, énergétiquement combined with the constraints of Piola-
Kirchhoff  
of second species. The formulation of balance is thus Lagrangian total.  
 
The geometrical entirely nonlinear problem is examined in first. The case of linear buckling is  
treaty like a borderline case of the first approach.  
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1 Introduction  
 
The great transformations of hull are characterized by great displacements of surface  
average and of great rotations of initially normal fibres on this surface. The transformation  
thus is represented exactly, at least in the continuous problem. The derivation of the objects  
finite elements associated the linearized system of equations resulting from the principle of virtual 
work is carried out  
without any simplifying assumption on displacements or rotations. Moreover, one new  
diagram of selective numerical integration is presented in order to solve the problem of blocking in  
membrane and in transverse shearing.  
 
The degrees of freedom of rotation retained are the components of the vector of space iterative 
rotation.  
Between two iterations, it is the vector of the infinitesimal rotation superimposed on the configuration  
deformation. This choice led to a tangent matrix of rigidity which is not symmetrical. This is due to  
nonvectorial character of great rotations which actually belong to the differential variety  
SO (3). Rotations must remain lower than 2 because of the choice of update of large  
rotations established in Code_Aster, for which there is not bijection between the vector of full slewing  
and the orthogonal matrix of rotation.  
 
An important difference compared to the linear analysis is to be announced. The finite elements 
objects are  
directly built in the total reference mark; displacements and rotations nodal are measured  
in the total reference mark.  
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2 Formulation  
 
In this chapter, we present the various equations controlling the problem of deformation  
hull within the framework of a theory of great transformations.  
 
2.1  
Geometry of the elements of voluminal hull  
 
The voluminal hull is represented by volume (together points ( 
Q 3) 
0) built  
around the average surface (together of the points ( 
P 3 =) 
0). In any point Q of, one  
built a local orthonormé reference mark [T (,): T (,): N 
1 1 2 
3 
2 
1 2 
3 
(1, 2)]. The vector (n1,2)  
represent the normal on the surface.  
N (,),  
1 
2 
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3 
T (,) 
0 
2 
1 
2 
3 
T (, = 0) 
2 
1 
2 
3 
2 
Q (0) · 
3 
P (= 0) · 
3 
T (, 0) 
 
1 
1 
2 
3 
T (, = 0) 
1 
1 
2 
3 
 
H 
1 
E, y 
2 
E, X 
1 
E, Z 
3 
 
Appear 2.1-a: Voluminal hull. Local reference marks on the configuration of reference  
Handbook of Reference  
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In the initial configuration, the position of an unspecified point Q normal on the average surface can  
to be expressed, according to the position of the revolved center P of normal fibre, the manner  
following:  
 
H 
X (1,2, 3) = X (1,2) + 3 
(N 
Q 
P 
1,2 )  
2 
 
2.2  
Kinematics of the voluminal hulls  
 
 
N  
( , 
 
N 
1 ) 
2 
=  
( , 
1 ) 
2 
 
( , 
1 ) 
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2 
N  
( , 
 
1 ) 
2 
 
 
U 
 
Q (,) 
1 
2 
3 
Q () 
0 
3 
· 
Q () 
0 
3 
· 
 
 
P (=) 
0 
3 
 
· 
P (=) 
0 · 
3 
H 
uP (, =) 
0 
1 
2 
3 
 
xQ (,) 
1 
2 
3 
xP (, =) 
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0 
1 
2 
3 
X Q (,) 
1 
2 
3 
E, y 
2 
 
xP (, = 0) 
1 
2 
3 
E, X 
1 
E, Z 
3 
 
Appear 2.2-a: Voluminal hull.  
Great transformations of an initially normal fibre on the average surface  
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In the deformed configuration, the position of the point Q can also be expressed according to  
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position of the point P:  
 
 
 
H 
X (1,2, 3) = X (1,2) + N 
Q 
P 
3 
(1,2)  
2 
 
where N is the unit vector obtained by great rotation of normal N.  
 
Vector N is not necessarily normal on the deformed average surface, because of  
transverse shearing strain. It is connected to the initial normal vector by the relation:  
 
N = (1,2) N  
 
is the orthogonal operator of the great rotation around the vector, angle, undergone by fibre  
who was initially normal on the average surface whose expression is given by:  
 
sin 
1 - cos 
= exp [×] = cos [I] + 
[×] + 
[ ] 
 
2 
 
 
where [×] is the antisymmetric operator of the vector of full slewing of which the matric expression  
is:  
 
0 
- Z 
 
 
y  
[×] =  
0 
Z 
- X  
- y  
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0 
X 
 
 
and [] is the symmetrical operator given by [] = T.  
 
More details on great rotations and their digital processing can be found in [bib1]  
or [R5.03.40]. One can also write:  
 
T1 = (1 
, 2 
) T1 
 
t2 = (1 
, 2 
) t2 
 
One can express the virtual variation of the operator of great rotation in the form:  
 
= [W ×]  
 
where [W ×] is the antisymmetric operator of the vector of space virtual rotation W which is also  
rotation part of the functions tests:  
 
[W ×] B = W B B R3  
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Its matric expression is:  
 
0 
- wz  
 
wy 
[ 
 
 
W ×] =  
W 
0 
Z 
- wx  
- wy  
 
 
W 
0 
X 
 
 
One can also express the iterative variation of the operator of great rotation in the form:  
 
= [W ×]  
 
where W is the vector of space iterative rotation, which is also the rotation part of the solution of  
system of linearized equations.  
 
This vector can be connected to the vector of total iterative rotation. There are thus the relations:  
 
W = T () and W = T (  
)  
 
where T () is the differential operator of rotation, of which the expression according to the vector of 
rotation  
total is given by:  
 
sin 
1 - cos 
- sin 
T () = 
[I] - 
[×] + 
[ ] 
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2 
3 
 
 
This matrix has the same values and clean vectors that the matrix and checks the relation:  
 
T () = () TT ()  
 
In addition, the iterative variation of the matrix of virtual rotation can be put in the form:  
 
 
= [W ×] [W ×]  
 
The total displacement of the point Q on fibre can be connected to the displacement of the centre of 
gravity P:  
 
H 
U (,) = U (,) + (N 
1 2 
3 
1 2 
3 
(1,2) - (N 
Q 
P 
1,2 )  
2  
 
In order to lead to a system of linearized equations, obtained starting from the weak form of balance,  
we need to calculate various differential variations of this total displacement.  
virtual displacement has as an expression:  
 
(,) = (,) + H 
1 2 
3 
1 2 
3 
(1,2) 
 
U 
U 
W 
N (1,2); N 
Q 
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P 
= 0  
2 
 
Iterative displacement has as an expression:  
 
H 
U (,) = U (,) + W (,) N 
1 2 
3 
1 2 
3 
1 2 
(1,2); N 
Q 
P 
= 0  
2 
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The iterative variation of virtual displacement has as an expression:  
 
H 
(1,2,3) = 3 (1,2 ) ( (1,2)  
U 
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W 
W 
N 
Q 
(1,2)  
2 
 
Note: The formulation suggested remains limited to rotations lower than 2. This limit is  
had with the particular choice of update of the great rotations established in Code_Aster. This is  
had with nonthe bijection enters the vector of full slewing and the orthogonal matrix of rotation.  
 
2.3  
Law of behavior  
 
We consider a linear law of behavior hyper elastic: local constraints of  
Piola-Kirchhoff of second species are proportional to the local deformations of  
Green-Lagrange:  
 
~ 
~ 
S = OF  
 
Hereafter, the symbol ~ indicates the quantities expressed in the orthonormé reference mark  
[T (,): T (,): N 
1 1 2 
3 
2 
1 2 
3 
( 1, 2)].  
 
The matrix of elastic behavior linear in plane constraints is written as follows:  
 
E 
E 
 
 
 
0 
0 
0 
1 - 2 
 
1 - 2 
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E 
 
0 
0 
0 
 
1 - 2 
 
 
 
E 
 
D =  
( 
0 
0 
 
2 1 + ) 
 
 
 
 
Ek 
 
 
sym 
( 
0 
2 1 + ) 
 
 
Ek  
 
 
 
( 
2 1 + )  
 
E being the Young modulus, the Poisson's ratio and K the coefficient of correction of  
transverse shearing.  
 
~ 
In the local reference mark, the state of Piola-Kirchhoff stress of second species is plane (Snn =) 
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0 and  
can be characterized by a vector with 5 components:  
 
~ 
S  
T T 
~ 1 1  
St T  
~2 2  
~ 
S 
S = T t12  
 
 
~  
St N 
1  
~ 
St N 
2  
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The vector of the deformations of Green-Lagrange is also expressed him in the local reference mark by 
one  
vector with 5 components:  
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~ 
E  
T T 
~ 1 1  
And T  
~ 2 2  
~ 
 
E = T t12  
 
 
~  
T N 
1 
 
~ 
T N 
2 
 
 
 
~ 
Here, we were unaware of the Enn term which is normal on the average surface and which is not 
inevitably  
no one. This is a consequence of the assumption of the plane constraints.  
 
2.3.1 Taking into account of transverse shearing  
 
The correction of the transverse shear stress is carried out by extension of equivalences  
energy given in the case of small deformations and of small displacements [R3.07.03].  
 
 
3  
Principle of virtual work  
 
The principle of virtual work is the weak formulation of the static balance of the internal forces and  
external forces:  
 
int - ext. = 0  
 
The non-linearity of the equilibrium equations leads us to solve the system above way  
iterative by a method of Newton. We carry out thus the exact linearization of the principle of  
virtual work with each iteration, which leads to the equality:  
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- ext. = ext. - 
int 
 
 
int  
 
3.1  
Internal virtual work  
 
The virtual work of the internal forces can be written on the initial configuration in the form:  
 
 
~ ~ 
int = (. 
E S) D  
 
 
~ 
~ 
where E and S are the vectors of deformation of Green-Lagrange and Piola-Kirchhoff constraint of  
second species respectively, expressed in the local reference mark. Indeed, like the state of stress  
is plane for Piola-Kirchhoff of second species, we use the formulation of the principle of work  
virtual in the local reference mark. However, to limit the passages of the local reference mark to the 
total reference mark and  
vice versa, the vectors of strains and local stresses are not calculated explicitly  
in the local reference mark but they are obtained by the rotation of their representation in the total 
reference mark.  
Handbook of Reference  
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3.1.1 Form  
incremental  
internal virtual work  
 
The iterative variation of the work of virtual work interns is written:  
 
 
~ ~ 
~ ~ 
int = (. 
E S +. 
E S) D  
 
 
In this equality, iterative variation of the vector of local constraints of Piola-Kirchhoff of  
second species is calculated by the iterative discrete form of the relation of behavior:  
 
~ = ~ 
S 
D E  
 
3.1.2 Passage of the total reference mark to the local reference mark  
 
In tensorial form one passes from the tensor of the total constraints to the tensor of the constraints  
local 3 × 3 (see [bib4] p. 111 for the constraints of Cauchy, the same relations applying to  
constraints of Piola-Kirchhoff of second species) while using:  
 
~ 
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[S] 
[ 
P S] PT 
= 
 
 
and of the tensor of the local constraints to the tensor of the total constraints by the inversion of the 
relation  
the preceding one:  
T ~ 
[S] = P [S] P  
 
In the two preceding expressions, the matrix of passage of the local reference mark to the total 
reference mark is  
an orthogonal matrix P 1 
- = Pt, and its expression clarifies according to the unit vectors of  
locate orthonormé local is:  
 
tT 
 
1 (1,2 ,3 ) 
 
 
P ( 
T 
 
1,2, 3) = t2 (1,2, 3)  
 
 
NT 
 
(1,2)  
 
Within the framework of the conventional notation, one will be able to note:  
 
T1 (1 
, 2 
, 3 
) = E 
0 1 
t2 (1 
, 2 
, 3 
) = E 
0 2 
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T3 (1 
, 2 
, 3 
) = ( 
N 1 
, 2 
) = E 
0 3 
 
with the orthogonal matrix of passage (initial rotation):  
 
0 (1 
, 2 
, 3 
) = [T1 
(1 
, 2 
, 3 
): t2 (1, 2 
, 3 
): T3 (1, 2 
, 3 
)]  
 
It will be noticed that:  
 
= 
0 
Pt  
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The two relations of rotation of the constraints are also valid for the tensors of the deformations  
of Green-Lagrange. Nevertheless, a writing which connects the vectors of local and total deformation 
is  
necessary. This relation makes it possible to pass from vector 6 × 1 of the total deformations to the 
vector  
6 × 1 of the local deformations:  
 
~ 
6 1 
× 
6× 6.6 1 
× 
E = H E  
 
with the form of the matrix of transformation of vectors 6 × 1 of deformation (see [bib2]  
p. 258):  
 
2 
2 
2 
 
 
1 
L 
1 
m 
1 
N 
1 
L 1 
m 
1 
m 1 
N 
1 
N 1l 
2 
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2 
2 
 
L 
2 
2 
m 
N2 
l2 2 
m 
2 
m N2 
n2l2 
 
6×6 
2 
2 
2 
L 
m 
N 
L m 
m N 
N L 
 
H 
3 
3 
3 
3 3 
3 3 
3 3 
=  
 
2 1ll2 2 1 
m2 
m 
2 1  
N N2 
1 
L 2 
m + l2 1 
m 
1 
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m N2 + 2 
m 1 
N 
1 
N l2 + N2 1l  
2l 
 
2l3 
2 2 
m 
3 
m 
2n2n3 l2 3 
m + l3 2 
m 
2 
m n3 + 3 
m N2 n2l3 + n3l2 
 
 
2l L 
2m m 
2n N 
L m 
 
+ L m 
m N + m N 
N L + N L 
3 1 
3 1 
3 1 
3 1 
1 3 
3 1 
1 3 
3 1 
1 3  
 
and components of the unit vectors of the local reference mark:  
 
L = T .e 
m = T .e 
N 
1 
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1 
1 
1 
1 
2 
1 = t1.e3 
L = T .e 
m = T .e 
N 
2 
2 
1 
2 
2 
2 
2 = T 2 .e3  
L = T .e 
m = T .e 
N 
3 
3 
1 
3 
3 
2 
3 = t3.e3 
 
 
These expressions are general for the curvilinear reference marks. In the Cartesian total reference 
mark  
[E: E: E 
1 
2 
3], these components are:  
 
L = T 
1 
1( ) 
1 
m = T 
1 
1(2) 
N = T 
1 
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1( ) 
3 
L = T 
2 
2 ( ) 
1 
m = T 
2 
2 (2) 
N = T 
2 
2 ( ) 
3 
L = T 
3 
3( ) 
1 
m = T 
3 
3(2) 
N = T 
3 
3( ) 
3  
 
We have, actually, need for a writing which connects the vector of local deformation 5 × 1 and it  
vector of total deformation 6 × 1:  
 
~ 
5 1 
× 
5× 6.6 1 
× 
E = H E  
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6×6 
For that, one forgets the third line of the expression of H (line associated with Snn):  
 
( 
2 
2 
2 
T1 () 
1 ) 
(T1 (2)) 
(T1 () 3) 
 
2 
2 
2 
 
5×6 
(t2 () 1) 
(t2 (2)) 
(t2 () 3) 
H = 2 
T1 () 
1 t2 () 
1 
2t1 (2) t2 (2) 2t1 () 
3 t2 () 
3 
2t2 () 1t3 () 1 2t2 (2) T3 (2) 2t2 () 3t3 () 3 
 
2 
T3 () 
1 T1 () 
1 
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2t3 (2) T1 (2) 2t3 () 
3 T1 () 
3 
 
T1 () 
1 T1 (2) 
T1 (2) T1 () 
3 
T1 () 
3 T1 () 
1 
 
 
t2 () 
1 t2 (2) 
t2 (2) t2 () 
3 
t2 () 
3 t2 () 
1 
 
T 
 
1( ) 
1 t2 (2) + t2 () 
1 T1 (2) T 
t2 () 
3 + t2 (2) T1 () 
3 
T1 () 
3 t2 () 
1 + t2 () 
3 T1 () 
1(2) 
1  
t2 () 
1 T3 (2) + T3 () 
1 t2 (2) t2 (2) T3 () 
3 + T3 (2) t2 () 
3 
t2 () 
3 T3 () 
1 + T3 () 
3 t2 ()  
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1  
T 
 
3( ) 
1 T1 (2) + T1 () 
1 T3 (2) T3 (2) T1 () 
3 + T1 (2) T3 () 
3 
T3 () 
3 T1 () 
1 + T1 () 
3 T3 () 
1  
 
The same preceding relations can be applied for the passage of the vectors of  
total deformation with the local deformation.  
 
3.1.3 Relation  
deformation-displacement  
 
Tensor 3 × 3 of the total deformations of Green-Lagrange is defined by (see for example  
[bib2]):  
 
1 
[E] = (U 
+ C + U 
You)  
2 
 
with the tensor of the gradient of displacements:  
 
 
U v W 
 
 
 
X 
X X X  
 
U v W 
U = U v W 
 
 
 
 
y < 
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> = there there y  
 
 
U v W 
 
Z 
 
 
Z Z Z  
 
 
The tensor of deformation of Green-Lagrange can be also written:  
 
[ 
1 
E] = (FTF - I)  
2 
 
with F the tensor gradient of deformations 3 × 3 which is not symmetrical:  
 
F = X = I + U 
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and I the tensor identity:  
 
1 0 
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0 
 
 
I = 0 1  
0  
 
0 0  
1 
 
Vector 6 × 1 of the total deformations of Green-Lagrange is ordered as follows (see [bib4]  
p 117):  
 
1 
2 
2 
2 
 
E 
 
, X 
, X 
, X 
 
xx  
 
U, X  
(U +v +w) 
2 
 
 
1 
 
E yy  
v, y  
2 
2 
2 
 
2 (U, y + v, y + W, y) 
E W 
 
 
zz 
, Z 
E =  
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=  
+ 1 
2 
2 
2 
 
xy U, y + v, X  
(U, Z +v, Z +w, Z) 
2 
 
 
 
 
 
 
U 
xz 
, Z + 
 
W 
U U 
, X, y + v v 
, X, y + W W 
 
 
, X  
, X, y 
 
 
 
 
U U + v v + W W  
yz  
 
v, Z + W, y 
, X, Z 
, X, Z 
, X, Z 
 
U 
 
, y U, Z + v, y v, Z + W, y W, Z  
 
It as follows is calculated:  
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1 
U U 
E = Q + A ( 
) 
 
 
2 
X  
X 
 
with:  
 
1 0 0 0 0 0 0 0 0 
 
 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 
Q =  
 
0 1 0 1 0 0 0 0 0 
0 0 1 0 0 0 1 0 0 
 
 
0 0 0 0 0 1 0 1 0 
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and the vector of the gradient of displacements:  
 
U, X  
 
 
U, y  
U  
, Z  
v, X  
U  
v 
= 
 
X 
, y  
v, Z  
 
 
W, X  
W, y  
 
 
W, Z  
 
and tensor A depend on the gradient of displacements:  
 
U 
0 
0 
v 
0 
0 
W 
, X 
, X 
, X 
0 
0  
 
 
0 
U 
0 
0 
v 
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0 
0 
W 
, y 
, y 
, y 
0  
U 
0 
0 
U 
0 
0 
v 
0 
0 
W  
, Z 
, Z 
, Z 
With 
 
 
 
 
X = U 
U 
0 
v 
v 
0 
W 
W 
, y 
, X 
, y 
, X 
, y 
, X 
0  
U 
0 
U 
v 
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0 
v 
W 
0 
W  
, Z 
, X 
, Z 
, X 
, Z 
, X  
 
0 
U 
U 
0 
v 
v 
0 
W 
W 
, Z 
, y 
, Z 
, y 
, Z 
, y  
 
The virtual variation, noted, from the deformations of Green-Lagrange is obtained by a calculation  
differential:  
 
 
U  
 
U 
E = Q 
+  
With 
 
 
 
X X 
 
In this expression and that which follows, we took account of the following property (see  
[bib4] p 141):  
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1 U 
U 1 U U 
 
With 
= A 
 
2 X X 
2 X X 
 
The iterative variation is it also obtained by a differential calculus:  
 
 
U  
U 
E = Q 
+ A 
 
 
X  
X 
 
The iterative variation of the virtual deformation of Green-Lagrange is put thus in the form:  
 
U U  
U  
U 
E = A  
+ Q + A 
 
X X 
 
 
 
 
X X 
traditional term 
nontraditional term 
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Whereas the first term of this expression is traditional for the continuous mediums 3D, it  
second, which translates the taking into account of great rotations, is less.  
 
 
3.1.4 Calculation of the constraints of Cauchy  
 
3.1.4.1 Case  
general  
 
Tensor 3 × 3 of the total constraints of Piola-Kirchhoff of second species is connected to the tensor  
3 × 3 of the total constraints of Cauchy by the relation:  
 
[S] = (F) F [] F 
det 
1  
T  
 
Thus, knowing the state of the constraints of Piola-Kirchhoff of second species, one can calculate the 
state  
constraints of Cauchy by the relation:  
 
[] 
1 
= 
F S FT  
det (F) [] 
 
It should be noted that the state of stresses of Cauchy is not plane, in general, contrary to the state of  
constraints of Piola-Kirchhoff of second species. In addition, the choice of a local reference mark in 
which  
to represent this tensor is not at all obvious. It will be however shown, in the following paragraph, 
that  
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within the framework of the small deformations, there is a local reference mark, easily identifiable, in 
which  
the state of stresses of Cauchy is him-also plane.  
 
In the case of completely general laws, a detailed attention will have to relate to the diagrams  
of numerical integration allowing to calculate the values of substitution of the gradient F at the points  
of normal numerical integration.  
 
3.1.4.2 Approximation in small deformations  
 
It is pointed out [bib4] that the gradient F can be written thanks to the polar decomposition under two  
forms:  
 
F = RU = VR  
 
where R = R - T is an orthogonal tensor, and where U and V are symmetrical matrices of elongation  
defined positive.  
 
Into the geometrical nonlinear field, we can introduce an important simplification  
in the polar decomposition of the gradient of the deformations if the deformations remain small. This  
simplification is not introduced into nonlinear calculation but in postprocessing of the constraints.  
 
Elongation at the point Q being minor in front of the great rotation of the section:  
 
U V I  
 
One can then write:  
 
F R =  
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where is the tensor of great rotation which transforms normal N into N:  
 
N = N  
 
Simplification translates the fact that on a section, the transformation is reduced to a great rotation.  
With this approximation of the gradient of the deformations, one can write:  
 
F R =  
 
and thus, by exploiting the orthogonality of one obtains:  
 
F-1 T  
 
and:  
 
det (F) 1.  
 
These simplifications lead to the final relation:  
 
[] [ 
S] T  
 
This relation translates the fact that the constraints of Cauchy are quite simply obtained by  
great rotation of the constraints of Piola-Kirchhoff of second species.  
 
One can now rewrite the property of plane constraints of the tensor of Piola-Kirchhoff of  
second species N. [S] N = 0 pennies the new form:  
 
n.T [] N 
= 0  
 
who leads in addition to the property:  
 
N. [] N 
 
= 0  
 
That is to say still:  
 
~ 
= 0  
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N N 
 
Constraints of Cauchy [(1,2, 3)] are also plane in the local reference mark  
[T ( 
 
 
1 
, 2 
, 3 
): T (1, 2 
, 3 
): N (1, 2 
) obtained by great rotation of the local reference mark on  
1 
2 
] 
initial configuration:  
 
[T T N 
: 
: 
] = [T: T: N  
1 
2 
1 
2 
] 
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In this reference mark, we can write all the components of the tensor as follows []:  
 
~ 
~ 
~ 
 
 
 
 
 
 
 
 
 
 
 
T. 
 
 
1 [] T 
T. 
1 
1 [] T 
T. 
2 
1 [] N 
T T 
T T 
T N 
 
 
~1 1 
~1 2 
~1 
 
 
 
 
 
 
 
 
 
= T. 
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2 [] T 
T.  
1 
2 [] T 
T. 
2 
2 [] N 
 
T T 
T T 
T N 
~2 1 ~2 1 
2 
 
 
 
 
 
 
 
 
 
0 
 
N 
T 
N 
T 
N 
N 
 
 
. 
 
[] 
. 
1 
[] 
. 
2 
[] 
T N 
T N 
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1 
1 
 
 
 
By taking again the relation [] [ 
S] T, one obtains:  
 
T 
 
 
 
 
 
1. [] T 
T 
1 
1. [] T 
T 
2 
1. [] N 
T 
 
1. [S] T 
T 
1 
1. [S] T 
T 
2 
1. [S] N 
 
 
 
T 
 
 
 
 
 
2. [] T 
T 
1 
2. [] T 
T 
2 
2. [] N 
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= T 
2. [S] T 
T 
1 
2. [S] T 
T 
2 
2. [S] N  
N. [] T N 
 
 
 
 
 
1 
. [] T 
N 
2 
. [] N 
N. 
[S] T 
N 
1 
. [S] T 
N 
2 
. [S] N 
 
 
 
 
 
from where the final result:  
 
~ 
~ 
~ 
 
~ 
~ 
~ 
 
 
 
 
 

file:///Z|/process/refer/refer/p380.htm (27 of 33)10/2/2006 2:52:02 PM



file:///Z|/process/refer/refer/p380.htm

S 
S 
S 
T T 
T T 
T N  
T T 
T T 
T N 
~1 1 
~1 2 
~1 
~1 1 ~1 2 ~1  
 
 
 
= S 
S 
S  
T T 
T T 
T N 
T T 
T T 
T N 
2 2 
2 2 
2 
~2 1 ~2 1 
2 
~ 
~ 
 
 
 
 
0 
 
S 
S 
0 
 
 
T N 
T N 
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T N 
T N 
1 
2 
 
 
1 
1 
 
 
 
In so far as the deformation remains small, components of the tensor of the constraints of  
Cauchy in the local reference mark attached to the deformed configuration are identical to the 
components  
tensor of the constraints of Piola-Kirchhoff of second species in the local reference mark attached to  
initial configuration.  
 
We take the party in the continuation, to consider only the constraints of Piola-Kirchhoff of  
second species. We must note that within the framework of a more general constitutive law, one  
will be able to pass from a stress measurement to another as indicated in the preceding paragraph.  
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4  
Numerical discretization of the variational formulation  
exit of the principle of virtual work  
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4.1 Elements  
finished  
 
The three figures below summarize the finite elements choices concerning the voluminal hulls  
[R3.07.04]. The selected finite elements are isoparametric quadrangles or triangles.  
quadrangle is represented below. One chooses among the elements with functions of interpolation  
quadratic, the element hétérosis whose displacements are approached by the functions  
of interpolation of the Sérendip element and rotations by the functions of the element of Lagrange.  
All the justifications as for these choices are given in [R3.07.04].  
 
NB1 = 8 
NB2 = 9 
Sérendip element 
Element of Lagrange 
Hétérosis element 
~ 
the U.K.,  
~ 
 
 
Appear 4.1-a: Families of finite elements for the isoparametric quadrangle  
 
2 
3 3 =1 
7 
3  
4 
= - 
1 
1 
1 8 
6 
1 
5 
2 
2 = 1 
- 
 
Appear 4.1-b: Voluminal element of reference  
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7 
3 
3 
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P 
1 
6 
5 
1 
2  
 
Appear 41-c: Real voluminal element  
 
4.2  
Discretization of the field of displacement  
 
With an aim of avoiding the explicit calculation of the curves, which becomes extremely heavy in the 
case of them  
great rotations, we choose to interpolate the normal on the initial average surface with the place  
to interpolate rotations:  
 
NB2 
N ( 
2 
1,2 ) 
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( ) 
= NOR (1,2) nor  
I 1 
= 
 
(2) 
where NR I (1 
, 2 
) the function of interpolation to node I indicates among the NB2 nodes of Lagrange.  
 
The same interpolations are adopted for the transform of the initial normal:  
 
NB2 
N ( 
2 
1, 2 ) 
( ) 
= N1 (1, 2) N 
 
 
I  
I 1 
= 
 
The interpolation of the initial position of a point on the average surface of the hull (not P) is given  
by:  
 
X 
( 
1 
NB 
 
X  
1 
 
1,2 ) 
( ) 
= 
NR I (1,2) y  
I 1 
= 
 
Z I 
 
() 1 
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where NR I (1 
, 2 
) the function of interpolation to node I among NB1 indicates = NB2 -1 nodes of  
Serendip.  
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The interpolation of the initial position of an unspecified point of the hull (not Q) can then be written  
in the form:  
 
X 
N  
NB 
X 
( 
1 
NB 
2 
 
H 
 
X  
1 
2 
NR 
y 
I 
 
1,2 ,3 ) 
( ) 
= 
(1,2) 
( ) 
+ 3 
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NR I (1,2) ny  
2 
I 1 
= 
 
I 1 
Z 
= 
 
nz 
I 
 
The same interpolations are adopted for the deformed position of an unspecified point of fibre:  
 
 
 
X  
N  
1 
NB 
NB2 
 
 
H 
X  
X ( 
1 
2 
NR 
y 
I 
 
1,2 ,3 ) 
( ) 
= 
(1,2)  
( ) 
 
+ 3 
NR I (1,2)  
ny  
2 
I 1 
= 
 

file:///Z|/process/refer/refer/p390.htm (2 of 50)10/2/2006 2:52:03 PM



file:///Z|/process/refer/refer/p390.htm

I 1 
= 
 
Z  
nz  
I 
 
The interpolations for the positions initial and deformation being the same ones, we can adopt them  
for the real displacement of an unspecified point of the hull:  
 
 
U 
N  
N  
1 
NB 
NB2 
 
 
H 
X  
X  
U ( 
1 
2 
NR 
v 
NR 
N 
N 
 
I 
 
1,2 ,3 ) 
( ) 
= 
(1,2) 
( ) 
+ 3 
I 
(1,2)  
y - y  
2 
I 1 
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= 
 
I 1 
 
= 
 
W 
 
 
 
 
 
I 
nz  
nz  
I 
I  
 
Thus, the interpolation of virtual displacement becomes:  
 
 
 
 
U 
0 
- N 
N  
NB 
Z 
y 
W  
1 
NB 
2 
 
H 
 
 
X  
U ( 
1 
2 
NR 
v 
I 
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1,2 ,3 ) 
( ) 
= 
(1,2) 
( ) 
- 3 
NR I (1,2)  
 
N 
0 
Z 
- nx wy  
2 
I 1 
= 
 
 
I 1 
= 
 
 
 
 
W 
- 
 
 
N 
N 
0  
y 
X 
 
I 
 
 
wz  
I 
I 
 
In the same way, the interpolation of iterative displacement becomes:  
 
 
 
 
U 
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0 
- N 
N  
NB 
Z 
y 
W  
1 
NB 
2 
 
 
H 
 
 
X  
U ( 
1 
2 
NR 
v 
I 
 
1,2 ,3 ) 
( ) 
= 
(1,2) 
( ) 
- 3 
NR I (1,2)  
 
N 
0 
Z 
- nx wy  
2 
I 1 
= 
 
 
I 1 
= 
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W 
- 
 
 
N 
N 
0  
y 
X 
 
I 
 
 
wz  
I 
I 
 
Moreover, the interpolation of the iterative variation of virtual displacement is:  
 
NB2 
H 
( , , ) 
(2) 
=  
NOR (1,2)  
 
 
2 
( (  
U 
W 
W N 
1 2 
3 
3 
) 
I 1 
= 
I 
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4.3  
Discretization of the gradient of displacement  
 
4.3.1 Gradient of total displacement  
 
The vector of the gradient of real displacement can be connected to the isoparametric gradient of  
real displacement by the following relation:  
 
U ~-1 U 
= J 
 
X 
 
 
The isoparametric gradient of displacement is organized as follows:  
 
U,  
 
1  
U, 2  
U,  
 
 
3  
v, 1  
 
 
U 
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v, 
= 
 
 
 
2  
v,  
 
3  
W, 
 
1  
W,  
 
2  
W, 3  
 
~ 
The matrix jacobienne generalized 9 × 9 J -1 can be expressed according to the matrix jacobienne  
isoparametric transformation 3 × 3 as follows:  
 
J-1 
0 
0  
~ 
 
 
J -1 = 
0 
J - 
 
1 
0  
0 
0 
J -1 
 
 
 
The isoparametric gradient of real displacement can be calculated as follows:  
 
U NR E 
=  
 
 
p 
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with the first matrix of derived from the functions of form:  
 
 
2 
 
 
( ) 
 
( ) 
 
1 
 
 
NR 
NR 
3 
I 
0 
0 
 
0 
0 
, 
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I  
 
 
1 
, 
 
1 
 
 
( ) 
(2) 
 
 
1 
 
 
 
0 
0  
 
NR 
NR 
3 
I  
0 
0 
, 
 
I  
 
 
2 
, 
 
 
2 
 
 
(2) 
 
0 
0 
0 
NR 
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I 
0 
0 
 
 
 
 
( ) 
 
 
1 
(2) 
0 
NR 
 
0 
0 
 
NR 
0 
 
 
I  
3 
, 
I  
 
, 
 
1 
 
1 
 
( ) 
H 
 
 
1 
 
(2) 
 
L  
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NR 
0  
0 
NR 
0 
I 
L = 1, NR 1 
B 
 
I  
 
3 
, 
I  
 
 
, 
 
2 
 
2 
2 
 
 
(2) 
 
 
0 
0 
0  
 
0 
NR 
0 
 
 
 
 
( ) 
I 
 
 
0 
0 
NR 1  
(2)  
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I  
 
, 
 
0 
0 
NR 
 
1  
3 
I  
, 
 
( ) 
1  
 
 
 
 
0 
0 
NR 1  
(2) 
 
I  
 
 
, 
 
0 
0 
NR 
 
2  
3 
I, 2 
 
 
 
0 
0 
0  
 
( 
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2) 
 
 
 
 
NR  
 
 
0 
0 
NR 
 
 
 
I 
 
 
 
=  
 
 
 
 
(2) 
 
1 
NR 
0 
0 
 
3 
NB2, 
 
 
1 
 
 
 
 
(2) 
 
NR 
0 
0 
 
 
3 
NB2, 
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2 
 
 
 
 
(2) 
 
NR 
0 
0 
 
 
NB2 
 
 
( 
 
2) 
 
 
0 
 
NR 
0 
3 
NB2, 
 
 
1 
 
 
H  
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0 
 
NR 
0 
2  
3 
NB2, 
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NR 
 
NB2 
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NR 
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NB2, 1 
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0 
0 
NR 
 
 
 
NB2 
 
 
 
 
and the vector of “generalized nodal real displacement”:  
 
 
M 
 
U 
 
 
 
v 
 
 
W 
 
 
 
nx - nx  
N 
 
y - ny 
 
 
 
EP 
N 
= 
Z - nz  
 
I 
 
 
 
M 
 
I = 1, NB1  
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X - nx 
 
 
 
N 
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Finally, one will be able to write the gradient of real displacement in the form:  
 
U ~  
-1 NR  
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E 
= J  
 
 
p 
X 
1 
 
4.3.2 Gradient of virtual displacement  
 
While proceeding similarly to the gradient of real displacement, one can connect the two gradients of  
virtual displacement:  
 
U ~-1 U 
= J 
 
X 
 
 
The isoparametric gradient of virtual displacement can be calculated as follows:  
 
U NR  
=  
E 
 
 
 
U 
2 
 
with the second matrix of derived from the functions of form:  
 
 
 
(2)  
(2) 
 
 
() 1 
0 
NR N 
 
3 
, 
Z 
-  
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I  
NR 
3 
I 
 
1 
N 
NR 
, 
y 
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0 
0 
, 1 
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NR 
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, 
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I  
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3 
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2 
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- NR 
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and the vector of the virtual nodal variables:  
 
 
M 
 
U  
 
 
v  
W  
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wx  
W  
y 
 
 
ue = wz  
I 
 
 
 
 
M 
 
I = 1, NB1 
 
 
 
M 
 
 
W  
 
X 
 
 
 
W 
 
y  
 
 
 
wz NB2 
 
Finally, one will be able to write the gradient of virtual displacement in the form:  
 
U ~  
-1 NR  
J  
E 
= 
 
 
 
U 
X 
2 
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4.3.3 Gradient of iterative displacement  
 
The step here is similar to virtual calculation. It is enough to replace by:  
 
U ~  
-1 NR  
E 
= J  
 
 
 
U 
X 
2 
 
with the vector of the iterative nodal variables:  
 
 
M 
 
U  
 
 
 
v 
 
 
W  
 
 
wx  
W  
y 
 
 
ue = wz  
I 
 
 
 
 
M 
 
I = 1, NB1 
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4.3.4 Gradient of the iterative variation of virtual displacement  
 
 
U ~  
-1 NR  
E 
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0  
NR 
 
 
I 
 
 
 
 
 
and the vector of the iterative variation “nodal virtual displacement” generalized:  
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(W 
(W N 
 
E 
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I =, 
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4.4 Discretization of the variational formulation resulting from the principle of  
virtual work  
 
We take again the iterative variation (between two iterations) of internal virtual work:  
 
 
~ 
~ 
~ ~ 
int = (. 
E S +. 
E S) D  
 
 
and iterative variation of the vector of local constraints of Piola-Kirchhoff of second:  
 
~ = ~ 
S 
D E  
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Then, the linearized form of the principle of virtual work of the §3 can be written for the finite 
element described  
above in the following matric form:  
 
ue K E 
E 
E 
E 
E 
. 
T U 
 
= U. (F - R)  
 
where ue is the nodal vector of the functions tests. One deduces the system from it from equations:  
 
K E 
E 
E 
E 
T U 
 
= F - R  
 
where:  
 
 
KeT  
is the tangent matrix of rigidity  
ue 
 
 
is the elementary vector of the solution of the linearized system of equations (nodal vector  
between two iterations)  
 
 
is the external level of load  
 
F E  
is the nodal vector of the external forces (associate with = 1)  
Re 
 
 
is the nodal vector of the internal forces  
 
4.4.1 Vector of the internal forces  
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It is a vector (6 × 
1 
Nb +) 
3 × 1 entirely expressed in the total reference mark and which must be  
evaluated with each iteration by the relation:  
 
Re = 
BT S 
Jd D D 
~ ~ det 
2 
1 
2 
3 
 
 
 
with the vector of the local constraints Piola-Kirchhoff of second species:  
 
~ 
~ 
S = OF  
 
It is pointed out that the symbol ~ indicates an object expressed in the local reference mark.  
 
The local deformations of Green-Lagrange are updated to each iteration:  
 
~ 
~ 
E = B EP 
1 
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where the operator of the total deflections (first operator of the deformations) is written:  
 
~ 
 
1 U ~ NR  
B = H Q 
+ A 
J 1 
- 
1 
 
 
 
 
2 X  
1 
 
with the gradient of real displacement:  
 
U ~  
-1 NR  
E 
= J  
 
 
p 
X 
1 
 
The operator of the virtual deformations (second operator of the deformations):  
 
~ 
 
U ~ NR  
B = H Q + A 
J 1 
- 
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2 
 
 
 
 
 
X  
 
 
2 
 
is highlighted by the relations:  
 
~ ~ 
E = B 
E 
2u 
 
~ 
~ 
E = B ue  
 
2  
 
4.4.2 Stamp tangent rigidity  
 
The tangent matrix of rigidity which is serious (6 × 
1 
NB +) 
3 × (6 × 
1 
NB +) 
3 is expressed too  
entirely in the total reference mark. One must be able to evaluate it with each iteration if it is wanted 
that  
convergence of the method of Newton is quadratic. In a traditional way into nonlinear  
geometrical, it takes the form:  
 
K E = K E + K E 
T 
m 
G  
 
where the first part represents the material part:  
 
K E = 
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BT DB 
J 
m 
D D D 
~ ~ det 
2 
2 
1 
2 
3 
 
 
 
and the second part represents the geometrical part, it even made up of two parts:  
 
K E = K E 
+ K E 
G 
G 
G 
 
traditional 
nontraditional 
 
with the traditional part of the geometrical part (see [bib4] p. 141):  
 
T 
 
NR  
NR  
K E 
= 
J -1 
SJ - 
~ 
~ 1 det J 
G 
D D D  
traditional 
1 
2 
3 
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where S the generalized tensor of the constraints expressed in the total reference mark is written:  
 
3×3 
 
 
[S] 
0 
0 
9×9 
 
 
S = 0 
[S] 0  
 
 
0 
0 
[S] 
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The nontraditional part of the geometrical part not represents terms uncoupled from rotation  
symmetrical which has as a form:  
 
3×3 
K E 
(I, I) = [Z ×] [N 
G 
I 
I ×]  
nontraditional 
 
 
where N I is the transform of the initial normal to node I and zI a vector 3 × 1 with the node  
I = 1, NB2 of the nodal vector 3 × (NB2 ×) 
1 Z I  
 
 
. 
 
 
 
 
. 
 
 
. 
 
 
 
 
Z 
 
Z 
I 
I =  
 
 
. 
 
 
. 
 
 
 
 
. 
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I =, 
1 NB  
2 
 
Nodal vector Z I is similar to a vector of internal force and its expression is:  
 
Z = 
BT S 
J 
I 
D D D 
~ ~ det 
3 
1 
2 
3 
 
 
 
 
with the operator of the iterative variation of the virtual deformations (third operator of  
deformations):  
 
~ 
 
U ~ NR  
B = H Q 
+ A 
J 1 
- 
3 
 
 
 
X  
 
 
 
 
3 
 
who is highlighted by the relation:  
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~ T ~ 
~ 
~ 
B S det Jd 
 
D D = 
 
 
 
E 
. S 
3 
1 
2 
3 
D 
nontraditional 
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4.4.3 Diagrams  
of integration  
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The integration of the terms of rigidity in the thickness of the hull is identical to the method used in  
analyze linear geometrical [R3.07.04] for nonlinear behaviors. The initial thickness is  
divided into NR identical layers thicknesses. There are three points of integration per layer. Points  
of integration are located in higher skin of layer, in the middle of the layer and in lower skin  
of layer. A layer in the thickness of the hull appears sufficient in the majority of the cases.  
 
In order to be able stage with the problem of blocking out of membrane of the curved hulls and to 
solve it  
problem of blocking in transverse shearing, it is necessary to modify the diagram of integration  
on average surface. If the technique is completely known in linear analysis, it is it less  
in geometrical nonlinear analysis.  
 
The procedure is presented in the form of a generalization of the separation of the effects of 
membrane, of  
inflection and of transverse shearing if one uses the deformations of Green-Lagrange:  
 
~ 
~ 
E  
E = m 
~  
ES  
 
~ 
E  
T T 
~ 
~ 
~ 11  
~ 
T N  
where E 
1  
m = And T represent the deformation of membrane-inflection and ES = 
~ 
deformation of  
~ 2 2  
T N 
2  
T t12  
transverse shearing.  
 
During the numerical evaluation of the deformations at the points of normal numerical integration of 
Gauss  
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~ 
~ 
(9 points for the quadrilateral and 7 points for the triangle), one uses the relation E = B EP 
1 
.  
modification is introduced on the level of the first operator of the deformations:  
 
~ 
substitution 
~ 
B 
 
MF 
B 
1 
 
 
1 = 
~ 
B substitution  
S 
 
1 
 
 
~ 
~ 
B 
substitution 
substitution 
MF 
and B 
are the first operators of the deformations of substitution of  
1 
s1 
membrane-inflection and of transverse shearing, respectively.  
 
During the calculation of the nodal vector of the internal forces and material part of the tangent 
matrix of  
rigidity, the modification is introduced in a way similar to the level of the second operator of  
deformations:  
 
~ 
known 
~ 
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B 
 
MF 
B 
2 
 
 
2 = 
~ 
B known  
S 
 
2 
 
 
4.4.3.1 Operators of deformations of substitution  
 
In what follows the points of normal and reduced numerical integration of Gauss, on surface  
average, are NPGSN = 9 and NPGSR = 4, respectively, for the element  
quadrilateral, and NPGSN = 7 and NPGSR = 3, respectively, for the triangular element.  
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Membrane-inflection part  
 
At point INTSN among the NPGSN points of normal numerical integration of Gauss of surface  
average, one will calculate:  
 
normal 
normal 
~ 
B substitution 
complete 
incomplete 
MF 
(INTSN) ~ 
= Bmf 
(INTSN) ~ 
- Bmf 
(INTSN) + 
1 
1 
1 
reduced 
 
NR 
incomplete 
I (INTSN) ~ 
Bmf 
(INTSR) 
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1 
INTSR=, 
1 NPGSR 
 
where INTSR is a point among the NPGSR points of reduced numerical integration of Gauss of  
surface average.  
 
normal 
~ 
complete 
~ 
In the expression above, B MF 
represent the first three lines of B 
1 
1 calculated with  
NR  
points of normal numerical integration by considering the complete matrix  
. The operator  
1 
normal 
~ 
~ 
B 
incomplete 
MF 
represent the first three lines of B 
1 
1 calculated at the points of numerical integration  
NR  
normal by considering a matrix  
incomplete where the columns of rotation are cancelled:  
1 
 
( ) 
NR 1 
 
 
I  
 
0 
0 
0 0 0 
, 
0 0 0 

file:///Z|/process/refer/refer/p400.htm (2 of 37)10/2/2006 2:52:03 PM



file:///Z|/process/refer/refer/p400.htm

1 
 
 
( ) 
 
 
 
NR 1 
0 
0 
0 0 
 
0 0 0  
I  
0 
, 2 
 
 
 
0 
0 
0 
0 0 
 
0 
0 0 0 
 
( ) 
 
1 
 
 
 
Inc 
0 
NR 
0 
0 0 0 
0 0 0 
 
I  
NR  
 
, 
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1 
 
 
( ) 
 
 
= L 
 
1 
0 
0 
0 0 
 
0 L = 1, 
1 0 0 0  
 
NR 
I 
NB 
I  
 
, 
 
 
1 
 
2 
 
 
0 
0 
0 
0 0 
 
0 
0 0 0 
 
 
 
( ) 
 
 
 
0 
0 
NR 1 
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0 0 0  
I  
0 0 0 
 
, 1 
 
 
 
( ) 
 
0 0 0 
0 
0 
NR 1 
0 0 
 
 
I  
0 
 
, 2 
 
0 0 0 
 
0 
0 
0 
0 0 
 
0 
 
 
 
reduced 
~ 
incomplete 
~ 
B MF 
(INTSR) the first three lines of B represent 
1 
1 calculated at the points  
NR Inc 
 
 
of reduced numerical integration with the matrix  

file:///Z|/process/refer/refer/p400.htm (5 of 37)10/2/2006 2:52:03 PM



file:///Z|/process/refer/refer/p400.htm

incomplete above definite. They are thus  
1 
stored to be extrapolated at each point of normal numerical integration.  
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Transverse shearing part  
 
For the transverse shearing part, one will calculate:  
 
reduced 
~ 
B substitution (INTSN) = 
NR (INTSN) ~B complete 
S 
 
1 
I 
S 
(INTSR) 
1 
INTSR=, 
1 NPGSR 
 
reduced 
~ complete 
~ 
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where B S 
(INTSR) represents the two last lines of B 
1 
1 calculated at the points of integration  
NR  
numerical reduced with a matrix  
complete. They are also stored to be extrapolated  
1 
at each point of normal numerical integration.  
 
4.4.3.2 Substitution of the geometrical part of the tangent matrix of rigidity  
 
The nontraditional part of the tangent matrix of rigidity K eg 
is numerically  
nontraditional 
integrated into the points of normal integration of Gauss. No operation of substitution is necessary.  
For the traditional part of the tangent matrix of rigidity, we use substitution:  
 
normal 
normal 
reduced 
reduced 
complete 
incomplete 
incomplete 
complete 
membrane 
membrane 
membrane 
shearing 
substitution 
K E 
= K E inflection 
- K E inflection 
+ K E inflection 
+ K E transverse 
G 
G 
G 
G 
G 
 
traditional 
traditional 
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traditional 
traditional 
traditional 
 
where:  
 
normal 
complete 
membrane 
K E inflection 
G 
is numerically integrated on the points of normal integration with a matrix  
traditional 
NR  
 
supplements, and the local constraints of membrane inflection only;  
2 
 
normal 
incomplete 
membrane 
K E inflection 
G 
is numerically integrated on the points of normal integration with a matrix  
traditional 
NR  
 
incomplete, and local constraints of membrane inflection only;  
2 
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reduced 
incomplete 
membrane 
K E inflection 
G 
is numerically summoned on the points of integration reduced with a matrix  
traditional 
NR  
 
incomplete, and integrated local constraints of membrane inflection only;  
2 
 
reduced 
complete 
shearing 
K E transverse 
G 
is numerically summoned on the points of integration reduced with a matrix  
traditional 
NR  
 
supplements, and the integrated local constraints of transverse shearing only;  
2 
 
To be able to calculate the two last tangent matrices in the preceding equation, us  
let us carry out the numerical integration of the local constraints on the NPGSN points of integration  
normal:  
 
~ 
S (INTSR) =  
NR (INTSR) ~S (INTSN) det J D D 
1 
 
D 
I 
2 
3  
INTSN =, 
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1 NPGSN 
 
 
This equation contains the terms of weight of the points of Gauss.  
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5  
Rigidity around the transform of the normal  
 
5.1  
Singularity of the tangent matrix of rigidity  
 
Although the finite elements objects of the hull are expressed directly in the total reference mark  
[E: E: E 
1 
2 
3] (the degrees of freedom are displacements and rotations in the total reference mark),  
the tangent matrix of rigidity presents a singularity compared to the component of rotation  
around the transform of the normal in each node:  
 
 
 
K E N 
 
T 
= 0 
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W 
W 
 
I=1, NB2 
 
The contributions (W N) 
are null.  
I =1, NB2 
 
In the preceding equation, this matrix represents the rigidity of rotation in the total reference mark. 
Its  
structure is full:  
 
K 
K 
K  
[ 
11 
12 
13  
K and] = K 
K 
K 
 
I 
12 
22 
23  
W 
W 
 
K 
K 
K 
31 
32 
33 I 
 
it is a nonsymmetrical matrix.  
 
 
This singularity is a direct consequence of the kinematics of hull. It is due to the product  
vectorial appearing in linearized displacements (virtual and incremental). Thus displacement  
between two iterations is given by:  
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H 
U (1,2, 3) = U (1,2) + 3 W (1,2) N 
Q 
p 
(1,2)  
2 
 
H 
It is noticed that the contribution  
W (,) 
 
3 
1 2 N (1,2) is perpendicular to N. One  
2 
interpret this singularity in the following way: the rotation of an initially normal fibre on the surface  
average does not lead to an elongation of this one, and consequently does not induce deformation.  
 
5.2 Principle of virtual work for the terms associated with rotation  
around the normal  
 
We propose to define the full slewing around the transform of the normal in the hull like  
the projection of the vector of full slewing on the transform of the normal:  
 
 
 
= .n  
N 
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It is pointed out that the vector of rotation is an invariant of the matrix of rotation = exp [×]  
 
=  
 
The vector of rotation is a clean vector of the matrix of rotation associated with the eigenvalue  
identity. So the first relation is rewritten:  
 
= (). (N) 
N 
= . 
N 
 
= N 
 
This relation translates an important result:  
 
The projection of the vector of full slewing on the transform of the normal is equal to  
projection of the vector of full slewing on the initial normal  
 
In discrete form, one defines a deformation energy associated with this rotation:  
 
 
1 
2 
= 
K  
 
2 
(  
N 
N) I 
I =1, NB2 
 
where K is a rigidity of torsion of which the determination of the value will be discussed further. One 
supposes  
that this rigidity remains constant and undergoes neither virtual variation nor incremental variation.  
 
The existence of the potential is supposed:  
 
 
1 
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= 
K ((. 
N) (. 
N))  
N 
2 
I 
I =1, NB2 
 
that one can rewrite in a more elegant form:  
 
 
1 
 
 
= 
K ([ 
N N])  
N 
2 
I 
I =1, NB2 
 
By exploiting the property of orthogonality -1 = T of the matrix of rotation:  
 
T 
N 
N 
N N 
 
= 
= 
N 
 
N T 
 
= nnT 
( 
)( 
) 
= N N  
 
This property will be exploited in the double linearization of the potential energy.  
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One rewrites the potential in the form:  
 
 
1 
= 
K ([ 
N N])  
N 
2 
I 
I =1, NB2 
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The first linearization of, makes it possible to obtain the virtual variation:  
N 
 
 
1 
= 
K  
( 
[ 
N N] + [ 
N N  
] ) 
N 
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2 
I 
I =1, NB2 
 
= K  
( 
[ 
N N]) I 
I =1, NB2 
 
It is necessary to express this form according to the function tests of rotations retained in  
variational form.  
 
= - 
T1 (  
) W  
 
with the form of the matrix reverses of the differential operator of rotation:  
 
 
 
 
1 
1  
 
T-1 () = 2 [I] - [×] + 
1- 2 [ ] 
2 
 
 
2 
 
tan 
tan  
2 
 
2  
 
From where the final form of the virtual work which makes it possible to deduce the vector from the 
interior forces:  
 
 
- T 
= K 
(wT () [N N])  
N 

file:///Z|/process/refer/refer/p400.htm (16 of 37)10/2/2006 2:52:03 PM



file:///Z|/process/refer/refer/p400.htm

I 
I =, 
1 NB2 
 
One carries out the second linearization of:  
N 
 
 
- T 
- T 
= K 
W. T () [N N] + T () [N N] 
 
N 
( (  
 
 
) 
= 
I 
I 
, 
1 NB2 
 
with the particular choice of the ddls of rotation W = 0, and owing to the fact that the initial normal 
“does not move  
not “during the iterations N = 0.  
 
The expression of the tangent operator who gives rise to the terms corresponding to the ddls of  
rotation around the transform of the normal of tangent matrix is as follows:  
 
 
- T 
-1 
- T 
= K 
W. T () [N N T 
] 
() W 
+ K  
W. T 
() [N N] 
 
N 
( (  
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)) I 
( (  
) 
I =, 
1 NB2 
= 
I 
I 
, 
1 NB2 
 
In this relation, the last term is a differential term due to the nonlinear relation between  
parameters of rotation. Its linearization is heavy to carry out and its contribution will be neglected in  
the expression of the tangent operator.  
 
With the property: N 
N 
 
= N N, we give the final expression:  
 
 
- T 
 
 
-1 
K 
W. T () [N N T 
] 
() W  
N 
( (  
) ) 
= 
I 
I 
, 
1 NB2 
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The contribution of operator T-1 is noted () [I] in the tangent matrix of rigidity.  
 
5.3 Notice  
 
The potential energy brought by the terms of rotation around the transform of the normal is  
nonnull even for a rigid rotational movement. This energy does not correspond to one  
deformation. For this reason it must be nonsignificant. The default value of  
COEF_RIGI_DRZ must guarantee that.  
 
5.4  
Borderline case analysis geometrically linear  
 
In the case of the analysis geometrically linear, initial configuration and configuration  
deformation are confused what leads us to confuse initial normal N with its transform  
N:  
 
N N  
 
Rotations become small in this case and the operator of great rotation becomes:  
 
= exp [×] [I] + [×]  
 
The differential operator of rotations becomes:  
 
T () [I]  
 
and the parameters of rotations become confused:  
 
W and W  
 
All these approximations introduced into virtual work lead to its simplification:  
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K  
( 
[ 
N N])  
N 
I 
K =, 
1 NB2 
 
The same approximations introduced into the differential part of virtual work also lead to  
its simplification:  
 
K (  
[N N  
] )  
N 
I 
K =, 
1 NB2 
 
The two last equations are those of the analysis geometrically linear. They show that  
contributions in the vector of the interior forces and the tangent matrix of rigidity  
cover the borderline case well with [R3.07.04].  
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5.5  
Determination of the coefficient K  
 
The coefficient K is calculated with each iteration of each step of time. With each iteration of Newton  
of each step of time, one builds with the NB2 nodes the matrix of passage  
 
 
 
 
 
I = [T 
: T 
: N 
1 
2 
]; I =1, NB2  
I 
 
who allows to pass from the vector W I, vector of iterative rotation to the node expressed in the 
reference mark  
 
 
total [E: E: E 
 
1 
2 
3] with the vector ~ 
W I expressed in local reference mark [T: T: N 
1 
2 
]: I 
 
~w I = Iw; =, 
I 
I 
1 NB2  
 
One can build in each node, the matrix [KeT] of size 3× 3  
I 
~ 
W W 
 
 
[K E] 
T 

file:///Z|/process/refer/refer/p400.htm (21 of 37)10/2/2006 2:52:03 PM



file:///Z|/process/refer/refer/p400.htm

= [K E]  
~ ~T I 
I 
T I 
I 
W W 
 
W 
W 
 
 
This matrix represents the rigidity of rotation in the local reference mark. Its structure, 
nonsymmetrical, is:  
 
K 
 
 
K 
 
0 
T T 
tt 
 
1 1 
1 2 
[K E] = K 
 
 
K  
0  
~ ~T I 
T T 
T T 
 
2 1 
2 2 
 
W W 
 
K K 
 
0 
N T 
NT 
 
1 
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2 
I 
 
The coefficient K is then calculated according to the relation:  
 
K = COEF _ RIGI _ DRZ × KMIN  
 
where COEF_RIGI_DRZ is a coefficient introduced like a mechanical characteristic of hull by  
the user. In traditional linear analysis of the hulls or plates, this coefficient is selected enters  
0.001 and 0.000001. By defect it is worth 0.00001. In the case of great rotations calculated with  
great steps of load, one advise to use value 0.001.  
 
~ 
KMIN is the minimum of the nonnull terms of rotation on the diagonal of K and.  
 
KMIN = 
 
MIN 
K, K  
 
I 
, NB 
 
 
 
T T 
T T  
=1  
2 
1 1 
2 2 
I 
 
Note:  
 
It would be undoubtedly more rigorous to calculate K with the first iteration of the first step of time  
and to store this value like invariant information during the iterations and the steps of  
following times. The experiment shows that this way of proceeding is often not optimal in  
measurement where the values of the coefficients of the matrices of rigidity can evolve/move in way  
important during a calculation in great displacements. The value of K determined initially  
can then become too small and the matrix rigidity to end up being singular.  
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6 Buckling  
linear  
 
Linear buckling is presented in the form of a particular case of the geometrical nonlinear problem. It  
is based on the assumption of a linear dependence of the fields of displacements, deformations and  
constraints compared to the level of load, and this, before the critical load is not reached.  
 
In a total Lagrangian formulation, one recalls that linearized balance can be written under  
variational form:  
 
int - ext. = ext. - int  
 
maybe in matric form after discretization:  
 
the U.K.U 
T = U (F - R)  
 
where the dependence of the tangent matrix of rigidity K T is nonlinear compared to the vector of  
nodal displacement generalized p = 
U EP.  
e=, Nel 
1 
 
If we suppose the linear dependence of displacement compared to the level of load, one can  
to write:  
 
U = u0  
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where u0 is the solution obtained following a linear analysis for = 1 by:  
 
K U 
F 
0 0 = 
 
 
where K 0 is the tangent matrix of initial rigidity. One can then develop the tangent matrix of  
rigidity in a linear way compared to the level of load:  
 
U 
E 
E 
E 
E 
K T = K 0 + (Ku + K) +….  
e=1, Nel 
 
where K E 
E 
U is the matrix of initial displacements depending on p0, traditionally neglected in  
Code_Aster, and K E the matrix of the initial constraints depending on the total tensor of the 
constraints  
~ 
of Piola-Kirchhoff of second species [S0] and local vector S0. These constraints are  
voluntarily confused with the constraints of Cauchy. They are obtained by a postprocessing  
linear analysis.  
 
For the rotation part of EP, the assumption of linearity of the deformations according to the level of  
load results in the equality of:  
 
N = N 
I 
I  
 
 
who leads us to confuse the initial normals nor with their transforms N I.  
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The matrix of the initial constraints K E represents the constant part in geometrical part  
tangent matrix of rigidity. It is evaluated at the point pe0 and = 1 with a transform of  
normal replaced by the initial normal:  
 
K E = K E 
+ K E 
 
 
 
traditional 
nontraditional 
 
with the traditional part of the geometrical part (see [bib4] volume 1 p. 141):  
 
T 
 
 
 
 
 
 
E 
-1 NR 
-1 NR 
K 
= 
J 
~ 
~ 
 
SJ  
det J 
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D 1  
D 2  
D  
traditional 
3 
 
 
2  
 
 
2  
 
where the second matrix of derived from the functions of form becomes:  
 
 
 
(2) 
(2) 
 
 
() 1 
0 
NR N 
 
3 
, 
Z 
-  
I  
NR 
3 
I 
 
1 
N 
NR 
, 
y 
1 
 
 
I  
 
0 
0 
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, 1 
 
(2) 
(2) 
 
( ) 
 
 
1 
0 
NR 
N 
3 
, 
Z 
-  
 
0 
0  
I  
NR 
3 
I 
2 
N 
NR 
, 
y 
2 
 
 
 
I  
, 2 
 
(2) 
 
0 
NR 
N 
(2) 
 
 
0 
0 
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0 
NR 
N 
 
I 
Z 
 
 
- 
 
I 
y  
 
 
( ) 
(2) 
(2) 
0 
NR 1 
 
- NR 
N 
0 
NR N 
 
3 
 
 
, 
3 
 
I  
 
0 
, 
I 
Z 
I  
, 
X 
1 
 
1 
1 
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( ) 
H  
 
L 
 
(2) 
(2) 
0 
NR 1 
0  
- NR 
N 
0 
NR 
N 
LI = 1, NB1 
3 
 
I  
, 
Z 
3 
I  
, 
X  
I  
 
, 2 
 
2  
2 
2 
 
2 
2 
 
0 
0 
0  
( ) 
( ) 
- NR N 
0 
NR 
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N 
I 
Z 
I 
X 
 
 
 
( ) 
0 
0 
NR 1  
 
(2) 
(2) 
 
 
I  
 
, 
NR N 
3 
- NR N 
0 
1  
I  
, 
y 
3 
I  
, 
X 
 
( ) 
 
1 
1 
 
0 
0 
NR 1  
(2) 
(2) 
NR N 
NR 
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N 
0 
 
 
I  
 
, 
3 
- 
2  
 
I  
, 
y 
3 
I  
, 
X 
2 
2 
 
 
0 
0 
0  
(2) 
(2) 
 
 
NR N 
NR 
N 
0 
 
NR  
I 
y 
- 
 
 
I 
X 
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= 
 
 
 
(2) 
(2) 
 
2 
 
0 
NR 
N 
 
3 
- NR 
N 
NB2, Z 
3 
NB2, y 
 
 
1 
1 
 
 
(2) 
(2) 
 
 
0 
 
NR 
N 
 
3 
- NR 
N 
NB2, 
Z 
3 
NB2, 
y 
 
2 
2 
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(2) 
(2) 
 
 
0 
NR 
N 
 
 
NB2 Z 
- NR N 
1 
y 
 
 
 
( 
 
2) 
(2) 
- NR 
N 
0 
NR 
N 
 
3 
NB2, Z 
3 
NB2, X  
 
H 
1 
1 
 
 
(2) 
(2) 
 
 
- NR 
N 
0 
NR 
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N 
 
3 
NB2, 
Z 
3 
NB2, 
X 
 
2 
 
2 
2 
 
 
 
 
- NR (2) 
(2) 
 
NB N 
2 Z 
0 
NR NB N 
2 X 
 
 
 
(2) 
(2) 
 
 
NR 
 
3 
-  
NB 
N 
2  
, 
y  
NR 
3 
NB 
N 
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2  
, 
X 
0 
 
 
1 
1 
 
 
(2) 
(2) 
 
 
 
NR 
 
3 
-  
NB 
N 
2  
, 
y 
NR 
3 
NB 
N 
2  
, 
X 
0 
 
2 
2 
 
 
( 
 
2) 
(2) 
 
 
NR 
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NB N 
2 y 
- NR NB N 
2 X 
0 
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and the generalized tensor of the total constraints:  
 
3×3 
 
 
[S] 
0 
0 
9×9 
 
 
S = 0 
[S] 0  
 
 
0 
0 
[S] 
 
 
 
The nontraditional part of the geometrical part represents the terms uncoupled from rotation, not  
symmetrical. Since the current algorithm of resolution of the problem to the eigenvalues [R5.06.01]  
[K + (Ku +K 
0 
)] = 0 (being the level of critical load) consider only matrices  
symmetrical, one makes symmetrical, while dividing by two the sum with its transposed, the matrix:  
 
1 
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K E 
(I, I) = 
× 
× 
nontraditional 
[(zI] [N 
 
I 
])  
2 
 
where N I is the normal with node I and zI a vector 3× 3 with the node I = 1, NB2 of the nodal vector  
3 × (3 × NB2) Z I:  
 
 
. 
 
 
 
 
. 
 
 
. 
 
 
 
 
Z 
 
Z 
I 
I =  
 
 
. 
 
 
. 
 
 
 
 
. 
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I =, 
1 NB  
2 
 
Nodal vector Z I is similar to a vector of internal force and its expression is:  
 
Z = 
BT S 
J 
I 
D D D 
~ ~ det 
3 
1 
2 
3 
 
 
 
with the operator of the iterative variation of the virtual deformations (third operator of  
deformations):  
~ 
~ NR  
B = HQJ 1 
-  
3 
 
 
3 
 
who is highlighted by the relation:  
 
~ T ~ 
~ 
~ 
B S det Jd 
 
D D = Enon traditional S 
3 
1 
2 
3 
D  
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Note:  
 
For numerical integration in the thickness of the various terms of rigidity, we retain one  
diagram of Gauss at two points just like in elasticity for the geometrical linear hulls  
[R3.07.04].  
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7  
Establishment of the elements of hull in Code_Aster  
 
7.1 Description  
 
These elements (of names MEC3QU9H and MEC3TR7H) are pressed on meshs QUAD9 and TRIA7 
which are  
of geometry curves [R3.07.04].  
 
7.2 Use  
 
These elements are used in the following way:  
 
AFFE_MODELE (MODELING: “COQUE_3D”…) for the triangle and the quadrangle.  
 
One calls upon routine INI080 for standard calculations of numerical integration.  
 
AFFE_CARA_ELEM (HULL: (THICKNESS: “EP”  
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ANGL_REP  
:  
(  
'' '' )  
COEF_RIGI_DRZ  
:  
“CTOR”)  
 
to introduce the characteristics of hull.  
 
ELAS: (E: NAKED Young: ALPHA:. RHO:. )  
For a homogeneous isotropic thermoelastic behavior in the thickness one uses the key word  
ELAS in DEFI_MATERIAU where the coefficients E are defined, Young modulus, coefficient of  
Poisson, thermal dilation coefficient and density.  
 
AFFE_CHAR_MECA (DDL_IMPO: (  
DX:. DY:. DZ:. DRX:. DRY:. DRZ:. DDL of plate in the total reference mark.  
 
FORCE_COQUE: (FX:. FY:. FZ:. MX:. MY:. MZ:. )  
They are the surface efforts on elements of plate. These efforts can be given in  
total reference mark or in the reference mark user defined by ANGL_REP.  
 
FORCE_NODALE: (FX:. FY:. FZ:. MX:. MY:. MZ:. )  
They are the efforts of hull in the total reference mark.  
 
 
7.3  
Calculation in geometrical nonlinear “elasticity”  
 
Calculation imposes the following instructions user:  
 
COMP_ELAS: (RELATION: “elas”  
COQUE_NCOU: 1 (or more)  
DEFORMATION: “green_gr”)  
 
Numerical integration in the thickness is based on an approach multi-layer with 3 points  
of integration by layer. It is about the approach currently used in nonlinear material  
[R3.07.04]. Options of postprocessing SIEF_ELNO_ELGA of the constraints and VARI_ELNO_ELGA 
of  
variables intern (here null) by defect are activated with the convergence of each filed step.  
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7.4 Establishment  
 
Options FULL_MECA, RIGI_MECA_TANG, and RAPH_MECA are already active in the catalogues  
elementary mec3qu9h.cata and mec3tr7h.cata for material non-linearity. They direct it  
calculation towards /fort/te0414.f, then towards /fort/vdxnlr.f to calculate and store, inter alia,  
stamp tangent symmetrical rigidity in the address corresponding to mode MMATUUR PMATUUR.  
 
For the geometrical nonlinear analysis, the calculation of the tangent matrix of rigidity is directed 
towards  
new routine VDGNLR. This matrix is not symmetrical and must be stored in the address  
corresponding to mode MMATUNS PMATUNS.  
 
One defines the two local modes at the same time symmetrical and nonsymmetrical, at exit of the 
catalogues  
elementary. The tangent matrix of nonsymmetrical rigidity into nonlinear geometrical is stored  
with the address reserved for a nonsymmetrical matrix. On the other hand, if it is about nonmaterial 
linearity in  
small deformations, all the tangent matrix of rigidity is stored with the address corresponding to  
nonsymmetrical mode. The lower triangular part is duplicated starting from the triangular part  
higher. Material nonlinear calculation in small deformations thus proceeds also in not  
symmetrical.  
 
7.4.1 Modification  
 
TE0414  
 
Calculation is directed towards /fort/vdgnlr.f when the type of behavior COMP_ELAS is checked,  
i.e. when the problem is nonlinear geometrical.  
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7.4.2 Addition of a routine VDGNLR  
 
According to the option, the /fort/vdgnlr.f routine has as a role of:  
 
Options: FULL_MECA and RAPH_MECA:  
 
To calculate the 6 components of the state of the local constraints of Cauchy (confused with the state 
of  
constraints of Piola-Kirchhoff of second species) at the points of normal numerical integration and it  
nodal vector of the internal forces. They are stored in local modes ECONTPG PCONTPR and  
MVECTUR PVECTUR respectively.  
 
Options: FULL_MECA and RIGI_MECA_TANG:  
 
To calculate and store the tangent matrix of nonsymmetrical rigidity in mode MMATUNS 
PMATUNS.  
 
7.5  
Calculation in linear buckling  
 
Option RIGI_MECA_GE, inactive until now, is activated in the elementary catalogues  
mec3qu9h.cata and mec3tr7h.cata.  
 
The new TE0402 is dedicated to the calculation of the matrix of geometrical rigidity due to the 
constraints  
initial for the buckling of Euler. One recovers the plane states of the local constraints of Cauchy  
(null Snn component) at the points of normal numerical integration of Gauss. These states of  
constraints must be obtained by postprocessing with the option of calculation SIEF_ELGA_DEPL 
following  
a linear analysis (mode ECONTPG PCONTRR).  
 
In analysis of buckling of Euler, the constraints [] of Cauchy can be confused with  
constraints [S] of Piola-Kirchhoff of second species. Therefore we will keep  
notation [S].  
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The matrix of rigidity of the initial constraints can be broken up into a traditional part  
symmetrical and a nonsymmetrical nontraditional part. First is calculated according to  
total tensor of constraints 3 × 3, contrary to the second which, it, is calculated according to  
vector of the local constraints 5 × 1.  
 
Since the current algorithm of resolution of the problem to the eigenvalues [R5.06.01] does not consider  
that symmetrical matrices, we force the symmetry of the nontraditional part of the matrix  
geometrical before storing the higher triangular part of all the matrix in the mode  
MMATUUR PMATUUR.  
 
 
8 Conclusion  
 
The formulation that we have just described applies to the curved mean structural analyses in  
great displacements, whose thickness report/ratio over characteristic length is lower than 1/10. It  
comes in direct object from the finite elements described in the preceding reference material  
[R3.07.04] and used within the framework of small displacements and deformations. They rest on  
same meshs quadrangle and triangle.  
 
Their formulation rests on an approach of continuous medium 3D into which one introduces one  
kinematics of hull of the Hencky-Mindlin-Naghdi type, in plane constraints, in the formulation  
weak of balance. The measurement of the deformations retained is that of Green-Lagrange,  
énergétiquement combined with the constraints of Piola-Kirchhoff of second species. The formulation  
balance is thus Lagrangian total. The transverse distortion is treated same manner  
that in [R3.07.04]. Rotations must remain lower than 2 because of the choice of update of  
great rotations established in Code_Aster for which there is not bijection between the vector of  
full slewing and the orthogonal matrix of rotation.  
 
Because of singularity of the tangent matrix of rigidity compared to the component of rotation  
around the transform of the normal, one defines a fictitious deformation energy associated this  
rotation. With this rotation, one associates a rigidity of constant torsion. Interior efforts associated  
this potential energy are taken into account. This potential energy, nonnull, does not correspond  
with a physical deformation. One thus needs that it remains negligible, which the user can control in  
imposing a value of the being worth COEF_RIGI_DRZ from 103 to 105.  
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For the postprocessing of the constraints, one limits oneself to the framework of the small 
deformations. One then could  
to prove the identity enters the tensor of the constraints of Piola-Kirchhoff observed the initial 
geometry  
and the tensor of the constraints of Cauchy in the deformed geometry. Moreover, the state of the 
constraints  
being plane for the tensor of Piola-Kirchhoff, one finds this property for the state of stresses of  
Cauchy. It should be noted that in more general contexts, this property is not preserved.  
 
Linear buckling is treated like a particular case of the geometrical nonlinear problem. It  
rest on the assumption of a linear dependence of the fields of displacements, deformations and  
constraints compared to the level of load, before the critical load. It results from it that one can  
to linearly develop the tangent matrix of rigidity compared to the level of load. One finds  
then the geometrical part of the matrices of nonlinear the geometrical general obtained while 
identifying  
deformed normal on the average surface and the initial normal, which is coherent with  
linearity of the deformations according to the level of load.  
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Appendix 1: Flow chart of calculation in linear buckling  
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Buckle on the points of normal numerical integration of Gauss  
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· formation of the symmetrical tensor 3 × 3 of the local constraints [S]  
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· construction of the matrix of transformation P ( 
T 
 
1,2, 3) = t2 (1,2, 3) where T3 (  
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for the nontraditional term, calculation of HQ = 2×9  
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Appendix 2: Flow chart of geometrical nonlinear calculation  
 
Local reference marks with the NB2 nodes [T: T: N 
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2 
] I 
 
Beginning Buckles JN on the NB2 nodes  
 
IF JN NB1  
 
· recovery of the vector of total displacement already updated by MAJOUR:  
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- + 
- + 
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1 Introduction  
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With an aim of being able to analyze the behavior of slim structures of type plates, or surfaces  
curves approached by facets, whose average layer is excentré compared to the plan  
of load application, one introduces the concept of offsetting of the average layer compared to  
surface grid. Fields of displacement varying linearly in the thickness of the plate  
originate in the surface of grid, i.e. on the level of the surface of grid, only  
degrees of freedom of translation are necessary to the description of displacement.  
 
The introduction of kinematics into the expression of the work of deformation makes it possible to 
obtain them  
rigidities of membrane, inflection and transverse shearing of the excentré element from those  
element are equivalent nonexcentré and of the distance from offsetting. The whole of calculations 
(out  
specific postprocessing) is thus made in a reference mark of diagram attached to the plan of the grid. 
By  
defect the results are thus obtained in the reference mark of the grid. For certain postprocessings, it is  
possible to have automatically these results in other reference marks insofar as the user  
indicate the position of the plan of postprocessing compared to the plan of the grid.  
 
The distance from offsetting between the plan of the grid and the average layer of the plate is given in  
AFFE_CARA_ELEM on the same level as the thickness. A offsetting D positive means that surface  
average of the plate is actually at a distance dn of the element of plate with a grid, direction N  
being given by the normal to the element (see [§4.1] reference material [R3.07.03] of  
elements of plate for the construction of this normal).  
The adopted notations are those of the note [R3.07.03] on the elements of plates DKT, DST, DKQ,  
DSQ and Q4G.  
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2 Formulation  
 
2.1 Geometry  
 
For the offset elements of plate, the surface of reference is given by the plan of diagram or plan  
grid (plane X y for example). The average layer of the element is positioned compared to this  
surface reference. The thickness H (X, y) must be small compared to other dimensions (extensions,  
radii of curvature) of the structure to be modelled. The figure [Figure 2.1-a] below illustrates our  
matter. Concerning the value of offsetting D, and the conditions of linearization of the inflection  
adopted in the theory, D will be taken so that an element thickness d+h remains in the theory  
plates.  
 
Solid 3D 
Z 
H 
Y 
B 
X 
L 
R1 
R2 
Thickness H < L, B, R1, R2 
Z = Z + D 
 
H 
H  
Z 
Z D -; D +  
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y 
 
2 
2  
H 
N 
Plate 
X 
 
B 
L 
Z 
offsetting D > 0 
y 
X 
Grid 
 
Appear 2.1-a  
 
One attaches to the plan of diagram (the plan of the grid) a local reference mark orthonormé 0xyz 
associated the plan of  
grid different from total reference mark OXYZ. The position of the points of the plate is given by  
Cartesian co-ordinates (X, y) in the plan of diagram (plane of the grid) and rise Z compared to it  
plan.  
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2.2 Kinematics  
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The cross-sections which are the sections perpendicular to the average layer of the plate remain  
right-hand sides. The material points located on a normal at not deformed average surface remain on  
a line in the deformed configuration. It results from this approach that the fields of  
displacement vary linearly in the thickness of the plate. If one indicates by U, v, W them  
displacements of a point of the plan of diagram Q (X, y, Z) according to X, y and Z, the kinematics of 
Hencky-Mindlin  
us gives:  
 
U (X, 
y Z) 
X 
U (X, y)  
(X, y)  
y 
U (X, y)  
(X, y) 
X 
 
 
 
 
 
 
 
 
 
U (X, 
y Z) 
 
y 
= v (X, y) + Z (X, y) 
X 
= v (X, y) + Z (X, y) 
y 
 
 
 
 
 
 
 
 
 
U (X, 
y Z) 
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Z 
W (X, y) 
 
0 
W (X, y) 
 
0 
 
 
where: U, v, W are displacements of the plan of diagram;  
 
and  
X 
y are respectively rotations of this plan compared to respectively axis X and  
axis Y.  
 
One prefers to introduce two rotations (X, y) = (X, y, 
) (X, y) = - (X, y). Deformations  
X 
y 
y 
X 
three-dimensional in any point, with kinematics introduced previously, are thus given  
by:  
 
= E + Z 
xx 
xx 
xx 
= E + Z 
yy 
yy 
yy 
2 = = 2nd + 2z  
xy 
xy 
xy 
xy 
2 =  
xz 
X 
2 =  
yz 
y 
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where: exx, eyy and exy are the membrane deformations of average surface;  
X and y deformations associated with transverse shearings;  
xx, yy, xy the deformations of inflection of average surface, which are written:  
 
U 
 
E = 
xx 
X 
 
v 
 
E = 
yy 
y 
 
v  
 
U 
 
2nd = 
+ 
xy 
X 
 
y 
 
X 
= 
xx 
X 
 
y 
= 
yy 
y 
 
 
 
2 
y 
X 
= 
+ 
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xy 
y 
 
X 
 
W 
 
= + 
X 
X 
X 
 
W 
 
= + 
y 
y 
y 
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Note:  
 
· in the theories of plate, the introduction of and makes it possible to symmetrize them  
X 
y 
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formulations of the deformations and the equilibrium equations [R3.07.03]. In the theories  
of hull, one uses rather  
 
M 
M 
X and  
and associated couples  
and  
compared to X  
y 
X 
y 
and y,  
· the degrees of freedom which one chose are displacements and rotations of the plan of diagram  
and not those of the average layer. Indeed if one considers the superposition of several  
plates offset to carry out a material sandwich it cannot correspond to  
nodes of the grid that only one field of displacement and not the various fields  
displacements of the layers composing material.  
 
 
 
2.3  
Law of behavior  
 
The behavior of the plates is a behavior 3D in “plane constraints”. The constraint  
transversal zz is taken null because negligible compared to the other components of the tensor of  
constraints (assumption of the plane constraints). The most general law of behavior is written then  
as follows:  
 
 
E 
0 
xx  
xx  
 
xx  
xx  
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E 
0 
yy  
 
yy  
yy  
yy  
 
 
 
 
 
 
 
 
 
 
 
E = 2nd 
 
, 
2 
and  
 
= 0  
xy 
= xy 
 
xy 
= C (,) xy = This + Z  
C +  
 
 
 
 
C with  
 
 
 
 
 
 
0  
0  
X  
xz  
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X  
 
 
 
 
 
 
 
 
 
 
0  
0  
 
yz  
y  
y  
 
where: C (,) is the matrix of local tangent rigidity in plane constraints;  
represent the whole of the internal variables when the behavior is nonlinear.  
 
For behaviors (for example of multi-layer) for which the distortions are coupled  
at the deformations of membrane and inflection, C (,) is put in the form:  
 
H 
H C  
C =  
 
 
 
H T 
H  
 
 
C 
 
 
where: (,) is a symmetrical matrix 3x3;  
(,) a symmetrical matrix 2x2;  
C (,) a matrix 3x2 of coupling between the effects of membrane or inflection and of  
transverse shearing.  
 
 
If it is uncoupled, there are C (,) =0. Determination of (,) within the framework of the theory  
of Reissner ([§ 2.2.3.2] of [R3.07.03]) is given in appendix. It is shown that it is equivalent to that  
not offset plates.  
Handbook of Reference  
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3  
Principle of virtual work  
 
3.1  
Work of deformation  
 
The general expression of the work of deformation 3D for the element of excentré plate of the distance D  
compared to the datum-line is worth:  
 
d+h/2 
W 
= ( +  
 
+ + +  
FD 
) 
 
def 
 
 
xx 
xx 
yy 
yy 
xy 
xy 
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X 
xz 
y 
yz 
S  
d-h/2 
 
where S is average surface, dV=dxdydz and where the position in the thickness of the plate varies 
between  
d-h/2 and d+h/2.  
 
 
3.1.1 Expression of the resulting efforts  
 
By adopting the kinematics of [R3.07.03], one identifies the work of the interior efforts:  
 
W 
= (E NR + E NR + 2nd NR + M + M + 2 M + T + T) dS 
def 
 
 
xx 
xx 
yy 
yy 
xy 
xy 
xx 
xx 
yy 
yy 
xy 
xy 
X 
X 
y 
y 
S 
 
where:  
NR  
 
xx 
d+h/2 
xx 
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NR = NR = 
 
dz 
 
yy 
 
yy 
NR d-h/2  
 
xy  
xy  
 
M  
 
xx 
d+h/2 
xx 
 
 
 
 
M = M = 
dz 
Z  
yy 
 
yy 
M d-h/2  
 
xy  
xy  
 
T 
d+h/2 
 
 
X 
xz 
T = 
= 
dz 
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T 
 
 
 
 
 
y d-h/2 yz  
 
where: Nxx, Nyy, Nxy are the efforts resulting from membrane (in N/m);  
Mxx, Myy, Mxy are the efforts resulting from inflection or moments compared to the plan of diagram (in  
NR);  
Tx, Ty are the efforts resulting from shearing or sharp efforts (in N/m).  
 
 
3.1.2 Relation resulting efforts generalized deformations  
 
The expression of the work of deformation is also written:  
 
d+h/2 
d+h/2 
W 
= [ ( 
C,) FD 
] 
= [eCe + Z  
EC. + 
 
EC. + zCe + z2  
C + Z  
C + ( 
C E + Z + dSdz 
)] 
 
def 
 
 
S d-h/2 
S d-h/2 
 
where: C (,) is the matrix of local tangent rigidity (symmetrical matrix).  
Handbook of Reference  

file:///Z|/process/refer/refer/p430.htm (13 of 37)10/2/2006 2:52:06 PM



file:///Z|/process/refer/refer/p430.htm

R3.07 booklet: Machine elements on average surface  
HT-66/03/005/A  

Code_Aster ®  
Version  
6.3  
 
Titrate:  
Treatment of offsetting for the elements of plate  
 
Date:  
15/07/03  
Author (S):  
P. MASSIN, J.M. PROIX, A. ASSIRE Key  
:  
R3.07.06-A Page  
: 9/36  
 
 
This is still written:  
 
H/2 
W 
= [eCe + (+ D)  
EC. + 
 
EC. + (+ D) This + (+ D) 2 C 
C 
C E 
 
def 
+ (+ D) + (+ (+ D) + dSd 
)] 
 
 
S - H/2 
 
By using the expression obtained for Wdef in the preceding paragraph, one finds the relation following  
between the resulting efforts and the généraliées deformations:  
 
NR = H E (H 
dH) 
H 
m 
+ 
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MF + 
m + 
m  
M = (H 
dH 
E 
) 
(H 
2dH 
D 2H) 
(H 
dH)  
MF + 
m 
+ 
F + 
MF + 
m + 
F + 
m  
T = HT E (HT dHT) 
H 
m 
+ 
F + 
m + 
ct  
 
with:  
+h/2 
+h/2 
+h/2 
H 
 
m = 
Hd Hmf = Hd Hf = H2d 
- H/2 
- H/2 
- H/2 
+h/2 
+h/2 
+h/2 
H 
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ct = 
H D Hm = H D H 
H 
D 
C 
 
F 
= 
C  
 
 
 
 
 
- H/2 
- H/2 
- H/2 
 
and:  
E  
 
xx 
 
 
 
xx  
X  
E = E 
 
, 
 
, 
 
yy  
= yy  
=  
 
 
 
 
y  
2nd 
2 
xy  
xy  
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The matrices Hm, Hf and Hct are the matrices of rigidity out of membrane, inflection and shearing  
transverse, respectively, for the element of nonexcentré plate. The Hmf matrix is a matrix of  
rigidity of coupling between the membrane and the inflection for the element of nonexcentré plate. It is  
null if the element of plate is symmetrical compared to its average layer. The Hm matrix is one  
stamp rigidity of coupling between the membrane and the transverse distortion. The matrix Hf is one  
stamp rigidity of coupling between the inflection and the transverse distortion. These matrices are null  
for a null offsetting, except in the case of the multi-layer ones where they remain nonnull.  
 
For an isotropic homogeneous elastic behavior, these matrices have as an expression:  
 
 
 
 
 
1 v 
0  
1 v 
0  
Eh 
Eh3 
kEh 1 0 
 
 
 
 
H 
H 
H 
 
m = 
v 1 
0 
 
, 
F = 
v 1 
0 
 
, 
ct = 
2  
 
2 
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1 - v 
1 - v 
1 
( 
12 - v) 
1 - v 
1 
( 
2 + v) 0 1 
0 0 
 
0 0 
 
 
2  
 
2  
 
and Hmf = Hm = Hf = 0 bus there is a material symmetry compared to the =0 plan.  
 
For the determination of the coefficient of shearing K one returns to [§2.2.3] of [R3.07.03].  
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The system of relation between the resulting efforts and the generalized deformations can be also 
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written:  
 
NR = H E H 
H 
m 
+ MF + m 
M = H E H 
H 
 
MF 
+ F + F 
T = HT E H T 
H 
m 
+ F + ct 
 
with:  
 
Hmf = Hmf + H 
D m 
 
H 
2 
F = Hf + 2 H 
D MF + D Hm 
 
H = H + dH 
F 
F 
m  
 
Thus, in the case of a plate having material symmetry compared to the plan =0, one has Hmf = 0  
but H = dH. The offsetting of the plate involves a coupling between the terms of membrane  
MF 
m 
and of inflection.  
 
Note:  
 
The relations binding Hm, Hf, Hmf with H and Hct with H are valid whatever the law of  
elastic behavior tangent, with anelastic deformations (thermoelasticity,  
plasticity,…).  
 
For a plate made up of NR orthotropic layers in elasticity, the matrices Hm, Hf, Hmf and Hct  
are written:  
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NR 
NR 
NR 
NR 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H  
m =  
,  
( 
, 
)  
( 
2 
, 
)  
semi 
MF =  
mfi + I 
semi 
F =  
fi + 
I mfi + semi 2i 
ct =  
I 
ct 
i=1 
i=1 
i=1 
i=1 
 
1 
where: = 
Z + + Z  
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I 
(I 1 I) 
2 
Hmi, Hfi, Hmfi, Hi represent the matrices of membrane, inflection, coupling membrane inflection and  
of transverse shearing for layer I. One notices the analogy between these expressions with  
form established above:  
H = H 
+ H 
D 
MF 
MF 
m 
 
H = H + 
H 
2 
D 
2 
+ D H 
F 
F 
MF 
m 
 
One from of deduces whereas offsetting for such a plate is obtained in substituent + D with.  
I 
I 
 
 
3.1.3 Energy interns elastic of plate  
 
Taking into account the preceding remarks, energy interns elastic plate is expressed more  
usually for this kind of geometry in the following way:  
 
1 
= 
[E (H E H 
H 
H E H 
H 
H E H 
H 
.  
m 
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+ MF + 
 
m) + ( 
MF + F + F) + (T 
T 
m 
+ F + ct dS 
)] 
int 
2 S 
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3.1.4 Notice  
 
One can choose to express the efforts resulting from inflection or moments compared to the average 
layer  
element and either compared to the datum-line. In this case one obtains:  
 
NR  
 
M  
 
xx 
d+h/2 
xx 
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xx 
d+h/2 
xx 
 
 
 
 
T 
d+h/2 
 
 
NR = NR = 
 
dz 
, M = M = 
(Z - D dz 
) ,  
X 
xz 
T = 
= 
dz  
yy 
 
yy 
 
 
 
 
 
 
 
yy 
yy 
T 
 
 
 
 
 
NR d-h/2  
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- 
 
 
y  
yz  
 
M 
D H/2 
 
 
d-h/2 
xy  
xy  
xy  
xy  
 
and the expression of the work of the interior efforts becomes:  
 
W 
= (E NR + E NR + 2nd NR + (M + dN) + (M + dN) + 2 (M + dN) + T + T) dS 
def 
xx xx yy yy 
xy 
xy 
xx 
xx 
xx 
yy 
yy 
yy 
xy 
xy 
xy 
X 
X 
y 
y 
S 
 
One then deduces from it by using the expression 3D from work from deformation that:  
 
NR = H E (H 
dH) 
H 
m 
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+ 
MF + 
m + 
m  
M + dN = (H 
dH E 
) 
(H 
2dH 
D 2H) 
(H 
dH)  
MF + 
m 
+ 
F + 
MF + 
m + 
F + 
m  
T = HT E (HT dHT) 
H 
m 
+ 
F + 
m + 
ct  
 
That is to say still:  
NR = H E (H 
dH) 
H 
m 
+ 
MF + 
m + 
m  
M = H E (H 
dH) 
H 
.  
MF 
+ 
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F + 
MF + 
F  
T = HT E (HT 
dHT) 
H 
m 
+ 
F + 
m + 
ct  
 
The expression of the internal energy of the plate remains unchanged of course as for it. In the case of  
elasticity, it is always written:  
 
1 
= 
[E (H E H 
H 
H E H 
H 
H E H 
H 
 
m 
+ MF +  
 
m) + ( 
MF + F + F) + (T 
T 
m 
+ F + ct dS 
)] 
int 
2 S 
 
The question of the choice of the plan interesting to use for the expression of the moments can vary from 
one  
situation with another.  
 
M 
M 
M 
M 
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In the case of the figure of right-hand side, the approach developed above is preferable because the 
expression of  
loadings is defined compared to the average layer of each plate. In the case of the figure of  
left, if one wishes to replace the multi-layer hull by two offset hulls, the axis of  
reference is the average layer of the multi-layer hull. One thus may find it beneficial with all to define 
compared to  
plan of diagram. It is this approach which is adopted in the code. All the loadings applied are  
regarded as being defined by defect in the reference mark of diagram or plan of the grid. If ever  
certain loadings are defined compared to other plans (average layer, higher layer or  
inferior) is with the user to make the adapted changes of reference mark, with the hand or by the means  
command file by specifying the plan of load application when that is possible (see  
[§5]), to bring back itself to a loading defined in the plan of the grid.  
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3.2  
Work of the forces and couples external  
 
The work of the forces and couples being exerted on the plate is expressed in the following way:  
 
d+h/2 
d+h/2 
W 
F. FD 
U 
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F. dS 
U 
F. U ds 
dz  
ext. = v 
+ S 
+ C 
S d-h/2 
S 
C d-h/2 
 
where: Fv, Fs, FC are the voluminal, surface efforts and of contour being exerted on the plate,  
respectively.  
C is the part of the contour of the plate to which the efforts of contour FC are applied.  
 
With the kinematics of [§2.2], one determines as follows:  
 
W 
(F U F v F W.C. 
C 
) dS 
(U 
v 
W 
) ds 
ext. =  
X 
+ y + Z + xx + yy 
+ X +y +z +xx +yy 
S 
C 
 
= (F U F v F W.C. 
C 
) dS 
(U 
v 
W 
) ds 
X 
+ y + Z + yx - xy 
+ X +y + Z +yx - xy 
S 
C 
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where are present on the plate:  
 
· F, F, F surface forces acting according to X, y and Z;  
X 
y 
Z 
+h/2 
·  
F = 
F E 
. dz + F E 
. where E 
I 
v I 
S 
I 
X and ey are the basic vectors of the tangent plan and ez them  
- H/2 
normal vector;  
· C, C: surface couples acting around axes X and y;  
X 
y 
+h/2 
H 
·  
C = 
Z 
[(+d) E 
where E 
Z F] .e dz 
v 
I 
+ [(D ±) ezF] .e 
I 
S 
I 
2 
X, ey, ez are the basic vectors  
- h/2 
previously definite.  
 
and where are present on the contour of the plate:  
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· X, y, Z linear forces acting according to X, y and Z;  
+h/2 
·  
 
F .e dz where E 
I = 
C I  
X, ey, ez are the basic vectors previously definite;  
- H/2 
· X, there linear couples around axes X and y;  
+h/2 
·  
 
[(Z D) E 
F] .e dz where E 
I = 
+ Z C I 
X, ey, ez are the basic vectors previously definite.  
- H/2 
 
Note:  
 
The moments compared to Z are null. The efforts and the couples are expressed in  
locate grid. All calculations are made by defect in the reference mark of diagram. If  
efforts or of the couples are expressed in another reference mark (that of the average layer of  
plate for example) the user will have to make conversions with the hand if it uses the options  
by defect or to specify the plan of load application (see the paragraph [§ 5]).  
 
3.3  
Principle of virtual work and equilibrium equations  
 
This paragraph is unchanged compared to the paragraph [§3.3] of [R3.07.03].  
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4  
Numerical discretization of the variational formulation  
exit of the principle of virtual work  
 
4.1 Introduction  
 
The variational formulation for energy interns enables us to write:  
 
W 
 
= [E (H E H 
H 
H E H 
H 
H E H 
H 
 
m 
+ MF + 
 
m) + ( 
MF + F + F) + (T 
T 
m 
+ F + ct dS 
)] 
int 
S 
 
with:  
U 
 
 
, X 
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X, X 
 
W, X + X  
E =  
v 
 
, 
,  
 
, y 
 
=  
y, y 
 
=  
 
 
 
 
 
 
W, y + y  
U 
v 
, y + 
, X  
X, y + y, X  
 
The five degrees of freedom are displacements in the plan of the grid U and v, except plan W and them  
two rotations X and Y.  
 
The elements DKT and DST are triangular isoparametric elements. Elements DKQ, DSQ and  
Q4 are quadrilateral isoparametric elements. They are represented below:  
 
4 
3 
3 
1 
y 
2 
1 
2 
X 
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Appear 4.1-a: Real elements  
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The elements of reference are presented below:  
 
 
 
(0,1) 
(-1,1) 
(1,1) 
3 
4 
3 
1 
2 
(0,0) 
(1,0) 
 
 
1 
2 
(1,-1) 
(-1,-1) 
 
Appear 4.1-b: Elements of reference triangle and quadrangle  
 
One defines the reduced reference mark of the element as the reference mark (,) of the element of 
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reference. The reference mark  
room of the element, in the plan of diagram (X, y) is defined by the user, by key word ANGLE_REP.  
X1 direction of this local reference mark is the projection of a direction of reference D in the field of the 
element.  
This direction of reference D is chosen by the user who defines it by two nautical angles in  
the total reference mark. The normal NR in the plan of the element (12 13 for a triangle numbered 123 
and 12 14  
for a quadrangle numbered 1234) the second direction fixes. The vector product of the two vectors  
previously definite Y1=N X1 make it possible to define the local trihedron in which they will be 
expressed  
generalized efforts representing the state of stresses. The user will have to take care that the axis of  
reference selected is not found parallel with the normal of certain elements of plate. By defect,  
the direction of reference D is axis X of the total reference mark of definition of the grid.  
 
Note:  
 
For the elements of plate QUAD4, the use of a noncoplanar element can lead to  
irregularities ([bib1]). In this case, the user is alerted.  
 
 
4.2  
Discretization of the field of displacement  
 
The matrix jacobienne J (,) is:  
 
NR 
NR 
 
 
X 
y 
NR X 
NR y 
I, 
I 
 
 
 
I, 
I 
J 
J 
, 
,  
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11 
12  
i=1 
i=1 
 
J = 
= 
 
NR 
NR 
= 
 
 
 
 
 
 
 
 
X 
y 
 
 
 
J 
J 
, 
,  
21 
22  
NR X 
NR y 
I, 
I 
I, I  
i=1 
i=1 
 
 
Moreover:  
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J 
J 
X 
 
- 
1 J 
- J  
11 
12 
1 
22 
12 
 
 
 
 
= J 
 
with 
 
J = 
= J = 
J 
where  
 
= det J = J J - J J 
 
 
 
 
 
 
 
 
 
 
11 22 
12 21 
 
 
 
J 
J 
 
 

file:///Z|/process/refer/refer/p430.htm (36 of 37)10/2/2006 2:52:06 PM



file:///Z|/process/refer/refer/p430.htm

J - J 
J 
21 
22 
 
21 
11  
 
y  
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The field of displacement is discretized by:  
 
U  
NR 
K 
= 
U 
 
NR, 
 
K () 
 
 
K  
v k=1 
v  
W  
 
 
 
 
NR 
wk 
2 NR 
 
 
 
 
0 
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= NR (,) + [ 
 
P (,)  
X 
K 
xk 
xk 
K]  
 
 
 
 
 
K =1 
K = NR 
 
 
+1 P  
( , 
y 
yk 
yk 
) 
 
In this last expression, the term between hooks is present for the elements of type DKT,  
DST, DKQ or DSQ, but not for the Q4 elements.  
 
 
4.3  
Taking into account of the transverse distortion  
 
It is pointed out that the essential difference between elements DKT, DKQ on the one hand and DST, 
DSQ, Q4  
in addition comes owing to the fact that for the first the transverse distortion is null is still = 0.  
difference between Q4 and elements DST and DSQ comes from a choice different of interpolation for  
representation of transverse shearing. The introduction of offsetting leads to a treatment  
private individual of transverse shearing.  
 
One replaces in the expression of the internal energy established with [§4.1] by where are them  
deformations of substitution checking = in a weak way (integral on the sides of the element), and  
such as:  
 
NR = H E H 
H 
m 
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+ MF + m 
M = H E H 
H 
 
MF 
+ F + F 
T = HT E H T 
H 
m 
+ F + ct 
 
J 
One checks thus that on the sides ij of the element, one a: ( 
) ds 0 with = W +.  
S - S 
= 
S 
, S 
S 
I 
 
4.3.1 For the Q4 elements  
 
One linearly discretizes the constant field by side so that:  
 
1 -  
1 
12 
+ 34  
 
+ 
 
 
 
 
= 
= 2 
2 
 
 
 
 
 
 
1 -  
1 
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23 
-  
 
 
41 
+ 
 
2 
2 
 
 
By using the relations then:  
+1 
( - ( 
W +)) 
 
 
D = 0; 
, 
-1 
 
+1 
( - ( 
W +)) 
 
 
, 
D = 0 
-1 
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it is established that:  
 
ij 
1 
= (W - W + +) 
 
2 
J 
I 
I 
 
J 
 
for (ij) = (12,34) and (kp) = (23,41).  
kp 
1 
= (W - W + +) 
 
2 
p 
K 
p 
 
K 
 
By deferring the two results above in the expression of  
, it is established that:  
 
 
 
 
= = B U  
 
 
 
 
w1  
 
 
 
1  
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1  
Nk, K Nk, 
0 
 
where: U = M and B = (B, B 
 
 
B 
 
 
1 L 
) 
 
 
 
NR with K = Nk, 
0 
K Nk,  
wN  
 
NR  
 
 
 
NR  
 
Moreover, like:  
I J 
J 
11 
12 xi  
 
=  
 
 
I J 
J 
21 
22 yi  
one deduces from it that  
= Drunk F  
 
w1  
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x1  
 
y 
1  
where: U 
M  
F = 
and B = (B, B)  
 
 
1 L 
NR  
W  
NR 
 
 
xN  
 
 
yN  
 
Nk, K Nk J 
, 
11 
K Nk J 
, 
12  
with: B 
 
 
K = 
 
NR 
K, K Nk J 
, 
21 
K Nk J 
, 
22  
 
 
Finally:  
X J 
J 
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11 
12  
=  
 
= B U with B 
= jB 
 
 
= 
C 
F 
C [2×3N] 
 
y  
J 
J 
21 
22  
 
Note:  
 
This treatment is equivalent to that of the Q4 elements not offset of [§ 4.3.2.1] of  
[R3.07.03].  
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4.3.2 For the elements of type DKT, DST, DKQ, DSQ  
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With regard to the transverse distortions, one knows that:  
 
T = M 
+ M 
and T = M 
+ M 
with M = H E H 
H 
 
MF 
+ F + F 
X 
xx, X 
xy, y 
y 
yy, y 
xy, X 
 
One deduces from it that:  
C 
C 
T = H U 
H 
 
m 
+ F  
, xx 
, xx 
 
Calculation of:  
C 
C 
H H  
m 
F 
where: T 
=  
 
 
 
 
 
 
, xx 
(X, xx X, yy X, xy y, xx y, yy y, xy) 
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T 
U 
= U 
U 
U 
v 
v 
v 
 
, xx 
(, xx, yy, xy, xx, yy, xy) 
 
MF 
MF 
MF 
MF 
MF 
MF 
H 
H 
2H 
H 
H 
H 
H 
C 
11 
33 
13 
13 
23 
12 + 
MF  
with: H 
 
m = 
33 
 
MF 
MF 
MF 
MF 
MF 
MF 
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MF 
 
 
H 
H 
H 
H 
H 
H 
2H 
13 
23 
12 + 
33 
33 
22 
23 
 
 
F 
F 
F 
F 
F 
F 
H 
H 
2H 
H 
H 
H 
H 
C 
11 
33 
13 
13 
23 
12 + 
F  
H 
 
F = 
33 
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F 
F 
F 
F 
F 
F 
F 
 
 
H 
H 
H 
H 
H 
H 
2H 
13 
23 
12 + 
33 
33 
22 
23 
 
 
where them  
MF 
H are the terms (I, J) of H and where F 
H are the terms (I, J) of H.  
ij 
MF 
ij 
F 
 
Like:  
 
NR 
2N 
NR 
2N 
2 
2 
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= NR (,) 
+ P 
( , 
) 
= NR (,) 
+ (J P + 2j J P + J P 
) 
 
X, xx 
K, xx 
xk 
xk, xx 
K 
K, xx 
xk 
11 xk, 
11 12 
xk, 
12 
xk, 
K 
K 1 
= 
K =N 1 
+ 
K 1 
= 
K =N 1 
+ 
NR 
2N 
NR 
2N 
2 
2 
 
= NR (,) 
+ P 
( , 
) 
= NR (,) 
+ (J P + 2j J P + J P 
) 

file:///Z|/process/refer/refer/p440.htm (13 of 75)10/2/2006 2:52:08 PM



file:///Z|/process/refer/refer/p440.htm

 
X, yy 
K, yy 
xk 
xk, yy 
K 
K, yy 
xk 
21 xk, 
21 22 
xk, 
22 
xk, 
K 
K 1  
= 
k=N 1 
+ 
K 1 
= 
k=N 1 
+ 
NR 
2N 
NR 
2N 
 
= NR (,) 
+ P 
( , 
) 
= NR (,) 
+ (J J P + [J J + J J P 
] 
+ J J P 
) 
 
X, xy 
K, xy 
xk 
xk, xy 
K 
K, xy 
xk 
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11 21 xk, 
11 22 
12 21 
xk, 
11 21 xk, 
K  
K 1 
= 
K =N 1 
+ 
K 1 
= 
K =N 1 
+ 
NR 
2N 
NR 
2N 
2 
2 
 
= NR (,) 
+ P 
( , 
) 
= NR (,) 
+ (J P + 2j J P + J P 
) 
 
y, xx 
K, xx 
yk 
yk, xx 
K 
K, xx 
yk 
11 yk, 
11 12 
yk, 
12 
yk, 
K 
K 1 
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= 
K =N 1 
+ 
K 1 
= 
K =N 1 
+ 
NR 
2N 
NR 
2N 
2 
2 
 
= NR (,) 
+ P 
( , 
) 
= NR (,) 
+ (J P + 2j J P + J P 
) 
 
y, yy 
K, yy 
yk 
yk, yy 
K 
K, yy 
yk 
21 yk, 
21 22 
yk, 
22 
yk, 
K 
K 1 
= 
K =N 1 
+ 
K 1 
= 
K =N 1 
+ 
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NR 
2N 
NR 
2N 
 
= NR (,) 
+ P 
( , 
) 
= NR (,) 
+ (J J P + [J J + J J P 
] 
+ J J P 
) 
 
y, xy 
K, xy 
yk 
yk, xy 
K 
K, xy 
yk 
11 21 yk, 
11 22 
12 21 
yk, 
11 21 yk, 
K 
K 1 
= 
K =N 1 
+ 
K 1 
= 
K =N 1 
+ 
1 4 
4 2 
4 
4 
4 3 
1 
xx 
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with:  
 
2 
2 
0 
J NR 
2j J NR 
J NR 
0 
11 
K, + 
11 12 
K, + 
 
 
12 
K, 
 
 
2 
2 
0 
J NR 
2j J NR 
J NR 
0 
21 
K, + 
21 22 
K, + 22 
K, 
 
 
W  
 
K 
NR 
0 J J NR 
[J J 
J J] NR 
J J NR 
0 
 
1 

file:///Z|/process/refer/refer/p440.htm (18 of 75)10/2/2006 2:52:08 PM



file:///Z|/process/refer/refer/p440.htm

11 21 
K, + 
11 22 + 12 21 
K, + 
 
 
 
 
, xx =  
12 22 
K, 
 
 
2 
2 
xk  
0 
0 
J NR 
2j J NR 
J NR 
k=1 
11 
K, + 
11 12 
K, + 12 
K, 
 
 
 
 
2 
2 
 
yk  
0 
0 
J NR 
2j J NR 
J NR 
21 
K, + 
21 22 
K, + 22 
K, 
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0 
0 
J J NR 
[J J 
J J] NR 
J J NR 
11 21 
K, + 
11 22 + 12 21 
K, + 12 22 
K,  
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the first contribution to in the expression above and:  
, xx 
 
 
2 
J NR 
2j J NR 
J NR 
0 
11 
K, 
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+ 11 12 K, + 2 
 
 
 
12 
K, 
 
 
 
2 
J NR 
2j J NR 
J NR 
0 
21 
K, 
+ 21 22 K, + 222 K, 
 
 
 
 
N  
 
J J NR 
[J J 
J J] NR 
J J NR 
0 
U 
U 
 
, xx =  
11 21 
K, 
+ 11 22 + 12 21 K, + 
 
 
12 22 
K, 
K  
 
 
2 
2 
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0 
J NR 
2j J NR 
J NR 
v 
K 1 
11  
K, 
+ 11 12 K, + 
 
= 
 
 
12 
K, 
K  
 
2 
2 
 
 
0 
J NR 
2j J NR 
J NR 
21 
K, 
+ 21 22 K, + 
 
 
22 
K, 
 
 
 
 
0 
J J NR 
[J J 
J J] NR 
J J NR 
11 21 
K, 
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+ 11 22 + 12 21 K, + 
 
 
12 22 
K,  
that is to say still in matric form that:  
 
U, xx  
X, xx  
 
 
 
 
U, yy  
X, yy  
 
 
 
 
U 
C 
T 
H, xy  
C 
H X, xy  
= m 
+ 
v 
F 
, xx  
y, xx  
 
 
 
 
v, yy  
y, yy  
 
 
 
 
v, xy  
y, xy  
 
2 
2 
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C (J P 
2j J P 
J P 
) 
K 
11 K, + 
11 12 K, + 
 
 
12 K, 
 
 
2 
2 
C (J P 
2j J P 
J P 
) 
K 
21 K, + 
21 22 K, + 22 K, 
 
W  
NR 
NR 
K 
2N 
 
 
 
U 
C (J J P 
[J J 
J J P 
] 
J J P 
) 
C 
K  
K  
 
 
C 
K 
C 
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K 11 21 K, + 11 22 + 12 21 K, + 11 21 K,  
= Hm P 
H 
P 
H 
cm 
+ F C xk 
F  
 
+ 
 
 
 
 
 
K 
v 
 
2 
2 
S (J P 
2j J P 
J P 
) 
k=1 
K  
k=1 
 
 
k=N+1 
K 
11 K, + 
11 12 K, + 
 
12 K, 
yk  
 
2 
2 
 
 
S (J P 
2j J P 
J P 
) 
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K 
21 K, + 
21 22 K, + 22 K, 
 
 
 
S (J J P 
[J J 
J J P 
] 
J J P 
) 
K 
11 21 K, + 
11 22 + 12 21 
K, + 11 21 K,  
C P 
K K,  
 
 
C P 
K K,  
W  
NR 
NR 
K 
2N 
 
 
U 
C P 
C 
K 
K  
 
 
C 
K 
C 
H 
P 
H 
P 
H T  
= m cm 
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+ F C xk 
 
K K, 
 
+ 
 
F 
2 
 
 
 
 
 
 
v 
S P 
K 1 
K 
K 1 
K NR 1 
K K, K 
= 
 
 
= 
 
= + 
 
yk  
 
 
S P 
K K,  
 
 
 
S P 
K K,  
W  
NR 
U 
C 
K  
K  
NR 
K  
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2N 
= Hm P 
H 
P 
H T 
T 
cm 
+ cf K 
C 
C 
xk 
F 
2  
 
+ 
ck  
 
 
 
 
K 
v 
k=1 
K  
k=1 
 
 
k=N+1 
yk  
= C 
H P U 
H P U 
H T T 
B U 
B U 
B 
m cm 
m + 
C 
C 
F 
 
C 
F + 
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F 
2 = 
cm 
m + 
 
C 
F + 
 
C  
 
Where:  
u1  
 
v 
1  
U =  
 
m 
M  
one  
 
 
v  
NR 
 
T 
(T 
T 
= 
C NR + 
) 
( 
) 
1 L c2 NR  
 
2 
2 
J 
J 
2 J J 
 
T 
0  
11 
12 
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11 12 
 
 
T 
2 
2 
2 
2 =  
with T = J 
J 
2 J J 
 
0 T 
2 
21 
22 
21 22 
2  
 
 
1j1 j21 
12 
J j22 
11  
J j22 + 12 
J j21  
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w1  
 
 
x1  
 
 
1y  
U  
 
F 
= M  
 
 
W NR  
 
xN 
 
 
 
 
yN  
 
 
One can also write:  
T = C 
H U 
H 
B U 
B U 
B 
 
m, 
+ C 
xx 
F, xx = 
cm 
m + 
 
C 
F + 
 
C  
 
J 
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By using the relation ( 
) ds 0 with = W + for each side ij of the element, one  
S - S 
= 
S 
, S 
S 
I 
can obtain K since this relation is still written:  
 
L 
2 
K 
W - W + 
(C + S + C + S) + L = L  
J 
I 
K 
xi 
K 
yi 
K 
xj 
K 
yj 
K 
K 
K 
sk 
2 
3 
 
where:  
= (C 
S) = (C 
S) 
1 
- 
H [T - T 
T 
H E H 
m 
- F] 
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sk 
K 
K 
K 
K 
ct 
 
= (C 
S) 1 
H [(B 
H B U 
B 
H B U 
B 
H B 
m - 
T 
) 
T 
T 
m 
m 
m + ( 
- 
 
) 
F 
F 
F + ( 
- 
 
) 
F 
F] 
K 
K 
ct 
C 
C 
C 
 
The relation above is still written in matric form:  
 
WITH = (A 

file:///Z|/process/refer/refer/p440.htm (33 of 75)10/2/2006 2:52:08 PM



file:///Z|/process/refer/refer/p440.htm

 
W + A) U 
 
+ A U 
F 
m 
m 
 
L 
0 
0 L 
C 
L 
S 
 
2 
NR 1 
+ 
NR 1 
+ 
NR 1 
+ 
NR 1 
+ 
NR 1 
+ 
 
 
 
with: To = 0 
0 
1 
- 
O 
-  
M 
M 
H ( 
T 
B 
- H B) 
 
 
3 
ct 
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C 
F 
F 
0 
0 
L 
L C 
L S 
 
 
2N  
2N 2N 
2N 
2N  
 
- 2 L C 
L S 
2 
L 
C 
L S 
0 
0 
0 
0 
0 
0 
N+1 N+1 
N+1 N+1 
N+1 N+1 
N+1 N+1 
 
 
 
1 0 
0 
0 
- 2 L C 
L S 
2 
L C 
L S 
0 
0 
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0 
K +1 K +1 
K +1 K +1 
K +1 K +1 
K +1 K +1 
 
Aw = -  
 
2 0 
0 
0 
0 
0 
0 
- 2 L 
C 
L 
S 
2 
L 
C 
L 
S 
2N-1 2N-1 
2N-1 2N-1 
2N-1 2N-1 
2N-1 2N-1 
 
 
 
 
2 
L C 
L S 
0 
0 
0 
0 
2 
L C 
L S 
2N 
2N 
2N 2N 
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L 
L 
- 
2N 
2N 
2N 2N 
 
 
L C 
L 
S 
 
NR 1 
+ 
NR 1 
+ 
NR 1 
+ 
NR 1 
+ 
 
1- 
With =  
M 
M 
H ( 
T 
B - H B) 
 
 
ct 
C 
F 
F 
L C 
L S 
 
2N 2N 
2N 
2N  
 
L C 
L 
S 
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NR 1 
+ 
NR 1 
+ 
NR 1 
+ 
NR 1 
+ 
 
1 
With =  
M 
M 
H ( 
T 
B 
- H B)  
m 
ct 
cm 
m 
m 
L C 
L S 
 
2N 2N 
2N 
2N  
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As follows:  
= P U + P U 
 
 
F 
m 
m 
 
with:  
 
-1 
P = A (A + A) 
 
 
 
W 
 
 
-1 
P = A A  
m 
 
m 
 
what implies:  
T = (B 
B P) U 
(B 
B P) U  
cm + 
C 
m 
m + 
C 
+ 
 
 
 
C 
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F 
 
Note:  
 
For the elements of type DKT and DST, there is B 
. It results from it from the expressions  
m = B = 0 
C 
C 
simplified preceding equations.  
 
 
4.4  
Stamp elementary rigidity  
 
4.4.1 Stamp elementary rigidity for the Q4 elements  
 
One takes again the forms of the matrices of rigidity given to [§4.4.1] of the documentation of  
reference [R3.07.03] and one replace H 
by H, H by H and H per H. One will note that  
MF 
MF 
F 
F 
F 
F 
in [R3.07.03] the results were presented without term of coupling membrane shearing  
transverse or transverse inflection shearing. They here are added.  
 
4.4.2 Stamp elementary rigidity for elements DKT, DKQ  
 
One takes again the forms of the matrices of rigidity given to [§4.4.1] of the documentation of  
reference [R3.07.03] and one replace H 
by H, H per H. Since the relation = 0 is  
MF 
MF 
F 
F 
satisfied the couplings transverse membrane shearing or transverse inflection shearing are  
non-existent.  
 
4.4.3 Stamp elementary rigidity for elements DST, DSQ  
 
One a:  
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W E 
 
= 
E 
( 
1 
H E + H + H - H H - T) + ( 
1 
H E + H + H - H H - T) 
-1 
+ TH 
 
TdS = 
int 
 
m 
MF 
m 
m 
ct 
MF 
F 
F 
F 
ct 
ct 
E 
 
E 
([ 
1 
- 
T 
H - H H 
H] E + [ 
1 
- 
T 
H - H H 
H]) + 
([ 
1 
- 
T 
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H - H H 
H] E + [ 
1 
- 
T 
H - H H 
H]) 
1 
+ TH - 
 
dS 
T 
 
m 
m 
ct 
m 
MF 
m 
ct 
F 
MF 
F 
ct 
m 
F 
F 
ct 
F 
ct 
E 
 
That is to say still:  
 
We  
 
= 
E 
(H E + H) + (T 
H E + H) 
1 
+ TH - 
 
TdS 
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int 
 
 
m 
MF 
MF 
F 
ct 
E 
where:  
1 
- 
T 
H  
H 
H H H 
m = 
m - 
m 
ct 
m 
1 
- 
T 
H  
H 
H H H  
MF = 
MF - 
 
m 
ct 
F 
1 
- 
T 
H  
H 
H H H 
F = 
F -  
 
F 
ct 
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From where:  
 
E 
W 
(U B H B U 
U B H B U 
U B H B U 
U B H B U 
int 
= 
T T  
m 
m 
m 
m 
m +  
T 
T 
 
m 
m 
MF 
F 
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F +  
T 
T 
T 
F 
F 
MF 
m 
m +  
T 
T 
 
 
F 
F 
F 
F 
F 
E 
T 
T 
-1 
T 
T 
-1 
T 
T 
-1 
T 
T 
- 
+ B H B 
B H 
B U 
U B H 
B 
U B H 
B U 
C 
ct 
C +  
C 
ct 
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cm 
m +  
m 
cm 
ct 
C +  
1 
 
 
 
 
m 
cm 
ct 
cm 
m 
T 
T 
-1 
T 
T 
-1 
T 
T 
- 
+ B H B U 
U B H 
B 
U B H 
B U 
C 
ct 
C 
F 
+ F C ct 
C +  
1 
 
 
 
 
 
 
 
F 
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C 
ct 
 
C 
 
F 
T 
T 
-1 
T 
T 
- 
+ U B H B U 
U B H 
B U) dS 
m 
cm 
ct 
C 
F 
+  
1 
 
 
 
F 
 
C 
ct 
cm 
m 
= T 
T 
U (B H B 
) 
dS U 
U (B H B 
) 
dS U 
U (B H B 
) 
dS U 
U (B H B 
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) 
dS U 
m 
m 
m 
m 
m +  
T 
T 
 
F 
F 
F 
F 
F +  
T 
T 
 
m 
m 
MF 
F 
F +  
T 
T 
 
 
 
 
F 
 
T 
F 
MF 
m 
m 
E 
E 
E 
E 
T 
T 
-1 
T 
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T 
-1 
T 
T 
-1 
T 
T 
- 
+ (B H B 
) 
dS 
(B H 
B 
) 
dS U 
U (B H 
B 
) 
dS 
U (B H 
B 
) 
dS U 
C 
ct 
C 
+  
C 
ct 
cm 
m +  
m  
cm 
ct 
C 
+  
 
1 
 
 
 
 
 
m cm 
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ct 
cm 
m 
E 
E 
E 
E 
T 
T 
-1 
T 
T 
-1 
T 
T 
- 
+ (B H B 
) 
dS U 
U (B H 
B 
) 
dS 
U (B H 
B 
) 
dS U 
C 
ct 
C 
F 
+ F 
C 
ct 
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F 
C ct C 
 
F 
E 
E 
E 
T 
T 
-1 
T 
T 
- 
+ U (B H B 
) 
dS U 
U (B H 
B 
) 
dS U 
m 
cm 
ct 
C 
F 
+  
 
1 
 
 
 
F 
C ct cm 
m 
E 
E 
= T 
THE U.K.U 
THE U.K.U 
THE U.K.U 
THE U.K.U 
K 
The U.K. 
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K U 
m 
m 
m +  
T 
F 
F 
F +  
T 
m 
MF 
F +  
T 
F 
Fm 
+ T 
m 
+ Tm m + T T 
 
 
 
m 
m 
+ T 
The U.K. 
K U 
THE U.K.U 
THE U.K.U 
THE U.K.U 
F 
+ T T F + Tm m F + Tf 
m 
m +  
T 
 
 
 
 
 
 
 
 
 
F 
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F 
 
with:  
K 
[B H B 
B H B 
dS 
] 
 
m =  
T 
T 
- 
 
m 
m 
m + 
1 
cm 
ct 
cm 
S 
 
It is also known that U = (U, 
) from where it results that:  
F 
F 
K 
B H B dS 
F 11 = T 
 
 
F 
F 
 
F 
S 
K 
K 
F 11 
F 12  
K 
with: K 
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B H B dS  
F 12 = 
T 
 
F =  
 
T 
 
 
K 
K 
 
F 
F 
 
F 
F 12 
22  
S 
K 
B H B dS 
F 22 = T 
 
 
F 
F 
 
F 
S 
 
K 
B H B dS 
mf11 = T 
 
m 
MF 
 
F 
K 
= K 
K 
with:  
S 
 
MF 
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(mf11 
mf12) 
K 
B H B dS 
mf12 = T 
 
m 
MF 
 
F 
S 
 
T 
K 
= K  
Fm 
MF 
 
 
Using the fact that = P U 
 
+ P U one deduces from it that:  
F 
m 
m 
 
T 
T 
T 
T 
W 
 
= U 
 
K U + U 
 
K U 
 
+ U 
 
K U + U 
 
K U  
int 
m 
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where:  
T 
T 
T 
T 
K = K + P (K 
+ K) P 
 
+ (K 
+ K) P  
 
+ P (K 
+ K) 
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m 
m 
m 
F 22 
m 
mf12 
m 
m 
m 
mf12 
m 
T 
T 
T 
T 
K = K 
+ K + P (K 
 
+ K) P 
 
+ (K 
+ K) P 
 
+ P (K 
 
+ K) 
F 
F 11 
F 22 
F 12 
F 12 
 
 
T 
T 
T 
T 
K = K 
+ K + (K 
+ K) P 
 
+ P (K 
+ K) 
+ P (K 
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+ K) P 
MF 
mf11 
m 
mf12 
m 
m 
F 12 
m 
F 22 
 
 
T 
K = K 
Fm 
MF 
 
 
This is still written:  
U 
E 
W 
U, THE U.K. 
 
int = ( 
m  
m 
 
F) 
 
 
 
 
 
 
U F  
K 
K 
m [2N×2N] 
MF [2N×3N]  
where: K 
is the elementary matrix of rigidity for an element of  
[5N×5N] =  
T 
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K 
K 
MF [3N×2N] 
F [3N×3N]  
excentré plate DST.  
 
 
 
4.5  
Stamp of elementary mass  
 
The terms of the matrix of mass are obtained after discretization of the variational formulation  
following:  
 
d+h/2 
W ac 
 
= 
U 
& udzdS 
mass 
 
d-h/2 S 
= (u& U 
+ v& v 
+ w& W 
) + (+ D) (U 
& 
+ v 
& 
+ & U 
+ & v 
) + (+ D 
2 + D 2) (& + &) dS 
m 
MF 
m 
X 
y 
X 
y 
F 
MF 
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m 
X 
X 
y 
y 
S 
 
+h/2 
+h/2 
+h/2 
with  
dz, 
zdz and  
, 
Z dz.  
m = 
MF =  
= 2 
F 
- H/2 
- H/2 
- H/2 
 
Note:  
 
If the plate is homogeneous or symmetrical compared to its average layer then mf=0.  
 
 
4.5.1 Stamp of traditional elementary mass  
 
4.5.1.1 Element  
Q4  
 
The discretization of displacement for this isoparametric element is:  
 
U  
K 
 
 
 
v 
 
 
NR 
K 

file:///Z|/process/refer/refer/p440.htm (60 of 75)10/2/2006 2:52:08 PM



file:///Z|/process/refer/refer/p440.htm

 
 
U = NR W 
= 
 
K 
K 
K 
,..., 
1 
NR 
 
 
K 1 
= 
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The matrix of mass, in the base where the degrees of freedom are gathered according to the directions 
of  
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translation and of rotation, has then as an expression:  
 
M 
0 
0 
M 
0 
m 
MF 
 
 
 
0 
M 
0 
0 
M 
m 
MF  
 
 
M = 0 
0 
M 
0 
0 
 
m 
 
T 
M 
0 
0 
M 
0 
MF 
F 
 
 
T 
 
0 
M 
0 
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M 
MF 
F  
 
with:  
T 
M = 
NR 
dS 
NR  
 
m 
m 
S 
 
M 
= (+ D) T 
NR 
dS 
NR 
 
MF 
 
 
MF 
m 
S 
 
M = (+ D 
2 + d2 
) T 
NR 
dS 
NR 
 
F 
 
 
F 
MF 
m 
S 
 
where: NR = (NR 
NR 
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1 
L 
K).  
 
For the continuation, one poses =  
+ D and  
2 
= + D 
2 + D.  
MF 
MF 
m 
F 
F 
MF 
m 
 
 
4.5.1.2 Elements of the type DKT, DST  
 
Like:  
W  
W  
 
0 
 
 
 
NR 
K 
 
 
2N  
 
= NR (,) 
+ P (,) 
 
 
X 
K 
xk 
xk 
K 
 
K 1= 
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k=N 1+ 
 
 
P (, 
) 
 
y  
yk  
yk 
 
 
where: = P U +  
P U  
m 
m 
F 
 
one deduces from it that:  
the U.K.  
 
 
W  
 
0 
0 
NR (,) 
0 
0 
v 
K  
 
 
K  
 
 
NR  
 
 
NR 
(,) NR 
(,) NR 
(,) NR 
(,) NR 
(,) W 
.  
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X =  
 
 
kxu  
kxv  
kxw  
kxx  
kxy  
 
 
K  
 
k=1  
 
NR 
(,) NR 
(,) NR 
(,) NR 
(,) NR 
( , ) 
y 
kyu  
kyv  
kyw  
kyx  
kyy  
 
xk  
 
 
 
 
 
 
yk  
 
The matrix of mass has then as an expression:  
 
M 
M 
m 
MF  
M =  
 
 
M 
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The part membrane M of the elementary matrix of mass is composed of the blocks kp (kth line  
m 
and pième column) following:  
 
NR NR 
0 
NR NR 
NR 
NR 
NR NR 
NR NR 
K 
p 
 
K pxu + kxu p 
K 
pxv + 
kyu 
p  
m 
+  
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MF  
 
 
0 
NR NR 
NR NR 
NR NR 
NR NR 
NR NR 
K 
p  
K pyu + kxv p 
K 
pyv + 
kyv 
p  
NR NR 
NR NR 
NR 
NR 
NR NR 
kxu 
pxu + 
kyu 
pyu 
kxu 
pxv + 
kyu 
pyv  
+ F  
 
 
NR NR 
NR NR 
NR NR 
NR NR 
pxu 
kxv + 
pyu 
kyv 
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kxv 
pxv + 
kyv 
pyv  
 
The part inflection M is composed of the blocks kp (kth line and pième column) following:  
F 
 
NR NR 
0 0 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
K 
p 
 
kxw pxw + kyw pyw 
kxw 
pxx + 
kyw 
pyx 
kxw 
pxy + 
 
 
 
 
kyw 
pyy  
 
0 
0 0 
NR 
NR 
NR NR 
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NR 
NR 
NR NR 
NR 
NR 
NR NR 
 
m  
+ F kxx pxw + kyx pyw 
kxx 
pxx + 
kyx 
pyx 
kxx 
pxy + 
kyx 
pyy  
 
 
 
 
0 
0 0 
NR NR 
NR NR 
NR NR 
NR NR 
NR NR 
NR NR 
kxy 
pxw + 
kyy 
pyw 
kxy 
pxx + 
kyy 
pyx 
kxy 
pxy + 
kyy 
pyy  
 
The coupling part between the membrane and the inflection M is composed of the blocks kp (kth line 
and  
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MF 
pième column) following:  
 
NR NR 
NR NR 
NR NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
K 
pxw 
K 
pxx 
K 
pxy  
kxu pxw + kyu pyw 
kxu 
pxx + 
kyu 
pyx 
kxu 
pxy + 
kyu 
pyy  
MF 
+  
 
 
 
 
F  
 
 
NR NR 
NR NR 
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NR NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
NR 
K 
pyw 
K 
pyx 
K 
pyy  
kxv pxw + kyv pyw 
kxv 
pxx + 
kyv 
pyx 
kxv 
pxy + 
kyv 
pyy  
 
 
The coupling part between the inflection and the membrane M is composed of the blocks kp (kth line 
and  
Fm 
pième column) following:  
NR 
NR 
NR 
NR  
NR NR 
NR 
NR 
NR 
NR 
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NR 
NR 
kxw 
p 
kyw 
p 
kxw 
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kyw 
pyu 
kxw 
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kyw 
pyv  
NR NR 
NR NR 
NR 
NR 
NR NR 
NR 
NR 
NR NR 
 
MF  
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pxu + 
kyx 
pyu 
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NR NR 
NR NR 
NR NR 
NR NR 
NR NR 
kxy 
p 
kyy 
p  
kxy pxu + kyy pyu 
kxy 
pxv + 
kyy 
pyv  
 
 
4.5.2 Stamp of improved elementary mass  
 
As the arrow of a flexbeam only can be represented with difficulty by one  
linear approximation, one can enrich the functions by form for the terms of inflection. This  
approach is used in Code_Aster for the elements of type DKT, DST and Q4G where functions  
of form used in the calculation of the matrix of mass of inflection are of order 3. The interpolation for  
W is written as follows:  
 
NR 
W = NR 
(,) W 
NR 
(,) W 
NR 
(,) W 
 
3 (K) 
1 1  
K + 
3 (K) 
1 2  
, K + 
3 (K) 
1 3  
- + 
- + 
 
- + 
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, K 
k=1 
 
 
4.5.2.1 Elements of type DKT  
 
It is known that in the approximation of one Coils-Kirchhoff has = - W and = - W in any point of  
X 
, X 
y 
, y 
the element.  
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Because of discretization stated above one a:  
 
NR 
W = NR 
(,) W 
(J NR 
(,) J NR 
(,))W 
(J NR 
(,) J NR 
(,))W 
 
3 (K) 
1 1  
K + 
11 
3 (K) 
1 2 + 
21 
3 (K) 
1 3  
, xk + 
12 
3 (K) 
1 2 + 
22 
3 (K) 
1 3  
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- + 
- + 
- + 
- + 
- + 
, yk 
k=1 
 
since:  
W 
J 
J 
W 
, K  
 
 
11 
12  
, xk  
= 
 
 
 
 
 
 
 
 
 
 
W 
J 
J 
W 
, K  
21 
22  
 
, yk  
 
This is still written:  
 
NR 
W = NR 
(,) W 
NR 
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( , ) 
NR 
( , ) 
3 (K) 
1 1  
K + 
3 (K) 1 2 xk + 3 (K) 1 3  
- + 
- + 
- + 
yk 
k=1 
 
NR 
= NR (,) W NR (,) 
NR 
( , ) 
kww  
K + 
kwx xk + 
kwy yk 
k=1 
 
where:  
NR 
( , 
- +  
) 
= NR 
( , 
- +  
) 
 
3 (K) 
1 1 
3 (K) 
1 1 
NR 
( , 
- + 
) 
= - J NR 
( , 
- + 
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) 
- J NR 
( , 
- + 
) 
.  
3 (K) 
1 2 
11 
3 (K) 
1 2 
21 
3 (K) 
1 3 
NR 
( , 
- + 
) 
= - J NR 
( , 
- + 
) 
- J NR 
( , 
- + 
) 
 
3 (K) 
1 3 
12 
3 (K) 
1 2 
22 
3 (K) 
1 3 
 
As follows:  
the U.K.  
 
 
W  
 
0 
0 
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NR 
(,) NR 
(,) NR 
( , ) 
v 
kww  
kwx  
kwy  
 
 
K  
 
 
NR  
 
 
NR 
(,) NR 
(,) NR 
( , ) 
NR 
(,) NR 
(,) W 
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kxu  
kxv  
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kxx  
kxy  
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NR 
(,) NR 
(,) NR 
( , ) 
NR 
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( , ) 
y 
kyu  
kyv  
kyw  
kyx  
kyy  
 
xk  
 
 
 
 
 
 
yk  
 
By not taking account of the effects of inertia, the matrix of mass has the following form thus:  
 
M 
M 
m 
MF  
M =  
 
 
M 
M 
Fm 
F  
 
The part membrane M of the elementary matrix of mass is composed of the blocks kp (kth line  
m 
and pième column) following:  
 
NR NR 
0 
NR NR 
NR 
NR 
NR NR 
NR NR 
K 
p 
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K pxu + kxu p 
K 
pxv + 
kyu 
p  
m 
+  
 
 
 
 
MF  
 
 
0 
NR NR 
NR NR 
NR NR 
NR NR 
NR NR 
K 
p  
K pyu + kxv p 
K 
pyv + 
kyv 
p  
NR NR 
NR NR 
NR 
NR 
NR NR 
kxu 
pxu + 
kyu 
pyu 
kxu 
pxv + 
kyu 
pyv  
+ F  
 
 
NR NR 
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The part membrane-inflection M is composed of the blocks kp (kth line and pième column) following:  
MF 
 
NR NR 
NR NR 
NR NR 
NR 
NR 
NR 
NR 
NR 
NR 
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pxw  
K 
pxx 
K 
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NR 
K 
pyw 
K 
pyx 
K 
pyy  
kxv pxw + kyv pyw 
kxv 
pxx + 
kyv 
pyx 
kxv 
pxy + 
kyv 
pyy  
 
 
The part inflection-membrane M is composed of the blocks kp (kth line and pième column) following:  
Fm 
 
NR 
NR 
NR 
NR  
NR NR 
NR 
NR 
NR 
NR 
NR 
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kxw 
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kyw 
pyv  
NR NR 
NR NR 
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NR 
NR NR 
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pyv  
 
 
The term M of inflection is composed of the blocks kp (kth line and pième column) following:  
F 
 
NR 
NR 
NR 
NR 
NR 
NR 
 
kww pww 
kww 
pwx 
kww 
pwy  
NR NR 
NR 
NR 
NR 
NR 
m  
kwx 
pww 
kwx 
pwx 
kwx 
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NR 
NR 
NR 
NR 
NR 
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kwy 
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pyx 
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NR NR 
NR NR 
NR NR 
NR NR 
NR NR 
NR NR 
kxy 
pxw + 
kyy 
pyw 
kxy 
pxx + 
kyy 
pyx 
kxy 
pxy + 
kyy 
pyy  
 
 
4.5.2.2 Elements of the DST type  
 
It is known that for these elements one has = - W and = - W where the distortion is constant  
X 
X 
, X 
y 
y 
, y 
on the element.  
 
Like:  
 
NR 
W = NR 
(,) W 
(J NR 
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(,) J NR 
(,))W 
(J NR 
(,) J NR 
(,))W 
 
3 (K) 
1 1  
K + 
11 
3 (K) 
1 2 + 
21 
3 (K) 
1 3  
, xk + 
12 
3 (K) 
1 2 + 
22 
3 (K) 
1 3  
- + 
- + 
- + 
- + 
- + 
, yk 
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one can also write:  
 
NR 
W = NR 
( , 
- +  
) 
W + NR 
( , 
- + 
) 
+ NR 
( , 
- + 
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1 1 
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3 (K) 
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11 X 
12 y 
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where:  
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= NR 
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- + 
) 
 
3 (K) 
1 3 
12 
3 (K) 
1 2 
22 
3 (K) 
1 3 
 
NR 
NR 
( , ) 
NR 
( , ) 
3 (K) 
1 1 = 
3 (K) 
1 1  
- + 
 
- + 
k=1 
NR 
NR 
( , ) 
NR 
( , )  
3 (K) 
1 2 = 
3 (K) 
1 2  

file:///Z|/process/refer/refer/p450.htm (18 of 55)10/2/2006 2:52:09 PM



file:///Z|/process/refer/refer/p450.htm

- + 
 
- + 
k=1 
NR 
NR 
( , ) 
NR 
( , ) 
3 (K) 
1 3 = 
3 (K) 
1 3  
- + 
 
- + 
k=1 
 
U 
W 
U 
W 
1  
1  
1  
1  
 
 
 
 
 
 
 
 
v 
v 
1  
x1  
1  
x1  
 
 
 
 
 
 

file:///Z|/process/refer/refer/p450.htm (19 of 55)10/2/2006 2:52:09 PM



file:///Z|/process/refer/refer/p450.htm

 
 
X  
 
 
1y  
 
 
1y  
= 
-1 
H 
[(B 
B P) 
(B 
B P) 
 
m 
m 
M 
M] T 
T 
ct 
C 
+ C 
 
 
 
+ 
 
C 
+ 
 
 
 
C 
 
= U M  
 
+ 
M  
 
 
W 
y  
 

file:///Z|/process/refer/refer/p450.htm (20 of 55)10/2/2006 2:52:09 PM



file:///Z|/process/refer/refer/p450.htm

 
 
 
 
 
 
 
 
 
W 
W 
NR  
 
 
NR  
U  
 
U  
 
NR 
xN 
 
 
 
NR  
xN 
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NR  
yN  
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yN  
 
One obtains the interpolation for W then:  
 
NR 
NR 
W = NR  
(,) U 
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This can be still written in the following way:  
 
the U.K.  
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(,) NR 
(,) NR 
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The matrix of mass has the following form thus:  
 
M 
M 
m 
MF  
M =  
 
 
M 
M 
Fm 
F  
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The part membrane M of the elementary matrix of mass is composed of the blocks kp (kth line  
m 
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and pième column) following:  
 
NR NR 
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NR 
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NR NR 
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pwv 
 
K pxu + kxu p 
K 
pxv + 
kyu 
p  
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+  
 
 
 
 
MF  
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pxv + 
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The part membrane-inflection M is composed of the blocks kp (kth line and pième column) following:  
MF 
 
NR 
NR 
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pyy  
 
 
The part inflection-membrane M is composed of the blocks kp (kth line and pième column) following:  
Fm 
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The term M of inflection is composed of the blocks kp (kth line and pième column) following:  
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4.5.2.3 Elements of the Q4 type  
 
One proceeds in the same way that for the elements of the DST type but with:  
 
w1  
 
 
x1  
 
 
X  
1y  
= B M  
 
 
 
 
 
C 
y  
 
 
W NR  
 
xN 
 
 
 
 
yN  
 
where: Bc is the matrix established with [§4.3.1].  
 
 
One deduces from it that:  
the U.K.  
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yk  
 
 
The matrix of mass has the following form thus:  
 
M 
0 
m 
 
M =  
 
 
0 
MF  
 
 
The part membrane M of the elementary matrix of mass is composed of the blocks kp (kth line  
m 
and pième column) following:  
 
NR NR 
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p 
 
 
 
m  
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NR NR 
K 
p  
 
 
The term M of inflection is composed of the blocks kp (kth line and pième column) following:  
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NR 
NR 
NR 
NR 
NR 
NR 
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4.5.2.4 Notices  
 
One neglects in the form of the elementary matrix of mass without offsetting the terms  
of inertia of rotation (& + & 
dS 
) 
 
 
because the latter are negligible compared to  
F 
X 
X 
y 
y 
S 
others. Indeed a multiplicative factor of h2/12 the dregs to the other terms and they become negligible  
for a thickness report/ratio over characteristic length lower than 1/10. When offsetting is  
introduced, these terms of the form (+ D 
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2  
+ d2) (& + & 
dS 
) 
 
 
are not any more  
F 
MF 
m 
X 
X 
y 
y 
S 
negligible and are introduced into the form of the matrix of mass.  
 
 
 
5  
Implementation and postprocessings  
 
Offsetting is introduced by the optional key word OFFSETTING on the level of 
AFFE_CARA_ELEM of  
same manner as the thickness according to methods' defined in introduction. When this key word is 
not  
not present offsetting is worth zero per defect.  
 
 
5.1  
Load application and couples  
 
All calculations are made in the reference mark of diagram (plane of the grid). If one defines forces 
or  
couples compared to another reference mark, the user will have to make for FORCE_ARETE and 
FORCE_NODALE  
transformations necessary to be reduced to the reference mark grid. For FORCE_COQUE  
the user will be able to specify the plan of load application and conversion towards the reference mark 
of calculation  
will be automatic.  
 
One thus introduces into AFFE_CHAR_MECA the concept of plan of load application by the key 
word  
PLAN under FORCE_COQUE. This plan of application is different from the datum-line or plan from 
diagram  
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on which the grid rests. For this key word one will define the four following possibilities  
of application of the forces: “INF” “MOY” “SUP” “EMAIL”. “INF” “MOY” and “SUP” mean that 
one  
respectively apply the efforts in lower, average and higher skin of plate. “EMAIL”  
mean that one applies the efforts to the level of the datum-line or plan of the grid. By defect them  
efforts will be applied to the plan of the grid of the plate. The efforts of the type are concerned  
FORCE_COQUE of the TE0032.  
 
In local reference mark with the element, when the forces and the couples are aplliqués on “MOY” 
one uses  
simple relation of passage:  
C = C - df 
X 
X 
y  
C = C + df 
y 
y 
X 
 
to bring back the efforts and the couples in the reference mark of the grid where calculations are 
made.  
 
In local reference mark with the element, when the forces and the couples are applied to “SUP” one 
uses  
simple relation of passage:  
C = C - (D + H/2) F 
X 
X 
y  
C = C + (D + H/2) F 
y 
y 
X 
 
In local reference mark with the element, when the forces and the couples are applied to “INF” one 
uses  
simple relation of passage:  
C = C - (D - H/2) F 
X 
X 
y  
C = C + (D - H/2) F 
y 
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If the efforts are given in the total reference mark of the element, one uses relations of passage of  
type: C = C + (D + H 
/2) N F where C is defined compared to reference mark “INF” “MOY” “SUP” with equal  
to -1, 0 and 1, respectively. When there is no offsetting, the preceding formula is reduced to  
C = C + H/N 
2 F.  
 
Note:  
 
For the loadings of the type FORCE_ARETE or FORCE_NODALE efforts and couples  
can be expressed that compared to the reference mark of the grid. If the user does not know them  
that compared to the average layer of the plate, it will have to carry out the change of reference mark 
with  
the hand to have the expression of the efforts and the couples compared to the surface of grid.  
The relation to be used is C = C + dn F where D is the distance between the plan of calculation and 
the plan  
of loading directed by the normal with the hull. It is obvious that the user has interest with it  
that the loading plan is the plan of the grid, but it is not always possible to make  
to coincide these two plans as one can see it on the left part of the figure of page 6.  
 
5.2  
Application of the boundary conditions in displacement  
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For the boundary conditions of the displacement type the user will have to pay attention to the fact 
that they  
can apply that to the reference mark of grid. Relations of passage compared to  
conditions given on the average layer are as follows:  
 
=  
ref. 
moy 
 
U 
= U 
-  
dn 
ref. 
moy 
moy 
 
5.3 Postprocessings  
 
For postprocessings, the results owing to lack of generalized efforts type are given in  
locate corresponding to the plan of diagram. To have them in the other reference marks, it will be 
necessary that the user  
indicate the plan of postprocessing and the changes of reference mark will be automatic.  
 
For the postprocessing of the efforts generalized in the TE0033, one will define the four possibilities  
following of postprocessing of the efforts by the PLANE key word: “INF” “MOY” “SUP” “EMAIL” 
of  
orders CALC_ELEM and CALC_CHAM_ELEM with the same direction as previously. The defect is  
put at “EMAIL”. All calculations are made in the plan “EMAIL” of the grid (in particular 
calculation  
nodal forces). When there is no offsetting it is the average layer of the plate: one  
thus find postprocessing by defect. To pass from the efforts results generalized of “EMAIL” to  
“MOY” one uses the simple relation of passage:  
 
NR = NR 
M = M - NR 
D  
T = T 
 
To pass from the efforts results generalized of “EMAIL” to “SUP” one uses the simple relation of  
passage:  
NR = NR 
M = M - (D + H/) 
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2 NR  
T = T 
 
To pass from the efforts results generalized of “EMAIL” to “INF” one uses the simple relation of  
passage:  
NR = NR 
M = M - (D - H/) 
2 NR  
T = T 
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6  
Static and modal validation  
 
6.1 Validation  
initial  
 
The first part of the validation consists in testing a simple plate subjected to forces and  
couples and whose plan of grid does not coincide with the plan of the average layer on which are  
applied efforts. For the plate subjected to forces and couples, results with and without  
offsetting must take account of the change of reference mark for the couples as indicated Ci 
below.  
 
M 
M 
F 
F 
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M+dn^F 
D 
M+dn^F 
N 
F 
F 
 
 
Displacements are in the following way dependent for a point located at a height Z compared to  
average layer:  
 
U = U 
+  
N 
Z = U + (Z + D N 
)  
moy 
moy 
ref. 
ref. 
 
what is still written:  
 
=  
moy 
ref. 
 
U 
= U + dn 
moy 
ref. 
ref. 
 
what enables us to establish the relations of passage between displacements compared to the layer  
means and those compared to the datum-line.  
 
For the generalized efforts, in the two preceding cases of figure, there are the same results on  
layers means, inferior and superior of plate.  
 
 
6.2  
Case-test SSLS111: offsetting for simple plates  
 
It is about a calculation in inflection of double-layered made up of two different isotropic materials. 
One studies  
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the coupling membrane-inflection. The calculation of reference is that of double-layered defined by  
DEFI_COQU_MULT made up of two different isotropic materials (not symmetry according to Z). 
The other  
modeling is made up of two plates offset compared to average fibre of the plate  
used with DEFI_COQU_MULT. The results, identical of one modeling to the other, are given in  
term of displacements and generalized efforts. Moreover one carries out on the geometry of this test 
one  
analyze modal for two modelings: the found Eigen frequencies are identical.  
 
 
6.3  
Case-test SSLS112: offsetting for composite plates  
 
It is about a calculation in inflection of a quadricouche having a material not-symmetry compared to  
its average plan. The calculation of reference uses a definite quadricouches by DEFI_COQU_MULT. 
The other  
modeling uses two double-layered definite by DEFI_COQU_MULT but offset compared to fibre  
average of the quadricouche. The results, identical of one modeling to the other, are given in  
term of displacements.  
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7 Conclusion  
 
The finite elements of plate which we describe here are used in the mean structural analyses  
hurled whose thickness report/ratio over characteristic length is lower than 1/10. The average layer  
of these structures coincide not with the plan of the grid (plane of diagram). Offsetting corresponds  
thus with the distance from the average layer compared to the layer of diagram. A offsetting D 
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positive means  
that the average surface of the plate is at a distance dn of the element of plate with a grid, the 
direction  
N being given by the normal to the element.  
The values of displacements and generalized efforts obtained are given by defect in the reference 
mark  
grid. For the generalized efforts, one can however define a reference mark of postprocessing -  
locate associated with the average layer - different from the reference mark of diagram. Same 
manner, efforts  
applied are regarded as being given by defect in the reference mark of diagram. In the case of  
FORCE_COQUE, one can however specify a reference mark of load application and couples - 
reference mark  
associated the average layer - different from the reference mark of diagram.  
Equivalent elements are not available in thermics; thermomechanical chainings  
are thus not available for the offset elements of plates.  
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Appendix 1 Factors of transverse correction of shearing  
for orthotropic or laminated plates  
offset  
 
The Hct matrix is defined so that the surface density of transverse energy of shearing obtained  
in the case of the three-dimensional distribution of the constraints resulting from the resolution of 
balance is equal to  
that of the model of plate based on the assumptions of Reissner, for a behavior in pure bending. One  
must thus find Hct such as:  
 
1 +h/2 
1 
1 
 
+h/2 
xz  
H-1 
-1 
= TH T 
ct 
= Hct with =  
and T = 
dz = H 
 
.  
2 
2 
2 
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ct 
yz  
- h/2 
- h/2 
 
To obtain Hct one uses the distribution of following Z obtained starting from the resolution of the 
equations  
of balance 3D without external couples:  
 
Z 
Z 
= - ( 
with xz =  
= 0 for z=±h/2.  
, + 
) D; 
, 
= - ( , + 
) D 
xz 
xx X xy y yz 
xy X yy, y  
yz 
- h/2 
- h/2 
 
If there is no coupling membrane inflection (symmetry compared to z=0), constraints in  
plan of element xx, yy, xy in the case of have as an expression a behavior of pure inflection:  
 
= zA (Z) M with A Z = H Z H-1 
( ) 
() F.  
 
If ( 
H Z) and Hf do not depend on X and y one can determine Hct. Indeed:  
 
M xx, X - Mxy, y  
 
 
Tx Mxx, X + Mxy, y  
M xy, X - M 
 
 
yy, y  
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(Z) = D (Z) T 
 
 
1 
+ D (Z) 
2 
where T = 
= 
and = 
 
T 
 
M 
 
y  
M xy, X + M yy, y  
 
yy, X 
 
 
M xx, y 
 
like:  
 
Z 
With 
With 
With 
With 
11 + 
33 
13 + 
32  
D = -  
D,  
1 
2 A 
With 
With 
With 
h/2 
31 + 
23 
22 + 
33 
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- 
Z 
With 
With 
With 
With 
With 
With 
11 - 
33 
13 - 
2 
2 
32 
12 
31 
D = -  
D.  
2 
2 A 
With 
With 
With 
With 
With 
h/2 
31 - 
23 
33 - 
2 
2 
22 
32 
21 
- 
+h/2 
C = 
DTH 1 
- D 
11 
1 1dz; 
- h/2 
1 +h/2 

file:///Z|/process/refer/refer/p460.htm (4 of 38)10/2/2006 2:52:10 PM



file:///Z|/process/refer/refer/p460.htm

1  
T C 
C  
T 
+h/2 
It results from it that  
- 
H 1 
11 
12 
T 
-1 
= 
T 
with: C = 
D H D 
 
dz;  
2 
2 C 
C 
12 
1 
 
2 
12 
22  
- h/2 
- h/2 
+h/2 
C 
= 
DTH 1 
- D 
22 
2 2dz 
- h/2 
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1 +h/2 
1 
As in addition  
-1 
- 
H 
1 
-1 
= 
TH T one proposes to take H = C to satisfy them as well as possible  
2 
2 
ct 
ct 
11 
- h/2 
two equations whatever T and.  
 
+h/2 
By comparing Hct thus calculated with H 
H 
ct = dz one reveals the coefficients of correction of  
- h/2 
following transverse shearing: K = H11/H 11; K 
= H12/H 12; K = H22/H 22 
1 
ct 
ct 
12 
ct 
ct 
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2 
ct 
ct.  
 
For a homogeneous, isotropic or anisotropic plate, one finds as follows: Hct =kh H with k=5/6.  
 
Note:  
 
This method is valid only when the composite plate is symmetrical compared to z=0.  
 
· For a multi-layer material, one establishes that:  
 
NR 
i-1 
I 
H 
1 
1 
1 
C 
= I (H AT 
2 
2 
p p 
- Z AT) H-1 
I 
( 
 
H With 
p p 
- Z A 
11 
p 
I 
p 
I 
I) + 
4 
2 
2 
i=1 
p=1 
p=1 
i-1 

file:///Z|/process/refer/refer/p460.htm (7 of 38)10/2/2006 2:52:10 PM



file:///Z|/process/refer/refer/p460.htm

I 
1 
1 
3 
3 
- 
1 
1 
2 
2 
- 
(zi+1 - Z) [ATH 1 
I 
( 
 
H With 
p p 
- Z A 
I 
) + (H AT 
p p 
- Z AT) H 1A 
I 
p 
I 
p 
I 
I 
 
I]  
24 
2 
2 
p=1 
p=1 
1 
+ 
(z5 
5 
T 
-1 
i+1 - zi) A H 
With 
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80 
I 
 
I 
1 
WITH + A 
WITH + A  
11 
33 
13 
32 
where: H = Z +1 - Z, = (Z +1 + Z 
I 
I 
I 
I 
I 
I) and A 
 
for  
2 
I represents the matrix A + A 
WITH + A  
31 
23 
22 
33 
layer I.  
 
· Validity of the choice H 
= C 1 
- 
ct 
11 can be examined a posteriori when one has an estimate of  
the solution (fields of displacements and plane constraints, in particular). One can then estimate  
the variation enters the two estimates on energy. A step of calculation in two stages for  
multi-layer plates and hulls (with Hct diagonal and two coefficients k1 and k2) was besides  
developed by Noor and Burton [bib10] [bib11].  
 
· Danslecasde an isotropic or anisotropic homogeneous plate the equality between two energies is  
satisfied in a strict sense since D2 = 0. The choice makes above is then valid and no examination has  
posteriori is not necessary.  
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Summary:  
 
We present in this document the theoretical formulation of element SHB8PS and its establishment  
numerical for non-linear incremental analyses implicit (great displacements, small rotations,  
small deformations).  
 
It is about a three-dimensional cubic element with 8 nodes with a called privileged direction 
thickness.  
Thus, it can be used to represent mean structures while correctly taking into account them  
phenomena through the thickness (inflection, elastoplasticity), thanks a numerical integration to 5 
points of  
Gauss in this privileged direction.  
 
In order to reduce the computing time considerably and to draw aside various likely blockings  
to appear, this element under-is integrated. It requires consequently a mechanism of stabilization in 
order to  
to control the modes of deformation to null energy (modes of Hourglass).  
 
In addition to its cost of relatively weak calculation and its good performances in elastoplasticity, this 
element  
have another advantage. Since it is based on a three-dimensional formulation and that it only has  
degrees of freedom of translation, it is very easy to couple it with voluminal elements 3D, which is  
very useful in systems where voluminal hulls and elements must cohabit.  
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1 Introduction  
 
Many recent work proposed to use a voluminal formulation for the structures  
thin. Two principal families of methods, which rest all on the introduction of a field of  
postulated deformation (“assumed strain”), emerge. Methods of the first family  
consist in using a conventional numerical integration with an adequate control of all them  
modes of blocking and locking (volume, transverse shearing, membrane). Methods of  
the second family consist in under-integrating the elements to remove blockings and controlling  
the modes of Hourglass which rise from this under-integration (see [bib3] [bib4]). Both  
approaches were studied in details in the case of an elastic behavior. On the other hand, very little  
work treats elastoplastic case.  
 
The element presented here rests on an under-integrated formulation especially developed for  
elastoplastic behavior of the structures in inflection. The basic idea consists first of all with  
to make sure that there are sufficient points of Gauss in the thickness to represent it correctly  
phenomenon of inflection, then to calculate rigidities of stabilization in an adaptive way according to 
the state  
plastic of the element. That represents an unquestionable improvement compared to the formulations  
traditional for the forces of stabilization, because these last rest on an elastic stabilization  
who becomes too rigid when the effects of plasticity dominate the response of the structure.  
 
Element SHB8 is a continuous three-dimensional cube with eight nodes, in which a direction  
privileged, called thickness, was selected. It can thus be used to model the structures  
thin and to take into account the phenomena which develop in the thickness within the framework  
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mechanics of the continuous mediums three-dimensional. Since this element is under 
integrated, it exhibe of the modes of Hourglass which must be stabilized. We chose the method of  
stabilization introduced by Belytschko, Bindeman and Flanagan [bib3] [bib4]. This element and this  
method of stabilization were already implemented in an explicit formulation by Abed-Meraim  
and Combescure [bib2]. This documentation describes the formulation of this element, its 
implementation  
numerical for the prediction of elastic and elastoplastic structural instabilities, like sound  
establishment in Code_Aster. For the non-linear problems, an incremental formulation  
implicit of Newton-Raphson type is used [R5.03.01]. The equilibrium equations are solved by  
method of Lagrangian the update. The control of the increments of load and displacement is  
based on a method of piloting close to the algorithm to Riks [bib5]. Implementation the numerical  
of this element within a non-linear framework was proposed by Legay and Combescure in [bib1].  
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2  
Kinematics of the element  
 
Element SHB8 is a hexahedron with 8 nodes. The five points of integration are selected along  
direction in the reference mark of the local co-ordinates. The shape of the element of reference as 
well as  
points of integration are represented on [Figure 2-a].  
 
 
7 
8 
6 
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5 
 
4 
5 
 
3 
2 
3 
1 
4 
2 
1 
 
Appear 2-a: Geometry of the element of reference and points of integration  
 
This element is isoparametric and has the same linear interpolation and same kinematics  
that hexaèdraux elements with 8 standard nodes.  
 
 
 
3 Formulation  
variational  
 
The formulation used for the construction of element SHB8PS differs from a formulation  
traditional simply by the choice of a postulated deformation &, therefore of an operator gradient  
discretized, allowing to avoid the induced modes parasitized by under integration.  
 
Thus, the variational principle is written:  
 
(v, &) = (&): FD - 
ext. 
u& F 
= 0  
V 
 
where represents the total virtual power, the variation, the v field speed, u& speeds  
nodal, & the rate of postulated deformation (assumed strain misses), the constraint of Cauchy, V it  
updated volume and ext. 
F 
external forces.  
 
The discretized equations thus require the only interpolation the speed v and rate of  
deformation postulated & in the element. We now will build element SHB8PS to be left  
of this equation. The complete developments and the demonstrations concerning this element are  
explained in details in [bib2].  
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4 Discretization  
 
4.1  
Discretization of the field of displacement  
 
The space co-ordinates X of the element are connected to the nodal co-ordinates X by means of  
I 
II 
isoparametric functions of forms NR by the formulas:  
I 
 
8 
X = X NR (,) = NR (,) X  
I 
II 
I 
I 
II 
I 1 
= 
 
In the continuation, and except contrary mention, one will adopt the convention of summation for the 
indices  
repeated. The indices in small letters I vary from one to three and represent the directions of  
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space co-ordinates. Those in capital letters I vary from one to eight and correspond to the nodes of  
the element.  
 
The same functions of forms are used to define the field of displacement of the element U in  
I 
function of nodal displacements U:  
II 
 
U = U NR (  
, , )  
I 
II 
I 
 
Trilinear isoparametric functions of form are chosen:  
 
 
1 
NR (  
, , ) = (1+ )(1+ )(1+ ) 
I 
 
8 
I 
I 
I 
 
 
 
 
, [1 
- ,1], 
I = 1,…, 8 
 
These functions of form transform a unit cube in space (  
,) in a hexahedron  
unspecified in space (X, X, X).  
1 
2 
3 
 
4.2  
Operator discretized gradient  
 
The gradient U 

file:///Z|/process/refer/refer/p460.htm (17 of 38)10/2/2006 2:52:10 PM



file:///Z|/process/refer/refer/p460.htm

U of node I in  
I, of the field of displacement is a function of displacement  
J 
II 
direction I:  
U = U NR  
I, J 
II 
I, J 
 
The linear tensor of deformation is given by the symmetrical part of the gradient of displacement:  
 
1 
= (U + U)  
ij 
2 I, J 
J, I 
 
Let us introduce the three vectors B, derived from the functions of form at the points of Gauss P:  
I 
K 
 
NR 
 
T 
B (P) = 
 
I 
K 
X 
I =0, =0, =k 
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Also let us introduce the following vectors:  
 
T 
S 
= (1 
1 
1 
1 
1 
1 1 1 
) 
T 
H 
= (1 
1 
-1 
1 
- 
1 
- 
-1 1 1 ) 
1 
T 
H 
= (1 
1 
- 
-1 1 
1 
- 
1 1 -1 ) 
2 
T 
H 
= (1 
1 
- 
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1 
1 
- 
1 
1 
- 
1 -1 ) 
3 
 
T 
H 
=( 
1 
- 
1 
-1 1 
1 
1 
- 
1 -1 ) 
4 
T 
X 
=( 
1 
- 
1 
1 
1 
- 
1 
- 
1 1 -1 ) 
1 
T 
X 
=( 
1 
- 
1 
- 
1 
1 
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1 
- 
-1 1 1 ) 
2 
T 
X 
=( 
1 
- 
1 
- 
-1 -1 1 
1 1 1 
) 
3 
 
The three vectors T 
X represent the nodal co-ordinates of the eight nodes. The four vectors T 
I 
 
H  
the functions H, H, H and H for each of the eight nodes represent respectively, which are  
1 
2 
3 
4 
defined by:  
 
H = 
H =  
H =  
H =  
1 
2 
3 
4 
 
Let us introduce finally the four following vectors:  
 
 
3 
= 1 
 
H - 
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(T 
H. X 
 
J) 
 
B  
8  
J 
j=1 
 
 
 
 
The gradient of the field of displacement can be now written in the form (without any  
approximation [bib3]):  
 
 
4 
 
T 
T  
T 
T 
U = B + H. U = B + H. U  
I J 
J 
J  
I 
J 
J  
, 
, 
, 
I 
 
 
 
 
 
1 
= 
 
 
Or, in the form of vector:  
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U 
 
 
X, X 
 
 
 
 
U 
 
 
y, y 
 
 
U 
 
 
 
Z, Z 
 
 
U = 
 
S 
U + U  
X y 
y X  
, 
, 
 
 
U + U  
X Z 
Z X  
, 
, 
 
 
U + U  
y, Z 
Z, y  
 
 
 
 
with U nodal displacement in direction I. The symmetrical operator gradient (noted)  
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I 
S 
discretized connecting the tensor of deformation to the vector of nodal displacements  
 
U =. 
B U  
S 
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takes the matric form then:  
 
T 
T 
B + H  
0 
0 
 
X 
X  
 
, 
 
 
 
0 
T 
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T 
B + H  
0 
 
 
y 
, y  
 
 
 
 
0 
0 
T 
T 
B + H  
 
Z 
, Z  
B =  
 
 
T 
T 
T 
T 
B +h  
B +h  
0 
 
 
y 
, y  
X 
, X  
 
T 
T 
B + H  
0 
T 
T 
B + H  
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Z 
, Z  
X 
, X  
 
 
 
0 
T 
T 
T 
T 
B + H  
B +h  
 
Z 
Z  
y 
y  
, 
, 
 
 
 
The detailed formulation was presented by Belytschko in [bib3].  
 
4.3  
Stamp rigidity  
 
The matrix of rigidity of the element is given by:  
 
T 
K = 
B CB D  
E 
E 
 
The five points of integration considered are on the same vertical line. Their co-ordinates  
are (  
,) and their weights of integration are the roots of the polynomial of Gauss-Legendre:  
 
 
 
 
P (1)  
0 0  
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= 0 9 
. 1  
= 0 2 
. 4  
1 
1 
P (2)  
0 0  
= 0 5 
. 4  
= 0 4 
. 8  
2 
2 
P (3)  
0 0  
0  
0.57  
P (4)  
0 0  
 
-  
 
2 
2 
P (5)  
0 0  
 
-  
 
1 
1 
Thus, the expression of rigidity K is:  
E 
 
5 
K = () J () T 
B () CB ()  
E 
J 
J 
J 
J 
J 1 
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= 
 
where J () is Jacobien, calculated at the point of Gauss J, of the transformation between the 
configuration  
J 
unit of reference and an arbitrary hexahedron. The elastic matrix of behavior C chosen with  
following form:  
+ 2µ 
 
0 
0 
0 
0  
 
 
 
+ 2µ 0 0 0 0 
 
 
0 
0 
E 0 
0 
0  
C =  
 
0 
0 
0 µ 0 0 
 
 
0 
0 
0 
0 µ 0  
 
 
 
0 
0 
0 
0 
0 µ  
 
E 
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where E is the modulus Young, the Poisson's ratio, µ = ( 
the modulus of rigidity and  
2 1+ ) 
 
= E 
the coefficient of modified Lamé. This law is specific to element SHB8. It resembles  
2 
1- 
with that which one would have in the case of the assumption of the plane constraints, put aside the 
term (3,3). One  
can note that this choice involves an artificial anisotropic behavior.  
This choice makes it possible to satisfy all the tests without introducing blocking.  
Handbook of Reference  
R3.07: Machine elements on average surface  
HT-66/04/002/A  

Code_Aster ®  
Version  
7.2  
 
Titrate:  
Voluminal element of hull SHB8  
 
 
Date:  
04/08/04  
Author (S):  
J.M. PROIX, S. BAGUET, A. COMBESCURE Key  
:  
R3.07.07-A Page  
: 8/18  
 
 
4.4  
Stamp geometrical rigidity K  
 
By introducing the quadratic deformation Q 
E:  
 
 
 
Q 
1 
E 
 

file:///Z|/process/refer/refer/p460.htm (29 of 38)10/2/2006 2:52:10 PM



file:///Z|/process/refer/refer/p460.htm

= 
U U  
 
 
2 
K, I K, J 
 
 
 
K 1 3 
 
= , 
 
 
one can define this matrix of geometrical rigidity by:  
 
T 
Q 
U. K .u = 
: E (, 
U U) = 
: ( 
T 
D 
 
 
U .u) D 
 
 
 
 
0 
0 
 
In order to express this matrix in discretized space, let us introduce the operators gradient  
quadratic discretized Q 
B such as:  
 
 
Q 
 
T 
Q 
Q 
T 
Q 
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Q 
Q 
E 
E 
E 
 
U. B () 
T 
. U U. B (). U U. B (). U 
xx 
yy 
zz 
xx 
J  
 
 
yy 
J 
zz 
J 
 
 
 
 
 
 
 
 
 
 
 
Q 
Q 
Q 
Q  
E 
E 
E +e 
T 
U. Q 
B () 
T 
. U U. Q 
B () 
T 

file:///Z|/process/refer/refer/p460.htm (31 of 38)10/2/2006 2:52:10 PM



file:///Z|/process/refer/refer/p460.htm

. U U. Q 
B (). U 
 
yy 
zz 
xy 
yx  
yy 
J 
zz 
J 
xy 
J 
 
 
 
 
 
 
 
 
 
 
 
 
T 
Q 
T 
Q 
T 
 
Q 
 
 
Q 
Q 
E 
E + Q 
Q 
E 
E + Q 
E  
U. B (). U U. B (). U U. B (). U 
 
zz 
xy 
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yx 
xz 
zx  
zz 
J 
xy 
J 
xz 
J 
 
 
Q 
E (U (), U ())  
 
=  
=  
 
J 
J 
 
 
 
 
 
Q 
Q 
Q 
Q 
Q 
Q  
T 
Q 
T 
Q 
T 
Q 
E +e 
E +e 
E +e 
U. B (). U U. B (). U U. B (). U 
xy 
yx 
xz 
zx 
yz 
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zy  
xy 
J 
xz 
J 
yz 
J 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q 
Q 
Q 
Q 
 
E +e 
E +e 
T 
U. Q 
B () 
T 
. U U. Q 
B (). U 
xz 
zx 
yz 
zy 
 
xz 
J 
yz 
J 
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T 
Q 
Q 
E + Q 
E 
 
U. B (). U 
 
yz 
zy 
 
 
yz 
J 
 
 
The various terms Q 
B are given by the following equations:  
ij 
 
B. T 
B 
0 
0  
 
 
X 
X 
 
Q 
B ()  
= 
B. T 
B 
 
xx 
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0 
0  
J 
X 
X 
 
 
 
 
0 
0 
T  
B .b 
 
 
X 
X  
B. T 
B 
0 
0  
 
 
y 
y 
 
Q 
B ()  
= 
B. T 
B 
 
yy 
 
0 
0  
J 
y 
y 
 
 
 
 
0 
0 
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T  
B .b 
 
 
y 
y  
B. T 
B 
0 
0  
 
 
Z 
Z 
 
Q 
B ()  
= 
B. T 
B 
 
zz 
 
0 
0  
J 
Z 
Z 
 
 
 
 
0 
0 
T  
B .b 
 
 
Z 
Z  
B. T 
B + B. T 
B 
0 
0 
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X 
y 
y 
X 
 
Q 
B ()  
= 
B. T 
B + B. T 
B 
 
xy 
 
0  
0 
 
J 
X 
y 
y 
X 
 
 
 
 
0 
0 
T 
T  
B .b + B .b 
 
 
X 
y 
y 
X  
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B. T 
B + B. T 
B 
0 
0 
 
 
 
X 
Z 
Z 
X 
 
Q 
B ()  
= 
B. T 
B + B. T 
B 
 
xz 
 
0 
0 
 
J 
X 
Z 
Z 
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X 
 
 
 
 
0 
0 
T 
T  
B .b + B .b 
 
 
X 
Z 
Z 
X  
B. T 
B + B. T 
B 
0 
0 
 
 
 
y 
Z 
Z 
y 
 
Q 
B ()  
= 
B. T 
B + B. T 
B 
 
yz 
 
0 
0 
 
J 
y 
Z 
Z 
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y 
 
 
 
 
0 
0 
T 
T  
B .b + B .b 
 
 
y 
Z 
Z 
y  
 
 
With these notations, the geometrical matrix of rigidity K 
 
at the point of Gauss  
is given by:  
J 
 
K () = (). Q 
B () + (). Q 
B () + (). Q 
B () 
 
 
J 
xx 
J 
xx 
J 
yy 
J 
yy 
J 
zz 
J 
zz 
J 
 
+ 
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(). Q 
B () + (). Q 
B () + (). Q 
B ()  
xy 
J 
xy 
J 
xz 
J 
xz 
J 
yz 
J 
yz 
J 
 
 
and geometrical rigidity of the element stamps it is given by:  
 
5 
K = () J () K () 
 
 
J 
J 
 
J 
J 1 
= 
 
4.5  
Stamp Kp pressure  
 
The following compressive forces are present in the tangent matrix via the matrix K, because them  
P 
following external forces depend on displacement. The following compressive forces are written:  
 
T 
1 
p. 
N U dS = 
p of [ 
T F (U)] 
T 
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N. F 
- 
U 
dS = p F - p K. 
 
 
U  
0 
( ) 
0 
0 
 
0 
P 
F (U) = 1+ U  
 
by using the notations:  
 
·  
T 
N = (N, N, N), normal on the surface external of the element in the configuration of  
0 
X 
y 
Z 
reference  
·  
b%, vector of dimension 4, drift of the functions of form to the 4 nodes of the face of  
I 
the element charged in pressure  
·  
S surface of the face charged in pressure  
0 
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The preceding formulation leads to a not-symmetrical matrix. It is known that one can nevertheless  
to use a symmetrical formulation if the external forces due to the pressure derive from a potential.  
It is the case if the compressive forces do not work on the border of the modelled field. One  
thus consider that the symmetrical part of the matrix is enough. The symmetrized matrix takes the form  
following:  
 
 
0 
T 
T 
T 
T 
b% 
 
y N-B 
% N 
N - 
N 
X 
X 
y 
b%z X b%x Z 
 
 
 
0 
T 
T 
T 
T 
b% 
 
y N-B 
% N 
N - 
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N 
X 
X 
y 
b%z X b%x Z 
 
 
 
0 
T 
T 
T 
T 
b%y n-b% N 
N - 
N 
X 
X 
y 
b% 
 
Z 
X B 
% X Z 
 
 
0 
T 
T 
T 
T 
 
b%y n-b% N 
N - 
N 
X 
X 
y 
b%z X b%x Z  
T 
T 
N - 
 
% 

file:///Z|/process/refer/refer/p470.htm (7 of 34)10/2/2006 2:52:11 PM



file:///Z|/process/refer/refer/p470.htm

% N 
0 
T 
T 
B 
B 
b% n-b% 
X 
y 
Z 
y N 
y 
X 
y 
Z  
T 
T 
 
N - 
N 
0 
T 
T 
b% 
b% 
b% n-b% 
X 
y 
Z 
y N 
y 
X 
y 
Z  
K = S 
P 
0  
 
T 
T 
N - 
N 
0 
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T 
T 
b% 
b% 
b% n-b% 
X 
y 
Z 
y N 
y 
X 
y 
Z  
 
 
Tn 
T 
T 
T 
b% 
- 
N 
0 
b% 
b% N - % 
y 
Z 
by N 
X 
y 
X 
y 
Z  
T 
T 
T 
T 
N 
N 
N 
N 
0 
 
- 
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- 
b% 
% 
% 
X 
Z 
bz X 
by Z b%z y 
 
 
T 
T 
 
T 
T 
b% N 
b% N 
N 
N 
0 
 
- 
- 
X 
Z 
Z 
X 
b%y Z b%z y 
 
 
T 
T 
T 
 
T 
b% N 
b% N 
N 
N 
0 
 
- 
- 
X 
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Z 
Z 
X 
b%y Z b%z y 
 
 
T 
T 
T 
 
T 
b% N 
b% N 
N 
N 
0 
 
- 
- 
X 
Z 
Z 
X 
b%y Z b%z y  
 
 
 
It is a matrix (12×12), which it is necessary to multiply by displacements of the 4 nodes of the face on  
which one applies a pressure.  
 
 
 
5  
Stabilization of the element  
 
5.1 Motivations  
 
The under-integration of element SHB8 (5 points of Gauss only) aims at reducing considerably  
computing time (gradient displacement, law of behavior,…). It also makes it possible to draw aside  
the various blockings met in implementation the numerical of the finite elements.  
 
However, this under-integration does not have only advantages: it introduces unfortunately  
parasitic modes associated a null energy (mode of Hourglass or sand glass). In statics, that  
can lead to a singularity of the matrix of total stiffness for certain boundary conditions.  
In transitory dynamics, on the other hand, that led to modes of sand glass which will deform it  
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unrealistic grid of way and which ends up exploding the solution. This deficiency of the matrix  
of stiffness, due to under-integration, must thus be compensated while adding to elementary rigidity  
a matrix of stabilization. The core of the new rigidity, thus obtained, must be reduced to only  
modes corresponding to the rigid movements of solids.  
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5.2  
Modes of “Hourglass”  
 
Since the points of integration are on the same vertical line (privileged direction),  
the derivative of the functions H and H are cancelled in these points. The operator discretized 
gradient is thus  
3 
4 
tiny room to:  
 
 
2 
 
T 
T 
B + H  
0 
0 
 
X 
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The modes of Hourglass are modes of displacement to null energy, i.e they check Bu = 0.  
Six modes, others that rigid modes of solids, which check this equation are:  
 
 
H 
0 
0  
H 
0 
0  
3 
4 
 
 
 
 
0 
H 
0 0 
H 
0  
 
 
3 
 
4 
 
 
 
 
0 
0 
 
H 
0 
0 
 
H 
 
 
3  
4  
 
5.3  
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Stabilization of the type “Assumed Strain Method”  
 
In this approach, inspired of work of Belytschko, Bindeman and Flanagan [bib3] [bib4], them  
derived B from the functions of form are not calculated at the points of Gauss but are realised on  
I 
the element:  
T 
1 
^ = 
(,) D, I = 1, 2,3  
I 
NR 
B 
, I 
O C 
 
Thus, the new operator discretized gradient can be written:  
 
^ 
^ 
B = B + B 
 
stab 
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B 
is given by:  
stab 
4 
 
 
H ^T 
 
,  
0 
0 
X  
 
=3 
 
 
4 
 
 
0 
H ^T 
 
,  
0 
y  
 
=3 
^ 
 
 
B 
= 
 
stab 
 
0 
0 
H ^T  
,  
4 Z 
4 
 
 
0 
0 
0 
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0 
0 
0  
 
 
 
0 
0 
0  
 
and that of the vectors ^ 
by:  
3 
1  
 
^ = H - (T 
H. X) ^ 
 
B  
8 
 
 
J 
J 
 
J 1 
= 
 
 
The new matrix of rigidity becomes:  
 
T 
T 
 
^ 
K = 
B CBd + 
B C B D 
 
 
 
 
 
stab 
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E 
E 
 
 
^ 
T 
^ 
T 
^ 
+ 
B 
CBd + 
B 
CB D 
 
 
stab 
 
 
 
 
stab 
stab 
E 
E 
 
144424443 
 
stab 
K 
 
The last term of the preceding equation ( 
stab 
K 
) is enough to stabilize the element. One can thus reduce  
the matrix of rigidity stabilized with:  
 
= 
+ stab 
K K 
K 
 
E 
 
stab 
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^ 
T 
^ 
K 
= 
B 
CB D 
 
 
 
stab 
stab 
E 
 
The many cases which were studied showed that it is enough to calculate the diagonal terms of  
stamp stabilization  
stab 
K 
, I = 1, 2,3, which is given by:  
II 
T 
stab 
1 
K 
= 
( + 2 )[ 
T 
H  
µ +]  
11 
11 
$ $ 
$ $ 
3 
3 
4 
4 
3 
 
T 
stab 
1 
K 
= 
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( + 2 )[ 
T 
H 
 
µ +]  
22 
22 
$ $ 
$ $ 
3 
3 
4 
4 
3 
 
stab 
H33 
T 
K 
= 
E 
 
33 
$ $ 
4 
4 
3 
 
The Hii coefficients themselves are given by the following equation, in which there is not  
summation on the repeated indices:  
1 T 
 
T 
 
X X 
X X 
J 
J  
K 
K  
H 
 
 
 
= 
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II 
3 
 
T 
 
X X 
I 
I  
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6  
Strategy for non-linear calculations  
 
6.1 Non-linearities  
geometrical  
 
One treats here the case of great displacements, but weak rotations (see further) and small  
deformations. One adopts for that an updated Lagrangian formulation.  
 
Into nonlinear we seek to write balance between internal forces and force external at the end of  
the increment of load (located by index 2):  
 
int 
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extr 
F 
= F 
 
2 
2 
 
The expression of the internal forces is written:  
 
int 
T 
F = 
FD 
2 
B 
 
2 
2 
2 
 
In the preceding equation the B2 operator is the operator allowing to pass from displacement to  
linear deformation calculated on the geometry at the end of the step, the constraint is the constraint of  
2 
Cauchy at the end of the step and integration is made on the volume deformed at the end of the step.  
2 
 
We chose this updated Lagrangienne formulation.  
 
The element available to date in Aster is programmed in small rotations. Indeed the increment of  
deformation is calculated by using only the linear deformation:  
 
1 
E 
= (1 (U) + T1 (U))  
2 
 
The operator gradient is calculated on the geometry of beginning of step. This writing of the 
deformation is  
limited to small rotations (<5 degrees).  
 
One can without difficulty of extending the formulation to great rotations by including in the 
deformation them  
terms of second order:  
 
1 
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T 
T 
E = 
U + U + U U  
2 ( 
. 
1 ( 
) 1 ( ) 1 ( ) 1 ( )) 
 
In elasticity, the law of behavior is written:  
 
= It E  
 
where C is the matrix of Hooke. Let us notice that for the SHB8 this matrix is a matrix  
orthotropic transverse which is written in the axes of the lamina:  
 
+ 2µ 
µ 
0 
0 
0 
0  
µ 
2µ 0 0 0 0  
+ 
 
 
[C] 0 
0 
E 0 0 
0  
' =  
 
0 
0 
0 µ 0 0 
 
 
0 
0 
0 
0 µ 0  
 
 
0 
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The formula allowing to calculate the constraint of Cauchy starting from the constraint of  
2 
Piola Kirchoff II is:  
2 
 
 
= +  
 
2 
1 
 
 
 
1 
T 
 
 
= 
F F  
2 
det 
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(F) 
2 
 
F = I +  
1 
 
 
U 
 
 
The combination of the four last equations with the expression of the internal forces gives  
formulation of the element in great deformations into Lagrangian updated.  
 
Let us notice that this updated Lagrangienne formulation is completely equivalent to  
total Lagrangienne formulation for which the internal forces are written:  
 
int 
T 
NL 
F = 
B + B (U) FD  
2 
( 
) 2 
0 
0 
 
In this case all integrations are made on the initial geometry the constraint used is  
0 
2 
the constraint of Piola Kirchoff II. This last method is probably preferable when it  
grid becomes deformed significantly and thus makes it possible to deal with the problems into large  
deformations but requires the development of operator NL 
B (U).  
 
The increment of deformation in Lagrangian total is expressed on the initial geometry of the 
structure.  
 
1  
T 
T 
E = 
U + U + U U  
2 ( 
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. 
0 ( 
) 0 ( ) 0 ( ) 0 ( )) 
 
The combination of the two preceding equations gives the formulation of the element into large  
deformations in linear behavior material.  
 
6.2 Small  
displacements  
 
In the case of small displacements one confuses geometry in beginning and end of step, constraint of  
Cauchy and of Piola Kirchoff II, moreover one uses the linear expression of the deformations.  
 
6.3  
Forces of stabilization  
 
The forces of stabilization make it possible to avoid the modes of sand glass and are added in the 
calculation of  
residues to balance the contribution of the matrix of stiffness of stabilization to the first member.  
forces of stabilization stab 
F 
, to add to the forces intern int 
F, are written:  
2 
 
stab = stab 
F 
K 
U  
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For reasons of effectiveness, one chooses not to assemble again  
stab 
K 
to calculate stab 
F 
in  
end of step, but rather to build stab 
F 
starting from ^ 
B 
that one calculated previously. One must  
stab 
for that to place itself in the reference frame corotationnel of medium of step suggested in [bib3]. For 
this  
reason, one does not obtain an exact expression of stab 
F 
, and some additional iterations are  
generally necessary to converge. These some iterations are however unimportant by  
report/ratio at the cost of calculation saved while not assembling  
stab 
K 
.  
 
6.4 Plasticity  
 
The elastoplastic behavior of Von Mises, with isotropic work hardening, is calculated of each one of  
5 points of integration. One thus uses quite simply the formulas and the usual programming of  
plasticity with a three-dimensional state of stresses, but the linear matrix of behavior It is  
orthotropic. We must quite simply slightly modify the usual algorithm of flow  
elastoplastic three-dimensional by replacing the usual matrix of Hooke C by the matrix of  
orthotropic behavior transverse It.  
 
We must find the constraint at the end of the step which checks balance. In great displacements it  
problem is written:  
 
= + 
 
2 
1 
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( 
p 
It  
-  
) 
 
This equation is solved as soon as the increment of plastic deformation is known. This deformation  
is determined while forcing the final constraint to be plastically acceptable. This method is  
completely similar to the usual three-dimensional method except that there is no explicit solution  
with this problem if one uses for example the effective approximation of the radial return to calculate  
solution. We chose to solve this nonlinear problem by a method of Newton.  
 
 
7  
Establishment of element SHB8 in Code_Aster  
 
7.1 Description  
 
This element is pressed on the voluminal meshs 3D HEXA8.  
 
7.2 Use  
 
This element is used in the following way:  
 
7.2.1 Grid  
 
Check the good orientation of the faces of the indicated elements (compatibility with the direction  
privileged) by using ORIE_SHB8 of operator MODI_MAILLAGE.  
 
7.2.2 Modeling  
 
To assign modeling SHB8 to indicated meshs HEXA8.  
Handbook of Reference  
R3.07: Machine elements on average surface  
HT-66/04/002/A  

Code_Aster ®  
Version  
7.2  
 
Titrate:  
Voluminal element of hull SHB8  
 
 
Date:  

file:///Z|/process/refer/refer/p470.htm (30 of 34)10/2/2006 2:52:11 PM



file:///Z|/process/refer/refer/p470.htm

04/08/04  
Author (S):  
J.M. PROIX, S. BAGUET, A. COMBESCURE Key  
:  
R3.07.07-A Page  
: 16/18  
 
 
7.2.3 Material  
 
For a homogeneous isotropic elastic behavior in the thickness one uses key word ELAS in  
DEFI_MATERIAU where one defines the coefficients E, modulus Young and NAKED, Poisson's 
ratio.  
 
To define a plastic behavior one uses the key word TRACTION in DEFI_MATERIAU where one  
the name of a traction diagram defines. Only this type of definition is available for the moment.  
 
7.2.4 Boundary conditions and loading  
 
DDL of volume 3D in the total reference mark. One imposes the boundary conditions on the ddl of 
volume  
3D (AFFE_CHAR_MECA/DDL_IMPO), and efforts in the total reference mark 
(FORCE_NODALE).  
 
They are the efforts in the total reference mark.  
 
One defines the efforts of pressure distributed on the faces of the element (under key word 
PRES_REP). One  
will have taken care as a preliminary to define meshs of skin QUAD4 and to suitably direct them  
outgoing normals with these meshs of skin using the order  
MODI_MAILLAGE key word ORIE_PEAU_3D  
 
7.2.5 Calculation in linear elasticity  
 
Order MECA_STATIQUE  
The options of postprocessing available are SIEF_ELNO_ELGA and EQUI_ELNO_SIGM.  
 
7.2.6 Calculation in linear buckling  
 
Option RIGI_MECA_GE being activated in the catalogue of the element, it is possible to carry out 
one  
traditional calculation of buckling after assembly of the matrices of elastic and geometrical rigidity.  
 
7.2.7 Calculation in geometrical nonlinear “elasticity”  
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One chooses behavior ELAS under key word COMP_INCR of STAT_NON_LINE, into small  
deformations (“SMALL”) or in great deformations “GREEN” under the key word DEFORMATION.  
 
Strategy used being based on the use of a matrix of tangent rigidity during  
iterations (reactualization at the beginning of step only), one will take care not to use another option  
that that which is activated by defect, namely REAC_ITER = 0 pennies NEWTON.  
 
Numerical integration in the thickness is carried out with 5 points of Gauss, just like in not  
linear material.  
 
7.2.8 Plastic nonlinear calculation  
 
Only the criterion of Von Mises is available to date (RELATION = “VMIS_ISOT_TRAC” under  
COMP_INCR). One defines the mode of calculation of the deformations as in the case of elasticity 
not  
linear (DEFORMATION = “GREEN” or “SMALL”).  
 
Strategy used being based on the use of a matrix of tangent rigidity during  
iterations (reactualization at the beginning of step only), one will take care not to use another option  
that that which is activated by defect, namely REAC_ITER = 0 pennies NEWTON.  
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7.3 Establishment  
 
Options RIGI_MECA, RIGI_MECA_GE, FORC_NODA, FULL_MECA, RIGI_MECA_TANG,  
RAPH_MECA,  
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SIEF_ELGA_DEPL,  
SIEF_ELNO_ELGA were activated in the catalogue  
gener_shb3d_3.cata. They direct all calculation towards te0520.f, then towards shb8.f.  
 
The forces of stabilization of the element require the storage of a vector of size 12 for each  
not Gauss. We chose to store these terms like additional components of  
stress field.  
 
No development was necessary for the compressive forces distributed and the forces of  
following pressures. Indeed, these loadings are pressed on meshs of skin identical to those  
voluminal elements 3D.  
 
 
7.4 Validation  
 
The tests validating this element are, in version 7.2 of Code_Aster:  
 
· SSLS108 C and D: beam bored in inflection, test allowing to check the absence of blocking  
[V3.03.108],  
· SSLS105 C: hemisphere doubly pinch [V3.03.105] traditional test to check  
convergence of the element,  
· SSLS123 a: sphere under external pressure [V3.03.123] to validate the loadings of  
pressure and the orthotropic behavior particular to this element,  
· SSLS124 A and thin b: section in inflection with various twinges, to delimit the field  
of use of the element [V3.03.124]. The results are correct (less than 1% with the solution  
analytical) for reports/ratios of twinge (thickness/width) going from 1 to 5 103,  
· SSLS125 a: buckling (modes of Euler) of a free cylinder under external pressure [V3.03.125]  
this test makes it possible to validate the geometrical nature of rigidity,  
· SSNS101 A, B and C: breakdown of a cylindrical roof [V6.03.101]. This test makes it possible to 
validate it  
geometrical nonlinear calculation and elastoplasticity,  
· SSNS102 a: buckling of a hull with stiffeners in great displacements and pressure  
following [V6.03.102].  
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The beams can be right (Elements POU_D_T and POU_D_E) or curves (Elements POU_C_T).  
section, constant or variable over the length, can be of an unspecified form. The material is 
homogeneous, 
isotropic, elastic linear. 
The assumptions selected are as follows: 
· Hypothèse of Euler: transverse shearing is neglected, as well as the inertia of rotation. 
This assumption is checked for strong twinges (element POU_D_E). 
· Hypothèse of Timoshenko: transverse shearing and all the terms of inertia are taken into account. 
This assumption is to be used for weak twinges (elements POU_D_T and POU_C_T). 
· Hypothèse of Saint-Coming: torsion is free. 
The treatment of the various loadings and the sizes awaited in result (forced - efforts) is 
also presented. 
Handbook of Reference 
R3.08 booklet: Machine elements with average fibre 
HI-75/96/060/A 

Code_Aster ® 
Version 
3 
Titrate:  
“Exact” elements of beams (right and curved) 

file:///Z|/process/refer/refer/p480.htm (1 of 21)10/2/2006 2:52:12 PM



file:///Z|/process/refer/refer/p480.htm

Date:  
02/12/96 
Author (S): 
J.M. PROIX, P. MIALON, m.t. BOURDEIX 
Key: 
R3.08.01-A 
Page: 
2/72 
Contents 
1 equations of the movement ................................................................................................................ 6 
1.1 The traction and 
compression .................................................................................................................. 6 
1.1.1 Local equilibrium equation ........................................................................................................ 6 
1.1.2 Method from Lagrangian ......................................................................................................... the 7 
1.2 Pure torsion (torsion of Saint-Coming) ........................................................................................ 8 
1.2.1 Local equilibrium equation ........................................................................................................ 8 
1.2.1.1 circular Beam of section ........................................................................................ 8 
1.2.1.2 unspecified Beam of section .................................................................................... 9 
1.2.2 Method from Lagrangian ......................................................................................................... the 9 
1.3 The bending pure ............................................................................................................................ 10 
1.3.1 Local equilibrium equation ...................................................................................................... 10 
1.3.2 Method from Lagrangian ....................................................................................................... the 13 
2 Element of right beam ...................................................................................................................... 15 
2.1 Longitudinal movement of traction and compression ....................................................................... 15 
2.1.1 Determination of the matrix of rigidity ................................................................................. 15 
2.1.2 Determination of the second member ....................................................................................... 16  
2.1.3 Calculation of the efforts to the nodes of the beam .......................................................................... 
17 
2.1.4 Determination of the matrix of mass ................................................................................. 18 
2.2 Free movement of torsion around the longitudinal axis ............................................................... 19 
2.3 Movement of inflection ................................................................................................................... 19 
2.3.1 Inflection in the plan (x0z) .................................................................................................... 20 
2.3.2 Inflection in the plan (xOy) .................................................................................................... 22 
2.3.3 Determination of the matrix of coherent mass with the matrix of rigidity ...................... 23 
2.3.3.1 Inflection in the plan (xoz) ........................................................................................ 23 
2.3.3.2 Movement of inflection around the axis (O Z) ............................................................. 24 
2.4 Stamp of mass reduced by the technique of the concentrated masses .......................................... 25 
3 particular right Beams ................................................................................................................ 27 
3.1 Eccentricity of the axis of torsion compared to the neutral axis ............................................................. 
27 
3.2 Variable sections ......................................................................................................................... 29 
3.2.1 Calculation of the matrix of rigidity ............................................................................................. 30 
3.2.1.1 Determination of the equivalent section (Seq) ........................................................ 30 

file:///Z|/process/refer/refer/p480.htm (2 of 21)10/2/2006 2:52:12 PM



file:///Z|/process/refer/refer/p480.htm

3.2.1.2 Determination of a constant of equivalent torsion (Ceq) .................................. 33 
3.2.1.3 Determination of the equivalent geometrical moments .......................................... 34 
3.2.2 Calculation of the matrix of mass ............................................................................................. 37 
3.2.2.1 By the method of the equivalent masses ............................................................... 37 
3.2.2.2 By the method of the masses concentrated (diagonal matrix) .................................. 38 
4 geometrical Rigidity - prestressed Structure .................................................................................... 40 
5 Beam curves ....................................................................................................................................... 46 
Handbook of Reference 
R3.08 booklet: Machine elements with average fibre 
HI-75/96/060/A 

Code_Aster ® 
Version 
3 
Titrate:  
“Exact” elements of beams (right and curved) 
Date:  
02/12/96 
Author (S): 
J.M. PROIX, P. MIALON, m.t. BOURDEIX 
Key: 
R3.08.01-A 
Page: 
3/72 
5.1 Stamp flexibility for the inflection in the plan of the beam [C1] ................................................ 51 
5.2 Stamp flexibility for the inflection out of the plan of the beam [C2] ................................................ 52 
6 Loadings ........................................................................................................................................ 55 
6.1 Loading by deformation ......................................................................................................... 55 
6.1.1 For the right beam of Euler and the right beam of Timoshenko ........................................... 55 
6.1.2 For the beam curves of Timoshenko .................................................................................. 56 
6.2 Loading due to gravity ....................................................................................................... 57 
6.3 Loadings distributed .................................................................................................................... 61 
6.3.1 Right beam with constant section ......................................................................................... 61  
6.3.2 Right beams with variable section ......................................................................................... 62 
6.3.3 Beam curves ....................................................................................................................... 62 
6.4 Thermal loading .................................................................................................................. 63 
6.5 Electric loading ................................................................................................................... 63 
6.5.1 Secondary driver right finished or infinite .............................................................................. 64 
6.5.2 Secondary driver describes by part of grid ASTER ....................................... 65 
7 Torque of the efforts - Torque of the constraints (or efforts generalized) - nodal Forces and réactions.66 
7.1 The torque of the efforts ..................................................................................................................... 66 
7.2 The tensor of the constraints ............................................................................................................. 67 
7.3 Calculation of the nodal forces and the reactions ................................................................................... 

file:///Z|/process/refer/refer/p480.htm (3 of 21)10/2/2006 2:52:12 PM



file:///Z|/process/refer/refer/p480.htm

70 
8 Element of bar .................................................................................................................................. 71 
9 Bibliography ......................................................................................................................................... 71 
Foreword 
This reference material of the elements of beam was carried out starting from a work carried out 
by m.t. Bourdeix, P. Hemon, O. Wilk of the Institute Aerotechnics of the National Academy of Arts and 
Trades, within the framework of an External Contract of Research and Development with this laboratory. 
The volume of this document is due at the same time to the required precision and the didactic character 
of 
the talk, which is voluntarily preserved. 
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Notations 
The notations used here are not all identical to those used in [U1.04] and [U4.24.01], 
for reasons of compactness and homogeneity with [R3.08.03]. 
One gives the correspondence between this notation and that of the documentation of use. 
DX, DY, DZ and DRX, DRY, DRZ are in fact the names of the degrees of freedom associated with the 
components 
displacement U, v, W, X 
, y, Z 
. 
C 
constant of torsion 
JX 
E E 
eccentricity of the center of torsion/shearing 
EY, EZ 
y, Z 
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E 
Young modulus 
E 
 
Poisson's ratio 
NAKED 
G 
E 
modulate of Coulomb = (21+) 
I, I 
geometrical moments of inflection compared to the axes y, Z 
IY, IZ 
y 
Z 
I 
polar geometrical moment 
p 
I X 
polar moment of inertia around the longitudinal axis X 
K, K 
coefficients of shearing 
y 
Z 
1 
1 
AY 
AZ 
K 
stamp rigidity 
M 
stamp of mass 
M, M, M moments around axes X, y, Z 
MT, MFY, MFZ 
X 
y 
Z 
NR 
normal effort with the section 
NR 
S 
surface of the section  
With 
U, v, W 
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translations on axes X, y, Z 
DX DY DZ 
V, V 
sharp efforts along axes y, Z 
VY, VZ 
y 
Z 
 
density 
RHO 
 
transverse shear stress 
cT 
 
rotations around axes X, y, Z 
DRX DRY DRZ 
X, y, Z 
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Introduction 
A beam is a solid generated by a surface of surface S of which the geometrical centre of inertia G 
followed a curve C called the average fibre or neutral fibre. The surface S is the cross-section (section 
transversal) or profile, and it is supposed that if it is evolutionary, its evolutions (size, form) are 
continuous and progressive when G describes the average line. 
For the study of the beams in general, one makes the following assumptions: 
· the cross-section of the beam is indeformable, 
· transverse displacement is uniform on the cross-section. 
These assumptions make it possible to express displacements of an unspecified point of the section, in 
function of displacements of the point corresponding located on the average line, and according to one 
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increase in displacement due to the rotation of the section around the transverse axes. This 
last can be neglected (POU_D_E) or to be the subject of a modeling (POU_D_T and POU_C_T). 
The discretization in “exact” elements of beam is carried out on a linear element with two nodes and six 
degrees of freedom by nodes. These degrees of freedom are the three translations U, v, W and the three 
rotations X, y, Z. 
Z 
y 
1 
2 
X 
U X 
U 
X 
v y 
v y 
W Z 
W Z 
Waited until the deformations are local, it is built in each top of the grid a base 
local depending on the element on which one works. The continuity of the fields of displacements is 
ensured by a basic change, bringing back the data in the total base. 
In the case of the right beams, one traditionally places the average line on axis X of the base 
local, transverse displacements being thus carried out in plan (y, Z). 
Finally when we arrange sizes related to the degrees of freedom of an element in a vector 
or an elementary matrix (thus of dimension 12 or 122), one arranges initially the variables for 
top 1 then those of top 2. For each node, one stores initially the sizes related to the three 
translations, then those related to three rotations. For example, a vector displacement will be structured 
in the following way: 
U, v, W 
, ,  
 
,  
 
, U, v, 
W 
,  
,  
, 
1 
1 
1 
X 
y 
Z 
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2 
2 
2 
X 
y 
Z 
 
 
1 
1 
1 
2 
2 
2 
!### " 
# # 
$ 
### 
!### " 
# 
$ 
#### 
top 1 
top 2 
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1  
Equations of the movement 
In this chapter one presents the equations of the movement of the beams in traction and compression, in 
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torsion and in inflection in the elastic range. In each case, these equations are deduced by 
application of the equations of Lagrange, resulting from the principle of Hamilton, or by writing balance 
room of a segment of beam. We chose to point out the two methods, the reader will be able 
to refer to that which is most familiar for him. One limits oneself here to the cases where the only 
loadings are 
loadings distributed (not of concentrated forces). 
1.1  
traction and compression 
The traction and compression is the translatory movement on the longitudinal axis of the beam. 
1.1.1 Local equilibrium equation 
One considers a segment length dx subjected to an axial load NR [1.1.1-a] intern and a force 
external fext per unit of length. 
X 
X + dx 
NR (X) 
NR (X) 
NR (X + dx) 
O 
X 
fext 
dx 
Appear 1.1.1-a: Segment of beam charged axially 
The beam has a section S (X) and consists of a material of density (X) and module 
of Young E (X). The fundamental principle of mechanics makes it possible to write: 
2 
x+dx 
X dx 
U.S. 
NR (X) + NR (X + dx) + 
fext (S) 
+ 
ds 
(S) S (S) 
( ) 
- 
= 
X 
 
ds 
X 
t2 
where U is displacement on 
X 

file:///Z|/process/refer/refer/p480.htm (9 of 21)10/2/2006 2:52:12 PM



file:///Z|/process/refer/refer/p480.htm

center segment. 
Thus: 
NR (X + dx) - NR (X) 
1 x+dx 
1 
2 
x+dx 
U 
+ 
F 
 
ext. (S) ds 
= 
S 
 
ds 
 
dx 
dx X 
dx X 
t2 
While passing in extreme cases when dx 0, one obtains: 
D NR (X) 
2 U 
+ F (X) = 
S 
 
(X 
ext. 
) 
dx 
t2 
éq 1.1.1-1 
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Only the first order terms are preserved and one replaces in [éq 1.1.1-1], then one uses the law 
of Hooke and the assumption that the beam consists of longitudinal fibres working only in 
traction and compression to express the axial load by: 
U 
NR (X) = ES  
éq 1.1.1. - 2 
X 
One obtains thus after simplification by dx: 
 
U 
2 U 
ES 
fext 
 
 
S 
X  
 
X + 
= 
 
t2 
éq 1.1.1-3 
who represents local balance with the first order of a beam, for a movement of 
traction and compression. 
1.1.2 Method of the Lagrangian one 
Taking again the segment of beam of the figure [Figure 1.1.1-a] total kinetic energy of the beam of 
length L is written: 
1 
2 
L 
U 
E 
= 
S  
dx 
C 
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2 O 
 
 
 
T  
. 
1 
U 2  
One will note for the continuation E 
= 
 
 
S 
it 
2 
 
 
 
T elementary kinetic energy. 
Energy interns deformation, thanks to the law of Hooke is written: 
1 
2 
L 
U 
E 
= 
ES  
dx 
p 
. 
 
int 
2 O 
 
 
 
X 
1 
U 2 
 
Of the same E will be noted 
= 
E 
S 
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p 
 
inte 
2 
 
 
 
X. 
There is also the work of the external force given by: 
L 
E 
= 
 
 
F 
U dx 
p 
ext. 
ext. 
O 
and at the elementary level E 
 
= F 
U 
p 
ext. 
. 
exte 
The Lagrangian one is given by: 
L = E - E 
- E 
C 
p 
p 
int 
ext. 
and Lagrangian density: 
L = E - E 
- E 
C 
p 
p 
. 
E 
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exte 
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For the monodimensional continuous system, the equation of Lagrange is written in this case: 
L 
L 
L 
- 
 
= 
 
0 
éq 1.1.2-1 
U 
X  
 
U - 
 
T  
 
U  
' 
% 
where U and %u respectively indicate the derivative compared to X and compared to time. Its 
application brings back for us obviously to the equation of the movement of a beam in traction and 
compression 
[éq 1.1.1-3]. 
1.2  
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Pure torsion (torsion of Saint-Coming) 
Torsion is the rotational movement around the longitudinal axis of the beam. It is supposed here that it 
centre of gravity is confused with the centre of rotation (of torsion) [R3.03.03], and it is neglected 
warping of the section. The case of the eccentricity of the center of torsion compared to the center of 
gravity is treated with [§3.1]. 
1.2.1 Local equilibrium equation 
One considers a segment length dx put in rotation under the action of one moment M X 
[Figure 1.2.1-a] intern and of an external couple X per unit of length. 
X 
X + dx 
M (X) 
X 
M (X + dx) 
NR (X) 
O 
X 
positive 
dx 
Appear 1.2.1-a: Segment of beam in rotation around (OX) 
The segment is turned of an angle X compared to the not deformed position. We have as follows: 
1.2.1.1 circular Beam of section 
2 
x+dx 
x+ 
 
- 
dx 
 
M (X) + M (X + dx) + 
X 
X 
(S) 
 
ds =  
I  
ds 
X 
X 
X 
X 
X 
 
t2 
with I 
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= 
R ds 
2 is the plane moment of inertia of the section S around the axis of rotation (0, X). 
X 
 
 
S 
As for traction, one obtains after division by dx and passage in extreme cases: 
DM 
2 
X 
 
+  
= I 
X 
dx 
X 
X 
t2  
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The law of behavior is introduced: 
 
M 
= G I 
X 
X 
p X 
where G is the module of Coulomb (or modulus of rigidity) and I p the polar geometrical moment by 
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report/ratio in the centre of gravity of the section. (One has besides: I 
= I for a material of mass 
X 
 
p 
voluminal homogeneous). 
We obtain the expression then: 
 
 
2 
X  
X 
 
 
 
+ 
= 
 
 
G I p 
 
 
 
I 
X 
 
X 
X 
X 
 
 
 
t2 
éq 1.2.1.1 - 1 
who represents local balance with the first order of a segment of beam for a movement of torsion. 
1.2.1.2 unspecified Beam of section 
To take account of warping while remaining on the free assumption of torsion, in the case of them 
noncircular sections one is led to replace moment I p by a constant of torsion C 
(lower than I p) in the equation of torsion ([R3.03.03] for the calculation of C). 
 
By definition, M = G C 
X 
X 
. One obtains then: 
X 
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2 
X  
 
G C 
X 
 
 
 
+ X =  
 
C 
X  
X  
 
t2 
éq 1.2.1.2 - 1 
When the centre of gravity of the section is not the centre of rotation, this expression is not 
valid and the movements of torsion and inflection are coupled. 
1.2.2 Method of the Lagrangian one 
We have same manner as with [§1.1.2] the kinetic energy (for example for a beam of 
circular section): 
2 
L 1 
 
E 
= 
I 
X 
 
dx 
C 
 
 
, 
O X 
2  
 
T  
internal potential energy 
2 
L 1 
 
E 
= 
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G I 
X 
 
dx 
 
 
, 
 
int 
p 
O 
p 
2 
 
 
 
T  
and the work of the external couple 
L 
E 
= 
 
 
dx 
p 
X 
. 
ext. 
O 
X 
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By applying the equation of Lagrange [éq 1.1.2-1] to variable X, one leads naturally to 
[éq 1.2.1-1] giving the movement of a beam in pure torsion. 
1.3  
The pure bending 
The inflection is the rotation and translatory movement around an axis perpendicular to the axis 
longitudinal of the beam. One speaks here about pure bending (around OY or OZ). One limits oneself to 
the case of 
right beams. The curved beams are treated with [§5]. 
One describes the equation of inflection in plan (O, X, Z), the extension to the plan (O, X, y) is 
immediate 
[Figure 1.3-a]. 
Z 
y  
y 
O 
X 
Appear 1.3-a: Inflection of a beam in plan (O, X, Z) 
The translation along the axis (O, Z) is noted W and rotation around (O, y) is noted Y. 
1.3.1 Local equilibrium equation 
One considers a segment length dx subjected to the shearing action Vz, the moment bending M y, 
an external effort tz distributed uniformly per unit of length, and an external couple m 
distributed 
ext. 
yext 
uniformly by unit of length [Figure 1.3.1-a]. 
V (x+dx) 
tzext 
V (X) 
Z 
M (x+dx) 
y 
Moments  
y 
positive 
dx 
X 
x+dx 
M (X) 
X 
myext 
Appear 1.3.1-a: Segment of beam in inflection in plan (O, X, Z) 
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The local balance of the forces and the moments (on the section of X-coordinate X + dx) gives for the 
forces: 
2 
x+dx 
x+dx 
W 
- V (X) +V 
Z 
Z (X + dx) +  
T 
ds = 
 
 
X 
zext 
 
S ds 
X 
t2 
and for the moment: 
2 
x+dx 
x+dx 
x+dx 
 
- M (X) + M 
y 
y 
y (X + dx) + 
m 
ds 
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y 
- 
Vz (X 
) 
 
 
= 
 
 
ext. 
X 
 
ds 
X 
I ds 
y 
X 
t2 
The terms in dx2 are neglected. While passing in extreme cases when dx tends towards 0, one obtains: 
V 
2 
Z 
W 
+ tz 
=  
 
S 
X 
ext. 
t2 
My 
2  
- V + m 
y 
Z 
y 
= +  
 
I 
. 
X 
y 
ext. 
t2 
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It is noted that the effort uniformly distributed tz produces a term which is of the second order in balance 
ext. 
moments and is thus neglected. One introduces then the relations of behavior of resistance 
materials. 
 
M 
= + I.E.(internal excitation) 
y 
y 
y X 
W 
V 
= K SG 
Z 
Z 
 
+ 
 
 
 
X 
y  
éq 1.3.1-1 
the expression [éq 1.3.1-1] of Vz is due to Timoshenko [bib4] where kz is the coefficient of shearing 
in direction Z. It characterizes the model of beam of Timoshenko; it will be seen thereafter that it 
model of beam of Euler corresponds to a simplification of the model of Timoshenko. Iz is the moment 
geometrical of the section compared to the axis (O, y). 
Consequently, one leads to the two equations coupled out of W and there for the inflection in the plan 
(O, X, Z). 
 
W 
 
2 W 
K SG 
Z  
+ 
+ T 
y 
Z 
=  
 
S 
éq 1.3.1-2 
X 

file:///Z|/process/refer/refer/p490.htm (3 of 30)10/2/2006 2:52:12 PM



file:///Z|/process/refer/refer/p490.htm

 
 
 
 
 
X 
ext. 
 
 
T 2 
 
 
2 
y  
W 
 
I.E.(internal excitation) 
- 
 
K SG 
y 
y 
Z  
+ + m 
y 
y 
= +  
 
 
I 
X 
X 
 
 
 
X 
y 
ext. 
 
 
 
 
t2 
éq 1.3.1-3 
When the beam is uniform, i.e. the section and the material are constant on the axis 
longitudinal, the equations [éq 1.3.1-2] and [éq 1.3.1-3] are reduced to only one equation out of W. For 
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that, one only once derives compared to X-coordinate X the equilibrium equation from the moments [éq 
1.3.1-3]. 
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3  
2 
3 
y 
W  
 
I.E.(internal excitation) 
- K SG 
y 
 
+ 
= + I 
y 
y 
 
. 
x3 
Z 
x2 
X 
y 
 
X t2 
It will be noted that this handling eliminates the presence from the term resulting from an external couple 
uniformly distributed. Then, the equation [éq 1.3.1-2] can be put in the form: 
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2 
2 
y 
W 
1 
 
W 
= 
- 
+ 
 
 
T 
. 
X 
2 
Z 
X 
K 
ext. 
2 
Z SG 
kz G T 
4 W 
2 W 
 
E 4 W 
2I 
4 
y W 
I.E.(internal excitation) 
+ S 
- I 1+ 
+ 
 
 
- T 
y 
= 0 éq 1.3.1-4 
x4 
t2 
y 
K G 
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2 
2 
4 
zext 
 
Z 
X T 
K G 
Z 
T 
There remains useful for this type of equation to point out the physical significance of the various terms, 
so at the time 
simplifications to be aware of the neglected effects. 
4 W 
I.E.(internal excitation) y x4 balance charging density in the direction of the translation due to the 
moment of 
inflection. 
2 W 
S t2 is the term of inertia of translation. 
4 W 
I  
y x2 t2 represents the inertia of rotation of inflection. 
E 
4 W 
Iy K G 2 2 is an additional term of the inertia of rotation due to the taking into account of 
Z 
X T 
transverse shearing (assumption of Timoshenko). 
2Iy 4 W 
 
result from the coupling between the inertia of rotation and the inertia of translation coming from 
K G 
Z  
4 
T 
sharp effort. 
The model of beam of Timoshenko (POU_D_T or POU_C_T), takes into account the whole of these 
terms, in particular those which relate to the sharp effort. One can thus model beams 
of weak twinge. 
The model of beam of Euler (POU_D_E) is a simplification since the deformations in effort 
edge are neglected as well as the inertia of rotation (what is justified because it does not intervene in 
dynamic studies that for the high modes). These assumptions are justified in the case of one 
beam of twinge suffisament large. So for the model of Euler, the equation of the movement of 
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inflection, in the case general of the beams with variable section is written: 
 
2 W 
2 W 
I.E.(internal excitation) 
+ 
- 
= 0. 
2 
y 
S 
T 
éq 1.3.1-5 
X  
x2  
t2 
zext 
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In addition, it is indeed the shearing action which causes the rotation of the cross-sections by 
report/ratio with the neutral axis. To neglect this effect thus amounts writing that Vz = 0 what brings to 
[éq 1.3.1-1]. 
W 
y = -. 
éq 1.3.1-6 
X 
who is the translation of the assumption of Euler. 
Concerning the inflection in the plan (O, X, y), the same step leads to [éq 1.3.1-7] for 
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beam of Timoshenko with: 
 
v 
 
2 v 
 
K SG 
y -  
+ T 
Z 
y 
=  
 
S 
X 
 
 
 
 
 
X 
ext. 
 
 
t2 
 
éq 1.3.1-7 
 
 
 
 
2 
Z  
v 
 
I.E.(internal excitation) 
K SG 
Z 
Z 
y  
+ m 
Z 
Z 
=  
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I 
X  
X - 
- 
 
 
 
X 
Z 
ext. 
 
 
t2 
and when the section is constant: 
4 v 
2 v 
 
E  
4 v 
2 I 4 v 
I.E.(internal excitation) 
- S 
 
- I 
Z 
1+ 
 
+ 
+ T 
Z 
0. 
éq 1.3.1-8 
T 4 
T 2 
Z  
K G 
= 
2 
2 
4 
yext 
 
y 
X T 
K G 
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y 
T 
v 
The use of the assumption of Euler (i.e. in the plan (O, X, y) Z =) makes it possible to lead to 
X 
the equation of the movement of inflection for a beam of Euler according to [éq 1.3.1-9]. 
 
2 v  
2 v 
I.E.(internal excitation) 
-  
+ 
= 0. 
2 
Z 
S 
T 
éq 1.3.1-9 
X  
x2  
t2 
yext 
 
 
 
1.3.2 Method of the Lagrangian one 
The kinetic energy is expressed by: 
2 
2 
L 1 
y  
L 1 
W 
E 
= 
I  
 
 
dx + 
 
 
S 
dx 
C 
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O 
y 
2 
T 
O 
 
2 
 
 
 
T  
according to displacements in rotation and translation. 
The potential energy intern is worth: 
2 
L 1 
y  
L 1  
W 
 
E 
= 
I.E.(internal excitation) 
 
 
 
 
dx + 
 
 
+ dS dx 
p 
 
 
int 
O2 
X 
O 
C 
 
2 
S 
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X 
y 
T 
 
 
 
 
 
 
W 
where C is transverse shear stress and the term  
+ deformation of 
T 
X 
y 
shearing. The model of beam of Euler neglects this term while the model of Timoshenko emits 
an assumption on the distribution of the constraints C in the section, compatible with the expression 
T 
[éq 1.3.1-1]. In the case general of the model of Timoshenko, the potential energy interns is written: 
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2 
2 
L 1 
y  
L 1 
W 
E 
= 
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I.E.(internal excitation) 
 
 
 
 
dx + 
K SG 
 
+ 
dx 
p 
. 
 
 
O2 
X 
O 
Z 
 
2 
 
 
 
X 
y 
int 
 
 
The potential of the external loads is expressed as for him by: 
L 
L 
E 
= - T 
dx 
- m dx 
p 
Z 
 
 
 
. 
O 
y 
O 
y 
ext. 
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ext. 
ext.  
The use of the equation of Lagrange [éq 1.1.2-1] applied once to the variable W then with the variable 
y brings back for us to the two equations [éq 1.3.1-2] and [éq 1.3.1-3] describing the movement in 
inflection of one 
segment of beam. 
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2  
Element of right beam 
One describes in this chapter obtaining the elementary matrices of rigidity and mass for the element 
of right beam, according to the model of Euler (POU_D_E) or Timoshenko (POU_D_T). Matrices of 
rigidity are calculated with option “RIGI_MECA”, and the matrices of mass with the option 
“MASS_MECA” for the coherent matrix, and option “MASS_MECA_DIAG” for the matrix of mass 
diagonalized. 
2.1  
Longitudinal movement of traction and compression 
A difficulty to write the variational formulation comes owing to the fact that there can be in the structures 
composed of beams of the concentrated loadings (assimilable to of the Dirac). The equilibrium equation 
[éq 1.1.1-1] must be replaced by: 
dN 
NR 
(X) + F (X) + F C I (X 
ext. 
I 
) = 0 
dx 
i=1 
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One omitted by simplicity the inertias which would undergo the same treatment as the forces 
external fext. 
 
C 
I represents the function of Dirac located as in point I, the fi are the concentrated forces applied 
with the beam. 
For the application of the finite element method, the equilibrium equation must be written in the form 
principle of virtual work which is in this case: 
FD 
NR 
NR 
dx = 
F 
v dx + 
F C 
 
 
I (v 
ext. 
I 
) 
éq 2.1-1 
dx 
 
 
i=1 
Any confusion being excluded, I indicates the measurement of Dirac associated with item I, v is a field of 
longitudinal displacement kinematically acceptable unspecified. 
In practice, it is supposed that there is no force concentrated inside the elements of beam, but 
only with the nodes ends. 
2.1.1 Determination of the matrix of rigidity 
It corresponds to the expression of the virtual work of the interior forces according to a displacement 
given. I.e.: 
L FD 
NR 
dx 
 
for an element length L. 
0 
dx 
The elastic relation of behavior is introduced: 
 
NR (X) = ES dx 
Handbook of Reference 
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While choosing by function test: 
X 
X 
v (X) = 1 (X) = 1 
and 
v (X) = 2 (X) = 
L 
L 
one obtains directly: 
L D 
L 
ES of 
ES 
NR 
1 dx = 
- 
dx 
 
 
= - 
[(uL) - (U) 0] 
O 
dx 
O  
L dx 
L 
and 
L D 
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L ES of 
ES 
NR 
2 dx = 
dx  
 
 
= 
[(uL) - U () 0] 
O 
dx 
O 
L dx 
L 
The matrix of rigidity of the element is thus: 
ES 1 
-  
1 
K = 
 
 
L -1 1  
Note: 
In the expression of the virtual work of the interior efforts, U intervenes only for ( 
U) 
0 and 
( 
U L): U was not discretized inside the element. This is why the element is qualified 
of “exact”: one obtains the exact solution with the nodes, but only with the nodes. 
2.1.2 Determination of the second member 
The second member is the expression of the virtual work of the efforts applied. 
The second associate member with the loading distributed and the functions tests previously introduced 
is: 
f1 
1 
 
X 
with 
F 
= 
F 
 
1 
ext. (X) 1 - dx 

file:///Z|/process/refer/refer/p490.htm (18 of 30)10/2/2006 2:52:12 PM



file:///Z|/process/refer/refer/p490.htm

F 
0 
 
 
 
L 
 
 
 
2  
1 
X 
F 
= 
F 
2 
ext. (X) dx 
0 
L 
Note: 
Into AFFE_CHAR_MECA_F, one can introduce fext like an unspecified function of X. 
On the level of the calculation of f1 and f2, on the other hand, integration is made by supposing that fext 
vary linearly between the values taken with the nodes ends. If one must model one 
radial force distributed nonlinear, it is then necessary to discretize more finely. 
But let us insist on the fact that whatever the shape of F 
(X 
ext. 
) (polynomial or different), if one 
can calculate exactly the integrals f1 and f2, the solution of the static problem will be exact 
with the nodes of the problem. 
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Page: 
17/72 
The virtual work of the concentrated forces (given by assumption to the nodes of the elements) does not 
intervene 
not directly on the level of the element. 
One introduces these forces concentrated in the form of nodal forces, directly in the vector 
assembled of the second member. 
2.1.3 Calculation of the efforts to the nodes of the beam 
The complete P.T.V [éq 2.2-1] is written indeed on the assembled system. 
In addition, by writing the formula of integration per part on all the structure (beam [X X 
O, 1]): 
NR 
NR v dx 
, X 
= [NR (x1) v (x1) - NR (xo) v (xo)]+ [NR] I (v) 
I 
 
i=1 
éq 2.1.1-2 
M 
- NR v dx 
, X 
 
J 
J 
=1 
J representing all the intervals without discontinuity of normal effort, therefore without concentrated 
force, and 
[NR] jumps of NR between these intervales. 
I 
Indeed, by bringing this expression closer to the PTV, one finds, for each loading concentrated (in 
choosing suitable functions test v): 
I 1, NR 
[NR] 
F C 
= 
= 
I 
I 
Each finite element of beam is by assumption an interval without discontinuity. There can thus be 
discontinuity of the efforts intern NR from one element to another if there is a force concentrated on the 
node 
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connecting the two elements.  
The internal efforts for an element are determined in the following way: 
The equilibrium equation inside an element is: 
NR + F reference mark 
, X 
= 0 
The formula of integration by parts [éq 2.1.1-2] on the element gives: 
L 
L 
NR (X) v dx 
, X 
= [NR (L) v (L) - NR () 
0 v () 
0 
 
] + F 
ext. (X) v (X) dx 
0 
O 
By regarding NR (L) and NR (O) as data, one could have obtained this formula directly 
PTV [éq 2.1-1]. 
By still taking the functions test: 
X 
X 
v (X) = 1 (X) = 1 
and 
v (X) = 2 (X) = 
L 
L 
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One obtains: 
ES 
- 
[(uL) - (uo)] = - NR (O) + F 
L 
1 
ES [(uL) - (uo)] = NR (L) + F 
L 
2 
- NR (O) 
( 
U O) f1 
that is to say 
 
K 
NR (L) = [] ( 
U L) -  
 
 
 
f2 
I.e. the internal efforts are obtained by cutting off with the product K U the nodal forces 
equivalent to the distributed loads fext. 
It is also observed that they are of opposite sign. So that the sign is the same one from one element to 
another, it 
is thus necessary to change the sign of NR (O) calculated by this method. It is what is made by the 
calculation of 
option EFGE_ELNO_DEPL. 
2.1.4 Determination of the matrix of mass 
The matrix of mass to be coherent with the matrix of rigidity is given from same 
functions test. However, it is not possible any more to calculate exactly the associated nodal forces 
without making assumption on the form of the solution. The calculation of the matrix of mass will 
involve one 
error of discretization. 
A dynamic calculation will thus require a discretization of the structure of beam in small elements, 
what is not the case for a static calculation. It goes without saying that in the case of a dynamic 
calculation, it 
calculation of the efforts which one will lead as to [§2.1.2] by cutting off the nodal forces from inertia is 
also approximate. The solution U is selected in the space generated by the functions tests (it be-with 
to say the polynomials of degree to most equal to 1): 
U = 
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( 
U) 
0 1 
(X) + ( 
U L) 2 
(X) 
The matrix of mass appears in the expression of virtual work due to the inertias: 
U  
W = 
T 
V  
MR. U 
%, U = 
1 
. 
u2 
Work is also written: 
L 
W = 
V (X) U  
 
% (X, T) dx 
O 
m 
with: 
=  
dS = S 
m 
 
 
in the case of a homogeneous material. 
S 
While taking 
U (X, T) = (X) U (T) + (X) U (T), one a: 
1 
1 
2 
2 
L 
1 (X) 
W = S  
T 
V  
(X 
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1 
X 
2 
) %U  
O 
2( 
 
 
dx 
X) 
( ) ( ) 
 
 
L 1 (X) 
 
W = T 
V S 
 
 
(X 
 
 
1 
X 
2 
) %U. 
O 
 
2( 
 
dx  
X) 
( ) ( ) 
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The matrix of mass is thus written: 
L 
L 
2 
 
 
 
dx 
 
1 
 
1 dx 
 
 
2 
 
M = 
S 
O 
O 
L 
L 
 
 
2 
1 dx 
 
2 
dx 
 
 
 
O 
O2 
 
and made calculations: 
SL 
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2 
 
1 
M = 
 
 
6 1 
 
2 
2.2  
Free movement of torsion around the longitudinal axis 
The problem is similar to that of traction compression. For a beam, charged by 
torques distributed  
C 
X (X) and of the concentrated moments I, the principle of virtual work 
is written: 
D 
NR 
 
M 
dx = 
dx 
C 
X 
X 
+ 
I 
 
 
 
I (),  
 
dx 
 
i=1 
The law of behavior is: 
D 
M 
X 
X (X) 
= G C dx 
Except for the variables, this equation with the same form as that of the movement of traction and 
compression. 
By using the same reasoning, one obtains the same expressions for the matrices of mass and 
of stiffness elementary is: 
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G C 1 -1 
K = 
 
 
L 
-1 1 
C L 
 
2 1  
and 
M = 
 
. 
6 
1 2 
The calculation of the matrix of mass like having previously required to discretize the field 
solution. 
The second member, due to couple X distributed, is in the same way obtained that for the movement of 
traction and compression: 
L 
 
 
X 
1 (X)  
dx 
X 
 
1 (X) = 1 
O 
 
L 
L 
 
 
 
 
 
X = X 
2 (X)  
dx 
 
X 
2 ( ) 
 
L 
O 
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2.3  
Movement of inflection 
We place ourselves here within the framework of a right beam at constant section of Timoshenko type. 
Us 
let us take account of the effects of transverse shearing. The beam of Euler-Bernoulli will be then treated 
by simplification of the equations of Timoshenko. 
The description of the inflection is more complex than the preceding movements, but a judicious choice 
functions tests will enable us to obtain of the same results forms. 
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2.3.1 Inflection in the plan (x0z)  
With obvious notations and while not being interested initially, as in the cases 
precedents, with the efforts of inertia, the principle of virtual work is written for the movement of 
inflection 
in the plan (x0z): 
NR 
V 
(“+) + Me = (T + m + +, éq 2.3.1-1 
ext. 
ext. 
 
 
) Tc 
C 
I () 
m 
Z 
y 
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Z 
y 
I 
I 
I () 
i=1 
for all (,) kinematically acceptable. 
The matrix of rigidity results from the expression of the virtual work of the interior forces which one 
goes 
to clarify by using the relation of behavior then while integrating by parts: 
V 
 
' 
Z (“+) + Me 
= 
K SG 
y 
Z 
'+ '+ + 
' 
 
 
(W y) () E Iy y 
= K S 
Z 
[G (wL) (“(L) + (L))- (W) 0 (” () 0+ () 0)] 
- 
K SG 
Z 
(W '' + ') + K SG 
Z y ('+) 
 
 
+ EIy [y (L) “(L) - y () 0” () 0] - I.E.(internal excitation) 
y y “ 
 
The functions tests which one will choose “will check the equilibrium equations without second 
member”, 
i.e. [éq 1.3.1-2] and [éq 1.3.1-3]: 
 
"+ ' = 
 
0 
 
éq 2.3.1-2 
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I.E.(internal excitation) “- 
 
 
K SG 
y 
Z 
(+) = 0 
Under these conditions, nodal forces, expression of the work of the interior forces in these 
virtual displacements given are expressed exactly, without assumption on the form of the solution, in 
function of displacements in end of beam as in the preceding cases: 
V 
Z (“+) + Me = K SG 
y 
Z 
' 
+  
- 0 '0 + 0 
 
[(wL) ((L) (L)) (W) (() ())] éq 2.3.1-3 
+ EIy [y (L) “(L) - y () 0” () 0] 
Note: 
It is clear that the condition [éq 2.3.1-2] led to functions tests depending explicitly 
geometrical and material characteristics of the beam, but that A do not laugh at awkward. 
The couples of functions selected tests are: 
(,) = (, ii+) I 
4 
= , 
1…, 4 
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12 I.E.(internal excitation) y 
where, while having noted y = 
, functions  
K 
2 
I are defined by: 
Z SGL 
3 
2 
1 
X 
X 
X 
 
1 (X) = 
2 
 
3 
 
+ 1 
 
1+ 
 
 
L -  
L 
y 
 
- 
+ 
L ( 
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y) 
y  
 
 
6 
X  
X 
 
 
5 (X) = 
- 
L ( 
1 
1+  
 
 
 
 
y) L 
L 
3 
L  
X 
4 +  
2 
y X 
2 + there X  
2 (X) = 
-  
+ 
 
1+  
 
 
L 
2 
 
 
L - 
 
2 
 
 
L 
y  
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X 2 
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L 
 
2  
L 
y  
 
 
éq 2.3.1-4 
1 
2 
X 
X  
(X) = 
3 
 
+ - 
 
2 +  
 
1+  
 
 
L 
( 
y) 
8 
 
 
L 
y 
 
 
 
 
One checks without difficulty that the couples (I, i+4) check well [éq 2.3.1-2]. Moreover: 
(1, 5) = (1, )0 ,  
= 0, 0 
(0) 
(1 5) 
( ) 
(L) 
(2, 6) = (0,) 1 (,) = (0,) 0 
(0 
2 
6 
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) 
(L) 
( 
éq 2.3.1-5 
3, 7) = (0, ) 
0 
( , ) = (1, ) 
0 
(0 
3 
7 
) 
(L) 
(4, 8) = (0,) 0 (,) = (0,) 1 
(0 
4 
8 
) 
(L) 
The matrix of rigidity results easily from [éq 2.3.1-3] (by ordering the columns according to 
((wo), (O) 
, 
( 
W L) 
, (L 
y 
y 
) 
). 
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L 
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1 
-  
-1 
-  
 
 
 
 
(2 
2 
4+ 
2 
2 
y 
) L 
L 
(2 - y) L  
12 I.E.(internal excitation) 
 
 
 
K = 
y 
12 
2 
12 
 
 
L3 (+ 
1 
 
 
y 
) 
L 
Sym 
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(2 
4+  
2 
y) L  
 
12 
 
It is clear that the calculation of the efforts acts in the same way that to [§2.1.3].  
2.3.2 Inflection in the plan (xOy) 
The matrix of rigidity for a movement of inflection in the plan (xOy) is obtained in the same way that 
in the preceding case. The functions tests which lead to an exact expression of the nodal forces 
must this time check (equation similar to [éq 2.3.1-2]): 
 
"- ' = 
 
0 
 
éq 2.3.2-1 
I.E.(internal excitation) “- 
 
 
K SG 
Z 
Z 
('-) = 0 
The couples of functions selected tests are: 
(1, -5) ; (-2, 6) ; (3, -7) ; (-4, 8) 
12 I.E.(internal excitation) 
 
Z 
I being given by [éq 2.3.1-4] while having replaced y by Z = 
. The matrix of rigidity 
K 
2 
y SGL 
obtained is: 
 
L 
L 
 
1 
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2.3.3 Determination of the matrix of coherent mass with the matrix of rigidity 
Option “MASS_MECA” of operator CALC_MATR_ELEM. 
2.3.3.1 Inflection in the plan (xoz) 
Let us consider the movement of inflection in the plan (X O Z), the work of the inertias is written: 
L 
W = (W w%+ % 
m 
y 
I y 
O 
Z 
) dx 
with 
= dS  
 
 
and = 
y 
2 dS 
m 
. 
 
 
S 
Iz 
S 
In the case of a homogeneous material, we have: 
m = S  
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and 
I = Iz. 
Z 
( 
W X, T) and y (X, T) are discretized on the basis of function tests introduced for the calculation of 
stamp rigidity, that is to say: 
W (X, T) = 1 (X) w1 (T) 
+ 2 (X) 
(T 
y 
) + 3 (X) 
w2 (T) 
+4 (X) (T 
y 
) 
1 
2 
(X, T 
y 
) = 5 (X) w1 (T) + 6 (X) (T 
y 
) +7 (X) w2 (T) +8 (X) (T 
y 
) 
1 
2 
w1  
1 
 
 
y  
 
1 
2 
in other words: 
W 
T 
= W  
with  
 
 
 
 
 

file:///Z|/process/refer/refer/p500.htm (11 of 41)10/2/2006 2:52:13 PM



file:///Z|/process/refer/refer/p500.htm

W 
W = 
and  
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~ 
~ 
W 
W 
 
2 
3 
 
 
 
y  
 
2 
4 
5 
 
T 
6 
y = W  
front  
 
 
 
EC. 
 
 
 
= 
y 
y 
 
~ 
 
7 
8 
By integrating these notations in the expression of the work of the inertias, one a: 
L 
W 
T 
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T 
T 
T 
= 
W W + 
% W  
 
W 
 
% dx 
m 
O 
W 
W 
Iz 
y 
y 
~ 
~ 
~ 
~ 
L 
or:  
W 
T 
T 
T 
T 
= 
W W + 
% W  
 
W 
 
% dx 
m 
. 
O 
W 
W 
Iz 
y 
y 
~ 
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One deduces the form from it of the matrix of mass: 
L 
M = (mij) m = 
S 
ij 
(X)  
 
I 
(X) J (X) + I 
Z (X) i+4 (X)  
j+4 (X) dx 
O 
for I from 1 to 4 and J from 1 to 4. 
That is to say: 
2 
2 
2 
2 
13L 7L 
L 
- 11L2 
11L2 
2 
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9 
3  
 
13 2 
3 2 
2 
 
Z 
Z 
Z 
L 
L 
L 
L 
L 
L 
L 
Z 
Z 
Z 
Z 
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+ 
+ 
- 
- 
+ 
+ 
+ 
+ 
 
35 
10 
3 
210 
120 
24 
70 
10 
6 
420 
40 
24 

file:///Z|/process/refer/refer/p500.htm (15 of 41)10/2/2006 2:52:13 PM



file:///Z|/process/refer/refer/p500.htm

 
 
2 
2 
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3 
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- 13L 
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Z 
 
S 
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120 
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120 
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2  
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1 
13L 
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L 
- 11L 
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Z 
Z 
Z 
 
+ 
+ 
+ 
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Z + Z  
 
15 
6 
3  
It should well be noted, as in [§2.1.4], that in the dynamic case, one is not ensured to have one 
exact solution with the nodes, as it is the case in statics. 
2.3.3.2 Movement of inflection around the axis (O Z) 
In the same way, for the movement of inflection around the axis (O Z), in the plan (X O y), the work of 
the forces 
of inertia is written: 
L  
(v v+ 
%  
 
%  
m 
Z 
I 
Z 
O 
y 
) dx 
with: 
 
= 
Z 
dS = 
I 
I 
. 
2 
y 
S 
y 
This time v (X, T) and Z (X, T) are discretized in accordance with [§2.3.2] by: 
 
v (X, T) = 1 (X) v T -  
1( ) 
X  
2 ( )  
T 
Z () + 3 (X) v2 (T) - X  
4 () Z 
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(T) 
1 
2 
Z 
(X, T) = -5 (X) v1 (T) +6 (X) Z 
( 
T) - 7 (X) v2 (T) +8 (X) Z 
( 
T) 
1 
2 
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We obtain the matrix of following mass then: 
2 
2 
2 
2 
13L 7L 
L 
11L2 
11L2 
2 
9 
3  
 
- 13 2 
3 2 
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15 
6 
3  
In the model of beam of Euler-Bernoulli, the effects of transverse shearing are neglected. It 
is thus enough, to obtain the matrices of mass and rigidity associated with this model, to cancel them  
variables y and Z contained in the matrices of mass and rigidity of the model of Timoshenko. 
(y and Z utilize the coefficients of form ky and kz, opposite of the coefficients of shearing). 
It will be noted that in the Euler-Bernoulli model programmed in Aster, the inertia of rotation is 
also neglected. It is thus necessary, for this model, to cancel the terms in “Iz” and “I y” in 
stamp of mass of the model of Timoshenko. 
2.4  
Stamp of mass reduced by the technique of the concentrated masses 
The matrix of mass is thus reduced to a diagonal matrix and is obtained by the option 
“MASS_MEGA_DIAG” of operator CALC_MATR_ELEM. 
The element beam is considered with section constant S and constant density. 
The technique known as of “Lumping” consists in summoning on the diagonal all the terms of the line of 
coherent matrix and to cancel all the extra-diagonal terms. 
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With regard to the diagonal component related to the movement of traction and compression (M11) and 
that related to the movement of torsion (M44), we have: 
L 
M 
= S 
11 
2 
L 
M 
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= 
 
44 
( 
I + I) 
I, I 
y 
Z 
y 
Z: geometrical moments. 
2 
One can consider that these components were obtained by dividing the element of beam into two 
L 
equal shares length  
then by associating the mass and inertia obtained the node of 
2 
half-element. For M44, the preceding expression corresponds to a choice: one could also 
L 
to write: M 
= C 
44 
. 
2 
Note: Comparison with the methods of numerical integration. 
One can note that if one carries out a in the following way approached integration: 
(E) 
F 
= 
F  
 
my (aei) 
E 
N 
i=1, N 
(ae: nodes I of the élém  
ent 
 
E, N 
I 
: node of the element numbers) 
one obtains an identical result (for a beam:  
( 
my E) = L and N = 2). 
The diagonal components related to the movements of inflection which are programmed are: 
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L 
M 
= S 
, 
22 
2 
L 
M 
= S 
, 
33 
2 
 
L3 
L2  
2L 
M 
= Min  
S, S  
 
 
+  
I, 
55 
y 
 
105 
48  
15 
 
L3 
L2  
2L 
M 
= Min  
S, S  
 
 
+  
I. 
66 
Z 
 
105 
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48  
15 
One finds well the components M22 and M33 related to the translations of the movements of inflection 
by 
technique of the masses concentrated with the nodes. On the other hand, the origin of the formulas used 
for 
components M55 and M66 related to rotations, is unknown. One can simply notice that one 
find the values: 
L3 
2L 
S  
+ I  
, 
Z 
105 
15 
L3 
2L 
S  
+ I  
 
y 
. 
105 
15 
for the diagonal components of the matrix of equivalent mass [§2.3]. But this matrix is not 
not diagonal. Nevertheless, the results obtained by this method remain correct. 
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3  
Particular right beams 
It is a question in this chapter of taking into account right beams whose section has properties which 
were ignored until now, in particular the beams having a center of torsion excentré by 
report/ratio with the neutral axis (the section does not have 2 axes of symmetry), and those whose 
section evolves/moves 
continuously on their axis. 
3.1  
Eccentricity of the axis of torsion compared to the neutral axis 
The center of torsion is the point which remains fixed when the section is subjected to the only moment 
of 
torsion. It is also called center of shearing because an effort applied in this point does not produce 
rotation X. 
F 
M 
O 
C 
C 
O 
(not of rotation) 
(not of displacement in C) 
At the point C, the effects of inflection and torsion are uncoupled, one can thus use the established results 
in the preceding chapter. One finds the components of displacement as in point 0 while considering 
rigid relation of body: 
U (O) = U (C) + OC  
Q  
X 
 
with 
= 0 vector rotation 
 
0  
0  
 
and 
OC = ey 
 
E Z 
Z 
E 
C 
Z 
y 
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In fact, one obtains: 
U 
= U 
X 
C 
X 
U 
= U + E  
y 
 
éq 3.1-1 
C 
y 
Z 
X 
U 
= U - E. 
Z 
 
C 
Z 
y 
X 
The change of variables given by [éq 3.1-1] is written matriciellement: 
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ux  
ux  
c1 
 
 
1 0 0 
0 
0 0 
1 
 
 
U 
y 
 
uy  
C  
1 
0 1 0 - E 
0 0 
 
1 
U 
 
Z 
 
 
 
Z 
U 
c1 
 
 
0 0 1 E 
 
Z 
y 
0 0 
0 
1  
X 
 
 
X 
 
c1 
0 0 0 
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1 
0 0 
 
1 
 
 
 
 
y 
 
c1 
 
 
0 0 0 0 1 0 
y1  
 
 
 
Z 
 
Z 
 
c1 
0 0 0 
0 
0 1 
 
1 
 
U 
 
 
 
X 
= 
U 
C 
 
 
 
2  
1 0 0 
0 
0 0 
x2  
U 
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y  
U  
c2 
 
0 1 0 - E 
0 0  
 
y2 
 
 
U  
Z 
Z 
 
 
 
U 
C 
Z  
2  
0 0 1 
ey 
0 0 
 
 
2 
 
 
X 
c2 
 
 
 
0 
0 0 0 
1 
0 0 
x2 
 
 
 
y 
 
 
 
C  
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y  
2 
0 0 0 
0 
1 0 
2 
 
 
 
 
 
 
 
Z 
 
 
 
 
C  
2 
 
0 0 0 
0 
0 1 
Z  
2 
 
!######## " 
# ## 
$ 
####### 
P 
It is thus enough to determine the elementary matrices of mass (Mc) and stiffness (Kc) in 
locate (C, X, y, Z) where the movements of inflection and torsion are uncoupled then to be transported 
in the reference mark related to the neutral axis (O, X, y, Z) by the following transformations: 
K = PT K P 
C 
and 
K = PT K P 
C 
. 
The values of ey and ez are to be provided to Code_Aster via the operand 
SECTION: “GENERAL” of operator AFFE_CARA_ELEM, default values being obviously 
zero values. 
Handbook of Reference 
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3.2 Sections  
variables 
It is possible to take into account evolutionary sections in a continuous way for the beams 
right-hand sides of Timoshenko and Euler (POU_D_E and POU_D_T only). One distinguishes two 
types from 
variation of section: 
· linear or refines, 
· quadratic or homothetic. 
The distinction between the two types is conceived easily by taking the example of a beam 
rectangular: 
· if only one of side dimensions varies, one supposes in a linear way, then the surface of 
cross-section varies linearly, and is given by: 
S 
X  
S (X) = S + 2 
1  
-1  
1 
 
 
S 
L 
 
1 
 
· when two side dimensions vary (in a linear way), the surface of section will evolve/move 
in a quadratic way. 
2 
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S 
X  
S (X) = S + 
2 
 
 
1 1 
-1 
 
S 
L 
1 
 
 
 
Code_Aster makes it possible to treat sections “RINGS”, “RIGHT-ANGLED” and “GENERAL”, but for 
obvious reasons of geometry, all these types of section cannot admit the two types of 
variation. The following table summarizes the existing possibilities. 
Section 
Constant 
Linear 
Quadratic 
ring 
yes 
not 
yes 
rectangle 
yes 
yes 
yes 
according to y 
general 
yes 
not 
yes 
For the “RIGHT-ANGLED” section, it is the user who chooses the type of variation, while specifying 
“REFINES” 
or “HOMOTHETIC” in AFFE_CARA_ELEM. It is necessary well to note that in the case “REFINES”, 
them 
dimensions can vary only according to Y. 
We consider generally that the section varies according to the formula [éq 3.2-1]: 
 
X m 
S (X) = S + C 
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1 1 
 
 
 
L 
éq 3.2-1 
S1 is the initial section in X = 0 
C is fixed by the knowledge of the final section S2 in X = L. 
m gives the degree of variation: m = 1 variation linear, m = 2 variation quadratic. 
The section varying, it goes from there in the same way inertias I (X 
y  
), I (X 
Z 
) and I (X 
p 
). 
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We will thus have: 
X m+2 
 
I (X) = I 
1+ C 
 
y 
y1  
 
L 
éq 3.2-2 
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X m+2 
 
I (X) = I 
1+ C 
 
Z 
z1  
 
L 
éq 3.2-3 
X m+2 
 
I (X) = I 
1+ C 
 
p 
p1  
 
L 
éq 3.2-4 
C is given for each formula starting from the value for X = L: I, I, I 
y 
Z 
p. 
2 
2 
2 
The Coulomb and Young moduli (E) (G) are supposed to be constant. 
The principle adopted by Code_Aster consists in calculating equivalent characteristics of section, 
constants on the beam, starting from the real characteristics data at the two ends. These 
equivalent characteristics thus depend on the phenomenon to which they contribute, in particular, 
are distinct for the effects of rigidity or inertia. 
3.2.1 Calculation of the matrix of rigidity 
3.2.1.1 Determination of the equivalent section (Seq) 
The determination of the equivalent section does not use nor the method taken with [§2.1.1] to obtain 
stamp exact rigidity nor an approximation of the solution by a polynomial function like 
described with [§2.1.4]. In fact, the method employed deviates from the finite element method and even 
of 
the method of Galerkin, it consists in carrying out a resolution of the problem of the beam with section 
variable without efforts distributed imposed, which makes it possible to clarify the efforts at the ends in 
function 
displacements. This method is “coherent” with that of [§2.1.1] because the definite functions tests 
in 2.1.1 1 or 0 is worth on the ends of the beam, therefore [éq 2.1-1] the nodal forces can be 
“comparable” with efforts. 
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In addition, this method makes it possible to obtain exact results for the static problem without force 
distributed and led as we will see it with a Seq value lain between S1 and S2 who, in the case 
general, guarantees the convergence of the solution approximated towards the exact solution (without 
however 
to know the order of convergence). 
The section of the beam being variable, the equation of traction and compression in statics without effort 
distributed 
imposed is written: 
 
U 
 
E S (X)  
= 0 0  
X  
L 
X  
X  
 
 
éq 3.2.1-1 
U 
with 
NR (X) = E S (X) X 
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We determine the matrix of rigidity in the case general [éq 3.2-1], we deduce some thereafter 
values of the equivalent sections for the cases m = 1 (linear progression) and m = 2 (progression 
quadratic). 
While integrating [éq 3.2.1-1], we have: 
U 
E S (X)  
= C 
X 
1 
or, by taking account of the expression of S (X): 
 
X m U 
E S 1+ C  
= C 
1  
 
L X 
1 
The constant of integration is given starting from the values of thrust loads to the nodes. 
We integrate once again in order to obtain the efforts with the nodes according to 
displacements ( 
U) 
0 = u1 and ( 
U L) = u2: 
U 
C 
 
X - m 
1 
 
= 
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+ 
1 C 
X 
E S  
 
L 
1 
C 
L 
 
X 
from where U (X) = 
1  
ln + 
1 C 
+ C if m = 1 
E S 
C 
 
 
 
L 
2 
 
 
1 
C 
L 
1 
and  
U (X) 
 
= 
1  
+ C if m2 
E S 
C 
m 1 
- 
2 
1 
( 
 
X 
L -) 
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m + 
1 C 
 
 
 
L 
It is noted that the expression of ( 
U X) is far from being polynomial. 
By taking account of the fact that: 
C 
= - NR 
Po 
ur X =  
1 
1 
0 
C 
= + NR for X = L 
1 
2 
and that: 
(1+c) - m 1 
+ U (0) - U (L) 
C 
= 
2 
( + 
1 C) - m 1 
+ -1 
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we obtain: 
 
E C M 
NR  
1 
1 =  
 
ln ( 
 
u1 - U 
L 1+ c) ( 
2 ) 
for m =  
1 
 
E C M 
NR  
1 
2 =  
 
 
ln ( 
 
u2 - U  
L 1+ c) ( 
1) 
 
E C M  
1 
1 
1 
(1- ) 
m 
 
(1+ C) m  
(1+ C) m  
NR  
1 =  
- U  
+u  
 
1 
2 
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L 
 
 
1 (1+c) M-1 
 
1 (1+c) M-1 
 
 
 
and for m = 2  
E C M  
(1+ C) m 1 -  
(1+ C) m 1 
- 
 
1 
(1- ) 
m 
NR  
 
U  
 
2 =  
U 
. 
L 
1 
1 - (1+ C) m 1 
- - 2 
 
 
1 (1+c) m 1 
 
 
 
 
By replacing C by its value, that is to say: 
· if m = 1 
S 
C = 
2 - , 
1 
S1  
E 
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(S2 - S1) 
N1 = 
 
(u1 - u2) 
L 
 
ln S2 - ln S1 
E 
(S2 - S1) 
N2 = 
 
(u2 - u1) 
L 
 
ln S2 - ln S1 
· if m = 2 
S 
C = 
2 -1 
S1 
E 
N1 = 
S S 
1 2 ( 
u1 - u2) 
L 
E 
N2 = 
S S 
1 2 ( 
u2 - u1) 
L 
We note that the matrices of rigidity, in the two treated cases, will have the same form as for 
a constant section if one takes as equivalent section: 
(S - S 
2 
1) 
Seq = 
for a section varying linearly 
S -  
ln ln S 
2 
1 
S 
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= 
S S 
eq 
for a section varying in a quadratic way 
1 2 
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3.2.1.2 Determination of a constant of equivalent torsion (Ceq) 
The equation of pure torsion of a beam with variable section, is written: 
 
Q 
G C (X) X 
 
0 
X  
 
X = 
éq 3.2.1-2 
 
X m+2 
with: C (X) = C 1 
1 
+ C  
(m or  
1 
2 ) 
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L 
= 
The method is the same one as for the calculation of the equivalent section: it is a question of integrating 
the equation 
the preceding one in order to obtain the efforts (torques X  
, X) according to displacements 
1 
2 
with the nodes (X,  
X and to deduce some, by comparison with the formulas with constant section, 
1 
2 ) 
expression the one geometrical moment polar are equivalent. 
By integration of [éq 3.2.1-2], we have: 
 
X m+2  
G C 1+ C 
X 
D 
1  
 
L 
= 
 
, 
X 
1 
D1 the constant of integration is determined by the torques applied to the nodes. 
- (m+2) 
 
D 
 
X 
Of:  
X 
= 
1 
+ 
 
1 C 
, 
X 
G C  
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L 
1 
we deduce: 
- (m+) 
D 
- L 
 
X 
1 
 
1 
X (X) 
= 
 
1+ C 
D. 
G C 
2 
 
 
 
 
 
+ 
1 
( 
C m+) 
1 
L 
We determine D2 starting from the system: 
 
- D L 
 
1 
X = 
+ D 
1 
 
G C C  
2 
1 
(m+) 1 
 
- D L 
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1 
- m 1 
 
+ 
X 
= 
 
1+ C 
+ D 
2 
 
G C C  
2 
 
1 
(m+) ( 
) ( ) 
1 
 
- m 1 
+ 
X (1+ c) ( 
) +x 
that is to say: D 
1 
2 
2 = 
( 
. 
1+ C) - (m+) 1 -1 
By taking account of the fact that: 
D  
= - for X  
=  
1 
1 
0 
D  
= for X  
=  
L 
1 
2 
, 
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we have finally: 
for m = 1 
 
2 
2 
G 
 
(2C C213 - C C123) 
1 
= 
 
 
 
2 
2 
- 
 
L 
1 
2 
 
( 
X 
X 
C2 3 - C13) 
( 
) 
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2 
2 
 
G 
(2C C213 - C I1p 32) 
2 
 
= 
 
 
 
2 
2 
- 
L 
2 
1 
 
 
( 
X 
X 
C 3 C 
2 
13 ) 
( 
) 
We thus take in the case of a section varying linearly, a polar geometrical moment 
Ceq equivalent of the following form: 
(2 
2 
2 C C 
2 
13 - C C 
1 
2 3 ) 
Ceq = 
( 
linear variation 
2 
2 
C2 3 - C13) 
for m = 2 
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3 
3 
G 
 
(C C214 - C C124) 
1 
= 
3 
 
 
3 
3 
- 
 
L 
1 
2 
 
( 
X 
X 
C24 - C14) ( 
) 
 
3 
3 
G 
(C C214 - C C124) 
2 
 
= 
3 
 
 
3 
3 
- 
L 
2 
1 
 
 
( 
X 
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X 
C 4 C 
2 
14 ) 
( 
) 
In the case of a section varying in a quadratic way, the polar geometrical moment is written: 
(3 
3 
C C 
2 
14 - C C 
1 
2 4 ) 
Ceq = 3 
( 
quadratic variation 
3 
3 
C24 - C14) 
3.2.1.3 Determination of the equivalent geometrical moments 
In fact, it does not seem possible to find, as we did for the section or the moment 
geometrical polar, of equivalent geometrical moments (I 
I 
y and Z 
who would come to substitute themselves 
eq 
eq) 
at the geometrical moments (I  
and I 
y 
Z) in the expression of the terms of the matrix of rigidity. 
We expose here the method suggested by J.R. BANERJEE and F.W. WILLIAMS [bib3] which clarifies 
the matrix of rigidity in the case of a movement of inflection of a Euler-Bernoulli beam to section 
variable (linear or quadratic). 
The results correspond to those programmed in Code_Aster for a beam of the type 
Euler-Bernoulli with variable section (linear or quadratic). By extension, the same step is there 
applied for the beams of the Timoshenko type. The results are not here detailed. 
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Let us consider the inflection in the plan (X O y). 
On the basis of the static equation of the movement of inflection of a beam of the Euler-Bernoulli type: 
2  
2 v  
v 
I.E.(internal excitation) (X) 
= 0 
Z 
, and  
= 
2 
X  
2  
X 
Z 
 
X 
 
 
v (X) is expressed according to four constants of integration (C, C 
, C 
, C 
1 
2 
3 
4 
). These constants 
are determined by the values of displacements to the nodes: 
v (O) = v v (L) 
1 
= v2 
(O) = (L) =, 
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Z 
Z 
Z 
Z 
1 
2 
that is to say: 
v1  
C1 
 
 
Z 
 
C 
1  
 
= B 2, B 
 
 
v  
 
stamp (4 X 4). 
2 
C  
 
3 
Z 
2  
C4 
 
2 
v  
Efforts: V (X) = 
I.E.(internal excitation) (X)  
y 
 
2  
X 
Z 
 
X 
 
 
 
2 
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v 
and moments: M (X) = 
I.E.(internal excitation) (X)  
Z 
Z 
, 
x2 
also express themselves according to these constants of integration, and one can write: 
Ty  
C  
1 
1 
 
 
M 
 
Z 
C 
1  
= D 2 
 
, D 
 
 
T  
 
stamp (4 X 4). 
y 
C 
2 
3 
 
 
 
M 
Z  
C  
2 
4 
The matrix of rigidity corresponds to the product D B-1. The terms of this matrix are clarified in 
following tables. 
 
X m+2 
Let us recall that I (X) = 
I 1 + C  
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, m 
1 or 2, 
Z 
z1  
 
L 
= 
C 
C 2 
C 3 
Let us pose  
W1 = I.E.(internal excitation) 
, W2 = 
 
I.E.(internal excitation) 
, W 
I.E.(internal excitation) 
. 
z1 L 
z1  
L 
3 
Z 
 
 
= 
 
1  
L 
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Variation closely connected 
Quadratic variation 
m = 1 
m = 2 
1 
1 
I 
3 
 
I 4 
 
 
C = 
2 
-1 
C = 
2 
-1 
I  
I 
1 
1  
 
C + 2 
4 
2 
 
 
1 
(C +3 c+) 3 
 
C 
 
 
2 C 
2 
(c+) 
3 
3 
( 
C C +) 
1 
2 C (c+) 
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1 (2 c+) 
3 
 
2 C  
2 
4 
(c+) 
1 (2 c+) 
3 
4 C 
 
= C -  
2 2  
C 
5 
2 
4 
(c+) 1 
 
= C -  
4 2  
C 
2 
6 
3 
5 
(c+) 1 
3 
 
( 
C 
c+ 2) ln (c+) 
1 - 2 C (c+) 1 
The matrix K is written then: 
W W  
- W  
W  
3 
1 
2 
2 
3 
1 
2 3  
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1 
W  
 
- W  
 
+W  
 
K = 
 
 
 
 
1 
4 
2 
2 
1 
5  
Sym 
W  
- W  
3 
1 
2 3 
 
 
 
W  
1 6  
Now let us consider the inflection in the plan (X O Z). 
For the sections with quadratic variation, the step is identical. But it differs for the sections 
with linear variation (according to y only). 
One calculates the terms of the matrix of rigidity corresponding to the inflection in plan (0, X, Z) by 
values given in the following table. 
Variation closely connected: inflection in the plan (0xz) 
I 
C  
= 2 -1 
I1 
( 
ln C +) 
1 
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1 
C 
1 
2 - 1 
 
1 
(C +) 1 1 
- 2 
1 
1 
+ C - 2 
5 = C 2 - 4  
6 = C 3 - 5 
 
(C + 2) ln (C +) 1 - 2c 
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In the case of the beams of Timoshenko, for the coefficients of shearing, one applies to the section 
reduced K S relations used for the section, namely: 
( 
K S2 - K S 
 
y 
y 
1 
K S 
2 
1 
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y 
) 
( 
if the variation is closely connected 
K S2 - K S 
Z 
Z 
1 
 
2 
1 
) 
(K S 
Z 
) = 
 
eq 
ln (K S 
z2 2) - ln (K S 
z1 1)  
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eq 
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1 
2  
( 
if the variation is quadratic 
K S 
Z 
) = S S K K 
eq 
1 2 Z 
Z 
1 
2  
and one in the same way introduces the additional terms into K that for a constant section. 
Calculations are not here detailed. One obtains a matrix K of the same forms than previously 
with for principal modification the value of: 
· variation  
closely connected 
2 
= (C + 2) ln (C +) 
1 - 2c + 
c3 (C + 2) 
12 
· variation  
quadratic 
c3 
2 
= 
+ 
c3 (c2 + C 
3 + ) 
3 
C +1 
3 
3.2.2 Calculation of the matrix of mass 
3.2.2.1 By the method of the equivalent masses 
“Average” values are calculated for the section, the reduced section, and the moments, namely: 
S + S 
S = 
1 
2 if the variation is closely connected 
2 
1 
L 
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S + S + S S 
S = 
 
S (X) dx = 
 
1 
2 
1 2 if the variation is quadratic 
L O 
3 
I + I  
y 
y 
 
I 
1 
2  
y 
= 
 
2 
I + I  
 
Z 
Z 
1 
2 
 
Iz = 
whatever the variation 
2 
I + I + I + I  
y 
y 
Z 
Z 
I 
= 
1 
2 
1 
2  
 
X 
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The matrix of mass is then calculated like that of a beam having these characteristics. 
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3.2.2.2 By the method of the masses concentrated (diagonal matrix) 
· If the section varies in a way closely connected, the programmed matrices correspond, with regard to 
movements of traction and compression and torsion, with those of the beams prismatic, 
by using sections and equivalent inertias of torsion: 
S 
3 + S 
1 
2 
 
 
0 
 
8 
-  
for traction compression: L  
S 
3 
+ S  
 
0 
2 
1  
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8 
 
(L I +I +I +I 
y 
Z 
y 
Z 
1 0 
1 
1 
2 
2 ) 
X 
-  
for torsion:  
 
1 
4 
0 1 . 
x2 
-  
for the movements of inflection: 
S L 
1 
 
v1 
 
 
(w1) 
2 
 
 
 
M  
 
5,5 (M6,6) 
0 
 
 
z1 (y1) 
 
S L 
2 
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v2 (w2) 
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M 
 
11,  
11 
 
(M12,12) Z 
 
2 (y2) 
S L3 
 
2  
eq 
S L 
eq 
L 
with M 
= M 
= min  
,  
 
 
5 5 
, 
11 11 
, 
105 
48 
+ 
+ 
15 (I 
I 
y 
y 
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1 ) 
 
 
S L3 
2  
eq 
S L 
eq 
L 
 
M 
= M 
= min  
,  
 
 
 
48 
+ 
+ 
15 (I 
I 
z1 
z2) 
6,6 
12 12 
, 
105 
 
 
S + S 
with S 
1 
2 
eq =  
 
2 
 
 
· If the section varies in a homothetic way, the matrices are programmed, for the different ones 
movements, in the following way: 
-  
for the traction and compression: 
(5  
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12 
1 
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for torsion: 
 
(I +I +I +I  
y 
y 
Z  
Z 
1 0 
1 
2 
1 
2 ) 
 
 
X 
L 
1 
 
 
4 
0 1 x2 
-  
for the inflection in each of the two plans: 
(5  
v W 
1 
S + S2) 
1( 1) 
 
L 
 
 
12 
 
 
 
 
M  
Z 
y 
5 5 
, (M6,6) 
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4  
Geometrical rigidity - prestressed Structure 
Option: “RIGI_MECA_GE” 
In the case of a prestressed structure, therefore subjected to initial efforts (known and independent 
time), one cannot neglect in the equilibrium equation the terms introduced by the change 
of geometry of the virgin state of stress in a prestressed state [bib2]. 
Vo 
V* 
V 
oij 
ij 
virgin state 
state 
state 
of constraint 
prestressed 
deformed 
Appear 4-a: Various states 
This change of geometry does not modify the equilibrium equation, within the framework of the 
assumption of small 
disturbances (HPP) around Vo (and of V *), that by the addition of a linear term in displacements 
whose associated matrix is called geometrical matrix of rigidity and who expresses himself by: 
u3D 
v3D 
W 
K 
O 
K 
= 
 
FD 
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G 
X ij X 
I 
V 
J 
O 
where u3D is displacement (resp. v3D virtual displacement kinematically acceptable) taken with 
to start from V * (but compared to Vo within the framework of the HPP) and O the prestressing (of 
Cauchy if one 
wants) since one is within the framework of the HPP. 
WG being a symmetrical bilinear form in u3D and v3D, it can be interpreted like the variation 
of a potientiel UG. 
W 
= U 
G 
G 
One a: 
3D 
3 
U 
U D 
2 U 
K 
O 
K 
G 
=  
 
X 
ij X 
I 
V 
J 
O 
For a model of beam 3D, the tensor of constraints is reduced in the local axes of the beam to 
components xx, xy and xx, from where: 
3D 
3D 
3D 
3D 
3D 
3  
U 
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U 
U 
U 
U 
U D 
2 U 
O 
I 
I 
= 
+ 2 O 
I 
I 
 
+ 2 O 
I 
I 
G 
xx 
 
X 
X 
xy X 
y 
xz X 
Z 
Vo 
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2 
u3D 
3D 
3D 
3D 
3D 
 
X 
ux ux 
ux U 
Terms  
X 
 
,  
and  
are neglected [bib5]. Moreover, in the reference mark 
X  
X y 
X 
Z 
room of the center of torsion of the beam: 
u3D 
X (X, y, Z) = (ux) + zy (X) - y Z (X) 
 
 
u3D 
y (X, y, Z) = v (X) - Z y (X) 
u3D 
 
Z (X, y, Z) = 
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( 
W X) + Z X 
(X) 
u' 
' 
' 
+z - y  
 
 
y 
Z 
- Z 
y 
 
 
and U =  
v' 
' 
- Z X 
 
0 
- X 
 
 
 
w' 
' 
 
+ there X 
 
X 
 
0  
from where one draws, according to the preceding assumption: 
2 
2 
2 U 
O 
= 
(v'-z ' 
' 
 
O 
' 
O 
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' 
X) + (w'+ there X) 
2 xy (w' there X) 
2 
X 
xz (v' Z 
G 
xx 
X) ( 
X) 
 
 
 
+ 
+ 
+ 
- 
- 
 
 
 
 
 
 
 
 
Vo 
However, the generalized efforts are connected to the constraints by the expressions: 
NR ° 
O 
= V 
O 
=  
V 
O 
xx 
y 
xy 
Z = xz 
S 
S 
S 
M = Z M = - y 
y 
xx 
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Z 
xx 
S 
S 
One deduces some: 
L 
2 U 
= 
NR ° 
O 
' 
O 
' 
O 
O 
G 
( ' + ' - 
' - 
' + 
' - 
 
'  
O 
(v) 2 (W) 2) 2 M v 2 M W 2V W 2V v 
y 
X 
Z 
X 
y 
X 
Z 
X 
O 
' 
O 
O 
+  
' 
xx (2 2 
y + Z) (X 
) 2 + (2 y + Z 
xy 
xz) X 
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X 
 
Vo 
By supposing, moreover, that oxx is constant in the discretized element (what is inaccurate for example 
for a vertical beam subjected to its actual weight) and that X varies linearly compared to 
 
 
X 
X 
1 
1 
' 
1 
2  
X 
X 
= 1- 
1 
2, from where  
 
 
 
 
 
 
 
, it comes: 
L + 
= - 
+ 
L 
X 
L 
L 
 
 
O 
O 
NR 
I y + Iz 
NR 
I y + Iz  
 
 
- 
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2 
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xx (y + Z) (X) 
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By neglecting in particular the terms which had with the influence of the shearing action on the mode of 
buckling 
or of vibration, and by supposing that the distributed loads are null on an element, one a: 
NR (X) 
X 
= const 
, 
handle 
M y = (M - M 
y2 
y1) + M 
L 
y1 
V (X) 
y 
= constant, 
X 
V (X) 
M 
= constant, 
Z = (M 
- M 
z2 
z1)  
+ M 
Z 
L 
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z1 
Under this assumption and for the model of Euler-Bernoulli (for the model of Timoshenko, one uses 
even matrix), one obtains the following matrix: 
With 
With  
With = 
1 
2 
 
 
0 
A3 
Higher triangular part of the geometrical matrix of rigidity with: 
1 
2 
3 
4 
5 
6 
1 
U 
1 
v 
1 
W 
X 
1 
1y 
1z 
1 
M o1 
y 
O 
- 
NR 
2L 
NR O 
2 
12 L 
O 
O 
10 
M y2 V 
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2L 
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M o1 
Z 
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NR 
2L 
NR O 
3 
12 
- 
With 
O 
1 
= 
L 
O 
V 
10 
Mz2 
- 
- y 
2L 
2 
O 
O 
O 
O 
( 
- Mz + Mz 
+ My - My 
I 
O 
y + Iz) 
1 
2 
1 
2 
NR 
12 
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NR O 
2L 
NR O 
2 
-12 L 
O 
O 
10 
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M o1 
Z 
NR O 
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Original version 
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O  
O 

file:///Z|/process/refer/refer/p520.htm (11 of 36)10/2/2006 2:52:15 PM



file:///Z|/process/refer/refer/p520.htm

O 
O 
( 
M oy2) 
y 
M 
Mz - Mz 
- My + 
With 
1 
1 
1 
2 
Z 
1 
2 
= 
O 
2L 
2L 
(Iy +Iz) 
( 
) 
NR 
12 
4 
- 
12 
M O 
O 
O 
Original version 
S L 
O 
O 
y2 
V 
M 
(LVz) 
Z 
z2 
y 
( ) 

file:///Z|/process/refer/refer/p520.htm (12 of 36)10/2/2006 2:52:15 PM



file:///Z|/process/refer/refer/p520.htm

(LVy) 
+ 
- 
+ 
+ 
2L 
2 
2L 
2 
- 
- 
12 
( 
12 
M O - M O 
z1 
z2) 
NR O 
12 
(L No) 
5 
- 
- 
10 
(LVo 
30 
y) 
+ (12 
- M O + M O 
y1 
y2) 
NR O 
12 
(L No) 
6 
- 
- 
10 
(LVo 
30 
y) 
+ 12 
Handbook of Reference 

file:///Z|/process/refer/refer/p520.htm (13 of 36)10/2/2006 2:52:15 PM



file:///Z|/process/refer/refer/p520.htm

R3.08 booklet: Machine elements with average fibre 
HI-75/96/060/A 

Code_Aster ® 
Version 
3 
Titrate:  
“Exact” elements of beams (right and curved) 
Date:  
02/12/96 
Author (S): 
J.M. PROIX, P. MIALON, m.t. BOURDEIX 
Key: 
R3.08.01-A 
Page: 
44/72 
7 
8 
9 
10 
11 
12 
2 
U 
v2 
2 
W 
X 
2 
y2 
Z 
2 
7 
M oy1 
O 
- 
NR 
2L 
NR O 
8 
12 
- 
L 

file:///Z|/process/refer/refer/p520.htm (14 of 36)10/2/2006 2:52:15 PM



file:///Z|/process/refer/refer/p520.htm

O 
O 
10 
M y2 V 
- 
- Z 
2L 
2 
M o1 
Z 
O 
- 
NR 
2L 
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With 
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NR 
12 
10 
12 
+ 
(S L) 
(LVo 
O 
y) 
(LVz) 
- 
- 
12 
12 
2 L NR O 
11 
15 
2 L NR O 
12 
15 
My 
M 
By using the equalities  
- 
Z 
 
V = 0 and  
+V = 0, one finds the programmed matrix. 
X 
Z 
X 
y 
Moreover, to be able to deal with the problems of discharge of thin beams, requested 
primarily by moments bending and efforts normal, it is necessary to add the assumption of 
rotations moderated in torsion [bib 4], [bib 5]. 
This results in the following shape of the field of displacements: 
U (X, y, Z) = 
( 
U X) + Z ((X) + (X) (X))- y ((X) - (X) (X 
y 
X 
Z 
Z 
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X 
y 
)) 
In addition, if the center of torsion C is not confused with the centre of gravity, it is necessary to write: 
V 
 
(X, y, Z) = v (X, C) - (Z - zC) X 
 
W 
 
(X, y, Z) =  
( 
W X, C)+ (y - yC) X 
 
These two modifications bring additional terms in the geometrical matrix of rigidity: 
The assumption of moderate rotations results in adding with 2UG the term: 
L 
2 1 
U 
= 
- M O 
O 
O 
O 
, + 
, + 
+ 
 
 
 
 
 
O 
(X y) M 
X 
y (X Z) 
V 
V 
G 
Z 
X 
y 
X y 
Z 
X y 
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The terms of matrix A to be added are: 
O 
O 
( 
M 
M 
4 - ) 
5 
1 
: + 
Z (10 -) 
11 
z2 
: - 
2 
2 
O 
O 
( 
M 
M 
4 - ) 
6 
y1 
: - 
(10 -12) 
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y2 
: + 
2 
2 
With regard to the eccentricity of the center of torsion, it is necessary to add the terms corresponding to: 
L 
L 
L 
U 2 
= NR O Z v' ' 
- NR O y W ' 
O 
O 
' 
G 
C 
' - 
+ 
 
 
 
O 
X 
C O 
X 
(y V Z V 
C 
y 
C Z) 
X 
O 
X 
+ ( 
L 
2 
y M O - Z M O 
' 
C 
Z 
C 
y) (X 
) 
O 
Moreover, it is necessary to carry out a change of reference mark as with [§3.1]. 
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5 Beam  
curve 
To calculate the matrix of rigidity for a curved element of beam, we make calculation while passing 
by various stages. 
We leave the equilibrium equations which integrated will give us a matrix (noted J) 
allowing to determine the efforts in a point of the beam knowing the efforts in another point. 
This matrix will take into account the local basic change. 
Then by writing the potential energy of the element and by noticing the decoupling of the inflection in 
the plan of the element of the inflection out of this plan, one determines the two matrices of flexibility. 
Finally the matrices of flexibility being calculated, one obtains the matrix of local rigidity by using it 
principle of Castigliano, which must be recomputed in the total base to be assembled. 
z2 
Z 
y 
z0 
x2 
arc 
y2 
Nj 
M 
NR 
y0 
I 
C 
 
0 
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x1 
 
xo 
Appear 5-a 
Cf: Instruction manual of Code_Aster (booklet [U4.2]: modeling index C p26/30). 
To attach the efforts applied in a point P of the structure to the efforts obtained in another point  
Q of the structure, one integrates the equilibrium equations static of a curved beam (without effort 
distributed). 
We here will limit we to study the curved beam with constant section (with taking into account of 
transverse shearing) and with constant radius of curvature. 
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'& 
&&y  
'& 
'& 
Ni 
&&z  
&&x  
Nj 
C 
'& '& '& 
&& (X, y, Z) bases local curved beam 
Appear 5-b: Locate average (local reference mark) 
The equilibrium equations static are: 
 
M1 
NR - V = 
M 
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- 
= 0 
, S 
1 
0 
T, S 
R 
 
 
NR 
 
 
M 
V 
 
+ 
= 0  
1 
M + T 
1 
- V 
= 0  
, S 
R 
, S 
R 
2 
 
 
V 
 
= 0 
M 
+V 
= 
2, S 
2, S 
 
 
1 
0 
 
 
this for: 
Q 
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'& 
&&s  
Y 
M 
'& 
&&n 1 
 
P 
X 
Z 
Appear 5-c: Curvilinear reference mark 
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To integrate, the conditions out of P are used: 
NR = F 
M 
= M 
y 
T 
y 
 
 
V 
 
= - F M 
= - M  
1 
X 
1 
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X 
V 
 
= F 
M = M 
2 
Z 
2 
Z 
 
While integrating and while passing in the system of following axis: 
Q 
X 
'& 
&&s  
'& 
&&n 1 
 
 
y 
Z 
P 
Appear 5-d: System of axis chosen by integration 
One obtains: 
NR  
 
cos 
- sin 
0 
0 
0 
0 Fx  
 
 
 
V  
 
 
1 
sin 
cos 
0 
0 
0 
0 
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Fy 
 
 
V 
 
 
2  
0 
0 
1 
0 
0 
0 Fz  
 
=  
 
 
M 
0 
0 
R 
T 
( 
 
cos -) 
1 
cos - sin 0 
 
 
MX 
 
 
M  
 
0 
0 
R sin  
sin  
cos  
 
 
1 
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0 
My 
 
 
 
 
 
M 
R R 
2 
(cos -1 
 
) -  
sin  
 
0 
0 
0 
1 
 
Mz 
!########### " 
# ######### 
$ 
### 
 
 
 
J  
We now will take into account the mechanical characteristics by using energy 
potential: 
~ 
~ 
~ 
~ 
~ 
~ 
1 
2 
2 
2 
2 
2 
S 
2 
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2 
NR 
V 
V 
M 
M 
M 
Ep 
1 
2 
T 
1 
2 
= 
 
 
+ 
+ 
+ 
+ 
+ 
ds 
 
2 s1 ES K SG K SG 
I.E.(internal excitation) 
I.E.(internal excitation) 
I.E.(internal excitation) 
1 
2 
1 
2  
~ 
(the sign “~” means that we use the efforts intern) (note: F = - F by the principle 
of action-reaction). 
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Recall of the relations of behavior 
within the framework of the model of Timoshenko: 
 
U 
NR = ES S 
 
~ 
W 
V 
 
1 
1 
= K SG  
1 
- 
 
 
 
 
 
S 
2  
 
~ 
W 
V 
2 
2 
= K SG  
2 
+  
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S 
1  
 
 
 
~ 
 
M 
= I.E.(internal excitation)  
T 
S 
 
~ 
 
M 
1 
1 
= - I.E.(internal excitation)  
 
S 
 
~ 
 
M 
 
2 
2 
= - I.E.(internal excitation)  
2 
 
S 
 
Torque of the interior efforts:  
Kinematic torque: 
~ 
~ 
S 
NR + T 
s+ N + 
1 
1 N 
{ } 
2  
T 
2 
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~ 
~ 
{ } 
C  
M S + M 
U.S. + W N + W N 
T 
1 
1 
2 
2 
from where: 
 
 
1 
0 
0  
ES 
 
NR  
1 s2 
1 
 
Ep = 
0 
0 
2 ( 
 
NR, V, V 
1 
2 )  
 
 
V1  
ds 
s1 
 
K SG 
 
 
1 
V 
1 
2  
0 
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0 
 
 
K SG 
 
2 
 
 
1 
 
 
0 
0  
I.E.(internal excitation) 
M  
1 
T 
S 
1 
 
 
+ 2 
(M, M, M  
 
T 
1 
2) 0 
0 M ds 
2 
 
 
S 
1 
 
I.E.(internal excitation) 
 
1 
1 
 
 
 
1 m2  
0 
0 
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or: 
1 
 
ES 
 
 
1 
 
Fx T 
 
 
 
Fx 
K SG 
 
 
1 
 
 
Fy  
Fy  
 
1 
 
 
 
0 

file:///Z|/process/refer/refer/p520.htm (32 of 36)10/2/2006 2:52:15 PM



file:///Z|/process/refer/refer/p520.htm

 
 
1 
 
 
B Fz  
K SG 
Fz  
Ep 
T 
= 
J  
2 
 
J 
 
 
Rd 
 
 
 
2 O MX  
Q 
1 
 
 
MX 
 
 
 
 
My 
 
GC 
 
My 
 
 
 
1 
 
 
 
Mz 
 
0 
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Mz 
 
P 
I.E.(internal excitation) 
 
P 
1 
 
 
1 
 
 
 
I.E.(internal excitation) 
 
 
2  
J being the matrix obtained previously. 
 
One can thus calculate the matrix of flexibility [] 
C: 
1 
 
ES 
 
 
1 
 
 
 
K SG 
 
1 
 
 
1 
 
0 
 
 
K SG 
 
[ ] 
C 
= 
JT  
2 
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J  
 
1 
 
 
Rd 
0 
 
 
 
GC 
 
 
1 
 
 
0 
I.E.(internal excitation) 
 
1 
 
 
1 
 
 
 
I.E.(internal excitation) 
 
 
2  
We can notice that the matrix J can break up into two pennies matrices 
independent, a part concerning the inflection in the plan of the element, the other concerning the 
inflection 
out of the plan of the element. 
Note: 
This decomposition will make it possible to reverse the matrices more easily than we go 
to obtain a little further. 
J J 
J 
 
 
1 
 
,  
2 
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Inflection in the plan of the element: 
NR  
 
cos  
- sin  
0 Fx  
 
 
 
 
V 
=  
sin  
cos  
0 Fy  
1  
 
 
M  
 
R (cos -) 1 - R sin 1 Mz 
 
 
2  
 
 
!#####" 
# #####$ 
# 
1 
J  
Inflection out of the plan of the element: 
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M  
cos  
-  
sin  
 
 
R (cos  
-) MX 
T 
1 
 
 
 
 
M 
= sin  
cos  
 
R sin  
1  
My  
V 
 
 
 
 
Fz  
2 
0 
0 
 
1 
 
!##### " 
# ## 
$ 
#### 
J2 
5.1  
Stamp flexibility for the inflection in the plan of the beam [C1] 
1 
 
 
 
cos  
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sin R 
 
(cos -1 
) ES 
 
 
[ 
 
 
1 
C1] =  
- sin cos  
- R sin  
J Rd 
 
 
 
 
O 
 
K SG 
1 
 
1 
0 
0 
1 
 
 
 
1  
 
 
 
I.E.(internal excitation) 
 
2  
2 
2 
cos sin R2 (cos -) 12 
cos  
sin cos  
sin R2 (cos-) 
1 sin 
R (cos 1 
- )  
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+ 
+ 
- 
+ 
- 
 
ES K SG 
I.E.(internal excitation) 
ES 
K SG 
I.E.(internal excitation) 
 
1 
2 
1 
2 
EI2 
 
2 
2 
2 
2 
 
 
=  
 
 
sin cos R sin  
R sin 
+ 
+ 
-  
Rd 
O 
 
ES 
K SG 
I.E.(internal excitation) 
I.E.(internal excitation) 
 
1 
2 
2 
 
1 
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sym. 
 
I.E.(internal excitation) 
 
2 
 
 
Appendix: 
 
 
cos2 D + 
S 
in2 D =  
 
 
O 
O 
 
1 
1 
cos2 D 
 
 
= 
(+sin cos 
 
 
) = 
(2 - sin (2)) 
O 
2 
4 
 
1 
1 
sin2 D 
 
 
= 
(+sin C bone) = 
(2 - sin (2)) 
O 
2 
4 
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sin2  
sin cos D = 
 
O 
2 
from where: 
R 
R 
R3 
C111 = 
 
(2 +sin (2))+ 
(2 - S ( 
in 2) 
) + 
(6 - 8 sin +s (in2), 
4ES 
4 K SG 
4 I.E.(internal excitation) 
1 
2 
R 
R 
R3 
C122 = 
 
(2+ ( 
sin 2) + 
(2 - sin (2))+ 
(2 - ( 
sin 2), 
4ES 
4 K SG 
4 I.E.(internal excitation) 
1 
2 
Handbook of Reference 
R3.08 booklet: Machine elements with average fibre 
HI-75/96/060/A 

Code_Aster ® 
Version 
3 
Titrate:  

file:///Z|/process/refer/refer/p530.htm (6 of 39)10/2/2006 2:52:16 PM



file:///Z|/process/refer/refer/p530.htm

“Exact” elements of beams (right and curved) 
Date:  
02/12/96 
Author (S): 
J.M. PROIX, P. MIALON, m.t. BOURDEIX 
Key: 
R3.08.01-A 
Page: 
52/72 
R 
C133 = 
 
, 
EI2 
R 
R3 
R3 
R3 
C1 
2 
2 
2 
12 
= - 
sin + 
sin - 
sin - 
cos -  
 
[2 
2] , 
2ES 
2k SG 
2EI 
2EI 
1 
2 
2 
R2 
C113 = 
(sin -), 
EI2 
R2 
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C123 = 
(cos -) 
1 . 
EI2  
5.2  
Stamp flexibility for the inflection out of the plan of the beam [C2] 
1 
 
 
0 
0  
cos 
sin 
0 I.E.(internal excitation) 
 
 
[ 
 
 
1 
C2] = 
- sin 
cos 
0 0 
0 J Rd 
 
 
 
 
O 
 
I.E.(internal excitation) 
2 
 
R (cos 
 
- ) 
1 
R 
1 
sin 1  
1  
0 
0 
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K SG 
 
2 
 
 
2 
2 
cos sin  
cos  
sin cos  
sin 
R (cos -) 
1 cos R 
2 
sin  
 
+ 
- 
+ 
 
+ 
I.E.(internal excitation) 
I.E.(internal excitation) 
I.E.(internal excitation) 
I.E.(internal excitation) 
I.E.(internal excitation) 
I.E.(internal excitation) 
 
1 
1 
1 
2 
2 
 
 
sin cos  
R (cos-) 
1 
 
=  
 
sin 
 
R cos  
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sin 
+ 
 
- 
+ 
Rd 
 
 
 
O 
I.E.(internal excitation) 
I.E.(internal excitation) 
I.E.(internal excitation) 
1 
EI1 
 
 
R2 (cos-) 2 
1 
R2 sin2  
1 
sy. 
m 
+ 
+ 
 
I.E.(internal excitation) 
I.E.(internal excitation) 
K SG 
 
1 
2 
 
R 
R 
C211 = - 
(2+ ( 
sin 2) + 
(2+s (in2) 
4EI 
4EI1 
R 
R 
C222 = 
(2 
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- 
( 
sin 2) + 
(2 
 
+ S ( 
in 2) 
4EI 
4EI1 
R3 
R3 
Rb 
C233 = - 
[6 -8 sin +s ( 
in 2)]+ 
(2+ ( 
sin 2) + 
2EI 
4EI 
K SG 
1 
2 
R 
R 
C2 
2 
2 
12 
= - 
sin + 
sin  
2EI 
2EI1 
R2 
R2 
C213 = 
 
(2+ ( 
sin 2) - 4sin) + 
(2 - ( 
sin 2) 
4EI 
4EI1 
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R2 
2 
R 
C2 
(sin2 +2cos -2) 
2 
23 
= - 
 
+ 
sin  
2EI 
2EI1 
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Having determined the matrix of flexibility, we will be able to calculate the matrix of rigidity. 
One thus has: 
1 
T 
E 
E 
= 
 
T 
C  
T, this  
T, (  
: for outside) 
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P [ 
] E 
E 
E 
p 
P 
P 
2 
Like one a: 
Te 
J Te 
= 
Q 
P 
(Recall: Te and Te 
are not described in the same base). 
P 
Q 
One also has: 
T 
1 
T 
E 
E 
1 
- 
1 
- 
E 
E 
p 
= 
T 
J 
C J T 
 
 
 
 
,  
T 
Q 
 
[] Q 
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Q 
2 
Using the theorem of Castigliano, one can obtain displacements associated with the external efforts 
Te. 
U = [C] Te 
p 
in the local base of the point P 
, 
P  
(S N, N  
1 
2) P 
T 
and U 
= J 1  
-  
 
- 1 in the local base of Po Q 
int  
,  
Q 
[ ] 
C J Te 
 
Q 
(S N, N 
1 
2) Q 
Te 
and  
Te. 
P 
Q 
By breaking up the problem into two subproblems, and using the principle of superposition, one 
can write: 
Te 
= 
E 
+ 
E 
= 
I 
I 
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- 
- 
I: for intern, 
P 
T 
T 
T 
T 
total 
PP 
PQ 
PP 
PQ 
( 
) 
effort 
effort 
coming 
coming 
 
point 
 
point 
P 
Q 
and Te 
= 
Te 
+ Te 
= 
I 
I 
- 
- 
Q 
QQ 
T 
T 
total 
QP 
QP 
QQ 
effort 
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effort 
coming 
coming 
 
point 
 
point 
P 
Q 
(one applies two torques of effort (independent one of the other) to the point P and the point Q). 
Action coming on a side: Ti = - Te = - K Up  
-1 
PP 
P 
(K = [] C) 
Action coming on other side: Ti = + 
1 
J Te = 
1 
 
J 
T 
T 
PQ 
 
Q 
[J  
K  
J 
 
] U = K  
J  
U 
Q 
 
Q 
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We obtain as follows: 
Te 
= 
- 
 
K U 
K JT U 
Ptotal 
P 
 
Q 
and the same: Te 
 
= - J K U + J K JT U 
Qtotal 
 
P 
 
 
Q 
The matrix of rigidity for “displacements” U P (given in its local base) and for 
“displacements” UQ (given in its local base) is: 
K - K J 
T  
K =  
 
- J K J K JT. 
 
 
 
 
Moreover, in the case of beams with hollow circular section (elbows of pipings), one divides I and I 
y 
Z 
by coefficients of flexibility given by the user, to take into account the variation of rigidity 
had with ovalization (cf [§7.2]). 
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For the matrix of mass, one considers only the reduced matrix (concentrated masses), and one makes 
the simplifying assumption that the expression given for the right beams [§2.4] remains valid in 
considering a right element length R. 
One obtains: 
S R. 
M = M = M = M = M = M 
11 
22 
33 
77 
88 
99 = 
2 
(I + I 
y 
Z) R. 
M 
= M 
44 
10 10 = 
2 
2 I R 
3 
2 
. 
 
 
y  
S (R) S (R) 
M = M 
 
 
55 
11 11 = 
+ min 
, 
15 
 
105 
48 
 
 
 
3 
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2 
2 I R 
 
. 
S 
 
 
 
 
Z 
(R) 
S (R) 
M 
= M 
 
 
66 
12 12 = 
+ min 
, 
15 
 
105 
48 
 
 
 
This assumption is restrictive and does not allow to take well into account the inertia of inflection or of 
torsion which had with the curve. It is thus in this case to better model a beam curves by several 
elements POU_C_T. 
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6 Loadings 
Various types of loading developed for the elements of beam “MECA_POU_D_E”, 
“MECA_POU_D_T”, “MECA_POU_C_T” in linear elasticity are: 
Types or options 
MECA_POU_D_E 
MECA_POU_D_T 
MECA_POU_C_T 
* CHAR_MECA_EPSI_R: loading by 
developed 
developed 
developed 
imposition of a deformation (of type 
thermal stratification) 
* CHAR_MECA_PESA_R: loading due to 
developed 
developed 
developed 
gravity 
* CHAR_MECA_FR1D1D: loading distributed 
developed 
developed 
developed 
by actual values 
* CHAR_MECA_FF1D1D: loading distributed 
developed 
developed 
developed 
by function 
* CHAR_MECA_TEMP_R: loading 
developed 
developed 
developed 
“thermal” 
* CHAR_MECA_FRELEC: loading “forces 
developed 
developed 
not 
electric " created by a secondary driver 
right 
* CHAR_MECA_FRLAPL: loading “forces 
developed 
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developed 
not 
electric " created by a secondary driver 
unspecified 
6.1  
Loading by deformation 
OPTION: “CHAR_MECA_EPSI_R” 
One calculates the loading starting from a state of deformation (this option was developed to take 
in account the thermal stratification in pipings). The deformation is given by the user to 
assistance of key word EPSI_INIT in AFFE_CHAR_MECA. 
6.1.1 For the right beam of Euler and the right beam of Timoshenko 
The model takes into account only one work in traction and compression and pure inflection (not of 
effort 
edge, not of torque). 
The following relations of behavior are used: 
U 
NR = ES, X 
 
M 
= E I 
y 
y 
y, 
X 
 
M 
= E I 
Z 
Z 
Z. 
X 
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Thus, one obtains the second elementary member associated with this loading: 
U 
at item 1: F 
= 
 
E S 
 
, 
x1 
1 X 
 
M 
= 
 
E I  
y  
, 
y 
y 
1 
1 X 
 
M 
= 
 
E I 
Z  
, 
Z 
Z 
1 
1 X 
U 
at item 2: F 
= 
 
E S 
 
, 
x2 
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2 X 
 
M 
= 
 
E I 
y  
, 
y 
y 
2 
2 X 
 
M 
= 
 
E I 
Z  
, 
Z 
Z 
2 
2 X 
“U 
y 
" 
While being given  
Z 
,  
and  
for a beam, one can affect a loading to him. 
X 
X 
X 
6.1.2 For the beam curves of Timoshenko 
 
 
 
y 
 
X 
The method used can be compared with that previously presented. One uses to obtain it 
loading with the nodes, the matrix of local rigidity K which multiplied by displacements with the nodes 
U gives the efforts F applied to the nodes: 
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F = K U. 
The method takes into account only the deformation related to the length of the beam. But one does not 
take 
in account that the length projected on X, i.e. the shortest distance connecting the two points 
extremes of the curved beam: 2R sin (R: radius of curvature). This length is multiplied by one 
rate of deformation, which gives the state of deformation of the beam. Then one projects on X and Y. 
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One has thus for U: 
- 2R sin EPX cos 
 
 
 
2R sin EPX 
 
 
sin 
 
point 1 
 
0 
 
 
 
 
 
0 
 
 
U = 
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0 
 
 
 
 
 
 
0 
 
 
point 2 
2R sin EPX 
 
 
cos  
 
2R sin EPX sin  
U 
with EPX = X 
6.2  
Loading due to gravity 
OPTION: “CHAR_MECA_PESA_R” 
The force of gravity is given by the module of acceleration G and a normalized vector indicating 
direction N. 
The principle to distribute the loading on the two nodes of the beam is to take account of 
functions of form (X) associated each degree of freedom of the element [§2]. We thus have for 
' 
a loading in gravity an equivalent nodal force Q: 
' 
L 
' 
Q = 
 
 
 
(X) S G N dx 
O 
Note: 
The functions of form used are (simplifying assumption) those of the model 
Euler-Bernoulli. 
It is necessary, of course, to be placed in the local reference mark of the beam to make this calculation. 
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Axial load (in X): 
L 
F 
= 
 
G X  
 
 
S 
dx 
X 
I 
I 
O 
 
X 
X 
= 
1 
1- 
 
 
 
, = 
 
 
 
L 
2 
L  
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S 
S 
from where: F 
= G 
 
X L 1 
2 
X 
+ 
at item 1, 
1 
 
 
 
3 
6  
S 
S 
F 
= G 
 
X L 1 
2 
X 
+ 
at item 2, 
2 
 
 
 
6 
3  
 
X 
for a section varying S linearly = S + 
1 
(S2 - S1) 
 
 
, 
L 
3 S + 2 
S S + S  
1 
1 2 
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2 
and F 
 
= gx L  
 
X 
, 
1 
 
 
12 
 
 
S + 
S S + S  
2 
2 
1 2 
3 2 
F 
= 
X  
X 
G L  
, 
2 
 
 
12 
 
 
2 
 
X  
for a section varying homothétiquement  
S 
S + 
S 
S 
 
1 
( 2 - 1) 
 
L  
Torque: 
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Without taking into account of warping, it is non-existent. 
· In the plan (X O Z): 
L 
F 
= 
 
G Z S dx 
Z 
 
1 
O 1 
L 
M 
= 
 
G Z S dx 
y 
 
1 
O2 
L 
F 
= G Z 
S dx 
Z 
 
2 
O 3 
L 
M 
= 
 
G Z S dx 
y 
 
2 
O 4 
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3 
2 
3 
2 
 
X 
X 
 
X 
X 
X  
1 = 2 
L  
 
 
 
3 
+1 , =  
 
+ 2 
, 
2 
 
 
 
L -  
L 
-  
L 
 
 
 
L - L 
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3 
2 
3 
2 
X 
X 
 
X 
X 
 
 
 
3 = -  
 
 
 
2 
3 
, = L  
+ 
4 
 
 
 
L +  
L 
-  
L 
 
 
 
L  
 
 
 
 
7 S 
3 S 
from where: F 
= 
2 
Z 
 
1 
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G  
Z L 
+ 
, 
1 
 
 
 
20 
20  
2 
1 
S 
2 
S 
M 
= - G 
 
Z  
 
L 
+ 
 
, 
1 
y 
 
 
 
20 30 
3 S 
7 
1 
S2 
F 
= 
 
G 
 
 
Z L 
+ 
, 
2 
Z 
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20 
20  
2 
1 
S 
2 
S 
M 
= 
 
G 
 
 
Z L 
+ 
, 
2 
y 
 
 
 
30 20 
for a section varying linearly, 
8 S +5 S S 
 
+ 2 
 
1 
1 2  
S2 
and: F 
= 
 
G zL 
, 
1 
Z 
 
 
30 
 
 
- 2 S - 2 S S - S  
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M 
= 
 
G zL2 
1 
1 2 
2 
 
 
y  
, 
1 
 
 
60 
 
 
2 S +5 S S 
 
+8 S  
F 
= 
 
G zL 
1 
1 2  
2 
 
 
Z 
, 
2 
 
 
30 
 
 
S +2 S S + 2 S 
 
M 
 
= 
 
G zL2 1 
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1 2  
2 
 
 
y 
, 
2 
 
 
60 
 
 
for a section varying homothétiquement. 
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· In the plan (X O Z): 
L 
F 
= 
 
G y S 
D 
X 
y 
 
1 
O 1 
L 
M 
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= 
 
G y - S D 
X 
Z 
 
1 
O 
2 
L 
F 
= 
 
G y S 
D 
X 
y 
 
2 
O 3 
L 
M 
= 
 
G y - S 
D 
X 
Z 
 
2 
O 
4 
7 S 
 
3 S 
from where: F 
= 
 
G 
 
y L 
1 + 
2 , 
y1 
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20 
20  
S 
S 
M 
= 
G 
 
y L2 
1 + 2 , 
z1 
 
 
 
20 30 
 
3 S 
7 S 
F 
= 
 
G 
 
y L 
1 + 
2 , 
y2 
 
 
 
20 
20  
S 
S 
M 
= - G 
 
y L2 
1 + 2 , 
z2 
 
 
 
30 20 
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for a section varying linearly, 
8 S +5 S 
 
1 
S 
1 2 + 2 S2 
and: F 
= 
 
G y L 
 
y 
, 
1 
 
 
30 
 
 
2 S + 2 S S + S  
2 
1 
 
1 2  
2 
M 
= 
 
gy L  
, 
1 
Z 
 
 
60 
 
 
2 S +5 S S 
8  
+ 
 
1 
 
1 2  
S2 
F 
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= 
 
gy L 
, 
2 
y 
 
 
30 
 
 
- S - 2 S S - 2 S  
2 
1 
 
1 2  
2 
M 
= 
 
gy L  
, 
2 
Z 
 
 
60 
 
 
for a section varying homothétiquement. 
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6.3 Loadings  
distributed 
OPTIONS: 
“CHAR_MECA_FR1D1D”, 
“CHAR_MECA_FF1D1D”, 
The loadings are given under key word FORCE_POUTRE, that is to say by actual values in 
AFFE_CHAR_MECA (option CHAR_MECA_FR1D1D), is by functions in AFFE_CHAR_MECA 
(option 
CHAR_MECA_FF1D1D). 
The various possibilities are: 
constant loading 
variable loading 
linearly 
right beam with constant section 
developed 
developed 
right beam with section varying linearly 
developed 
not 
right beam with section varying 
developed 
not 
homothétiquement 
curved beam 
developed 
not 
The loading is given only by forces distributed, not by moments distributed. 
The method used to calculate the loading to be imposed on the nodes is that presented to [§2.1.2]. 
6.3.1 Right beam with constant section 
For a loading constant or varying linearly, one obtains: 
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N 
N 
F 
= L 
1 
2 
X 
 
+ 
, 
1 
 
 
 
3 
6  
N 
N 
F 
= L 
1 
2 
X 
 
+ 
. 
2 
 
 
 
6 
3  
N and N 
1 
2 are the components of the axial loading as in points 1 and 2 coming from the data of 
the user replaced in the local reference mark. 
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T, T 
, T 
and T 
y 
y 
Z 
Z are those of the sharp effort. And one a: 
1 
2 
1 
2 
7 T 
3 T 
y 
y  
F 
= L 
1 
2 
y 
 
+ 
, 
1 
20 
20  
T 
T 
y 
y  
M 
= L2 
1 
2 
Z 
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+ 
, 
1 
20 30  
3 T 
7 T 
y 
y  
F 
= L 
1 
2 
y 
 
+ 
, 
2 
20 
20  
T 
T 
y 
y  
M 
= - L2 
1 
2 
Z 
 
+ 
, 
2 
30 20  
7 T 
3 T 
Z 
Z  
F 
= L 
1 
2 
Z 
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+ 
, 
1 
20 
20  
T 
T 
Z 
Z  
M 
= - L2 
1 
2 
y 
 
+ 
, 
1 
20 30 
 
3 T 
7 T 
Z 
Z  
F 
1 
2 
Z 
= 
 
L  
+ 
, 
2 
20 
20  
T 
T 
Z 
Z  
M 
= L2  
1 
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+ 2 . 
y2 
30 20 
6.3.2 Right beams with variable section  
The provided loading must be constant. One uses a method similar to that used by the weight 
clean [§6.2]. 
6.3.3 Beam  
curve 
The provided loading must be constant along the element. The loading reduced to the nodes is 
equivalent with that which one can obtain by taking again the results of [§6.3.1]. With a load 
constant, that becomes: 
N 
N 
F 
= L 
, F 
 
= L 
X 
X 
 
, 
1 
2 
2 
2 
T 
T 
F 
= L y 
, F 
 
= L y 
y 
y 
 
, 
1 
2 
2 
2 
T 
T 
M 
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= L 
y 
2 
, M 
 
= - L 
y 
2 
Z 
Z 
 
, 
1 
2 
12 
12 
T 
T 
F 
= L Z 
, F 
 
= L Z 
Z 
Z 
 
, 
1 
2 
2 
2 
T 
T 
M 
= - L2 Z 
 
, M 
= L2 Z 
y 
y 
 
. 
1 
2 
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6.4 Loading  
thermics 
OPTION: “CHAR_MECA_TEMP_R” 
To obtain this loading, it is necessary to calculate the deformation induced by the difference in 
temperature 
T - Tréférence: 
U 
= - 
L 
1 
(T - Tréférence) 
U 
= 
L 
2 
(T - Tréférence) 
(: thermal dilation coefficient). 
Then, the induced forces are calculated: 
F = 
 
K U 
as K is the matrix of local rigidity to the element, one must then carry out a change of 
base to obtain the values of the components of the loading in the total reference mark. 
6.5 Loading  
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electric 
OPTION: 
“CHAR_MECA_FRELEC”, 
“CHAR_MECA_FRLAPL”. 
This type of loading makes it possible to take into account the force of Laplace acting on a driver 
the main thing, due to the presence of a secondary driver. 
The secondary driver is right and it is not based on part of the Aster grid if one uses 
option “CHAR_MECA_FRELEC”. 
The secondary driver is not necessarily right and it can be based on part of the grid 
Aster if one uses option “CHAR_MECA_FRLAPL”. 
Linear density of the force of Laplace exerted in a point M of the principal driver by 
secondary driver is written: 
1 
E R 
F (M) = 
E 
2 
 
ds 
 
2 1 
R 3 
2 
Note: 
To obtain the force of Laplace, the vector turned over following the calculation carried out by one of 
these two options must be multiplied by the temporal function of intensity specified by 
operator “DEFI_FONC_ELEC”. 
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6.5.1 Secondary driver finished or infinite right 
OPTION: “CHAR_MECA_FRELEC” 
For a finished secondary driver, we have: 
' 
' 
' 
E 
N 
F (M) = 
1 (sin - sin 
1 
2 
) 
2 
D 
P 
P 
1 
2 
D 
E 2 
E 2D 
with 
N = 
 
D 
1 
2 
D = D 
E 1 
&& 
M 
1 
For an infinite secondary driver, we have: 
N 
F (M) = e1 D 
Three types of loading are possible: 
· conducting infinite parallel right, 
· conducting multiple infinite parallel rights, 
· conducting right in unspecified position finished or infinite. 
In the case of a driver infinite parallel right, its position can be given in two manners: 
· is by a vector translation of the principal driver to the secondary driver, 
· is by the distance between the two drivers and by a point of the secondary driver. 
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One thus obtains a constant loading on all the principal element. One can thus use the technique 
presented to [§6.3] [§6.4] to calculate the loading with the nodes. 
L 
F 
= F 
1 
(M) 2 
L 
F 
= F 
2 
(M) 2 
2 
L 
M 
= 
 
E 
F 
1 
1 
(M) 12 
2 
L 
M 
= - E F (M) 
, F 
2 
1 
(M) = constant M 
. 
12 
For the case of the parallel drivers right infinite multiple, one must give it directly 
vector “forces of normalized Laplace”. This one being usually given in the total reference mark, it is 
necessary 
to determine the vector “forces of Laplace” in the local reference mark of the principal element. Thus of 
same 
manner that previously, one calculates the loading with the nodes. 
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In the case of a right driver in unspecified position finished or infinite, its position is given by 
two points P1 and P2 such as the current circulates of P1 towards P2. The loading is not 
obligatorily constant along the principal element. 
The selected method to calculate the loading reduced to the nodes is obviously the same one 
that before. But here, integration is done numerically by discretizing the element in some 
numbers (in practice: 100 points between P1 and P2). 
One integrates as follows: 
3 
2 
L 
X 
X 
 
F 
= 
F 
1 
M  
() 2 
 
3 
 
+1 dx 
O 
 
 
L -  
L 
 
 
 
 
3 
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2 
L 
 
X 
X 
 
F 
= 
F 
2 
M  
( ) -  
2 
+ 3 
dx 
O 
 
 
L 
 
 
 
L 
 
 
 
 
' 
3 
2 
L 
' 
' 
 
X 
X 
X  
M 
= 
- E  
F (M) L 
 
-  
+ 2  
dx 
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1 
 
O 
1 
 
 
L 
 
 
 
L - L 
 
 
 
' 
3 
2 
L 
' 
' 
 
X 
X 
 
M 
= 
- E 
F (M) L 
 
-  
+ 
dx 
2 
 
O 
1 
 
 
L 
 
 
 
L  
 
 
 
Note: 
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Like F (M) X = 0 
and  
 
(e1 F (M) 
) X = 0 (X = E 
1) 
one uses only the functions of form associated with the problem with inflection. 
6.5.2 Secondary driver describes by part of grid ASTER 
OPTION: “CHAR_MECA_FRLAPL” 
The secondary driver as a whole is not necessarily right. But it is described 
only by right elements. Its length is obligatorily finished. 
Its position can be supplemented by the use of a vector translation or a symmetry plan (by one 
not and a normalized normal vector of the symmetry plane) compared to the principal driver. 
Except the fact that it is necessary to summon the interaction of the various elements of the secondary 
driver on 
principal driver, the method is the same one as previously (case (III)). 
Note: 
For numerical integration, one uses only 5 points ranging between P1 and P2. 
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7  
Torque of the efforts - Torque of the constraints (or efforts 
generalized) - nodal Forces and reactions 
OPTIONS: 
“EFGE_ELNO_DEPL”, 
“SIEF_ELGA_DEPL”, 
“SIGM_ELNO_DEPL”, 
“SIPO_ELNO_DEPL”, 
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“FORC_NODA”, 
“REAC_NODA”. 
Option “EFGE_ELNO_DEPL” makes it possible to calculate the torque of the efforts to the 2 nodes of 
each element 
of “beam”. 
Options “SIGM_ELNO_DEPL” and “SIPO_ELNO_DEPL” make it possible to calculate the maximum 
values 
components of the tensor of the constraints intervening in a model of “beam”. 
Option “SIEF_ELGA_DEPL” allows the calculation of the nodal forces (option “FORC_NODA” and of 
reactions “REAC_NODA”). 
Note: 
When one of these options end in “_C”, that means that the values of 
displacements (and thus of the efforts) are complex. 
7.1  
The torque of the efforts 
OPTION: “EFGE_ELNO_DEPL” 
One seeks to calculate with the two nodes of each element “beam” constituting the grid of 
studied structure, efforts exerted on the element “beam” by the remainder of the structure. The values are 
given in the local base of each element. 
By integrating the equilibrium equations, one obtains [§2.1.3] the efforts in the local reference mark of 
the element: 
R 
= Ke U 
+ Me u% 
- F E 
LOC 
LOC 
LOC 
LOC 
LOC 
LOC 
where: R 
 
= - NR 
, 
 
1 - V1, - V1, - M1, - M1, - M1, NR 
 
2, V 
 
2, V 
 
2, M 
2, M 
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2, M 
 
2 
LOC 
( 
Y 
Z 
T 
Y 
Z 
Y 
Z 
T 
Y 
Z) 
Ke  
elementary matrix of rigidity of the “exact” element of beam, 
LOC 
Me 
elementary matrix of mass of the element beam, 
LOC 
F E 
vector of the efforts “distributed” on the element beam, 
LOC 
U 
vector “degree of freedom” limited to the element beam, 
LOC 
% 
U 
vector “acceleration” limited to the element beam. 
LOC 
One changes then the signs of the efforts to node 1 [§2.1.3]. 
OPTION: “SIEF_ELGA_DEPL” 
Option “SIEF_ELGA_DEPL” is established for reasons of compatibility with other options. 
It is used only for calculation of the nodal forces and the reactions. 
It is calculated by: R 
Ke 
= 
U 
LOC 
LOC 
LOC 
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7.2  
The tensor of the constraints 
OPTIONS: 
“SIGM_ELNO_DEPL”, 
“SIPO_ELNO_DEPL”. 
One seeks to calculate the maximum values of components xx, xy  
and xz which is connected to 
efforts by: 
NR = dS 
xx, 
S 
V = dS 
y 
xy, 
S 
V = dS 
Z 
xz, 
S 
MT = (y - Z 
xz 
xy, 
S 
) dS 
M = Z dS 
y 
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, 
S xx 
M = - y D 
S 
Z 
. 
S 
xx 
With option “SIGM_ELNO_DEPL”, one calculates the maximum effect of the whole of the efforts on 
xx, xy and xz. 
· For  
xy, one a: 
I 
I 
V 
M 
I Max 
Y 
T 
I 
xz  
= 
+ 
R, for 
 
node I I 
( = ,  
1 2) 
I 
I 
T 
Y 
With 
J X 
with: With K there A air 
 
: E of the section, 
ky: constant of shearing, 
J X: constant of torsion, 
RT: ray of torsion. 
· For  
xz, one a: 
I 
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I 
V 
M 
I Max 
Z 
T 
I 
xz  
= 
+ 
R, 
I 
I 
T 
Z 
With 
J X 
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· For  
xx, one a: 
-  
For a rectangular section: 
I 
I 
I 
I 
I 
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NR 
M 
H  
M 
H  
I Max 
Y 
Z 
Z 
Z 
 
 
xz  
= + + 
+ 
if NR 
 
 
 
 
0  
, 
I 
I 
I 
With 
I 
 
 
Y 
2 
IZ 
2  
I 
I 
I 
I 
I 
NR 
M 
 
Y HZ 
MZ HZ 
-  
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+ 
+ 
if 
0  
 
 
 
 
NR < 
, 
I 
I 
I 
With 
I 
 
Y 
2 
IZ 
2  
with IY, IZ: geometrical moments, 
Y 
H 
HZ 
,  
: sides of the rectangle. 
-  
For a circular section: 
I 
I 
NR 
2 
2 R  
I Max 
I 
I 
 
 
xx  
= + 
+ 
M 
+ M 
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if NR 
 
 
 
 
0  
, 
I 
(Y) (Z) I 
With 
I  
 
Y  
I 
I 
NR 
2 
2 R  
I 
I 
 
-  
+ 
M 
+ M 
if 
0  
 
 
 
 
 
NR < 
, 
I 
(Y) (Z) I 
With 
I  
Y  
with R: ray of the section. 
-  
For a general section: 
I 
I 
I 
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NR 
M 
M 
I Max 
Y 
I 
Z 
I 
xx  
= 
+ 
R 
 
- 
R. 
I 
I 
Z 
I 
Y 
With 
IY 
IZ 
In this last case, one makes calculation at the point (R I, R I 
I 
I 
I 
Y 
Z). R  
R 
Y 
Y 
and  
and  
RZ are them 
distances to neutral fibre. 
To find these formulas, one uses the relations between the constraints and the deformations then those 
between the internal efforts and (U, X; xy; xz; X 
X; y X;  
, 
, 
Z 
, X): 
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xx = E xx 
 
 
xy = 
G 2 xy 
 
 
xz = 
G 2 xz, 
 
xx = U, x+ Z y, X 
- y Z, X 
 
 
2 
 
xy = xy - Z X, X (xy =V, X - Z) 
2 
 
xy = xz + there X, X  
 
(xz =W, x+y), 
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NR  
EA 
U, X 
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V 
K GA 
 
 
Y  
 
Y 
0 
xy 
 
 
V  
 
K GA 
 
Z 
Z 
xz 
 
 
 
=  
 
 
 
M 
GJ 
 
 
T  
 
X, X 
M  
 
0 
I.E.(internal excitation) 
 
 
 
Y 
Y 
y, X 
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M  
 
I.E.(internal excitation) 
 
 
 
Z 
Z Z, X  
(The various types of movement are uncoupled when one works with the principal axes (by 
definition)). 
One obtains: 
NR 
M 
M  
 
Y 
Z 
xx (X, y, Z) = 
E  
 
+ Z 
- y 
 
, 
EA 
I.E.(internal excitation) 
 
Y 
EIZ  
V 
M  
 
Y 
T 
xy (X, y, Z) 
= G  
- Z 
, 
K 
Y GA 
G J 
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X  
V 
M  
 
Y 
T 
xy (X, y, Z) = 
G  
- Z 
, 
K 
 
Y GA 
G J 
 
X  
With option “SIPO_ELNO_DEPL”, calculation is somewhat different. The effects are sought 
maxima of each effort (NR, V, V, M, M, M 
Y 
Z 
T 
X 
Y) on components xx, xy and xz. 
One finds the preceding results in broken up form. The vector result is written: 
(1 1 1 1 1 1 
1, 2 
3 
, 4 
, 5 
, 6 
 
2 
2 
2 
2 
2 
2 
1, 2 
3 
, 4 
5 
, 6 
) 
I 
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NR 
with: I 
1 
= 
for node I I = 
I 
( 1, 2) 
With 
I 
NR 
i1 = 
I 
With 
I 
V 
I 
Z 
3 
= 
 
, 
I 
Z 
With 
I 
M 
I 
T 
I 
4 
= 
 
R, 
I 
T 
J X 
for the rectangular sections: 
I 
I 
M 
H 
I 
Y 
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Z 
5 
= 
 
, 
I 
I 
2 
Y 
I 
I 
M 
H 
I 
Z 
Y 
6 
= - 
 
, 
I 
I 
2 
Z 
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I 
Y 
I 
5 
= 
 
R, 
I 
IY 
I 
M 
I 
Z 
I 
6 
= - 
 
R, 
I 
IY 
for the unspecified sections at the point (I 
I 
Y 
R, Z 
R): 
I 
M 
I 
Y 
I 
5 
= 
 
R, 
I 
Z 
IY 
I 
M 
I 
Z 
I 
6 
= - 
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R. 
I 
Y 
IZ  
In the case of beam with hollow circular section (pipes), the flexibility of the thin hulls not being 
not represented well, certain sizes should be corrected. Two coefficients are used for that: 
· a coefficient of flexibility “flex” (also used by rigidity [§5]), 
· a coefficient of intensification of the constraints “isigm”. 
In particular, one can take as a starting point the rules RCC_M. 
I traditional 
I traditional = 
(cflex) 
1 only in inflection. 
cflex 
MY 
isigm 
 
= 
R 
, 
5 
I 
Z 
Y corr é 
ig 
cflex 
MZ 
isigm 
 
= 
R 
 
6 
Y 
(isigm) 
1 . 
Corrected IZ 
cflex 
7.3  
Calculation of the nodal forces and the reactions 
OPTION: “FORC_NODA” 
This option calculates a vector of nodal forces on all the structure. It produces a field with 
nodes in order CALC_NO by assembly of the elementary terms. 
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For this calculation, one usually uses in 3D [R5.03.01] for example the principle of virtual work 
and one writes: 
F = QT 
where QT represents the matrix symbolically associated with the operator divergence. For an element, 
one 
writing agricultural work of virtual deformations: 
(QT) H = (U) 
 
(wh) 
For the elements of beam, one calculates simply the nodal forces by assembly of the forces 
nodal elementary calculated by option SIEF_ELGA_DEPL, which is expressed by: 
[F] = [K] [U 
[ 
] 
§7.1 
LOC 
LOC 
LOC] 
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OPTION: “REAC_NODA” 
This option, called by CALC_NO, makes it possible to obtain the reactions R with the supports starting 
from the forces 
nodal F by: 
R = F - Fchar + Finer 
Fchar 
Finer 
and 
being nodal forces associated the loadings given (specific and distributed) and 
with the efforts of inertia. 
8  
Element of bar 
Key word “BARS” 
A bar is a right beam of constant section comprising only the degrees of freedom of 
traction and compression only. The equation of the movement, matrices of mass and rigidity, and 
the efforts are thus those of the beams (right of constant section) relating to the traction and compression. 
Concerning the characteristics of the section, the surface of the cross section constitutes the only data 
useful [U4.24.01 §11]. 
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1/26 
Organization (S): EDF/IMA/MMN, EP/AMV 
Handbook of Reference 
R3.08 booklet: Machine elements with average fibre 
Document: R3.08.02 
Modeling of the cables in Code_Aster 
Summary: 
The cables are flexible structures which can undergo great displacements. Their analysis is thus not 
linear. From the mechanical point of view, a cable cannot support any moment and is not the seat that of 
an effort 
normal called tension. The expression of virtual work and its differentiation compared to displacements 
lead to modeling in finite elements: stamp rigidity depending on the displacement of the nodes and 
stamp of constant mass. One presents the iterative algorithms statics and dynamics. Two examples are 
given: one, static, is the research of the figure of balance of a cable subjected to a horizontal tension 
data; the other, dynamic, is the comparison between calculations by finite elements and of the test results 
of  
short-circuits. Finally four appendices treat: calculation of the forces of Laplace, change of the 
temperature 
of a cable subjected to the Joule effect, force exerted by the wind and of the modeling of the operation of 
installation. 
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1 Notations 
With 
surface of the cross-section of the cable. 
B 
stamp deformation. 
C 
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voluminal heat of conducting metal. 
v 
E 
Young modulus to traction. 
E 
current module of the cable. 
has 
E  
modulate with compression. 
C 
F 
external forces data. 
ext. 
F 
inertias. 
iner 
F 
internal forces. 
int 
G 
measure of Green of relative lengthening compared to the situation of 
reference. 
H 
thermal convection coefficient of a cable with outside. 
I 
instantaneous intensity of current. 
K 
coefficient of variation of the resistivity with the temperature. 
L 
function of form relating to node I. 
I () 
[L] 
[L () 1, L 
I 
J () 1 
]! 
[It] 
dL D 
dLj D 
I 
 
 
 
1 , 
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1 
D ds 
D ds 
! 
 
O 
O 
 
NR 
tension of the cable. 
S 
curvilinear X-coordinate on the cable in situation of reference. 
O 
T, T 
temperature in current situation and situation of reference. 
O 
(custom, T 
vector displacement at the moment T compared to the situation of reference. 
O 
) 
(xs 
vector position in situation of reference. 
O) 
 
thermal dilation coefficient. 
,  
parameters of Newmark. 
 
density. 
 
resistivity. 
1 
stamp unit of order 3. 
 
 
 
 
 
 
stamp diagonal  
, 
, 
 
. 
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1 
so  
ds 
ds 
ds 
O 
O 
O  
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2 Introduction 
The essential characteristic of the cables is that these are flexible structures, of which analysis 
mechanics is nonlinear because they are likely to undergo great displacements. They in 
undergo during the operation of installation, when one adjusts arrows to respect constraints 
of environment. 
Thereafter, the cables can be animated movements of great amplitude under the impulse 
blast pressure, fall of sleeves of white frost or, in the event of incident, the forces of 
Laplace resulting from the currents of short-circuit. They exert then on their supports of the efforts 
much higher than the static efforts. One must hold account in the design of it of 
works. 
For the old works, which can be subjected to intensities of short-circuit increased because 
extension of the network, it should be checked that reliability is always assured. 
3 Assumptions  
mechanics 
The cables are regarded as perfectly flexible wire, which cannot support any 
moment, neither bending, nor of torsion, and are the seat only of one normal tension. This tension plays 
the role of a generalized constraint. 
One wants to calculate the field of displacement ( 
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U.S., T 
O 
) at the moment T compared to the situation of 
reference. This one is a static configuration of the subjected cable, for example, with gravity and with 
To temperature; it is defined by the field of vectors position ( 
X so). 
X 
U 
X + U + 
ds 
ds 
S 
O +  
O 
O 
so 
ds 
X 
 
+ U 
X  
X + ds 
S 
O 
O 
dso 
X 
Appear 3-a: Length of cable in situations of reference and moved 
As [bib1], one takes for deformation the measurement of Green of relative lengthening compared to 
situation of reference [Figure 3-a]: 
ds2 - ds2 
G 
O 
= 
. 
ds2 
2 O 
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G must remain small. The second member lends himself to calculation because it comprises only 
squares of 
elementary lengths. One sees on [Figure 3-a] that: 
X U 
1 U 2 
G = 
. 
+  
 
 
. 
 
éq 3-1 
S 
S 
2 S 
O 
O 
O  
The relation of behavior is: 
NR = E 
[Ag - (T - T 
has 
O)] 
éq 3-2 
with: 
E if NR > 0 
Ea = E if NR 0 
C 
. 
4  
Application of the Principle of Virtual Work 
If one does not hold depreciation account, the virtual work of the whole of the forces applied to 
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a length of cable during virtual displacement U is: 
W (U, U 
) = W (U, U 
) - W (U ", U) - W (U, 
int 
iner 
ext. 
U), 
éq 4-1 
by distinguishing work from the interior forces, the inertias and the external forces. 
According to [éq 3-1]: 
S 
S  
X + U U 
S 
W (,) 
2 
= 
(N.g) 
2 
( 
) 
ds = 
NR. 
. 
ds 
2 
U U 
 
 
= 
 
 
(N.B U) ds 
int 
, éq 4-2 
S 
S 
1 
1  
S 
S 
O 
O 
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s1 
 
where: 
 
T  
B =  
1 ( 
X + U)  
1, 
éq 4-3 
S  
S 
O 
O 
 
by indicating by the superscript T transposed of a matrix. 
S 
W 
( , ) 
2 
U U 
 
= - (A U U) ds 
iner “ 
" . 
. 
 
éq 4-4 
s1 
In all the cases, we regard Wext work as independent of U during a step of 
time, bus: 
· or it is it really, in the case of conservative forces like gravity; 
· or, in the case of the forces of Laplace, the force applied to an element of cable depends 
not only of the displacement of this element (conventional following force), but still of 
displacements of the whole of the cables. It is considered whereas, during a step of time, 
the force is constant and equal to its value at the end of the step of previous time. 
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5 Linearization 
With balance: 
W (U, U) = 0. 
 
éq 5-1 
If, short of a tolerance, the preceding equation is not satisfied, one seeks a correction U of 
U such as: 
W (U, U) + DW (U, U). U 
 
= 0 , 
DW (U, U 
). U 
being the directional derivative of W (U, U 
) in the direction U [bib2] and [bib3]. 
According to [éq 3-2], one has obviously: 
DN. U = E A Dg. U = E A 
has 
has 
B U. 
According to [éq 4-3]: 
T 
D  
D  
DB. U 
 
=  
1 
U 
 
 
1 
ds 
ds. 
O  
O  

file:///Z|/process/refer/refer/p550.htm (12 of 18)10/2/2006 2:52:17 PM



file:///Z|/process/refer/refer/p550.htm

Thus: 
s2 
T 
D Wint (U, U 
). U 
 
= ( 
1 {B 
U 
) E A 
has 
B U 
 
S 
} ds 
T 
 
 
S 
éq 5-2 
2 
 
D  
D  
 
+ 
 
 
1 U 
 
NR 
1 
U 
 
ds. 
s1 ds 
 
ds 
O  
O  
 
 
 
 
According to [éq 4-4]: 
S 
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D W 
(“U, U). U 
 
= - 2 U  
 
" 
U 
. 
 
éq 5-3 
S ( 
T 
With 
) ds 
iner 
1 
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6  
Numerical realization by the finite elements 
One notes by the subscript H the matrices discretized in finite elements. 
If v are a vector defined on the cable (position, displacement, acceleration,…) one has, at the current 
point 
of a finite element of nodes I, J,…: 
v = [L] ve, 
ve being the vector made up of the components of v with the nodes. 
In the same way: 
 
1 
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v 
 
 
= [ ' 
L]. 
 
v 
S 
E 
O 
H 
According to [éq 4-3]: 
T 
B 
= (X + U) L You L 
H 
' . 
E 
The internal forces Feint of a finite element E of structure are the forces which it is necessary to exert in 
its 
nodes to maintain it in its current deformed configuration. According to the theorem of work 
virtual for the continuous mediums, the work of these specific forces is equal to the work of the 
constraints 
in the element, i.e. in Wint, for any field of virtual displacement. One thus has, according to 
[éq 4-2]: 
S 
S 
Fe 
= 
2 NR BTds = 
2 NR L You L 
 
' 
. 
S 
 
ds 
H 
(X + U 
int 
) 
S 
E 
1 
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1 
In addition, one replaces the inertias distributed in the element by specific forces with 
Feiner nodes such as their work is equal to that of the real inertias for any field of  
virtual displacement. According to [éq 4-4], one thus has: 
S 
Fe 
= - 2 LT 
WITH L 
iner 
ds 
 
 
“E 
U ". 
s1 
In the same way, the external forces distributed are replaced by concentrated nodal forces Feext 
equivalent within the meaning of virtual work. 
The differential of the virtual work of the interior forces of a finite element of cable is written, according 
to 
[éq 5-2]: 
T 
Dh Wint (U, U 
). U 
 
= (U 
E) (K M + KG) U 
E, 
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with: 
S 
K 
= 
2 BT E A B 
M 
H has H ds 
s1s 
K 
= 
2 L You NR L 
G 
'ds 
 
. 
s1 
K M and KG are called matrices of material and geometrical rigidity of the element. 
(K + K) U 
M 
G E is the principal part of the Fint variation of the interior forces to the nodes due 
with the correction of ue displacements. 
The differential of the virtual work of the inertias results from [éq 5-3]: 
T 
D W 
H 
iner (“U, U 
). U 
 
= - (ue) M “ue 
with: 
S 
M = 
2 L A L 
T 
ds. 
s1 
M is the matrix of mass of the element. - M U 
“E is the variation Finer Finer of the inertias 
with the nodes due to the correction of acceleration “ue. 
7  
Particular case of the elements of cable with two nodes 
These elements are 1st degree: they are thus right in position of reference and remain right in 
deformed position. 
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No moment is applied in their ends and they are the seat only of one uniaxial constraint. 
They are thus elements of bar. 
In other words: to model a cable by elements with two nodes comes down comparing it to a chain 
whose links (elements of cable) would be articulated perfectly between them. 
On the other hand, the elements of cable having more than two nodes have a curve in general 
variable with the deformation. One cannot thus treat them as elements of bar. 
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8  
Use in Code_Aster 
This paragraph indicates how one introduces the cables into the orders concerned of Aster. 
Order 
Key word factor 
Key word 
Argument 
AFFE_MODELE 
AFFE 
GROUP_MA 
Name of the group of meshs 
supporting a cable. 
PHENOMENON 
“MECHANICAL”. 
MODELING 
“CABLE”. 
DEFI_MATERIAU 
CABLE 
E 
Value of the module of material. 
EC_SUR_E 
Report/ratio of the module of compression 
(very weak and being able to be null) on 
modulate. 
AFFE_CARA_ELEM 
CABLE 
GROUP_MA 
Name of the group of meshs 
supporting a cable. 
SECTION 
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Value of the section of the cable. 
STAT_NON_LINE 
COMP_ELAS 
GROUP_MA 
Name of the group of meshs 
supporting a cable. 
RELATION 
“CABLE” 
DEFORMATION 
“GREEN” 
9 Problem  
statics 
This problem is that of the research of the balance of a structure of cables in unspecified position and 
subjected to a system of forces given. 
9.1 Algorithm  
iterative 
The equilibrium equation, forms discretized [éq 5-1] and [éq 4-1] without the term of inertia, which 
must be 
satisfied in each node, is: 
F 
F 
int 
= 
ext. 
éq 9.1-1 
Let us suppose that one has just calculated the field of displacement of the cables, one (O 
S), with iteration N: 
· if this field makes it possible to satisfy, except for a tolerance, with [éq 9.1-1], one considers that 
line: 
(xs) + one (S 
O 
O) 
is the figure of balance of the cables; 
· if not, one calculates corrections of displacement one + 1 by the linearized system: 
[KN kN n+ 
N 
+ G] U 
 
1 
= F - F 
M 
ext. 
int. 
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Displacement with the iteration (N +) 
1 is: 
one + 1 
one 
one + 
= 
+ 
1 
 
. 
It is looked at if [éq 9.1-1] is satisfied by the field one + 1 and so on. 
9.2 Example 
One wants to calculate the figure of balance of a heavy cable [9.2-a] whose end A is fixed and of which 
other B, of level with A, is subjected to a given horizontal force. 
This problem is dealt with in [bib4], where it is regarded as highly nonlinear. 
0 
46,4 m 
61,0 
B 
With 
Bo 
F = 25,7 NR 
C 
-17,7 m 
 
Extensionnelle rigidity (E.A): 4,45 X 105 NR  
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Linear weight: 1,46 N/m 
Appear 9.2-a: Balance of a heavy cable subjected to a horizontal tension 
At the beginning, the cable, modelled by 10 elements of the 1st degree, is supposed in weightlessness 
and has one 
rectilinear position horizontal A Bo. One simultaneously subjects it to the action of gravity and to  
horizontal force F applied in Bo. The static position of balance A C B is reached in 
8 iterations only. 
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10 Problem  
dynamics 
This problem is that of the calculation of the evolution of a structure of cables. 
10.1 Iterative algorithm of temporal integration 
The form discretized of [éq 5-1] and [éq 4-1] supplements, which must be satisfied in each node and with 
each moment is: 
F () - F 
() = F 
int T 
T 
(T 
iner 
ext. 
) 
éq 10.1-1 
The algorithm of temporal integration is of Newmark type [bib1] and [bib5]. Let us suppose that the 
state of 
cable (fields U, U " and U " with the nodes) that is to say known at the moment T and which one has just 
calculated a value 
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approached these fields to the nth iteration of the moment T + T 
. 
· If these values satisfy [éq 10.1-1], except for a tolerance, one takes them for values of 
fields at the moment T + T 
. 
· If not, one seeks the correction of displacement one + 1, to which correspond, according to 
the algorithm of Newmark, corrections speed and acceleration: 
 
“one +1 
one + 
= 
1 
T 
and 
1 
“one +1 
one + 
= 
1, 
t2 
such as: 
 
1 
 
K N 
 
+ kN + 
M 
1 
 
 
N 
int 
 
 
2 
one + 
= F 
N 
G 
ext. (T + T) - F (T + T) + F 
M 
iner (T + T). 
 
T 
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In the analysis of the movement of the cables, the algorithm of Newmark can be unstable. This is why 
we use the algorithm says HHT, defined in [bib7], in which two parameters of Newmark 
are related to a third parameter: 
1 
= 
-  
2 
( 
2 
1 - ) 
= 
4 
0. 
For  
= 0, the algorithm are that of Newmark, known as “regulates trapezoid”. But for slightly 
negative (- 0) 
3 
, it appears numerical damping which stabilizes calculation. 
Determination of initial acceleration and the initialization of the fields at the beginning of a new step of 
times are indicated in [bib5]. 
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10.2 Comparison of calculations and tests of short-circuits 
To validate this modeling of the cables, we compared dynamic calculations by 
Code_Aster with test results of short-circuits [bib8]. Those were carried out at the Laboratory of 
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Electric genius of EDF on an experimental structure representative of the configurations of station 
[Figure 10.2-a]. Three cables tended between two gantries apart 102 m are shorted-circuit, with 
foreground, by a shunt laid out on insulating columns. 
On the level of the other gantry, they are fed by a three-phase current of 35 kA during 250 ms. One 
recorded the evolution: 
· of the tension of the cables to their anchoring on the gantries, using dynamometers;  
· of the displacement of the points mediums of the ranges, located by spheres of indication, with 
assistance of fast cameras. One sees the cage of glass of the one of these cameras assembled on one 
gantry, on the left of [Figure 10.2-a]. 
[Figure 10.2-b] the comparison for a tension of anchoring and the displacement of the medium gives 
of a cable. 
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Appear 10.2-a: General sight of the testing facility of short-circuits 
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A-evolution of a tension of anchoring 
B-trajectory of a point medium of cable 
Appear 10.2-b: Comparisons of calculations by Code_Aster 
and of tests of short-circuits 
11 Conclusion 
The modeling of the cables presented above is powerful (a reasonable number of iterations by 
no time or to reach a balance static) and precise: it is adapted to the analysis of 
long cables. For the short cables, on the other hand, flexional rigidity is not negligible, especially 
with anchorings, and modeling must be done by elements of beam in great displacements and 
great rotations [R5.03.40]. 
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Appendix 1 Calculation of the forces of Laplace between drivers 
Any driver traversed by a current creates a magnetic field in its vicinity. This field 
magnetic, acting on the current conveyed by another driver, induced on this one a force known as of 
Laplace. 
 
ds 
I 
2 
2 (T) 
e2 
R 
I 
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1 (T) 
E 
 
1 
P 
Appear A1-a: Provision of two close drivers 
Let us take a driver! traversed by current I T 
1 () [A1-a Figure], located in the vicinity of the driver “ 
traversed by current I T 
2 (). At the point P of the driver! , where the unit tangent directed in the direction of 
current is e1, the linear force of Laplace induced by the driver “is: 
R 
F (P) = 
- 
10 7 I (T) I (T) E 
1 
2 
1 × 
e2 × 
ds 
 
. 
r3 
2 
One is interested only in the forces due to the very intense currents of short-circuit, the forces of Laplace 
in 
normal mode being negligible. 
F (P) can be obviously put in the shape of the product of a function of time by a function of 
space. 
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Page: 
17/26 
A1.1 Function of the time of the forces of Laplace 
This function, G (T), is, except for a factor, the product of the intensities in the drivers! and “: 
G (T) = 
- 
2 10 7 I (T) I (T) 
1 
2 
éq A1.1-1 
where: 
I (T) = 
2 I [Co (S T 
+) - and 
J 
ej 
J 
cos J] 
éq A1.1-2 
with: 
Iej: effective intensity of the current J; 
: 
pulsation of the current (= 100 for a current of 50 Hz); 
J: phase depending on the moment when the short-circuit occurs; 
: 
time-constant of the shorted-circuit line dependent on its characteristics 
electric (coil, capacity and resistance). 
Very often, one replaces the function supplements G (T) [éq A1.1-1] and [éq A1.1-2] by his average - 
that the part is called continues - by neglecting the cos terms (T +…) and cos (2 T +…). The catch in 
count these terms would require a step of very small time and the corresponding forces, to 50 and 
100 Hz, are almost without effect on the cables whose frequency of oscillation is about the hertz. 
Thus: 
 
T 
T  
 
-  
+ 
 
1 
G 
(T) = 2 I I  
1 
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2  
 
1 
2  
( 
cos 1 
- 2 
) + E 
continuous 
E 
E 
cos cos 
2 
1 
2  
 
 
 
 
A1.2 Function of space 
This function is: 
1 
R 
H (P) = 
E × 
e2 × 
ds. 
2 1  
r3 
2 
The integral is calculated analytically when one cuts out the driver “in rectilinear elements.  
length of such an element MR. M 
1 
2 [A1.2-a Figure], there is an effect: 
3 
r3 = (y2 + r2 2 
m) 
; 
e2 × R = e2 × m 
R; 
ds 
= Dy 
2 
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M2 
e2 
M1 
y 
2 
1 
rm 
R 
P 
Appear A1.2-a: Force of Laplace induced by a rectilinear element of driver 
Like: 
y2 
 
 
y2 
Dy 
1  
y 
= 
 
 
, 
y 
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1 ( 
3 
2 
1 
y2 + r2) 2 
rm (y2 + r2 2 
m 
m) 
 
y1 
one a: 
2 
 
y 
1 
M2 
R 
1 
 
y 
 
E × 
E × 
Dy = 
E × E × R 
 
. 
2 1 
2 
3 
M 
m  
 
1 
R 
2 2 1 
2 
rm 
 
( 
1 
2 
2 
y + rm) 2 1y 
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The hook of the second member is also equal to: 
sin - sin 
2 
1. 
A1.3 Realization in Code_Aster 
The function of space H (P) previously definite is calculated by an elementary routine which evaluates 
for each element of the driver! , the contribution of all the elements of the driver “which 
act on him. 
This contribution is evaluated to the points of Gauss (1 only for the elements with 2 nodes) of the 
element 
driver!. 
The elementary routine has 2 parameters of entry: 
· the load card of the element of the driver! including/understanding the list of the meshs of 
driver “acting on him; 
· the name of the geometry, variable in the course of the time, which at every moment makes it possible 
to evaluate them 
rm quantities, sin, sin 
1 
2. 
The function of time G (T) is calculated by a specific operator of Code_Aster which produces one 
concept of the function type. 
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A1.4 Use in Code_Aster 
· Définition of the function of time G (T) 
Order 
Key word factor 
Key word 
Argument 
“COMPLETE” 
DEFI_FONC_ELEC 
SIGNAL 
or 
“CONTINUOUS” 
COURT 
INTE_CC_1 
Ie1 
TAU_CC_1 
1 
PHI_CC_1 
1 
INTE_CC_2 
Ie2 
TAU_CC_2 
2 
PHI_CC_2 
2 
INST_CC_INIT 
Moment of beginning of short-circuit. 
INST_CC_FIN 
Moment of end of short-circuit. 
· Définition of the function of space H (P) 
Order 
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Key word factor 
Key word 
Argument 
AFFE_CHAR_MECA 
MODEL 
Name of the model. 
INTE_ELEC 
GROUP_MA 
Name of the group of meshs of 
driver!. 
GROUP_MA_2 
Name of the group of meshs of 
driver “. 
· Prise in account of the forces of Laplace 
Order 
Key word factor 
Key word 
Argument 
DYNA_NON_LINE 
EXCIT 
CHARGE 
name of H (P) 
FONC_MULT 
name of G (T) 
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Appendix 2 Calculation of the temperature of the cables 
When the cables are traversed by a current of short-circuit, they strongly warm up by Joule effect. 
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When the current is tripped, their temperature drops because of the thermal losses towards outside. 
A2.1 Formulation 
One supposes: 
· that at a moment given the temperature is uniform in any length of cable traversed by 
even running; 
· that any node common to several cables is at the average temperature of these cables. 
The change of the temperature is given by the equation of heat [bib1]: 
dT 
H ( 
p T - T 
2 
ext.) 
J 
+ 
= 
éq A2.1-1 
dt 
WITH C 
C 
v 
v 
where p is the perimeter of the cable: 
p = 2 A, 
J the density of current, is, by neglecting the effect of skin: 
I 
J = A 
and: 
= O [1+ K (T - rTef)]. 
The expression of the current is given by [éq A1.1-2]. 
Thus: 
T 
2 T 
1 
- 
1 
- 
 
i2 = 
I 2  
( 
cos 2 T + 2) - 2nd cos 
( 
cos T 
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+) + + E 
2 
2 
cos  
E 
. 
2 
2 
 
 
 
 
If one neglects the last term of the second member, who decreases exponentially in the time and which 
 
is even null if = 
, the integral of i2 over one duration T, much higher than the period of the current, 
2 
is practically equal to: 
I 2 T 
E. 
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In other words, under this simplification, the instantaneous voluminal heat source to the second member 
of [éq A2.1-1] is: 
I 2 
j2 = E. 
A2 
The differential equation [éq A2.1-1] is then with constant coefficients and is integrated analytically. It 
is written: 
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dT 
 
B 
has 
+ C - 
T 
D 
dt 
 
 
 
 
 
= 
+ 
2 
2 
with: 
 
2 I 2 
has 
O 
= 
1 - K T 
E 
C ( 
ref.) 
2 
v 
With 
2 I 2 
B = K O 
E 
C 
2 
v 
With 
H p 
C = A Cv 
D = C Text. 
Its solution, summons general solution of the equation without second member and a solution 
particular of the equation with second member is: 
· with the heating, during the existence of the current of short-circuit: 
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B 
+ 2D has  
 
B 
 
 
T = T exp 
- C (T T) 
exp 
- C (T T 
I 
I 
I) 
 
 
 
1 
2 
 
- 
 
B - 2 C 
 
 
 
+ 
 
 
 
2 
 
- 
 
 
 
 
-  
Ti being the temperature at the moment Ti; 
· with cooling, as from the moment T FCC of end of short-circuit (= B has =) 
0 : 
T = T 
[ 
exp - ( 
C T - T)]+ T {1 - E [ 
xp - ( 
C T - T 
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FCC 
FCC 
ext. 
FCC)]}. 
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A2.2 Use in Code_Aster 
· Calcul of the function T 
Order 
Key word factor 
Key word 
Argument 
DEFI_THER_JOULE 
LIST_INST 
List moments of calculation. 
INST_CC_INIT 
Moment of beginning of short-circuit. 
INST_CC_FIN 
Moment of end of short-circuit. 
TEMP_EXT 
Text 
TEMP_RESI_REF 
Tref 
PARA_COND_1D 
INTE_CC 
IE 
With 
With 
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RESI_R 
O 
RESI_R1 
K 
CP 
Cv 
COEF_H 
H 
TEMP_INIT 
Ti 
· Affectation of the function T to the nodes subjected to the Joule effect 
Order 
Key word factor 
Key word 
Argument 
AFFE_CHAM_NO 
GRID 
Name of the grid. 
SIZE 
“TEMP_F” 
AFFE 
GROUP_NO 
Name of the group of nodes 
subjected to the Joule effect. 
NOM_CMP 
“TEMP” 
FUNCTION 
Name of the function T. 
· Affectation  
of one  
EVOL_THER with the preceding nodes 
Order 
Key word factor 
Key word 
Argument 
CREA_RESU 
TYPE_RESU 
“EVOL_THER” 
NOM_CHAM 
“TEMP” 
CHAM_GD 
LIST_INST 
List moments of calculation. 
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CHAM_NO 
Name of the nodal field of function 
T. 
· Affectation of the corresponding thermal load 
Order 
Key word factor  
Key word 
Argument 
AFFE_CHAR_MECA 
MODEL 
Name of the model. 
TEMP_CALCULEE 
Name of the EVOL_THER. 
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Appendix 3 Calculation of the force exerted by the wind 
A3.1 Formulation 
It is admitted that a wind speed V exerts in the vicinity of the point P of a cable [A3.1-a Figure] one 
linear force aerodynamic F having the following characteristics: 
·  
F with the direction and the direction of the Vn component the speed of the wind in the normal plan of 
cable; 
·  
F has a module proportional squared of that of Vn. 
Vn 
V 
F 
cable 
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P 
Vt 
Appear A3.1-a: speed of the wind in the vicinity of a cable 
The payments of calculation of the lines define the force of a wind by the pressure p which it exerts on 
a plane surface normal with its direction. For a cable, placed normally at the direction of the wind, these 
payments prescribe to take for linear force: 
F 
= p 
 
, 
2 
being the diameter of the cable. That amounts considering that the cable offers to the wind a plane 
surface 
equalize with its Master-couple. An increase of the force thus is obtained because the cable, cylindrical, 
have a less resistance to the air than a plane surface. 
If the speed V of the wind forms an angle with the cable, its component in the plan perpendicular to 
cable has as a module: 
V 
V 
N 
= 
sin. 
Therefore, the linear force is: 
F 
= p 
 
sin2. 
Of course, the linear force exerted by the wind depends on the position of the cable: it is “following”. 
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Page: 
24/26 
A3.2 Use in Code_Aster 
Here how one introduces the force of the wind into Code_Aster. The unit vector having the direction and 
the direction the speed of the wind has as components v, v, v 
X 
y 
Z. 
Order 
Key word factor 
Key word 
Argument 
AFFE_CHAR_MECA 
FORCE_POUTRE 
TYPE_CHARGE 
“WIND” 
FX 
p vx 
FY 
p vy 
FZ 
p vz 
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Appendix 4 Modeling of the installation of the cables 
A cable in the course of installation in a canton (several ranges between posts) [A4-a Figure] is fixed at 
the one of 
supports of stop. It rests on pulleys placed at the bottom of the insulators suspension and it is retained by 
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one  
force on the level of the second support of stop. 
Appear A4-a: Pose of a cable in a canton with two ranges 
While exploiting this force - or by moving its point of application - one adjusts the arrow of the one of 
the ranges, that 
who is subjected to constraints of environment. Then one removes the pulleys and one fixes the cable at 
insulators: the length of the cable in the various ranges is then fixed. It is on this configuration that one 
assemble possibly additional components: spacers, descents on equipment, them 
specific masses,… to give to the canton its final form. 
This scenario is carried out by Code_Aster in the following way. 
One constitutes a first grid of the line, supposed in weightlessness (rectilinear drivers), comprising 
cable-pulleys [bib9] and also of the meshs representing the additional components. These last meshs 
will not be taken into account in calculation intended to determine the lengths of cable, but they will be 
useful 
in procedure POSE_CABLE [U4.66.01] called later on. Meshs of cable-pulleys, meshs 
cables related to cable-pulleys and the meshs of the additional components must belong to 
groups respecting a specific nomenclature [bib10] to be able to be recognized and treated by 
POSE_CABLE. 
Operator STAT_NON_LINE [U4.32.01] calculates the preceding structure subjected to gravity, with 
control 
arrow, and constitutes a structure of data of the evol_noli type. 
Procedure POSE_CABLE constitutes then a new grid, not comprising more cable-pulleys but 
containing the additional components and where the length of the cables is deduced from displacements 
from 
precedent evol_noli. 
One analyzes finally this real structure, that is to say by STAT_NON_LINE if one is interested only in 
the effect of the wind and/or 
white frost, is by DYNA_NON_LINE [U4.32.02] if one wants to know the evolution caused by the 
forces of 
Laplace due to currents of short-circuit, or by the fall of sleeves of ice. 
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Summary:  
 
One presents the principle of the calculation of the various sizes characteristic of the sections of 
beams. Those  
are established starting from the geometrical characteristics of the cross section of the beam.  
 
These values are to be provided to the operand SECTION: “GENERAL” of operator 
AFFE_CARA_ELEM [U4.42.01].  
To determine them, of the numerical methods are presented, and implemented in the order  
MACR_CARA_POUTRE.  
 
In the case of the sections “RECTANGLE” and “CIRCLE”, one calculate directly in 
AFFE_CARA_ELEM them  
characteristics using simplified formulas which one clarifies here.  
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1  
Geometrical characteristics  
 
Assumption:  
 
One treats here only the cross sections of homogeneous and isotropic beams (same  
material characteristics for all the points and in all the directions). The order  
MACR_CARA_POUTRE can also calculate the geometrical characteristics of a whole of sections  
disjoined.  
 
1.1 Section  
unspecified  
 
1.1.1 Principle  
 
That is to say a section (S) of surface S in the plan (0, y, Z) whose origin O is the centre of gravity G 
of  
section, [Figure 1.1.1-a].  
 
Z 
(S) 
O 
G 
y 
Z 
R 
 
Appear 1.1.1-a: section in plan (0, y, Z)  
 
Geometrical moment of inertia of (S) compared to the axis (OY) (which passes by the centre of 
gravity)  
express yourself by:  
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I = z2 dS 
with 
 
[I] = OM OM dS 
y 
 
 
S 
S 
 
One defines in a similar way the geometrical moment compared to (OZ) by:  
 
I = y dS 
Z 
2  
S 
 
When centrifugal geometrical moment (often called produced inertia of surface) defined by  
I = y Z dS 
yz 
 
is null, axes (OY) and (OZ) are principal axes of the section (S). One  
S 
place for the continuation on this assumption; I y and Iz are then called the geometrical moments  
principal.  
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Generally, we must place ourselves in the principal axes of a section of beam  
for all that relates to its characteristics since the elements of beam of Code_Aster are  
formulated in this reference mark. On the basis of an origin located at the centre of gravity, it is 
enough, to pass from one  
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unspecified system of axes (G, y', z') to the system of principal axes (G, y, Z), to carry out a rotation  
of angle such as [Figure 1.1.1-b]:  
 
1 
2 I 
 
= Arctg  
y' z' 
 
 
2 
I 
 
 
z' - I y'  
 
Z 
z' 
Z 
 
P 
y 
G 
y 
 
(G, y, Z) principal Axes 
(G, y', z') unspecified Axes 
y' 
 
Appear 1.1.1-b: Principal and unspecified axes  
 
The polar geometrical moment compared to the centre of gravity is given by:  
 
I = R dS 
p 
2 where R is the distance from the element dS in the centre of gravity [Figure 1.1.1-a].  
S 
 
One deduces I naturally from it = I + I 
p 
y 
Z  
 
The polar geometrical moment intervenes in the calculation of the rigidity of torsion of the beams of 
section  
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circular (torsion of Coming Saint). For the other forms of sections, one will define a constant of  
of the same torsion dimension.  
 
Moreover, the geometrical moments can be calculated in another reference mark (P, y, Z), of origin P  
unspecified different from the centre of gravity G (formula of Huygens):  
 
I P 
I G 
=  
+ (GP.Z) 2 S = 
z2 dS 
 
+ (GP.Z) 2 
. 
. S 
y 
y 
 
S 
I P 
I G 
=  
+ (GP.Y) 2 S = 
y2 dS  
 
+ (GP.Y) 2 
. 
. S 
Z 
Z 
 
S 
I P 
I G 
=  
+ (GP.Y) (GP.Z). S = 
yz dS 
 
+ (GP.Y) (GP.Z). S 
yz 
yz 
 
S 
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in a general way, the formula of Huygens gives:  
 
[I] = (PG + GM) (PG + GM) 
S 
= PG PG + GM GM 
S 
S 
 
+ 2 PG GM 
S 
= S (PG PG) + GM GM 
S 
 
1.1.2 Calculation of the geometrical characteristics using MACR_CARA_POUTRE  
 
This macro-order allows the determination of the characteristics of a cross section of  
beam starting from a grid 2D of the section [U4.42.02]. It makes it possible to build a table of  
values, usable in order AFFE_CARA_ELEM (SECTION: “GENERAL” [U4.42.01]).  
 
The geometrical characteristics can be calculated on the complete grid, half grid with  
symmetry compared to X or with Y, quarter of grid with two symmetries compared to X and with Y  
[Figure 1.1.2-a].  
These characteristics are calculated in the table for all the grid and each group of  
meshs of the list specified by the user (case of a network of beams).  
 
The data correspond to a half or a quarter of the section if key words SYME_X or SYME_Y  
are present.  
 
Z (principal) 
Y 
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Y 
y (principal) 
CDG_X 
R_MAX 
Z_MAX 
Y_MAX 
G 
X 
Y_MIN 
CDG_Y 
Z_MIN 
O 
ALPHA 
X 
 
Appear 1.1.2-a: Definition of the geometrical characteristics  
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The results are gathered in four groups:  
 
1) In reference mark OXY of description of the grid 2D for the grid provided by the user  
· surface: AIRE_M  
· position of the centre of gravity: CDG_X_M, CDG_Y_M  
· moments and product of inertia of surface, in the centre of gravity G in reference mark GXY: 
IX_G_M,  
IY_G_M, IXY_G_M  
2) In the same total reference mark, for the grid obtained by symmetrization if SYME_X or SYME_Y:  
· surface: SURFACE  
· position of the centre of gravity: CDG_X, CDG_Y  
· moments and product of inertia of surface, in the centre of gravity G in reference mark GXY: IX_G, 
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IY_G,  
IXY_G  
3) In the principal reference mark of Gyz inertia. cross-section, whose denomination corresponds to 
that  
used with the description of the elements of neutral fibre beam Gx [U4.24.01].  
· principal moments of inertia of surface in the Gyz reference mark, usable for the calculation of 
rigidity  
of inflection of the beam: IY_PRIN_G and IZ_PRIN_G  
· angle of flow of reference mark GXY to the principal reference mark of Gyz inertia: ALPHA  
· characteristic distances, compared to the centre of gravity G of the section for calculations of  
maximum constraints: Y_MAX, Y_MIN, Z_MAX, Z_MIN and R_MAX.  
4) In the total reference mark, in a point P provided by the user:  
· X_P, Y_P: not calculation of the moments of inertia  
· IX_P, IY_P, IXY_P: moments of inertia in reference mark PXY  
· IY_PRIN_P, IZ_PRIN_P: moments of inertia in the Pyz reference mark.  
 
1.1.3 Calculations  
carried out  
 
The list of the orders called by MACR_CARA_POUTRE is indicated in the document [U4.42.02].  
 
The preceding quantities are obtained by the call to POST_ELEM, for option “CARA_GEOM”. Of  
more, one can add to it key words SYME_X, SYME_Y, and ORIG_INER which defines the P. point.  
 
Calculations are carried out in POST_ELEM, for all the grid, then possibly for each  
group meshs, in the following way:  
 
1) Buckle on the elements 2D (modeling D_PLAN), with call of the elementary option  
“MASS_INER”. One obtains a CHAM_ELEM with a value by element (1 point of Gauss)  
containing the components:  
dS, 
X dS, 
y dS, 
 
 
 
x2 dS, 
y2 
dS, xy dS 
 
 
 
 
element 
element 
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element 
S 
S 
S 
2) Summation of the preceding elementary quantities to obtain: AIRE_M, CDG_X_M, CDG_Y_M,  
IX_G_M, IY_G_M, IXY_G_M  
3) Calculation  
of  
SURFACE, CDG_X, CDG_Y, IX_G, IY_G, IXY_G (taken into account of SYME_X, SYME_Y)  
4) Calculation  
of  
IY_PRIN_G, IZ_PRIN_G, ALPHA  
5) Calculation  
of  
Y_MAX, Z_MAX, Y_MIN, Z_MIN, R_MAX  
6) If one clarifies a point P particular (key word ORIG_INER), one calculates also the characteristics  
in the total reference mark of origin P: PXY  
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1.1.4 Examples  
of use  
: Full rectangle (treaty by test ZZZZ105G)  
 
y 
B 
B 
B = 0.01 
GR2 
H 
H = 0.025 
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0 
X 
GR1 
H 
 
 
Geometrical characteristics obtained  
 
PLACE  
AIRE_M  
CDG_X_M  
CDG_Y_M  
IX_G_M  
IY_G_M  
IXY_G_M  
0.000003  
1.00E-03  
4.24E-18  
-3.39E-18  
2.08E-07  
3.33E-08  
2.65E-23  
GR1  
5.00E-04  
 
2.20E-17 -1.25E-02 2.60E-08  
1.67E-08  
3.97E-23  
GR2  
5.00E-04  
-8.47E-18 1.25E-02  
2.60E-08  
1.67E-08  
5.62E-23  
 
PLACE  
 
SURFACE  
CDG_X CDG_Y IX_G IY_G IXY_G IY_PRIN_G IZ_PRIN_G ALPHA  
0.000003 1.00E-03 4.24E-18 -3.39E-18 2.08E-07 3.33E-08 2.65E-23 3.33E-08 2.08E-07 9.00E+01  
GR1  
5.00E-04 2.20E-17 -1.25E-02 2.60E-08 1.67E-08 3.97E-23 1.67E-08 2.60E-08 9.00E+01  
GR2  
5.00E-04 -8.47E-18 1.25E-02 2.60E-08 1.67E-08 5.62E-23 1.67E-08 2.60E-08 9.00E+01  
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PLACE  
X_P  
 
 
Y_P  
IX_P  
IY_P  
IXY_P  
 
IY_PRIN_P  
IZ_PRIN_P  
0.000003  
0.00E+00 0.00E+00  
2.08E-07 3.33E-08  
2.65E-23  
3.33E-08  
2.08E-07  
GR1  
 
0.00E+00 0.00E+00  
1.04E-07 1.67E-08  
-9.79E-23  
1.67E-08  
1.04E-07  
GR2  
 
0.00E+00 0.00E+00  
1.04E-07 1.67E-08  
3.31E-24  
1.67E-08  
1.04E-07  
 
PLACE  
Y_MAX  
Z_MAX  
Y_MIN  
Z_MIN  
R_MAX  
0.000003  
2.50E-02  
1.00E-02  
-2.50E-02  
1.00E-02  
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2.69E-02  
GR1  
1.25E-02  
 
1.00E-02 1.25E-02  
1.00E-02  
3.36E-02  
GR2  
-1.25E-02 -1.00E-02 -1.25E-02 -1.00E-02 3.36E-02  
 
1.2  
Particular case of the sections rectangular and circular  
 
The geometrical characteristics are directly calculated in AFFE_CARA_ELEM from  
data of the user.  
 
y 
epy 
Z 
G 
hy 
epz 
Hz 
 
Appear 1.2-a: rectangular section  
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In the case of the rectangular beam (Operand SECTION: “RIGHT-ANGLED”), calculation gives:  
 
1 
I 
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3 
3 
y =  
H H 
- H - 2 ep 
H 
- 2 ep 
 
12 [ 
 
 
 
 
 
 
y Z 
(y 
y) (Z 
Z)] 
 
1 
3 
 
 
I = H H 3 - (H 
-  
2 ep 
) 
- 2 
12 
(H ep 
Z 
Z 
y 
Z 
Z 
y 
y) 
 
 
 
 
 
y 
R 
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G 
Z 
ep 
 
Appear 1.2-b: circular section  
 
For the circular section (Operand SECTION: “CIRCLE”), one obtains:  
 
 
4 
4 
 
I = I 
=  
4 
4 
- 
- 
- 
- 
 
4 [R 
(R 
ep 
) ] 
I = 2 [R 
(R 
ep 
y 
Z 
p 
) ] 
 
 
2  
Coefficients of shearing and the center of shearing  
 
1 
1 
It is a question of evaluating the coefficients A = 
, A 
y 
= 
intervening in the models of beams of  
K 
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Z 
K 
y 
Z 
Timoshenko with taking into account of the shearing strains. For the beams of EULER, these  
coefficients do not intervene [U4.42.01 §7.4.2] and [R3.08.01 §2.3.1]. These coefficients are obtained  
for a linear elastic behavior.  
 
In the case of the unspecified sections, the coefficients of shearing are to be provided by the user  
in AFFE_CARA_ELEM, if the selected element is a beam of TIMOSHENKO (model POU_D_T,  
POU_C_T, POU_D_TG and POU_D_TG_M).  
 
In the case of the circular or rectangular sections, the coefficients of shearing are calculated  
by analytical methods of [§2.1].  
 
In all the cases, they can be calculated by MACR_CARA_POUTRE, starting from the plane grid of  
section. The numerical method used is exposed to [§2.3]. This method applies to  
unspecified sections (of homogeneous and isotropic material). In appendix 2, one describes an 
extension of  
this method with the case of a network of parallel beams maintained between two rigid floors.  
 
The position of the center of torsion (or shearing centers) is obtained only by methods  
numerical (cf [§2.3]). For the rectangular and circular sections, as for all the sections  
in 2 symmetry planes, the center of torsion is confused with the centre of gravity of the section.  
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2.1 Methods  
analytical  
 
One describes three analytical methods allowing to calculate coefficients of shearing,  
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applicable to the unspecified sections.  
The first two methods differ by the definition which they propose of the coefficient of  
shearing, but rest on the same assumption which consists in postulating the form of the distribution  
shear stresses in the section.  
 
2.1.1 Assumption of distribution of shearings: formulate JOURAWSKI  
 
Let us consider for example the case of a beam of cross-section S, subjected to a sharp effort  
V = dS 
y 
xy. One writes the balance of a prismatic part of the beam, ranging between the sections  
S 
right-hand sides Sx and Sx+a and between the plan of cut located at the ordinate y and ymax (ref. 
[bib8]). Efforts  
acting on this part of beam are the vectors forced on the faces Sx and Sx+a, and those  
acting on the face located in Y.  
ymax 
B (Z) 
y 
X 
x+a 
Z 
S X  
S x+a  
 
Appear 2.1.1-a  
 
By applying the theorem of the resultant, one obtains:  
 
B (y) 
 
x+a 
 
2 
xx (X, y, Z) Dy D 
Z - 
 
 
(X, y, Z) Dy dz 
= NR (X + has, y) - NR (X, y) = 
B (y)  
 
(, y, Z)  
D dz  
S 

file:///Z|/process/refer/refer/p580.htm (15 of 24)10/2/2006 2:52:19 PM



file:///Z|/process/refer/refer/p580.htm

xx 
S 
xy 
X 
x+a 
X 
- 2 
 
To evaluate the term of right-hand side, JOURAWSKI proposed to consider only the average of  
shearings according to Z:  
 
B 
 
1 
2 
xy (X, y) = ( 
X, y, Z dz 
 
 
B y) B xy ( 
) 
-2 
then  
 
x+ 
B (y) 
has 
X has 
2 
B (y) xy (, y, Z) 
+ 
D D 
Z 
B (y), y D  
X 
 
=  
xy ( 
) 
- 
X 
2 
 
and while making tend has towards 0,  
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NR = (by) (X, y 
xy 
) 
 
 
 
X 
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The equilibrium equations of beam and the distribution of bending stresses (in elasticity) give:  
 
M (X). y 
M (X) 
y 
NR (X, y) = (X, y, Z) dydz 
Z 
= 
dydz = 
Z 
m (y) 
max 
with m (y) 
xx 
 
=  
T B (T) dt  
S 
S 
X 
X 
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Iz 
Iz 
y 
 
thus  
m (y) M 
( ) 
 
Z 
m y 
xy (X, y) =  
= 
Vy  
Iz B (y) X 
Iz B (y) 
 
The distribution of shearings following there is thus given by the formula of JOURAWSKI:  
( ) 
 
m y 
ymax 
xy (X, y) =  
Vy 
with 
m (y) =  
T B (T) dt 
 
éq  
2.1.1-1  
Iz B (y) 
y 
in accordance with [U4.24.01], with the notations of [Figure 2.1.1-b]. The quantity m (y) represents it  
static moment on behalf of section (hatched) ranging between y and ymax:  
 
y 
B (y) 
ymax 
( 
m y$) = y Dy dz 
sy$ 
G 
Z 
 
Appear 2.1.1-b: section of beam  
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This distribution checks the boundary conditions well following three-dimensional problem there:  
shearing is quite null on bottom fibres and higher (y = ymin, or y = ymax). But it  
account holds that average of shearings according to Z.  
 
By applying this formula to a full rectangular section, one finds a distribution parabolic  
according to Y. By applying it to a beam of circular section, one finds a distribution parabolic in y  
and in Z, which varies more slowly according to Z than according to Y.  
 
This remains valid for the other full sections. For sections comprising of the holes, it is necessary  
to take guard to consider only the matter in the calculation of B (y).  
 
2.1.2 Method of TIMOSHENKO  
 
With the origin, TIMOSHENKO (ref. [bib9]) proposed a simple definition of the coefficient of 
shearing,  
as being the relationship between the transverse shear stress average in the noted section  
CT and its maximum value (CT 
. Owing to the fact that we always have the shearing action by:  
Max) 
 
V =  
dS 
 
 
éq  
2.1.2-1  
S 
CT 
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we deduce:  
 
V 
CT =  
.  
S 
 
Knowing that TIMOSHENKO proposes to write:  
 
K 
CT 
=  
éq  
2.1.2-2  
CTMax 
to determine K, it is enough to express the shearing action V =  
dS 
 
[éq 2.1.2-1] according to  
S 
CT 
CT. In the case general of the unspecified sections, there will be naturally two coefficients K 
Max 
y  
and kz, for each of the two principal axes.  
 
It remains to determine CT 
. For that, TIMOSHENKO makes an assumption on the distribution of  
Max 
stresses shear transverse: the transverse shear stress has a distribution  
parabolic in the direction of the shearing action which produces it, with its maximum value in the 
center and  
zero values at the edges. This is true according to the formula of JOURAWSKI for a section  
rectangular. By extension, the method extends this assumption of parabolic distribution to one  
unspecified section  
 
This method is not applied in Code_Aster, except for the hollow rectangular sections.  
One uses the following method in the other cases.  
 
2.1.3 Method  
“energy”  
 
Actually, the definition suggested by TIMOSHENKO proves little used in practice today; one him  
prefer a formulation based on internal energy due to shearing in the section. This one is written:  
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2 
 
U 
CT 
=  
 
dS 
CT 
1 
 
S 2 
G 
 
where G is the modulus of rigidity (equal to µ).  
 
The new definition of the coefficient of shearing is sometimes allotted to MINDLIN and is expressed 
by:  
1 V 2 
UCT =  
 
éq  
2.1.3-1  
2 K S 
G 
 
So by substitution, one thus defines for a homogeneous material section the coefficient of  
shearing by:  
[ 
2 
dS 
CT 
2 
S 
] 
V 
K =  
= 
 
éq  
2.1.3-2  
S 2D 
S 
S 2 dS 
CT 
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By making an assumption on the distribution of constraint in the section, one can thus estimate  
value of K. From the formula of JOURAWSKI [éq 2.1.1-1], the preceding expression can be written  
(ref. [bib5]):  
 
I 2 
K =  
 
éq  
2.1.3-3  
m2 (y) 
S  
dS  
S b2 (y) 
 
2.1.4 Method of COWPER  
 
One can also take into account the three-dimensional effects to determine the coefficient K;  
various formulations were proposed, by COWPER [bib3] and were taken again in particular by 
BLEVINS  
[bib2], while being based on the resolution of the three-dimensional problem of Saint-Coming.  
 
In this case, the coefficient K is a function of the Poisson's ratio, in general one  
approximation with the first order. COWPER uses the three-dimensional equations of elasticity in  
the dynamic case to propose an expression of K giving of good results in statics and in  
low frequency dynamics. The approximation which makes it possible to lead to the formula suggested 
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consists with  
to consider a distribution of not parabolic constraint, but resulting from the static problem  
(solved analytically) of the beam cantilever transversely charged at its loose lead. It is with  
to note that the distribution obtained is strictly identical to the problem with a transverse loading  
uniformly distributed.  
 
2.2  
Particular case of the sections rectangular and circular  
 
One distinguishes the full beams and the tubes.  
 
For the full rectangular section, the coefficient of shearing is determined by the method based  
on energy shearing with parabolic distribution of the constraints interns  
I 2 
K 
Z 
y =  
[éq 2.1.3-3]. Applied to the rectangular section, one obtains  
m2 (y) 
S 
Z 
 
 
Dy 
S b2 (y) 
Z 
5 
K = K 
y 
Z =  
. It should be noted that this value also corresponds to the method of COWPER when  
6 
the Poisson's ratio is taken equal to zero.  
 
For the rectangular tube, Code_Aster uses the method of TIMOSHENKO which leads to  
2 
K = K 
y 
Z =  
.  
3 
 
In the case of the beams with full circular section, one uses the energy method which leads to  
9 
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K = K 
y 
Z =  
. This value is also obtained by the method of COWPER when it  
10 
1 
Poisson's ratio is equal to  
.  
2 
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For the circular tubes, one distinguishes the tubes with fine wall and those with thick wall. If one notes  
R 
m 
I 
= R the report/ratio of the internal ray to the external ray, a tube is with fine wall when m 0.9, if not  
E 
it is with thick wall.  
 
The coefficient of shearing of the circular tube with fine wall is given by the method of COWPER, in  
1 
considering that m = 1 and for a null Poisson's ratio, is K = K 
y 
Z =  
.  
2 
 
For the circular tubes with thick wall, one uses an approximate formula of the method of  
COWPER which is written:  
1 
K =  
.  
1 
 
093 + , 
0.634 m +, 
1156 m2, 
0 
 
905 m3 
, 
- 
Let us notice that this formula does not ensure continuity with the borderline cases of the full cylinder 
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(m = 0)  
and of the cylinder with infinitely thin wall (m = 1).  
 
If preceding choices (carried out by AFFE_CARA_ELEM in the case of circular sections and  
rectangular) are not appropriate, it is always possible to calculate the coefficients numerically  
of shearing using MACR_CARA_POUTRE, of which the method is specified in the § according to.  
 
 
2.3 Numerical method of calculation of the coefficients of shearing and of  
center shearing  
 
2.3.1 Calculation of the coefficients of shearing:  
 
This method takes as a starting point the the ref. [bib1], page 62. It allows the simultaneous 
determination of  
constants of shearing and the center of torsion. It is implemented in MACR_CARA_POUTRE,  
starting from a plane grid of the section. It functions currently only for sections  
homogeneous and isotropic (for nonhomogeneous sections, the method is similar [bib1] but not  
available in Code_Aster).  
 
As for the energy method, one compares for a shearing action Vz energy interns U1  
had with shearing in the section with U2 energy associated with the model with MINDLIN:  
 
2 
2 
2 
1 xy + xz 
1 V 
U =  
 
dS = U 
Z 
1 
 
= 
 
S 2 
G 
2 
2 K SG 
Z 
 
1 V 2 
The coefficient of shearing is expressed by: K 
Z 
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It is thus necessary to calculate U1 and thus stresses shear (in elasticity) in the section for  
to estimate the value of K. One places oneself in the principal reference mark of inertia (G, y, Z), and 
one supposes that  
beam is subjected only to one sharp effort Vz. It results from it that:  
 
M y (X) 
xx = Z Iy 
 
 
xx 
Z 
V 
 
= Z 
X 
I y 
 
The equilibrium equations make it possible to write:  
 
 
 
xx 
xy 
 
 
xz 
xy 
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xz 
Z 
V 
 
+ 
+ 
= 0 = 
+ 
+ Z 
 
X 
y 
Z 
y 
Z 
I y 
 
In addition, the kinematics of the beam in inflection/shearing is:  
 
(ux, y, Z) = (ux) + Z 
~ 
y (X) + U (y, Z) 
v (X, y, Z) = 0 
 
( 
W X, y, Z) = (  
W X) 
 
~ 
U (y, Z) representing axial displacement due to the warping of the section. Deformations  
are written:  
 
( 
U X) 
y (X) 
xx = 
+ 
 
Z 
X 
X 
u~ (y, Z) 
2xy = 
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y 
u~ (y, Z)  
2 
W X 
xz = y (X) 
( ) 
+ 
+ 
Z 
X 
 
By using the relation of behavior of linear elasticity, the constraints are written:  
 
u~ (y, Z) 
xy = 2µxy = µ y 
 
 
u~ (y, Z)  
 
 
W X 
2 
 
 
xz = µxz = µ y (X) 
( ) 
+ 
+ 
 
Z 
X  
 
The components of shearing thus check:  
 
xy xz 
 
- 
= 0  
Z 
y 
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This relation makes it possible to introduce the function of constraints Z such as shear stresses  
in the section are written:  
 
 
 
Z 
xy = µ y 
 
 
Z 
xz = µ Z 
 
The equilibrium equation then makes it possible to obtain function Z by resolution of a problem  
quasi-harmonic which is written:  
 
zV 
G + F = 0 in S 
Z 
Z 
with F = Iy 
 
G 
Z = 0 on S 
 
 
N 
Z = 0 in a point 
 
This makes it possible to calculate Z then shearings. In practice, in MACR_CARA_POUTRE, one 
uses  
THER_LINEAIRE to solve the problem, by comparing Z to the temperature. One chooses Vz =1 and  
G=1 (G does not intervene any more in the expression of the coefficient of shearing). Boundary 
conditions of  
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this problem of stationary thermics are:  
 
zV 
· source F being worth  
Z  
Iy 
· null flow on S  
· null temperature in a point of S  
 
1 
2 
2 
xy +xz 
1 
2 
One can then determine U Z =  
 
dS = 
G  
 
by a calculation  
1 
(Z) 
S 2 
G 
2 S 
elementary on all the elements of the section, with option “CARA_CISA” (calculation of the 
gradient), then  
1 V 2 
summation on these elements. K then is calculated 
Z 
Z = 2 SGUz  
1 
1 V 2y 
Same calculation is carried out with Vy = 1 to determine K y =  
 
y 
2 SGU1 
1 
1 
The provided result is A = 
, A 
y 
= 
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.  
K 
Z 
K 
y 
Z 
 
2.3.2 Calculation of the co-ordinates of the center of shearing  
 
The center of shearing C is the point of the section where shear stresses due to an effort  
edge generate one null torque. This point is also called center of torsion, because it  
remain fixed when the section is only subjected to one torque.  
The torque compared to the point G is worth: MxG = (. y - .z) dS 
xz 
xy 
 
S 
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The torque compared to the point C sought is:  
 
MxC = (. (y - y) - (Z - Z) dS = M - y V + Z V 
xz 
C 
xy 
C 
 
S 
xG 
C Z 
C y 
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To determine the co-ordinates of the center of shearing, preceding calculation is used [bib1]:  
From the shear stresses determined for Vz =1 and Vy =0, one calculates:  
M Z =. -. 
 
 
xG 
(y 
Z 
xz 
xy 
S 
) dS 
M Z 
One obtains: y 
xG 
= 
= Z 
C 
M 
 
xG 
Vz 
M y 
y 
For V 
xG 
y =1 and Vz =0, one obtains: Z = - 
 
= - 
C 
M 
 
xG 
Vy 
 
2.3.3 Example  
 
Let us take again the example of the rectangular section [§1.1.4].  
 
y 
B 
B 
B = 0.01 
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GR2 
H 
H = 0.025 
0 
X 
GR1 
H 
 
 
The coefficients of shearing obtained are identical to the analytical value (6/5).  
 
PLACE AY AZ EY  
EZ  
all 1.20E+00 1.20E+00 8.72E-19 3.16E18 
 
Co-ordinates of the center of torsion EY and EZ (in the reference mark principal (G, y, Z)) are null:  
center shearing/torsion is actually confused with the centre of gravity.  
 
2.4  
Calculation of the coefficients of shearing of a network  
 
The method described in appendix 2 makes it possible to calculate coefficients of shearing of a beam  
equivalent to a whole of parallel beams embedded on a rigid floor and embedded or  
rotulées on another.  
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3  
Constants related to torsion  
 
The constant of noted torsion C must make it possible to take account of the warping of the sections  
right-hand sides (not circulars) at the time of a deformation in torsion. It is used in the models of 
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beams  
right-hand sides treated by Aster (EULER, TIMOSHENKO and warped TIMOSHENKO or 
POU_D_E, POU_D_T,  
POU_C_T and POU_D_TG). In the case of the circular sections, the sections are not warped and  
constant of torsion is equal to the geometrical moment polar I p. the constant of torsion C is  
defined as the moment necessary to produce a rotation of 1 radian per unit of length  
divided by the modulus of rigidity, that is to say:  
M 
C 
X 
=  
 
 
 
 
 
 
 
 
 
éq 3-1  
X 
 
µ X 
A.c. same dimension as the geometrical moments of inertia I 
and I 
y 
Z is M 4.  
 
For a circular section, the definition [éq 3-1] is coherent since we have:  
 
 
M =  
µ I 
X 
X 
p.  
X 
 
The determination of C in the case general is made in a numerical way (MACR_CARA_POUTRE) 
and  
tiny room to a calculation of Laplacian in 2D. The method presented here is detailed in the ref. [bib1] 
[§3.6.3]  
for the simply related sections. An original method for calculation of the constants of  
torsion with perforated sections is detailed in appendix. The results here are given.  
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3.1  
Calculation of C in the case of unspecified sections  
 
The complete resolution of the problem is in appendix. One gives here simply the results.  
 
According to the assumptions of the theory of the pure torsion of Saint-Coming, there is no 
deformation of  
the average line and not of lengthening along the longitudinal axis. Torsion is free, i.e.  
that it does not generate axial stresses. In other words, the sections can warp  
freely. If one remains in small displacements, one admits that the swing angle of the cross-sections  
is worth:  
 
 
 
X 
X () 
X = X = .x  
 
éq  
3.1-1  
X 
Z 
() 
(S) 
M (y, Z) 
G 
y 
C 
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If the point C is the center of torsion (which by definition remains motionless when the beam is 
subjected to  
a torsion), the field of displacement U (M) is given by [bib1]:  
 
 
 
 
 
 
 
X 
 
( ,  
y Z) 
 
U 
X 
 
X 
 
X 
X 
 
 
 
 
 
(y Z) 
,  
 
 
 
X 
X 
 
X 
 
 
 
 
 
 
 
U (M) = v =  
 
0 
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X 
 
(y - y 
= -  
 
X (Z -  
C 
Z) 
c) +  
 
0 
 
 
 
 
 
 
 
 
X 
 
W 
 
0  
 
(Z - Z  
c) 
 
0 
 
 
 
 
 
 
X 
 
 
X (y - yc) 
 
 
X 
 
where ( 
) 

file:///Z|/process/refer/refer/p590.htm (14 of 28)10/2/2006 2:52:20 PM



file:///Z|/process/refer/refer/p590.htm

,  
y Z is related to warping.  
 
The law of HOOKE is written:  
 
 
 
= 2µ  
( 
 
+ 
 
E - 2µ) Trace ( 
) I 
 
 
1 
where I is the matrix unit and the tensor of the deformations is worth =  
(grad () + T 
U 
grad (U))  
2 
2  
By neglecting the terms of the second order, in  
X 
x2, one leads to:  
 
 
 
 
 
 
 
 
0 
 
-  
Z 
 
+  
 
 
y 
0 
-  
y 
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Z 
 
 
Z 
y  
 
 
 
 
X 
 
X 
 
=  
µ 
 
-  
 
µ 
 
 
 
Z 
0 
0 
=  
 
0 
0 
éq  
3.1-2  
X y 
 
X Z 
 
 
 
 
 
 
+  
 
- 
0 
0  
 
y 

file:///Z|/process/refer/refer/p590.htm (16 of 28)10/2/2006 2:52:20 PM



file:///Z|/process/refer/refer/p590.htm

0 
0 
Z 
 
y 
 
One posed: ( 
) 
,  
y Z function of constraint. It is noted that the relation of balance div = 0 is then  
checked.  
 
While deriving, one obtains:  
 
2  
2  
= -  
- 1 
 
2 
y 
Z y 
 
2  
2  
=  
- 1 
. 
2 
Z 
y Z 
 
By adding the two equations, one leads to:  
 
= -2  
 
 
 
 
 
 
 
 
éq 3.1-3  
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It remains to establish the boundary conditions. One notes N the normal directed towards outside at 
the border  
() which can be multiplement related:  
 
0 
 
N 
N 
I 
 
 
Without external loading, one must have N = 0, which can be written  
:  
 
 
 
N 
- 
 
 
y 
nz  
 
Z 
y 
 
 
 
µ 
X  
0 
=  
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0 where N 
X  
 
y and nz are the two components of the normal.  
0 
 
 
 
 
 
 
This writing can be thus put in the form N grad = 0 which implies that vectors N and  
grad is colinéaires. It thus follows that (y, Z) is constant on each related component  
border (). One can impose for example that (y, Z) that is to say null on external contour:  
 
= 0 out of 0 =  
 
= I on I  
 
If the sections behavior of the holes, constants I are unspecified. For  
to allow the resolution of the complete problem, it is necessary to add equations. Those are obtained 
with  
to leave the circulation of the function of warping on each closed contour. They are obtained  
following conditions:  
 
dl 
 
= 2 ( 
I)  
I 
N 
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where ( 
I) is the surface surrounded by the border (I). These conditions are brought back to conditions  
traditional of imposed flow (where L (I) represents the length of border I):  
 
2 ( 
I) 
= 
 
N 
L (I) 
 
Finally, the problem to be solved is written:  
 
= -2 on  
 
= 0 out of 0 =  
 
= I on I  
 
2 ( 
I) 
= 
 
N 
L (I) 
 
n-1 
Once solved this problem, one obtains the constant of torsion by: C = 2 ds + 
 
2 I 
( 
I).  
 
i=1 
 
3.2  
Calculation of the constant of torsion in MACR_CARA_POUTRE  
 
This calculation is carried out in MACR_CARA_POUTRE by the resolution of a problem of thermics. 
It is necessary  
for that that the user specifies with MACR_CARA_POUTRE the group of mesh which defines the 
edge  
outside, and if the section comprises holes, groups of meshs which define the contour of  
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each one of them.  
One then solves a linear problem of thermics (THER_LINEAIRE) on a plane grid of  
section to find the function. One places oneself first of all in the principal reference mark of inertia  
(CREA_MAILLAGE), starting from the co-ordinates of the centre of gravity and the orientation of 
the principal reference mark  
calculated previously.  
 
One defines then the boundary conditions in AFFE_CHAR_THER:  
 
· The source term is worth 2  
· The temperature of the external edge is imposed and is worth 0 (TEMP_IMPO)  
· And if the section comprises holes (presence of one or more groups of meshs them  
defining):  
- On each group of mesh defining a hole, the temperature is constant  
(TEMP_UNIF)  
-  
Flow is worth 2 times the surface of the hole divided by the length of its edge. These quantities are  
calculated before.  
· The calculation of C is carried out in POST_ELEM by key word CARA_TORSION of the key word 
factor  
CARA_POUTRE. In this case, one calculates on each element the integral of, (option  
CARA_TORSION on the plane thermal elements), then one carries out the sum on all them  
elements.  
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Example:  
 
Still let us take again the example of the rectangular section [§1.1.4].  
 
The coefficients of shearing obtained are:  
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PLACE  
CT [éq 3.3.2] CT (Aster)  
all 9.9805E-08  
9.9681E-08 
 
3.3  
Calculation of the ray of torsion in an unspecified section  
 
The ray of torsion is calculated thanks to the calculation of the function of constraints on the grid of  
section. Rt is added in the table produced by MACR_CARA_POUTRE [U4.42.02].  
 
The resolution of a stationary thermal problem of unknown factor makes it possible to determine the 
constant  
of torsion and stresses shear.  
The determination of the ray of Rt torsion is the resolution of:  
 
Rt = grad () .n  
 
(or N represents the normal vector external with the edge considered of the section)  
 
Rt varies along external contour; indeed, for an unspecified section, shearings due to  
torsion vary on the edge. One chooses to take the value of Rt leading to shearings  
maximum on the external edge, i.e. the maximum value of Rt (in absolute value) on contour  
external.  
 
Moreover, if the section is alveolate, there are several “several rays of torsion”: Rt = 2*A (K) /L (K) 
(or  
With (K) represents the surface of the cell K and L (K) its perimeter). If one is satisfied to seek the 
value  
maximum of shearing, it is necessary to take the maximum of the Rt values obtained on the external 
edge and  
on the cells.  
 
The ray of torsion is given in MACR_CARA_POUTRE only by orders  
python. During the unfolding of MACR_CARA_POUTRE order POST_ELEM is called, one  
new parameter RT is thus created for this order.  
 
 
3.4  
Constant of torsion of the sections circular and rectangular  
 
Expressions simplified for these two types of sections are described here. The calculation of  
constants of torsion is then directly carried out in AFFE_CARA_ELEM.  
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For the circular section the preceding expressions remain valid. By taking a function of  
1 
torsion of the form ( 
y Z) 
,  
= (R2  
x2  
y2 
- 
- 
) one finds indeed:  
2 
 
 
C = I = (R4 - R4 
p 
1 )  
2 
0 
 
For the rectangular section, calculation is naturally more complex but can be carried out in  
choosing a function which is cancelled indeed at the edges, of the form:  
 
 
 
y  
 
 
( 
Z 
, 
y Z) 
=  
 
 
 
With  
ij cos ( 
I 
2 + ) 
1 cos ( 
2 J +) 
1  
.  
H 
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H  
i=0 j=0 
 
y  
 
Z 
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The resolution involves with a constant of torsion which is written:  
 
 
H  
 
 
3 
3 
C 
y 
 
 
H H 
H 
y 
Z 
y  
 
H  
C =  
C  
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= H H 
Z 
3  
éq  
3.4-1  
H2 + H2  
H 
y 
Z 
2 
y 
Z 
Z  
 
H  
Z 
 
1 +  
H 
 
 
 
y  
 
 
 
hy  
where C  
express yourself in the form of a series which takes the following values:  
Hz  
 
hy 
1 
2 
4 
8 
 
Hz 
H  
 
C 
y 
 
0 281 
, 
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0 286 
, 
0 299 
, 
0 312 
, 
1 3 
Hz  
 
In fact, Code_Aster employs a formula simplified (ref. [bib1]) for the full rectangular section  
who is written:  
 
H H 3 
5 
 
 
 
y Z  
16 
H 
H 
C 
 
Z 
Z 
=  
 
- , 
3 36  
+ , 
0 280  
 
 
16 
3 
H 
H  
éq  
3.4-2  
y 
y  
 
 
 
It is valid if H > H 
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y 
Z; in the other case it is enough to exchange the respective places of H and H 
y 
Z.  
agreement between the two expressions is very good as indicates it the following table:  
 
H 
1 2 4 8  
y  
Hz 
C 
 
 
 
 
 
0,1405  
0,2288  
0,2814  
0,3072  
1/3  
H H 
y 3 according to [éq 3.3-1]  
Z 
C 
 
 
 
 
 
0,1408  
0,2289  
0,2809  
0,3071  
1/3  
H H 
y 3 according to Aster [éq 3.3-2]  
Z 
 
For the hollow rectangular beam, there is an approximate solution which is written (ref. [bib2] and 
[bib6]):  
 
2 
2 
2 ep ep 
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y 
Z (H - E 
p 
y 
y) (H - ep 
Z 
Z) 
C =  
 
H ep - ep 2 + H ep - ep 2 
y 
y 
y 
Z 
Z 
Z  
 
with the notations of [Figure 1.2-a]: section in plan (0, y, Z).  
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3.5  
The effective ray of torsion  
 
The effective ray of torsion RT makes it possible to calculate the transverse shear stress of torsion  
maximum T according to the torque. One will be able to consult on this subject the drafting of  
M  
MASSONET on this aspect (ref. [bib5]). We have as follows:  
 
 
T 
R 
T 
= MX 
 
M 
C 
 
In the case of the circular cylinders, RT is equal to the ray (external if it is a tube) of the section.  
 
For the rectangular sections, the problem is definitely more complex. Code_Aster imposes it  
ray of torsion of the full section by:  
 
C 4 (3 H +, 18 H 
y 
Z) 
RT =  
H2 + H2 
 
y 
Z 
 
This approximate expression remains valid if the beam is not flattened too much. DHATT and BATOZ  
(ref. [bib1]) give an expression having a field of validity more extended, but actually it acts  
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in any rigour of a series whose numerical values are given by MASSONET (ref. [bib5]).  
 
For the hollow rectangular beam, Code_Aster imposes an expression which is valid only if  
wall is thin and constant thickness epz, is:  
 
C 
RT =  
 
epz (H - 2ep 
y 
y) (H - 2ep 
Z 
Z) 
 
It is about a “adaptation” of the formula:  
 
C 
RT =  
 
2nd With 
 
 
where E is the thickness of the wall (constant) and A the surface contained inside the average line.  
This last expression is known under the name of first formula of BREDT (cf ref. [bib1] and  
[bib5]).  
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4  
Calculation of the constant of warping  
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The constant of warping is used by the model of beam with warping  
(modeling POU_D_TG and POU_D_TGM), that it is important to take into account for the beams with  
open mean sections (cf [R3.08.04]).  
 
This coefficient (noted I in [R3.08.04]) intervenes in the expression of the virtual work of the efforts  
interiors on the terms of torsion:  
 
2 
W 
* 
* 
int =  
 
0 ( 
µ.C. +  
. E.I 
, 
, 
, 
. 
,) dx 
X X 
X X 
X xx 
X xx 
 
I is expressed in the same unit as the geometrical moments of inertia I, I 
y 
Z, is M 4.  
 
By taking again the approach of [§3.1], and while placing itself in a reference mark related to the center 
of torsion C,  
kinematics of the torsion of an unspecified section is:  
 
 
 
 
 
 
 
X 
 
( ,  
y Z)  
U 
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X 
 
X 
X 
X 
 
 
 
 
 
(y Z) 
,  
 
 
 
X 
X 
 
X 
 
 
 
 
 
 
U (M) = v =  
 
0 
y +  
 
X 
 
 
0 
= -  
X Z  
 
 
 
 
 
 
X 
 
W  
0  
Z 
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0 
 
 
 
 
 
 
X 
 
 
 
X y 
 
X 
 
 
where ( 
) 
,  
y Z is related to warping (which cancels only in the case of a section  
circular).  
 
The expression of the stress field is (in elasticity):  
 
 
2 
 
X  
xx = 
 
E xx =  
E (y, Z) x2 
 
, 
 
X 
(y Z) 
 
2 
 
 
xy = µxy = µ  
- Z  
X y 
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, 
 
X 
(y Z) 
 
2 
 
 
xz = µxz = µ  
- y 
X Z 
 
 
 
2 
With the difference of [§4], terms of the second order in  
X are not neglected any more.  
2 
X 
 
The first relation of balance (div) =, +, +, = 0 implies the condition then  
X 
xx X 
xy y 
xz Z 
following on the function of warping:  
 
= 0  
 
In addition, without loading external on contour of the section, one must have N = 0, which  
 
 
can be written:  
N +  
 
N = z.n - y.n, where N 
y y 
Z Z 
y 
Z 
y and nz are the two components of  
 
normal, or in vectorial form: grad.n = 
= (N CM) .x 
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This determines the function of warping except for a constant. To raise this indetermination,  
one writes for example the expression of the normal effort (for a section where torsion produces  
warping):  
 
2  
NR 
ds 
E 
X 
= 
= 
 
ds 
xx 
= 
 
 
0  
x2 
S 
S 
 
thus the additional condition on the function of warping is: ds 
= 0  
S 
In practice, in MACR_CARA_POUTRE, one places oneself above all in a reference mark related to the 

file:///Z|/process/refer/refer/p600.htm (7 of 26)10/2/2006 2:52:20 PM



file:///Z|/process/refer/refer/p600.htm

center of torsion  
C.  
 
One calculates then who must check:  
 
 
= 0 
 
 
grad .n = 
= (N CM) 
 
.x  
N 
= 
ds 0 
S 
 
2 
The inertia of warping I is obtained then by: I = 
ds 
 
 
S 
 
MACR_CARA_POUTRE calls upon the following elementary orders:  
 
· Translation of the co-ordinates of the nodes in the reference mark related to the center of torsion 
(calculated  
previously in table TCARS):  
 
CREA_MAILLAGE (GRID:  
LOCATE: (TABLE: TCARS NOM_ORIG: “TORSION”));  
 
· Affectation of a model (thermal plan), of a material field:  
 
AFFE_MODELE (GRID:  
AFFE: (ALL: “YES” PHENOMENON: “THERMAL” MODELING: “PLANE”));  
AFFE_MATERIAU (GRID  
AFFE: (ALL: “YES” MATER: ));  
 
 
 
· Boundary conditions on external contour G0:  
N +  
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N = z.n - y.n  
y y 
Z Z 
y 
Z 
F1=DEFI_FONCTION (NOM_PARA: VALE: (0. , 0. , 10. , -10. )) ;  
F2=DEFI_FONCTION (NOM_PARA: VALE: (0. , 0. , 10. , 10. )) ;  
CH1 = AFFE_CHAR_THER_F (MODEL:  
FLUX_REP: (GROUP_MA: G0 FLUX_X: F1 FLUX_Y: F2)) ;  
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· Condition on the field solution: ds 
= 0: creation of a unit source term on all it  
S 
grid, and of the vector second associate member. LIAISON_CHAMNO then makes it possible to impose  
desired condition.  
 
CHS = AFFE_CHAR_THER (MODEL:  
SOURCE: (ALL: “YES” SOUR: 1.));  
VS = CALC_VECT_ELEM (OPTION: “CHAR_THER” CHARGES: CHS…);  
MS = CALC_MATR_ELEM (MODEL: … OPTION: “RIGI_THER”);  
NUM = NUME_DDL (MATR_RIGI: Ms);  
= ASSE_VECTEUR (VECT_ELEM GOES: VS NUME_DDL: NUM);  
CH2 = AFFE_CHAR_THER (  
LIAISON_CHAMNO: (CHAM_NO: COEF_IMPO GOES: 0.));  
 
· Calcul of the function of warping  
 
THER_LINEAIRE (MODEL: ….  
EXCIT: (LOAD: CH1)  
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EXCIT: (LOAD: CH2)  
);  
 
2 
· Calcul of the constant of warping I = 
ds 
 
and enrichment of the table:  
S 
 
TCARS = POST_ELEM (MODEL: …  
CARA_POUTRE: (CARA_GEOM: TCARS  
LAPL_PHI: KSI OPTION: “CARA_GAUCHI”));  
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Appendix 1 Determination of the constant of torsion for  
sections has borders multiplement related  
 
That is to say a beam elastic, isotropic, length L and of unspecified section which can be not simply  
related. One notes contour external of and  
= 1K -1, possible contours  
0 
I, for I 
N 
n-1 
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interiors. One notes = 
I 
U 
its total border.  
i=0 
One chooses the axis x1 according to the line of the centres of gravity of the cross-sections. One 
supposes to simplify  
demonstration which the center of torsion is confused with the centre of gravity, which makes it 
possible to uncouple them  
effects of torsion and inflection. The axes x2 and x3 are selected following the principal directions of 
inertia.  
 
x2 
 
0 
G 0 
G1 
x1 
I 
x3 
 
Appear A1-a: Beam with unspecified section  
 
The beam is charged on its section X 
L 
1 = 
by one torque M 
= M X 
G  
T 
.  
1 
1 
In addition, the side surface of the cylinder is not charged and the forces of volume are null.  
One deduces from it immediately that the torque of the interior forces at the G0 point is M 
= M X 
G 
T 
 
0 
1 
The problem of elasticity posed previously seems incompletely definite. Indeed, conditions  
with the limits on the cross-sections X 
L 
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1 = 
and x1 = 0 is incomplete because there is not a condition in each  
not, but on average. There is thus, a priori, an infinity of solutions. The assumption of Saint-Coming 
consists with  
to seek a solution such as the tensor of the constraints is form  
 
 
11 12  
13 
 
 
=  
12 
0 
0  
 
 
13 0 
0  
 
The principle of Saint-Coming is valid far from the sections of application of the forces. Indeed, 
except in cases  
particular loadings, the four presumedly null terms diminish exponentially with x1.  
 
To solve this problem of elasticity, a formulation in constraints is chosen. The equations to be written 
are  
thus those of balance and those of compatibility.  
Handbook of Reference  
R3.08 booklet: Machine elements with average fibre  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Calculation of the characteristics of a beam of cross section unspecified Dates:  
01/09/05  
Author (S):  
J.M. PROIX, NR. LAURENT, P. HEMON, G. BERTRAND Clé: R3.08.03-C Page  
: 29/42  
 
 
The equilibrium equations div = 0 lead to the three following scalar equations:  
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111+2 12 +313 = 0  
 
 
 
 
 
 
 
éq A1-1  
112 = 0 
113 = éq A1-2  
0 
 
jk 
(with the simplified notation: I jk =)  
I 
X 
The equations of Beltrami, which take account of the equations of compatibility are written:  
-  
0  
 
 
 
 
 
 
 
 
éq A1-3  
11 -  
11 11 = 
1 
-  
0  
 
 
 
 
 
 
 
éq A1-4  
12 - 
12 
11 = 
1+  
1 
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-  
0  
 
 
 
 
 
 
 
éq A1-5  
13 - 
13 11 = 
1+  
-  
 
0  
 
 
 
 
 
 
 
éq A1-6  
2211 + 11 = 
-  
0  
 
 
 
 
 
 
 
 
 
 
éq A1-7  
23 
11 = 
-  
 
0  
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éq A1-8  
33 11 + 11 = 
 
The equations [éq A1-3], [éq A1-6] and [éq A1-8] show that,  
= 0 and are solutions of one  
22 
11 11 
22 
33 11 
homogeneous linear system and thus that = 
= 
= 0. With the equation [éq A1-7], one deduces some  
11 11 
2211  
33 11 
that = X has + has + B X + B X + C X + C X. By taking account of the fact that one deals with the 
problem of  
11 
1 1 
0 
(1 1 0) 2 (1 1 0) 3 
free torsion, one will take no one from now.  
11 
 
The equations [éq A1-2] and [éq A1-5] show that and do not depend on X. The equation [éq A1-1]  
12 
13 
1 
is written:  
 
+ F X 
= 
- 
- G X  
2 [12 
( 3)] 3[ 13 ( 2)] 
 
where F and G are two functions arbitrary. According to the theorem of Schwartz, there exists (X, X 
such as:  
2 
3 ) 
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F X 
 
2 =  
- 13 - ( 2) 
12 =3 - F (x3) 
 
= 
 
 
 
 
3 = 12 + G (x3) 
 
 
13 = -2 + G (x2) 
 
The equations [éq A1-4] and [éq A1-5] give:  
 
= 0 
3 
 
 
 
 
= 0 
2 
 
 
that is to say  
=3 F -2 F + K  
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where K is a constant of integration. As F and G are arbitrary, they will be taken identically null.  
0 
 
3  
- 2 
 
 
The problem to be solved is thus a problem of Laplacian: = K on then =  
0 
0 
3 
 
 
- 2 0 
0  
 
It remains to write the boundary conditions, who will allow us to write conditions on for and on  
K  
 
The boundary conditions are to be written on all the border.  
 
On the cross-sections X = L (and the same in X =), one a:  
1 
1 
0 
 
 
12ds = 0  
 
 
13ds = 0  
 
X - X ds = M 
2 13 3 12 
T  
 
 
 
 
 
 
 
éq A1-9  
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That is to say N the normal external with. One has N = 0. One poses = X 
X. One can also write  
12 
2 + 13 
3 
= 
 
grad x1; the tangential part of the constraint in the cross-section is called. That is to say NR the point  
I 
running of contour for I = 0 N 
K -1. The condition, on side surface, stated higher, can  
I 
to be written dN 
0 .  
I = 
0 
 
N 
N 
I 
 
Appear A1-b: Definition of the normals  
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Thus, on the side surface of a beam, the vector forced tangential is tangent with contour.  
 
· The equation dN 
0 conduit in a condition which must observe on contour: D = 0  
I = 
· The equation [éq A1-9] led to M 
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X X ds 
T = 
- 
- 
2 2 
3 3 
that one can also write:  
 
 
M 
2 ds 
(X dx 
X dx 
T = 
+ 
3 
2 - 
 
 
 
 
2 
3) 
 
 
The problem to solve to obtain is thus:  
 
= K on  
D = 0 on  
with the constraint M 
2 ds 
(X dx X dx 
T = 
+ 
3 
2 - 
 
 
 
 
2 
3) 
 
 
It remains to identify the constant of torsion C.  
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The law of behavior of the beams in torsion is: M = CG 
X 
T 
 
 
 
(cf [§3]).  
X 
 
 
 
To solve the preceding problem more easily, one poses = 
X 
and K = -2C, the problem with  
X 
C 
X 
X 
to solve becomes then:  
 
= -2 on  
D = 0 on  
 
M 
2C 
X 
= - 
 
ds + 
 
 
 
(X dx 
3 
2 - X dx  
T 
2 
3) 
 
 
 
X  
 
 
 
With such a notation, one obtains C = 2 
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D 
S + 
 
 
 
(X dx 
3 
2 - X dx 
2 
3) 
 
 
Contour consists of several contours: an external contour 0 and N -1 interior contours  
I. The condition D = 0 conduit with N following conditions: = I on I for I = 0 N -1 
K 
. I  
are constant unknown factors. By noting that, and thus, is defined except for a constant, one can fix 
one  
I. One will thus take 0 = 0. Remain to determine I for I = 1 N -1 
K 
.  
 
For that, one will study the warping of the cross-section of X-coordinate x1. Let us recall that the 
tensor of  
constraints is written (cf [§4]):  
 
 
 
 
 
 
 
 
0 
 
-  
Z 
 
+  
y 
 
 
0 
-  
y 
Z 
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Z 
y  
 
 
 
 
=  
G 
X  
- Z  
 
X 
 
 
 
0 
0 
=  
G 
 
0 
0 
 
X y 
 
X Z 
 
 
 
 
 
 
+ y 
 
- 
0 
0 
 
 
0 
0 
Z 
 
y 
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One poses = 
 
grad x1; is (except for a constant) the tangential part of the vector forced in  
cross-section.  
 
One thus has: grad = - GM x1  
One makes circulate this equation along I, one a:  
0 = dl - 
X dx 
X dx  
 
3 2 - 2 3 
I 
I 
 
One was useful oneself here owing to the fact that the circulation of the gradient on a closed curve is 
null.  
 
It is noted that the first integral can be written in term of flow of beam I. In addition, the second  
integral is equal to 2 ( 
I).  
 
Finally, the problem is written:  
 
= -2 on  
= 0 out of 0  
= I on I  
dl 
( 
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= 2 
I)  
I 
N 
 
n-1 
Once solved this problem, one a: J = 2 
D 
S + 
 
2 I ( 
I)  
 
i=1 
 
 
The last condition: 
dl 
( 
 
 
= 2 
I) is difficult to treat in a numerical way. Actually, both  
I 
N 
conditions on each border bordering a hole are written:  
 
= I on I  
2 ( 
I) 
= 
on  
 
 
N 
L ( 
I 
I) 
 
Variational formulation:  
 
v H1 () such as v 
= 0 
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0 
µ L2 (I)  
v D +  
iv dl = 2 v D + 
 
2 
 
 
 
v dl 
 
 
(I) 
 
 
 
I 
I 
 
 
I 
 
µ dl = 
 
 
dl 
 
 
I 
 
µ 
 
I 
I 
 
 
I dl = 
 
0 
 
I 
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One considers the function such as 1 on I. Matriciellement, one a:  
=t [] []  
v T 
= [v] []  
=t [] []  
Where [] is the vector whose components are related to form.  
Under these conditions, the variational approximation of the weak formulation gives:  
 
 
[ 
T 
K] [] + [Bi] [I] = [F] + [T] 
 
I 
 
[B] 
 
 
[] 
= [ ] 
0 
 
Where one posed:  
T [F] [v] = 2 v D 
 
 
 
T 
2 ( 
I) 
[T] [v] = 
v dl 
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I 
I 
[B] = [Bi]  
I 
 
One can check that the condition on flow is checked:  
 
dl = 
 
dl = 
D + 
 
D 
 
 
 
 
I N 
I 
 
 
 
= - 
 
T 
2D 
T 
 
 
+ [F] [] T 
+ [T] [] T 
- [] 
 
[Bi] [] 
144 2 
4 
3 
444 
1 2 
4 3 
4 
0 
0 
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2 ( 
= 
= 
I) 
= 
dl 
 
 
 
 
I 
 
= 2 (I 
I) 
 
It is seen, with this new formulation, that the posed mathematical problem returns to a problem of  
linear thermics with a particular loading. This is easily programmable in Code_Aster.  
 
By applying the preceding method to a beam whose cross-section is the crown ranging between  
rays R1 and R0 with R < R 
1 
0 .  
R0 
R1 
G 
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There is the following problem to solve:  
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= -2  
(R = R0) =0 = 0  
(R = R1) =1  
dl 2R2 
 
= 
 
 
0 
1 N 
 
r2 
The general solution of the problem is written = (R) = - 
+ A ( 
ln R) + B  
2 
 
 
 
Here, one has  
2 
2 
 
= - 
E. From where 2R - 2 
1 
With ( 
ln 1 
R) = 
2R 
To = 0. In addition, one  
N 
 
R 
1 
 
R 
1 
2 
( 
R 
R 
0 
0 ) = 0  
B = 

file:///Z|/process/refer/refer/p610.htm (4 of 27)10/2/2006 2:52:21 PM



file:///Z|/process/refer/refer/p610.htm

. Finally:  
2 
2 
2 
( 
R 
R 
R) = - 
+ 0 .  
2 
2 
2 
2 
R 
R 
One can now calculate J = 2 
D 
S + 
 
2 
1 
0 
2 
1 ( 
1 
). One has = - 
+ 
and ( 
1) = R. All  
 
1 
2 
2 
1 
made calculations, there is the traditional result:  
 
J = (R4 - R41)  
2 
0 
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Appendix 2 Determination of the constant of shearing of one  
beam equivalent to a whole of parallel beams  
 
A2.1 Position of the problem:  
 
One clarifies here a method developed in order MACR_CARA_POUTRE to obtain the coefficients  
of shearing AY and AZ of a beam equivalent to a whole of disjoined beams (e.g. embedded posts  
between two floors). This makes it possible for example to carry out models “skewers” of buildings, it 
is with  
to say condensed in only one beam.  
 
For only one beam, the definition of the coefficients of shearing rests on the energy method [§2.1.3]:  
the formulation is based on complementary energy due to shearing in the section.  
[ 
2 
dS 
S CT] 
The coefficient of shearing is: K =  
1 
 
S G 
2D 
S 
S CT 
G 
Note:  
 
This expression is still valid in the case of a heterogeneous beam (G variable).  
 
The distribution of shear stress in the section, for only one beam, is based on the formula of  
Jourawski, [§2.1.1] which provides the distribution of shear stresses due to a shearing action in one  
direction and only the average of shearings in the other direction.  
The formula of Jourawski is written:  
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m (y) 
ymax 
CT =  
V with m (y) =  
T B (T) dt 
 
 
I B (y) 
y 
 
Quantity ( 
m y) represents the static moment on behalf of section A ranging between y and ymax  
 
y 
With 
B (y) 
ymax 
B 
G 
Z 
 
 
I 2 
Then K can be written in the form: K =  
 
2 
y 
m (y) 
 
S G max  
Dy 
y 
Gb2 (y) 
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The subjacent idea is that the section supports normal constraints resulting from the theory of the 
beams  
of Euler, and whom one evaluates the effort of slip of A on B.  
 
For a nonrelated section, like the section out of cut of a building, the assumption of Jourawski cannot  
to be made (except considering that all the section becomes deformed axially like the same beam with 
each  
X-coordinate X). One cannot know a priori the distribution of shearings nor of the normal constraints 
in  
each post. The following figure gives an idea of the cross-section of a building engine:  
 
 
Appear A2.1-a: Section of a building engine  
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A2.2 Expression simplified of the coefficients of shearing  
 
Assumption: the posts are embedded in the floors: the building seen on side can be represented  
like a whole of parallel posts embedded between two floors:  
 
F 
H 
 
Appear A2.2-a: together of posts between two boards  
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This particular case is calculated: each post is a rectangular beam of section (the principal axes  
of inertia of the various posts are not colinéaires). H=3 with 4m.  
 
The beams are embedded at the two ends. It is then necessary to seek a relation between an effort F 
imposed on  
higher floor, and the displacement of this floor in the same direction, i.e. to calculate the rigidity of  
this system in this direction.  
 
A2.2.1 For a beam:  
 
The method used is exposed for example in [bib11].  
 
Beam fixed at an end and free with the other:  
 
The system is isostatic and elastic. One wants to express displacement U (H) according to F and.  
Principle of Virtual Work is written:  
 
H 
 
F (H) .v (H) = M F. (v) 
 
 
+V F. (v) dl 
O 
M (v) 
F 
(v) = E.I 
H 
v, y 
V (v) 
(v) = 
U, X 
G.Sr 
 
 
for any virtual displacement v, and a specific effort F in y=H, (here the normal effort is null).  
 
F=1 is chosen, and one calculates successively displacements due to an effort F and a couple in y=H. 
In  
integrating the preceding expression, it is found that, under the effect F, displacement U real and 
rotation are worth:  
 
F.H 3 
F.H 
F.H 3  
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12EI  
F.H2 
U (H) = 
+ 
= 
4 + 
with S = k.S and (H) = - 
 
2 
 
3rd. I 
G.S 
12th. I  
G.H S  
R 
2nd. I 
R 
R 
 
Under the effect of the moment, one obtains:  
 
. H2 
. H 
U (H = - 
= 
 
) 
(H) 
 
2nd. I 
 
E.I 
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5 
If the beam has a rectangular section of width B and thickness H, one obtains: S = bhk = bh  
R 
6 
F.H 3  
12 H2 
 
6F. H2 
for F imposed: U (H) = 
4 
1 (H) = - 
 
3  
+ 
( 
2 
+ )  
E.bh  
5 H 
 
E.bh3 
 
6. H2 
12. H 
for imposed: U (H = - 
= 
 
) 
(H) 
 
E.bh3 
 
E.bh3 
 
Beam fixed at the two ends: (embedding slipping in y=H)  
 
The system is hyperstatic degree 1.  
 
One expresses displacement U (H) according to the hyperstatic unknown factors  
F and, using the preceding results.  
 
Under the effect F and, displacement U real and rotation (null because of embedding) are worth:  
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F.H 3 
F.H 
. H2 
F.H 3  
12 H2 
6.H2 
U (H) = 
+ 
- 
= 
4 
1  
3  
+ 
( 
2 
+ ) - 
E.I 
GS 
E.I 
E.bh  
5 H 
 
E.bh3 
3 
2 
R 
F 
2 
F.H 
. H 
6 
2 
F.H 
12. H 
H 
0 = - 
+ 
= - 
+ 
2 
3 
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2 
I.E.(internal excitation) 
E.I 
E.bh 
E.bh 
 
 
The resolution of this system makes it possible to obtain U (H) according to F:  
 
F.H 3  
12EI  
F.H 3  
12 H2 
 
U (H) = 
1+ 
1 
1  
2 
= 
3  
+ 
( 
2 
+ )  
12EI  
GH S  
E.bh  
5 H 
 
R  
 
 
 
 
 
 
 
 
 
12EI 
1 
 
E.bh3 
1 
 

file:///Z|/process/refer/refer/p610.htm (13 of 27)10/2/2006 2:52:21 PM



file:///Z|/process/refer/refer/p610.htm

F = 
U (H) 
3 
= 
U (H) 
3 
= K.u (H) 
H  
12EI  
H 12 H2 
 
 
 
 
 
1 + 
1 
1  
2 
 
 
 
+ 
( 
2 
+ )  
 
 
GH S  
 
 
5 H 
 
R 
 
One also finds this result by considering the matrix of rigidity of an “exact” element of beam with 2  
nodes ([bib1] or [R3.08.01]). The term above corresponds exactly at the end of rigidity of sharp effort  
only according to direction X:  
 
12EI 
1 
 
12EI 
12EI 
K = 
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xx 
 
H3 (1+)  
= 
2 
= 
GH S 
GH 2 
 
kS 
R 
 
Note:  
 
The embed-free situation differs only from one coefficient (4 instead of 1):  
 
F.H 3  
12 H2 
 
U (H) = 
4 
1  
3  
+ 
( 
2 
+ )  
E.bh  
5 H 
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The two possibilities are offered in MACR_CARA_POUTRE:  
 
· the two ends are embedded (actually one is embedded, the other is embedded in a floor  
mobile: slipping embedding)  
· the higher end is free (makes some in connection rotulée with the higher floor).  
 
One can thus propose to express rigidity with the shearing action of each post in the form:  
 
 
 
 
 
12EI 
1 
 
1 embedded - embedded 
F = 
U (H) K. () with =  
 
3 
= 
U H 
H  
12EI  
 
4 embedded - free 
 
 
+ 
2 
 
 
 
GH S  
R 
 
 
A2.2.2 For a whole of beams  
 
The method consists in calculating the rigidity of each post in the preceding way, and to compare 
rigidity  
of the whole to that of an equivalent beam embedded between two floors. For that one expresses the 
effort  
total edge applied to the whole of the posts (for example in the direction y):  
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T =  
~ 
T = K .U  
y 
I 
y 
y 
 
Each post having an unspecified orientation compared to the total axes, it is necessary for all to 
express them  
efforts T in the total reference mark:  
I 
 
Z 
x2 
x1 and x2 indicating the principal axes of inertia of  
Ty 
post I, the shearing action T in this reference mark is:  
I 
Tz 
Ti = Ti cos () 
sin () 
1 
+Ti 
y 
I 
2 
I 
 
y 
Ti = - Ti sin () 
cos () 
I 
1 
+Ti 
Z 
I 
2 
I 
x1 
 
 
Moreover, one supposes that total displacement U of the whole of the posts is uniform (components U  
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y 
and U) and must be colinéaire with the shearing action T. (what is not certain: couplings are possible 
if it  
y 
does not have there particular symmetries). This involves for the direction y:  
 
ui = U cos () 
T I = Ki .ui 
1 
y 
I 
1 
1 
1 
and  
 
ui = U sin () 
I 
I 
I 
2 
y 
I  
T = K .U 
2 
2 
2 
one obtains:  
 
T I 
I 
2 
I 
2 
I 
= 
cos () 
sin () 
1 
+ 
y 
(K 
K 
I 
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2 
I) uy 
~ 
12EI 
1 
~ 
with K = 
 
y 
T = Ti 
I 
2 
I 
=  
2 
cos () 
sin () 
H 3  
12EI  
1 
+ 2 
= 
y 
y 
(K 
K 
I 
I) U 
K U 
y 
y y 
+ 
2 
 
 
GH S  
R 
 
in the same way in direction Z:  
 
ui = - U sin () 
1 
Z 
I 

file:///Z|/process/refer/refer/p610.htm (19 of 27)10/2/2006 2:52:21 PM



file:///Z|/process/refer/refer/p610.htm

~ 
thus T = 
T I 
I 
2 
I 
= 
2 
sin () 
cos () 
 
1 
+ 2 
= 
Z 
Z 
(K 
K 
I 
I) U 
K U 
ui = U cos () 
Z 
Z Z 
2 
Z 
I 
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In addition, for the equivalent beam, one makes the assumption that rigidity with the shearing action S 

file:///Z|/process/refer/refer/p610.htm (20 of 27)10/2/2006 2:52:21 PM



file:///Z|/process/refer/refer/p610.htm

`expresses  
even way that that of each beam:  
 
eq 
eq 
eq 
12EI 
12EI 
T = K U 
Z 
= 
U 
Z 
y 
y 
y 
with 
y = 
 
y 
H 3 ( 
eq 
2 
eq 
1 + y) 
S H Gk y 
 
In fact, it would have to be checked that energies due to the inflection and the normal effort are quite 
negligible.  
 
The two expressions of the shearing action lead to the expression of the coefficient of equivalent 
shearing:  
 
12EI eq 
12EI eq 
K eq 
Z 
= 
and in direction Z: K eq 
y 
= 
 
y 
12EI eq 
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Z 
12EI eq 
 
GS eq H2 
Z 
 
GS eq H 
y 
2  
3 ~ 
- 1 
3 ~ 
- 1 
 
H K 
 
 
H K 
 
y 
 
Z 
 
 
A2.3 Method used in MACR_CARA_POUTRE  
 
By using the assumptions described previously, namely:  
 
· only rigidity due to the shearing action is taken into account in the calculation of the coefficients of 
shearing  
· the equivalent beam is embedded on the two floors  
· two design assumptions are to be envisaged concerning each post (embedded-rotulé and embedded 
embedded).  
 
one can propose a method of calculation in MACR_CARA_POUTRE to obtain coefficients of  
shearing are equivalent to a whole of beams of parallel axes, embedded in a floor with one of  
their ends, and free with the other, or embedded at the other end.  
 
Restrictions of use:  
 
· it is reasonable to place the equivalent beam on the centre of gravity of the whole of the posts, and in  
the principal reference mark of inertia of the unit, to avoid the parasitic couplings  
· it is necessary to ensure the continuity of all the DDL of the equivalent beam (translation and 
rotation) with the DDL  
floors (what models the embedding of the beam in the floor), which forces to model it  
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floor in elements of hulls or, if it is with a grid in 3D, to connect it using beams or of plates.  
 
A2.3.1 the method of calculation is as follows:  
 
1) For each post, to make usual calculation by MACR_CARA_POUTRE of the geometrical 
characteristics and  
coefficients of shearing of the section, in the principal reference mark of inertia of each section 
(already  
available)  
 
 
2) Always for each section, calculation of rigidity to shearing (the user must provide H, distance 
enters  
floors):  
 
12EI I 
12EI I 
Ki 
2 
2 
1 = 
with = 
H 3 ( 
1 
2 
1 + 1) 
If H Gk i1  
12EI I 
12EI I 
Ki 
1 
1 
2 = 
with = 
H 3 ( 
2 
2 
1 + 2 ) 
If H Gk i2 
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3) Calculation of rigidity equivalent to the whole of the beams:  
 
~ 
~ 
K 
I 
2 
I 
=  
2 
 
K 
I 
2 
I 
=  
2 
 
 
1 
+ 
Z 
(K sin () K cos () 
I 
2 
I) 
1 
+ 
y 
(K cos () K sin () 
I 
2 
I) 
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4) Calculation of the coefficients of shearing are equivalent:  
 
12EI eq 
12EI eq 
K eq 
Z 
= 
K eq 
y 
= 
 
y 
12EI eq 
 
Z 
12EI eq 
 
GS eq H2 
Z 
 
GS eq H 
y 
2  
3 ~ 
- 1 
3 ~ 
- 1 
 
H K 
 
 
H K 
 
y 
 
Z 
 
 
knowing that S eq, I eq and I eq are already calculated by  
y 
Z 
MACR_CARA_POUTRE.  
 
For the key words of order MACR_CARA_POUTRE, one needs that the user provides H, by the key 
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word  
LENGTH, the characteristics (constant) of the material (key word MATERIAL) and chooses the 
conditions with  
limits by the key word CONNECTION:  
 
CONNECTION: KNEECAP or CONNECTION: EMBEDDING  
 
This calculation is of course activated only if several GROUP_MA are defined by the user (indicating 
that the section  
is made up of under disjoined parts).  
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Element of beam with 7 ddl for the taking into account  
warping  
 
 
 
 
Summary:  
 
This document presents the element POU_D_TG which is a finite element of right beam with taking 
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into account of  
warping of the sections. It allows the calculation of the beams mean transverse sections and opened 
profile, with  
constrained or free torsion.  
 
With regard to the inflection, the normal and sharp efforts, this element is based on element 
POU_D_T,  
who is an element of right beam with transverse shearing (model of Timoshenko).  
 
For element POU_D_TG, the section is supposed to be constant (of an unspecified form) and the 
material is  
homogeneous and isotropic, of linear or elastoplastic elastic behavior (behaviors  
VMIS_POU_LINE and VMIS_POU_FLEJOU).  
 
This reference material is based on the general reference material of the beams, in  
linear elasticity [R3.08.01] and in élasto - plasticity [R5.03.30]. It describes specificities of the element 
of beam  
right-hand side with warping POU_D_TG.  
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1 Field  
of use  
 
The development of the elements of beam of Timoshenko with warping (modeling  
POU_D_TG) in Code_Aster was carried out initially with an aim of calculating the behavior  
pylons. The first development was made within the framework of a thesis at Department MMN. It  
mainly acted to calculate formed structures of beams with open mean profile  
(angles), for which warping is important. Plasticity was introduced into  
the element POU_D_TG [R5.03.30], but the nonlinear behavior relates only to traction,  
inflection and torsion. Shearing due to the sharp effort, as well as warping and the Bi-moment  
(effort related to warping) remain dependent by an elastic behavior, fault of being able to express one  
nonlinear behavior on these sizes. This is why the description of torsion with  
warping is valid for the use of element POU_D_TG with the linear operators  
(MECA_STATIQUE, DYNA_LINE_TRAN,…) or not linear (STAT_NON_LINE, 
DYNA_NON_LINE,…).  
 
2 Notations  
 
The notations used here correspond to those used in [R3.08.01] and [R3.08.03]. One gives here  
correspondence between this notation and that of the documentation of use.  
DX, DY, DZ, DRX, DRY, DRZ and GRX are the names of the degrees of freedom associated with  
components of displacement U v 
, W, X, y, Z, X, X. They are expressed in total reference mark, except the degree  
of freedom associated with the warping GRX, which is expressed in local reference mark.  
Notation used  
Significance  
Notation  
of  
 
documentation  
of use  
S 
surface of the section  
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With  
I 
geometrical moments of inflection compared to axes IY, IZ  
y, I Z  
X and Y.  
C  
constant of torsion  
JX  
I 
constant of warping  
JG  
 
K 
coefficients of shearing  
1 1 
y K 
, Z 
 
 
AY AZ 
E 
EY, EZ  
y E 
, Z  
eccentricity of the center of torsion/shearing by  
report/ratio in the centre of gravity of the cross-section  
NR 
normal effort with the section  
NR  
 
V 
sharp efforts along axes y and Z  
VY VZ 
, 
 
y V 
, Z  
M 
moments around axes X, y and Z  
MT, MFY, MFZ  
X, M y, M Z  
M 
Bi-moment  
BX  
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U v 
, W  
translations on axes X, y and Z  
DX DY DZ  
 
rotations around axes X, y and Z  
DRX DRY DRZ  
X  
, y  
, Z  
 
rotary derivative of torsion according to X  
GRX  
X, X  
E 
Young modulus  
E  
 
 
Poisson's ratio  
 
NAKED  
modulate of Coulomb (identical to the coefficient of Lamé) G 
= 
E 
 
G 
( 
 
2 1+) = µ 
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3  
Kinematics specific to torsion with warping  
 
Kinematics used to represent the displacement of the sections of beam is identical to that  
right beams of Timoshenko [R3.08.01] with regard to the traction and compression, and  
inflection - shearing. Only torsion here is detailed.  
 
Two possibilities are to be considered for the modeling of behaviour in torsion of the sections not  
circulars [bib1], which always produces a warping of the cross-section.  
 
·  
torsion is free (torsion of Saint-Coming): the warping of the cross-sections is not  
no one (it can even be important for an open mean section), but it is independent of  
the position on axis X of the beam, (constant according to X) and it does not have there a constraint  
axial due to torsion.  
·  
Torsion is constrained (Vlassov): warping is nonnull, and moreover of the constraints  
axial not uniforms (from which the effort resulting Bi-moment is called) exist in the beam.  
 
Element POU_D_TG makes it possible to treat these two configurations: torsion can be free or 
constrained.  
The user will have access to warping in both cases, on the other hand the Bi-moment will not be nonnull  
that in the case of constrained torsion. It should be noted that at the place of the connection of the 
beams,  
transmission of warping depends on the type of connection. In general, torsion in an assembly  
beams is constrained. Warping can then be blocked at the points of connection.  
 
Note:  
 
With elements without modeling of warping (POU_D_T, POU_D_E), one can  
to treat the case of free torsion (displacements other than warping will be  
correct), but not the case of constrained torsion.  
 
One can uncouple the effects of torsion and inflection in a local reference mark (relocated principal 
reference mark  
of inertia) having for origin the center of torsion. The center of torsion is the point which remains fixed 
when  
the section is subjected to the only torque. It is also called center of shearing because one  
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effort applied in this point does not produce rotation around X.  
 
Displacements in the plan of the section will thus be expressed in this reference mark. Displacements  
axial remain expressed in the principal reference mark of inertia related to the centre of gravity G, to 
keep one  
decoupling of displacements of inflection and traction and compression.  
 
The displacement of an unspecified point of the cross-section is written then in general form (torsion  
free or constrained):  
 
U (X, y, Z) uG (X) Z y (X) - yz (X) (y, Z) X, X (X)  
 
v (X, y, Z)  
 
 
 
= 0 + 0 + v (X) + - (Z - zc) X (X) 
 
 
W (X, y, Z)  
 
 
 
 
0 W (X)  
0 
(y - yc) X (X)  
displacement = membrane + flexion/y + flexion/z + 
with  
 
torsion 
warping 
 
The components are expressed in the principal reference mark of inertia (centered in G): X is directed 
according to  
the axis of the beam, y and Z are the two other principal axes of inertia.  
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Term (y, Z) X, X (X) represents axial displacement due to the warping of the cross-section.  
(y, Z) is related to warping (expressed in m ², but which does not have physical interpretation  
obvious).  
 
The deformations of an unspecified point of the section are then:  
 
 
, , 
 
 
, 
, 
, 
- 
, 
 
 
xx (X y Z) 
uG (X) 
Z 
X 
y 
X 
y Z  
X 
X 
y X () 
Z X () 
() X, xx () 
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2 xy (X, y, Z) = 0 +  
0 
+ xy (X) + (, y - (Z - zc)) X, X (X) 
 
 
 
 
 
 
2 xz (X, y, Z) 
0 
 
 
xz (X)  
0 
 
( 
, Z + (y - yc) X, X (X) 
xy (X) = v, X - Z 
 
xz (X) = W, X + y 
 
Deformation = membrane + inflection/y + inflection/Z + torsion with warping  
 
Term (y, Z) X, xx (X) is null in the case of free torsion: there are indeed X (X 
xx 
) 0 
, 
=, since  
warping is independent of X. It is considerable in the case of constrained torsion.  
 
The law of elastic behavior isotropic is written (by making the assumption of the plane constraints in  
directions y and Z):  
 
xx (X, y, Z) E. xx (X, y, Z)  
 
xy (X, y, Z)  
= G.2 xy (X, y, Z)  
 
xz (X, y, Z)  
G.2 xz (X, y, Z) 
 
The efforts generalized in the section are expressed according to the constraints for a section  
homogeneous by [bib1]:  
 
NR (X) = xx (X, y, Z) ds 

file:///Z|/process/refer/refer/p620.htm (10 of 37)10/2/2006 2:52:22 PM



file:///Z|/process/refer/refer/p620.htm

normal 
 
effort 
 
S 
V (X) = 
y 
xy (X, y, Z) ds 
y 
according to 
 
edge 
 
effort 
 
S 
V (X) = 
Z 
xz (X, y, Z) ds 
Z 
 
according to 
 
edge 
 
effort 
 
S 
M (X) = 
 
y 
Z. xx (X, y, Z) ds 
y 
of 
 
around 
 
inflection 
 
of 
 
moment 
 
 
S 
M (X) = - 
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Z 
y. xx (X, y, Z) ds 
Z 
 
of 
 
around 
 
inflection 
 
of 
 
moment 
 
S 
M (X) = 
X 
( 
(y - yc) .xz (X, y, Z) - (Z - zc) .xy (X, y, Z))ds 
torsion 
 
of 
 
moment 
S 
M (X) = 
. 
 
xx (X, y, Z) ds 
Bi - 
ent) 
gauchissem 
 
with 
 
(associate 
 
moment 
 
S 
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M (X) 
 
represent the generalized effort associated with warping. It is expressed in N.m2. One can in  
to give an illustration as in [bib1] for a beam to I-section (the Bi-moment acts here according to  
Z only):  
Z 
Z 
xx+ 
Y 
xx - 
Y 
M 
X 
X 
xx - 
xx + 
 
 
 
For an isotropic and homogeneous elastic behavior in the section, the efforts generalized  
thus express themselves directly according to displacements by the following relations:  
 
NR (X) = E S 
. U 
. , X 
Vy (X) = GkyS (v, X - Z) 
Vz (X) = GkzS (W, X + y) 
M y (X) = E I. yy, X  
 
M Z (X) = E I. zz, X 
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M X (X) = G.J .x, X  
M (X) = E I 
 
. .x, xx 
 
where K y K 
, Z are the coefficients of shearing. Warping does not intervene on the level of the efforts  
edges, because those are expressed in the reference mark related to the center of shearing. Indeed, the 
function  
of warping is such as:  
 
(y, Z) ds = 0 
 
S 
. 
y (y, Z) ds = 0 
 
 
S 
Z. (y, Z) ds = 0 
 
S 
 
And the constant of warping is expressed according to by: 2 (y Z) ds = I 
 
, 
 
S 
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4  
Element of right beam with warping: matrices of  
rigidity and of mass  
 
The elementary matrices of rigidity and mass for element POU_D_TG are identical to those  
element of right beam of Timoshenko (POU_D_T) with regard to the terms of traction -  
compression and of inflection - shearing [R3.08.01]. The step is identical, one recalls  
simply the result.  
 
This implies that, in the case of free torsion, one preserves the properties of exactitude of the solution  
with the nodes for the degrees of freedom of inflection and traction and compression.  
 
On the other hand, we will see that with regard to obstructed torsion, one carries out an approximation 
which  
does not allow to find this property in the case general.  
 
The matrices of rigidity are always calculated with option “RIGI_MECA”, and the matrices of mass  
with option “MASS_MECA”. But option “MASS_MECA_DIAG” (matrix of diagonalized mass) does not 
have  
not realized for this element (this option is especially useful for the problem of dynamics  
rapid, which is not the preferential field of application of this element).  
 
The degrees of freedom of the element are those of the beams of Timoshenko, plus a degree of freedom 
by  
node allowing to calculate the terms relating to warping:  
 
In each of the two nodes of the element, the degrees of freedom are:  
 
U v 
, W  
translations on axes X, y, Z  
DX DY DZ  
 
rotations around axes X, y, Z  
DRX DRY DRZ  
X  
, y  
, Z  
 
rotary derivative of torsion according to X  
GRX  
X, X  
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The local co-ordinates are expressed in the principal reference mark of inertia. Element POU_D_TG  
thus comprise 14 degrees of freedom. The element of reference is defined by: 0 < X < L  
 
Z 
Z 
 
Z 
W 
y 
v 
Y 
 
Y 
X 
X 
X 
U 
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4.1  
Traction and compression the degree of freedom are U or DX  
 
ES 1 
-  
1 
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The matrix of rigidity of the element is: K = 
 
 
L -1 1  
SL 2 1 
The matrix of mass (coherent) is written: M = 
 
 
 
 
6 1 2 
 
4.2 Inflection in the plan (Gxz) the degrees of freedom concerned are W,  
y or DZ, DRY  
 
The matrix of rigidity is written for the movement of inflection in the principal plan of inertia (Gxz):  
 
 
L 
L 
 
1 
-  
-1 
-  
 
 
2 
2 
 
(4+y) 2L L (2-y)  
2 
L  
12 I.E.(internal excitation) 
 
 
 
= 
y 
K 
 
3 
L (1+y) 
12 
2 
12 
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L 
 
Sym 
1 
 
2 
 
(4+y)  
2  
L 
 
 
 
12 
 
 
12 I.E.(internal excitation) y 
Transverse shearing is taken into account by the term: y = 
 
2 
K SGL 
Z 
For the matrix of mass,  
(  
W T 
X,) and y (T 
X,) are discretized on the basis of function tests  
introduced for the calculation of the matrix of rigidity, that is to say:  
 
( 
W X, T)  
= 1 (X) 1 
W (T)  
 
+ 2 (X) 
 
(T) 
y 
 
 
+ 3 (X) 2 
W (T) + 4 (X) 
 
(T) 
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1 
y2 
 
 
(X, T) 
y 
 
= 5 (X) 1 
W (T)  
 
+ 6 (X)  
 
(T) 
y 
+ 7 (X) 2 
W (T) + 8 (X) 
 
(T) 
1 
y2 
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The function of interpolation used for the translations (1 
to 4) are polynomials of Hermit of  
degree 3, that which is used for rotations (5 to 8) are degree 2: for 0 < X < L, they are  
defined by [R3.08.01]:  
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3 
2 
 
1 
6 
= 
(X) 
1 
X  
X  
X 
X 
X 
 
2 -  
3 -  
+ 
y 
(1+y) 
 
 
 
= 
(X) 
1 
+ 
1  
5 
y L 
L 
L 
 
(L + 
1 y) -  
L L 
 
 
 
 
L 
X 3 4 + 
2 
2 
y 
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X 
2+ 
 
 
 
1 
= 
(X) 
 
 
y  
- 
X 
X 
X 
2 
+ 
- 
 
 
 
= 
(X) 
 
6 
 
3 - (4+y)  
+( + 
1 y) 
+ 
1 y L 
2 L 
2 L  
 
+ 
1 y L 
L 
 
 
 
 
 
 
3 
2 
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1 
X  
X  
X  
-6 
X  
X 
= 
(X) 
3 
 
-  
2 +  
3 +y  
 
= 
(X) 
1 
+ 
1  
7 
y  
L 
L 
L  
 
(L + 
1 y) -  
L L 
 
 
 
L 
X 3 2 - 
2 
 
 
 
2 
 
1 
= 
(X) 
4 
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y X  
y  
- 
X 
X 
X 
+ 
+ 
 
 
 
= 
(X) 
8 
 
 
3 + (2+y) 
 
 
- 
 
 
 
+ 
1 y L 
2 L 
2 L  
 
+ 
1 y L 
L  
 
 
 
 
 
éq 4.2-1  
 
The form of the matrix of mass is:  
 
2 
2 
2 
2 
2 
2 
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2 
13L 7L 
 
2 
2 
 
9 
3  
 
13 2 
3  
 
 
y 
L 
11L 
11L 
y 
y 
L 
L 
L 
L 
L 
L 
L 
 
+ 
+ 
y 
- 
- 
- 
+ 
y + 
y 
+ 
y + 
y 
 
35 
10 
3 
210 

file:///Z|/process/refer/refer/p620.htm (24 of 37)10/2/2006 2:52:22 PM



file:///Z|/process/refer/refer/p620.htm

120 
24 
70 
10 
6 
420 
40 
24 
 
 
2 
3 
3 
2 
2 
3 
3 
2 
 
L3 
L  
 
13 2 
2 
 
3 
 
 
y 
L 
L 
3L 
 
y 
y 
L 
L 
L 
L 
y 
y 
y 
S 
+ 
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+ 
 
- 
- 
- 
- 
- 
- 
 
 
M = ( 
105 
60 
120 
420 
40 
24 
140 
60 
120 
2 
2 
 
2 
2 
2  
1+ 
13L 
7L 
L 
11L2 
11L  
L  
y 
y 
 
y 
y 
y)  
+ 
+ 
- 
+ 
+ 
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35 
10 
3 
210 
120 
24  
3 
3 
2 
 
L3 
L  
L  
 
y 
y 
 
sym 
+ 
+ 
 
 
105 
60 
120 
 
6 
1 
 
6 
1 
 
 
 
- 
+ y 
- 
- 
+ y 
 
5L 
10 
2 
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5L 
10 
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2L 
L 
L 2 
2 
 
 
 
 
y 
y 
1 
y 
L 
L 
L 
y 
y  
I 
+ 
+ 
- 
- 
- 
+ 
 
 
 
+ 
y 
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6 
3 
10 
2 
30 
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6 
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2  
 
 
1+ 
6 
1 
y 
y)  
- 
 
 
5L 
10 
2 
 
 
2L 
L 
L 2 
 
sym 
+ 
y + 
y 
 
 
15 
6 
3  
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4.3  
Inflection in the plan (Gxy) the degrees of freedom concerned are, Z  
or DY, DRZ  
 
In the same way, for the movement of inflection around the axis (Gz), in the principal plan of inertia 
(Gxy),  
stamp rigidity is written:  
 
 
L 
L 
 
1 
-1 
 
 
2 
2 
 
(4+z) 2 
L 
L (2 - Z) 
 
2 
L  
12 I.E.(internal excitation) 
 
- 
 
Z 
12 
2 
12 
= 
K 
3 
L (1+z) 
 
 
L 
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1 
- 
 
 
2 
 
 
(4+z) 2 
L  
sym 
 
 
12 
 
 
Transverse shearing is taken into account by the term:  
 
 
12 I.E.(internal excitation) Z 
Z = 
2  
K SGL 
y 
 
To calculate the matrix of mass, v (T 
X,) and (T 
X, 
Z 
) are discretized by:  
 
v 
(T 
X,)  
= 1 (X) v 
1 (T) -  
2 (X) 
Z (T)  
 
+ 3 (X) v 
2 (T) - 4 (X) 
Z (T) 
1 
2 
 
 
Z (T 
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X,) = - 5 (X) v 
1 (T) +6 (X) 
Z (T) - 7 (X) v 
2 (T) +8 (X) 
Z (T) 
1 
2 
 
We obtain the matrix of following mass then:  
 
 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
13L 
7L 
L 
11L 
11L  
L  
9L 
3L 
L 
13L 
3L  
L  
 
 
+ 
Z + 
Z 
+ 
Z + 
Z 
+ 
Z + 
Z 
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- 
- 
Z - 
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210 
120 
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70 
10 
6 
420 
40 
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3 
3 
3 
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2 
2 
2 
2 
3 
3 
3 2 
L  
L  
L  
13L 
3L  
L  
L 
L  
L  
 
 
Z 
+ 
+ 
Z 
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105 
60 
120 
420 
40 
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140 
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210 
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4.4 Torsion and warping the degrees of freedom are X, X, X or  
DRX, GRX  
 
With regard to torsion, the formulation is obviously different from that of the beams without  
warping of the reference [R3.08.01]. The virtual work of the interior efforts is written for  
torsion [bib1]:  
 
L 
W 
= 
* G 
. J  
. 
* E 
. I 
. 
int 
+ 
 
 
. 
dx 
X, X 
X, xx 
X, xx 
 
O 
X, X 
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The functions of interpolation of the rotation of torsion must be of C2 class, since they must  
to allow to interpolate the derivative second rotation.  
 
By using the equilibrium equations, one shows in [bib1] that the analytical solution utilizes  
function of interpolation hyperbolic in X. This then makes it possible to obtain exact results with  
nodes. It is not the choice made for Code_Aster: one chose, by preoccupation with a simplicity for  
numerical integration like avoiding the numerical problems of evaluation of the function  
hyperbolic, of the polynomials of degree 3 of Hermit type, of the same kind as those used for  
inflection [éq 4.2-1]. One writes them here on the element of reference [- 1,1] according to [bib1] 
(instead of 0<x<L  
previously):  
2 
= X -1 
L 
 
-1 1 
NR () 1 
= (1 -) 2 
1 
(2 + ) 
4 
NR () = L 
 
(1- )( 
2 
2 
1- ) 
8 
 
NR () 1 
= (1+) 2 
3 
(2 - ) 
4 
NR () = L 
 
(1+ )( 
2 
4 
-1+ ) 
8 
 
The interpolation for the rotation of torsion and its derivative is:  
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() = NR 
X 
() 1 
1 
+ NR () 1 
2 
 
+ NR () 2 
3 
+ NR () 2 
4 
 
X 
X, X 
X 
X, X 
X, X () = NR X () 1 
, 
1 
+ N2 X () 1 
, 
 
+ NR X () 2 
, 
3 
+ N4 X () 2 
, 
 
X 
X, X 
X 
X, X 
 
The reference [bib1] note which this approximation corresponds to a borderline case of the interpolation  
GJ 
hyperbolic, obtained for  
0. However, this parameter not being without dimension, it is  
I.E.(internal excitation) 
difficult to define a priori the values for which the approximation is acceptable. Tests  
numerical carried out show that one converges quickly towards the solution when the size of  
elements decreases.  
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The matrix of rigidity corresponding to this approximation is written then:  
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The matrix of mass can be obtained in several ways [bib1]:  
 
·  
the most complete method would consist in calculating the terms of inertia with the functions  
of interpolation above, by taking account of the additional term:  
L 
·  
W 
= - 
*. I. && dx 
iner 
 
 
O 
X, X 
X, X 
·  
in Code_Aster, the simplest method was selected: the matrix of mass is  
identical to that of element POU_D_T. One preserves the already definite terms for traction -  
compression and the inflection - shearing and one use a linear approximation for torsion.  
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The coefficients of the matrix of mass associated with warping are null with this  
approach.  
 
4.5  
Eccentricity of the axis of torsion compared to the neutral axis  
 
In the center of torsion C, the effects of inflection and torsion are uncoupled, one can thus use them  
results established in the preceding chapter.  
 
The co-ordinates of the point C are to be provided to AFFE_CARA_ELEM: one gives the components 
of  
vector GC (G being the centre of gravity of the cross-section) in the principal reference mark of inertia:  
 
0  
 
GC = ey  
 
ez  
 
One can numerically determine them starting from the plane grid of the section using the operator  
MACR_CARA_POUTRE [R3.08.03].  
 
Once the point C determined, one finds as in [R3.08.01] the components of displacement with  
centre of gravity G by considering the rigid relation of body:  
 
U 
= 
(G) 
 
U (C)+ GC  
X  
 
 
 
with  
= 0 vector 
 
rotation 
 
 
 
0  
U 
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= 
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The change of variables is in the same way written that for POU_D_T, with 2 degrees of freedom  
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additional:  
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From the elementary matrices of mass and rigidity calculated previously in the reference mark  
(C, X, y, Z) where the movements of inflection and torsion are uncoupled, one obtains these matrices in  
reference mark related to the neutral axis (G, X, y, Z) by the following transformations:  
 
K = PT K P 
 
C 
 
M = PT M 
. 
P 
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5  
Geometrical rigidity - prestressed Structure  
 
This matrix is calculated by the option: “RIGI_GEOM”. It is used to deal with problems of  
buckling or of the vibrations of prestressed structures. In the case of a prestressed structure,  
thus subjected to initial efforts (known and independent of time), one cannot neglect in  
the equilibrium equation terms introduced by the change of geometry of the unconstrained state with  
the prestressed state. This change of geometry modifies the equilibrium equation only by the addition of 
one  
function term of displacements and prestressed with which the matrix associated is called matrix  
of geometrical rigidity and which is expressed by:  
 
u3D 
 
v3D 
 
W 
K 
O 
K 
= 
 
FD 
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where O 
ij indicates the tensor of prestressing. This term appears naturally if the tensor is introduced  
deformations of GREEN-LAGRANGE in the virtual work of the deformation:  
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In the expression of these deformations, the terms quadratic  
2 
u3D 
 
 
u3D 
 
u3D 
 
u3D 
 
u3D 
X 
X 
X 
X 
X 
 
, 
 
and 
 
are neglected here, according to the assumption usually carried out  
X 
 
X 
 
y 
 
X 
 
Z 
 
 
 
by the majority of the authors [bib.3]. For a model of beam, the tensor of initial constraints  
tiny room in the local axes of the beam to components xx  
, xy  
 
and 
 
xz. Kinematics is used  
introduced with [§2]:  
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u3D 
X (X, y, Z) = uG (X) + Z y (X) - y Z (X) + (y, Z) X, X (X) 
 
 
u3D 
y (X, y, Z) = vC (X) - (Z - zc) X (X) 
 
 
u3D 
Z (X, y, Z) = WC (X) + (y - yc) X (X) 
 
 
and the expression of the efforts generalized according to the constraints:  
 
NR 0 = O 
ds 
V 0 = 
0 
0 
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xx 
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xz 
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Z ds M = 
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It is supposed, moreover, that  
0 
NR, 0 
V, 0 
V are constant in the discretized element (what is inaccurate  
y 
Z 
for example for a vertical beam subjected to its actual weight). The moments are supposed  
to vary linearly:  
0 
M 
 
0 
X 
M 
y 
0 
y = ( 
0 
0 
M y2 - M 1 
y) 

file:///Z|/process/refer/refer/p630.htm (20 of 59)10/2/2006 2:52:24 PM



file:///Z|/process/refer/refer/p630.htm

0 
+ M 1 
y  
- V = 0  
L 
X 
Z 
 
0 
0 
X 
M 
 
M 
Z 
0 
Z = ( 
0 
0 
M z2 - M 1z) 
0 
+ M 1z  
+V = 0  
L 
X 
y 
 
 
These assumptions make it possible to express G 
W for a right beam with warping in the way  
following:  
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who represent not - symmetry of the section. If the section has two axes of  
symmetry (thus C is confused with G), these terms are null.  
 
Attention, these terms (which name IYR2 and IZR2 in order AFFE_CARA_ELEM) are not  
currently not calculated by MACR_CARA_POUTRE. The user must thus inform them from  
values tabulées for each type of section (corner, right-angled,…).  
 
Moreover, to be able to deal with the problems of discharge of thin beams, requested  
primarily by moments bending and efforts normal, it is necessary to add the assumption of  
rotations moderated in torsion [bib2], [bib3].  
 
This results in the following modification of the field of displacements (only for the calculation of  
geometrical rigidity):  
 
u3D 
X (X, y, Z) U 
= G (X) + Z (y (X) +x (X) Z (X))- y (Z (X) - X (X) y (X))+ (y, Z) X, X (X)  
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The origin of this expression cannot be here detailed. It is the subject of the thesis of CITY OF  
GOYET [bib2] on the buckling of the beams with open mean sections. The assumption of rotations  
of torsion moderate (and not infinitesimal) allows to model discharge correctly  
of a thin beam of section in torsion (coupling torsion - inflection).  
The assumption of moderate rotations results in adding with  
0 
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O 
2 
 
Finally, one obtains the geometrical matrix of rigidity while discretizing  
0 
1 
W = W + W using  
G 
G 
G  
same functions of interpolation as the matrix of rigidity of [§4.4]. After having calculated these matrices, 
it  
is necessary to carry out a change of reference mark as with [§4.5]. A matrix of rigidity then is obtained  
geometrical of the form:  
A1 A2  
K G =  
 
 
A2 A3  
 
The blocks of the matrix are clarified hereafter. One uses to simplify the expressions:  
 
O 
O 
NR E 
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6 Loadings  
 
The various types of loading available for element POU_D_TG are:  
 
Types or options  
 
CHAR_MECA_FR1D1D  
loading broken down by actual values  
CHAR_MECA_FF1D1D  
loading broken down by function  
CHAR_MECA_PESA_R  
loading due to gravity  
CHAR_MECA_TEMP_R  
“thermal” loading  
CHAR_MECA_EPSI_R  
loading by imposition of a deformation (of stratification type  
thermics)  
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The loadings are in the same way calculated that for the elements without warping  
[R3.08.01]. There is thus nothing in particular to element POU_D_TG. Other types of loading  
described in [R3.08.01] are not available for this element.  
 
With regard to warping, it is possible to give boundary conditions making  
to intervene the degree of freedom GRX (what makes it possible to model constrained torsion: GRX=0), 
but by  
against, nothing is designed to affect a loading of the Bi-moment type, of which physical interpretation  
is difficult to establish.  
 
Concerning connection between elements, the transmission of warping is an open question  
as the reference [bib1] announces it: the continuity of variable GRX from one element to another (of 
which  
warping depends directly) depends in fact on technology on the connection between  
various beams (welding in the axis, in which case warping can be transmitted  
completely, connection by bracket,…).  
 
For an assembled structure such as a lattice, it seems more reasonable to suppose than torsion  
is obstructed, therefore that warping is null at the ends. To determine the influence of this  
assumption, one will be able to refer to the test SSLL102 (beam of corner section) of which modelings  
C and D use element POU_D_TG, with free torsion for modeling C, and torsion obstructed for  
modeling D [V3.01.102B].  
It is noted that for the loading of inflection, the variation on displacement is weak (2.5%), but for  
a loading in torsion, one obtains for this section a side displacement not no one (discharge)  
from which the value differs notably according to the assumption taken:  
5 
U 
2.2 10- 
= 
- 
Z 
for free torsion and  
5 
U = 2.62 10 
Z 
for constrained torsion.  
In the same way, rotation strongly varies:  
4 
 
79 
, 
3 
10- 
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= 
- 
X 
for free torsion and  
4 
= 39 
, 
6 
10 
X 
for constrained torsion (GRX is null with  
ends).  
 
6.1 Loadings distributed  
: options CHAR_MECA_FR1D1D and  
CHAR_MECA_FF1D1D  
 
The loadings are given under key word FORCE_POUTRE, that is to say by actual values in  
AFFE_CHAR_MECA (option CHAR_MECA_FR1D1D), is by functions in AFFE_CHAR_MECA_F  
(option CHAR_MECA_FF1D1D). The loading is given only by forces distributed, not by  
moments distributed.  
The second associate member with the loading distributed with traction and compression is:  
 
f1  
1 
 
 
with 
F = F 
 
1 ext. () 
X 
X 1 - dx 
F 
2  
0 
 
L  
1 
F = F 
2 ext. () X 
X dx 
0 
L 
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For a loading constant or varying linearly, one obtains:  
 
1 
N 
N2  
F 
= 
 
L 
X 
 
+ 
,  
1 
3 
6  
1 
N 
N2  
F 
= 
 
L 
X 
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+ 
.  
2 
6 
3  
 
1 
N 
N 
 
and  
 
2 are the components of the axial loading as in points 1 and 2 coming from the data of  
the user replaced in the local reference mark.  
 
If T 
, 
y T y2  
, T 1z  
and 
 
T 2 are those of the shearing action, one a:  
1 
Z 
 
 
7 T 
 
3 
y 
T y  
T y 
T y  
F =  
1 
L 
+ 
2 
2 
M =L  
1 + 2 
1 
y 
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,  
2 
M =L  
1 + 2 .  
z2 
 
 
 
 
y2 
 
 
 
 
20 
20  
30 20  
 
 
6.2  
Loading of gravity: option “CHAR_MECA_PESA_R”  
 
The force of gravity is given by the module of acceleration G and a vector normalized N indicating  
direction of the loading.  
 
Remarks (simplifying assumption):  
 
The functions of form used for this calculation are those of the Euler-Bernoulli model.  
 
The step is similar to that used for the forces distributed, with the proviso of transforming initially  
the vector loading due to gravity in the local reference mark with the element. One obtains in the 
reference mark  
room of the beam:  
S 
S  
L 
F 
= 
S G  
F 
= G  
X L 
+ 
not 
 
with 
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1, 
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X 
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I 
 
dx 
O 
I 
1 
3 
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X 
X  
from where:  
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Inflection in the plan (Gxz):  
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M 
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Z 
+ 
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30 20  
 
6.3  
Thermal loading: option: “CHAR_MECA_TEMP_R”  
 
To obtain this loading, it is necessary to calculate axial displacements induced by the difference of  
temperature T - reference 
T 
:  
 
U 
= -  
1 
L (T - reference 
T 
) 
U 
= 
 
2 
L (T - reference 
T 
) 
 
(coeffician 
: 
 
thermics 
 
dilation 
 
of 
T 
) 
 
Then, one calculates simply the forces induced by F 
= K U 
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.  
 
As K is the matrix of local rigidity to the element, one must then carry out a change of  
locate to obtain the values of the components of the loading in the total reference mark.  
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6.4  
Loading by imposed deformation option “CHAR_MECA_EPSI_R”  
 
One calculates as for elements POU_D_T the loading starting from a state of deformation (this  
option was developed to take into account the thermal stratification in pipings).  
model takes into account only one work in traction and compression and pure inflection (not of effort  
edge, not of torque).  
The deformation is given by the user using key word EPSI_INIT in AFFE_CHAR_MECA. In  
U 
 
y 
 
being given  
Z 
, 
 
and  
on the beam, one obtains the second elementary member associated with it  
X 
 
X 
 
X 
 
loading:  
 
U 
 
: 
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Z 
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2 
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7  
Torque of the efforts - nodal Forces and reactions  
 
7.1 Options  
available  
 
 
The various options of postprocessing available for element POU_D_TG are:  
 
Types or options  
 
EFGE_ELNO_DEPL  
torque of the efforts to the 2 nodes of each element  
SIEF_ELGA_DEPL  
field of efforts necessary to the calculation of the nodal forces (option  
“FORC_NODA”) and of the reactions (option “REAC_NODA”).  
FORC_NODA  
nodal forces expressed in the total reference mark  
REAC_NODA  
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7.2  
The torque of the efforts  
 
7.2.1 Generalized efforts, option: “EFGE_ELNO_DEPL”  
 
One seeks to calculate with the two nodes of each element “beam” constituting the grid of  
studied structure, efforts exerted on the element “beam” by the remainder of the structure. Values  
are given in the local base of each element. By integrating the equilibrium equations, one obtains  
efforts in the local reference mark of the element:  
 
R 
= 
E 
E 
E 
K 
U 
+ M 
u& 
- F 
LOC 
LOC 
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LOC 
LOC 
LOC 
LOC 
 
 
where: R 
=  
 
- 
,- 
- 
- 
- 
- 
,- 
, 
 
 
 
 
 
LOC 
(1 1 1 1 1 1 1 2 2 2 2 2 2 2 
NR 
V, V, M, M, M 
M 
NR, V, V, M, M, M, 
Y 
Z 
T 
Y 
Z 
 
M 
Y 
Z 
T 
Y 
Z  
) 
E 
K 
elementary matrix of rigidity of the element beam,  
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LOC 
E 
M 
elementary matrix of mass of the element beam,  
 
LOC 
E 
F 
vector of the efforts “distributed” on the element beam,  
 
LOC 
U 
vector “degree of freedom” limited to the element beam,  
 
LOC 
u& 
vector “acceleration” limited to the element beam.  
 
LOC 
 
One changes then the signs of the efforts to node 1.  
 
Indeed, by taking for example the case of the traction and compression, one shows [R3.08.01] that them  
efforts in the element (option EFGE_ELNO_DEPL) are obtained by:  
- NR (O) 
U O f1  
 
K 
 
NR (L) 
= 
 
[ ] ( ) 
 
 
U (L) - 
 
f2  
 
7.2.2 Generalized efforts, option: “SIEF_ELGA_DEPL”  
 
Option “SIEF_ELGA_DEPL” is established for reasons of compatibility with other options.  
It is used only for calculation of the nodal forces. It produces fields of efforts by elements.  
 
It is calculated by:  
E 
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R 
= K 
U 
 
 
LOC 
LOC 
LOC 
 
7.3  
Calculation of the nodal forces and the reactions  
 
7.3.1 Nodal forces, option: “FORC_NODA”  
 
This option calculates a vector of nodal forces on all the structure, expressed in total reference 
mark.  
It produces a field with the nodes in order CALC_NO by assembly of the terms  
elementary.  
 
For this calculation, one uses the principle of virtual work and one writes [R5.03.01]:  
 
T 
F = Q  
 
where  
T 
Q symbolically represents the matrix associated with the operator divergence. For an element, one  
writing agricultural work of virtual deformations:  
 
(T 
Q) * 
U = (U) 
 
( * 
U) 
* 
U 
kinematically acceptable  
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R3.08 booklet: Machine elements with average fibre  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  

file:///Z|/process/refer/refer/p640.htm (7 of 17)10/2/2006 2:52:24 PM



file:///Z|/process/refer/refer/p640.htm

 
Titrate:  
Element of beam with 7 ddl for the taking into account of warping  
Date:  
02/05/05  
Author (S):  
J.L. Key FLEJOU, J.M. PROIX  
:  
R3.08.04-B  
Page:  
23/24  
 
 
For the elements of beam, one calculates simply the nodal forces by assembly of the forces  
nodal elementary calculated by option SIEF_ELGA_DEPL, which is expressed by:  
 
[F 
= K 
U 
 
LOC] 
[LOC] [LOC] 
 
 
7.3.2 Nodal reactions, option: “REAC_NODA”  
 
This option, called by CALC_NO, makes it possible to obtain the reactions R with the supports, 
expressed in  
total reference mark, starting from the nodal forces F by:  
 
tank 
iner 
R = F - F 
+ F 
 
 
tank 
iner 
F 
and F 
being nodal forces respectively associated with the loadings given  
(specific and distributed) and with the efforts of inertia.  
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1 Notations 
With 
surface of the cross-section of the cable. 
E 
Young modulus. 
F 
vector of the forces intern element.  
F 
force intern with node N. 
N 
H 
horizontal component of the tension [§An1]. 
I 
stamp unit of order 3. 
3 
K 
stamp rigidity of the element. 
L 
current length of the element. 
L 
length at rest. 
0 
L 
initial length. 
I 
L 
 
 
1 
NR NR 
3 
1 
l1 
euclidian norm of l1 
L 
 
 
2 
NR NR 
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3 
2 
l2 
euclidian norm of l2. 
NR 
current tension of the cable constituting the element. 
NR 
initial tension (prevoltage). 
I 
S 
arrow of a range of cable [§An1]. 
S 
length of a range [§An1]. 
T 
current temperature. 
T 
initial temperature. 
I 
U 
vector-displacement of the nodes compared to the initial position. 
U 
displacement of node N compared to its initial position. 
N 
W 
weight per unit of length. 
X 
vector-position of node N in initial configuration. 
N 
 
thermal dilation coefficient. 
 
current deformation compared to the initial configuration. 
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2 Introduction 
One uses pulleys, during the construction of the air powerlines, for the operation of installation 
cables. The cable in the course of installation [Figure 2-a] is fixed at the one of the supports of stop 
of the canton, it 
rest on pulleys placed at the bottom of the insulators of the supports of alignment and it is retained 
by one 
force on the level of the second support of stop. While exploiting this force - or by moving its point 
of application - one adjusts the arrow of the one of the ranges, that which is subjected to 
constraints 
of environment. Then one removes the pulleys and one fixes the cable at the insulators. The length 
of the cable 
in the various ranges is then fixed and it determines the later behavior of the line under 
statical stresses (wind, overload of white frost) and in dynamic mode (movement due to 
forces of Laplace created by the currents of short-circuit). 
Appear 2-a: Pose of a cable in a canton with two ranges 
The finite element of cable-pulley presented here makes it possible to model the operation of 
installation and thus to calculate, 
in a natural way, the length of cable in the various ranges. 
The idea of this finite element came to us some time after the conversation [bib1] and we have 
presented its formulation in [bib2]. 
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Assumptions and definition of a finite element of cable-pulley 
N3 
N1 
N2 
Appear 3-a: Length of cable passing by a pulley - reality 
Let us take a length of cable NR NR 
1 
2 passer by by the N3 pulley [Figure 3-a]. This pulley is not  
inevitably fixes and can, for example and as it is the case in the example of [§8], being gone up to 
the end of a cable. 
N3 
N1 
N2 
Appear 3-b: Length of cable passing by a pulley - modelled 
The pulley is supposed to be specific [Figure 3-b]. One makes moreover following assumptions: 
· The position of balance of N3 is not known, but it is necessarily on 
section N1 N2 deformed starting from its initial position. 
In modeling of the lines, the horizontal movements are of low amplitude and this 
assumption is generally not restrictive; 
· The two bits N3 N1 and N3 N2 are always rectilinear, like elements of cable 
1st order. 
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It rises from this assumption that: 
L 
= X + U - X - U 
1 
1 

file:///Z|/process/refer/refer/p640.htm (15 of 17)10/2/2006 2:52:24 PM



file:///Z|/process/refer/refer/p640.htm

1 
3 
3 
éq 3-1 
L 
= X + U - X - U 
2 
2 
2 
3 
3 
L 
T 
1 
= 
1 
L 1l 
éq 3-2 
L 
T 
2 
= 
l2 l2 
The overall length of the two bits is: 
-  
in the current position, where the temperature is T: 
L = l1 + l2; 
-  
in the initial position, indicated by index I, where the tension is Ni and 
temperature Ti: 
L 
= (l1) + (L 
I 
; 
I 
2) I 
-  
in a not forced position, indicated by index 0, where the temperature is T0: 
L 
= (L) + (L 
0 
1 
. 
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0 
2) 0 
· The pulley is without friction and thus the tension is the same one in the two bits. 
It rises from this assumption that the deformation is also the same one and one takes for 
value of this one the measurement of the relative lengthening of the section compared to the initial 
state: 
L - L 
= 
I 
éq 3-3 
l0 
must remain small, so that section A is regarded as constant. 
It will be noted that, within the framework of the finite element method, the linear loads 
do not prevent the tension from being constant of N1 with N2. These forces are indeed 
concentrated with the N1 nodes and N2 and on the axis of the N3 pulley. 
· The relation of behavior is elastic: 
NR = E [ 
WITH - (T - T)]+ NR 
I 
I 
éq 3-4 
One calls finite element of cable-pulley, a length of cable N1 N2 satisfactory N3 
with the preceding assumptions. 
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4  
Forces intern of a finite element of cable-pulley 
Let us point out the following definition: one calls internal forces of a finite element of structure the 
forces 
that it is necessary to exert in its nodes to maintain it in its current deformed configuration. 
In the case of a finite element of cable-pulley, the internal forces result immediately from 
statics. One has indeed [Figure 4-a]: 
NR 
F 
= 
L 
1 
1 
éq 4-1 
1 
L 
NR 
F 
= 
L 
2 
2 
2 
L 
and, to ensure balance: 
F 
= - (F + F 
3 
1 
2 ). 
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F1 and F2 having even module, F3 is directed according to the bisectrix of the angle (NR NR NR 
1 
3 
2 ) . 
F3 = - (F1 + F2) 
N3 
N1 
N2 
F1 
F1 = F2 
F2 
Appear 4-a: Forces intern of an element of cable-pulley 
F3 is applied to the axis of the pulley. 
The system F of the internal forces of the element is thus: 
F  
1  
F = F2. 
F  
3  
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5  
Stamp rigidity 
The matrix of rigidity K of the element is derived from Fréchet of F in the direction of displacement 
U of the nodes: 
F = K U. 
K is calculated by the following traditional formula, used intensively in [bib3], [bib4] and [bib5]: 
D 
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F = lim 
(Fu + U). 
 
éq 5-1 
0 D 
The detail of calculations is given in [§An1] and the final expression of K is as follows: 
 
 
 
NR 
NR 
K11 + 
I 
K 
3 
12 
- K11 - K12 - 
I 
 
 
3 
1 
L 
1 
L 
 
 
NR 
NR 
 
K =  
KT 
K 
T 
12 
22 + 
I3 
- K22 - K12 - 
I3 
 
 
2 
L 
2 
L 
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NR 
NR 
1 
1  
T 
T 
 
- K11 - K12 - 
I3 - K22 - K12 - 
I 
K 
3 
11 + K22 + K12 + K12 +  
+ NI3 
1 
L 
2 
L 
1l 
2 
L  
 
 
 
éq 5-2 
NR is given by [éq 3-4] and [éq 3-3]; 
EA NR 1 
K 
=  
-  
L lT 
11 
; 
2 1 1 
0l 
1 
L 1l 
EA 
K 
= 
L lT 
12 
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1 2 ; 
0 
L 1l 2l 
EA NR 1 
K 
=  
-  
L lT 
22 
. 
2 2 2 
0l 
2 
L 2l 
K is symmetrical, because of the symmetry of K11 and K22 and of total symmetry per blocks.  
But K depends on displacements on NR, NR and NR 
1 
2 
3 via L, L 
1 
2 and NR: the element 
finished cable-pulley is thus a nonlinear element. 
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6  
Stamp of mass 
This matrix intervenes obviously only in the dynamic problems. The element of cable-pulley 
is not used in Code_Aster that for the quasi-static problems of installation of cables [§7]. 
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Note: 
One presents nevertheless in [bib2] the example of a dynamic problem comprising a cable 
pulley. 
The matrix of mass of the element N1 N2 N3 is obtained by assembling the matrices of mass 
“coherent” of the elements of cable with two nodes N3 N1 and N3 N2 [bib6] and while adding 
specific mass of the pulley. 
It should be noted that, during a dynamic analysis, this matrix of mass must be updated 
because the lengths l1 and l2 vary. 
7 Introduction of the element of cable-pulley into 
Code_Aster 
The element of cable-pulley is supported by a mesh SEG3. 
In order AFFE_MODELE, under the key word factor AFFE, one must define them as follows 
arguments of the key words: 
key word 
GROUP_MA 
PHENOMENON 
MODELING 
argument 
group meshs 
“MECHANICAL” 
“CABLE-POULIE” 
of cable-pulley 
The constitutive material must be elastic. 
In order AFFE_CARA_ELEM, the cable-pulleys are treated like cables. 
As the element of cable-pulley is nonlinear [§5] and that, for the moment, it is used only in statics 
[§6], it is accessible only by operator STAT_NON_LINE. Under the key word factor COMP_ELAS, 
them 
arguments of the key words are as follows: 
key word 
GROUP_MA 
RELATION 
DEFORMATION 
argument 
group meshs 
“ELAS” 
“GREEN” 
of cable-pulley 
Lastly, the force of gravity acting on the nodes NR and NR 
1 
2d' an element of cable-pulley [3-b] 
is following because it depends on the length of the bits NR NR and NR NR 
3 
1 
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3 
2. For a structure 
comprising at least an element of cable-pulley, one must specify it in STAT_NON_LINE under 
key word factor EXCIT: 
EXCIT: 
(LOAD: charge of gravity TYPE_CHARGE: “SUIV”) 
One finds an example of application in test SSNL100 A [V6.02.100]. 
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8 Example  
of application 
This example is that of the installation of a cable with two ranges and imposed tension of adjustment. 
On [Figure 7-a], O is the anchoring of the cable on the support of stop of left. P1 is a first pulley 
placed at the foot of the lifting chain PC 
1 
, fixed out of C at the support of alignment. P2 is one 
second pulley placed on the support of stop of right-hand side. O, P1 and P2 are, to simplify, located on 
horizontal. 
Z 
C 
X 
Q 
P 
NR  
R 
1 
R 
Q 
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p 
1 
2 2 
2 
O 
'P 
Q 1 
' 
' 
R' 
1 
Q 
R 
2 
2 
1 
Appear 7-a: Balance of a cable with two ranges, subjected to a tension of adjustment given. 
OP1 = P1 P2 = 100 m; W = 30 N/m; E × A = 5 X 107 NR; NR p = 5.000 NR 
In initial position, the cable at rest, supposed in weightlessness, is right: line in feature of axis of 
[Figure 7-a]. For modeling in finite elements, this line is cut out in: 
· ten elements of cable with two nodes between O and Q1; 
· an element of cable-pulley Q1 R1 P1; 
· nine elements of cable between R1 and Q2; 
· an element of cable-pulley Q2 R2 P2. 
One simultaneously subjects the cable to gravity and the tension of adjustment NR p exerted in R2.  
position of balance (line in feature full with [Figure 7-a]) is reached in 11 iterations by the operator 
STAT_NON_LINE of Code_Aster. The arrows are 7.955 m and 7.867 m, respectively in 
range of left and that of right-hand side. 
For an inextensible cable of a range of 100 m, weight linear 30 N/m and subjected to a tension 
in end of 5.000 NR, the theoretical arrow is 7.941 m [§An2]. 
While exploiting the tension of adjustment, one can adjust one of the two arrows to a value fixed at 
advance. 
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9 Conclusion 
The finite element of cable-pulley presented in this note, of a very simple mechanical formulation, has 
performances comparable with those of an element of ordinary cable. It is very convenient and even 
essential for a realistic modeling of the air powerlines. It should find 
other applications, in particular in Robotics. 
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Appendix 1 Calculation of the matrix of rigidity 
One shows here how applies the formula [éq 5-1] to the calculation of the first three lines of the matrix 
K [éq 5-2], those which relate to the F1 force. The other lines are obtained is by permutation 
indices, is by summation of two preceding lines. 
The first lines are thus obtained by calculating the derivative: 
D 
lim 
1 
F (U + U) 
éq An1-1 
0 D  
and by putting in factor the vector U. 
According to the relations [éq 4-1], [éq 3-4] and [éq 3-3], one a: 
 
 
 
L U + U + L U + U 
- L 
 
 
I 
L U + U 
 
F 
1 
2 
1 
1 (U + U 
) 
( 
) ( 
) 
= EA 
- (T - Ti) 
( 
) 
+ Ni  
 
0 
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L 
 
 
1 
 
L (U + U) 
with, according to [éq 3-1]: 
L (U + U 
) = X + U + U 
- X - U - U 
1 
1 
1 
1 
3 
3 
3 
and, according to [éq 3-2]: 
L (U + U 
) 
T 
1 
= 
1 
L (U + U 
) 1l (U + U 
). 
Consequently: 
D 
lim 
1 
L (U + U) = 1 
U - U 
 
3 
0 D 
D 
1 
lim 
T 
1 
L (U + U) = 
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1 
L U 1 
U - U 
 
3 
0 D 
1 
L (U) 
( )( 
) 
and by permutation of indices 1 and 2: 
D 
1 
lim 
T 
2 
L (U + U) = 
l2 U u2 - U 
 
3 
0 D 
2 
L (U) 
( )( 
). 
 
 
Finally: 
D 
1 
1 
lim 
= - 
T 
L U 
U - U 
0 
3 
1 
1 
3 
D 
1 
L (U + 
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U) 
( )( 
) 
1 
L (U) 
. 
 
 
 
While carrying the preceding expressions in [éq An1-1] and by putting in factor the vector U, one 
easily obtains the first three lines of K. 
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Appendix  
2 Figure of balance of an inextensible cable weighing 
subjected to a tension given in end 
Let us take a cable [An2-a Figure] whose end is fixed at the point O and of which the other end P 
is subjected to the tension NR p. O and P is on same horizontal and distant ones of S. the weight 
linear is W. The arrow S. is sought. 
Z 
O (0, 0) 
X 
P (S, 0) 
NR p 
S 
Appear An2-a: Heavy cable in balance 
One finds in [bib7], p 6, the following well-known formulas: 
· figure of balance of the cable: 
H  
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W S 
W S  
Z (X) = 
cosh 
- X 
cosh 
; 
éq An2-1 
W 
H  
 
2 
 
- 
2 H  
 
 
· tension  
: 
W S 
NR (X) = H cosh 
- X. 
éq An2-2 
H  
 
2 
 
 
H is the horizontal, constant tension along the cable since the external force distributed - the weight - 
is vertical. 
H is calculated by [éq An2-2] written out of P: 
W S 
2 NR p W S 
cosh 
- 
= 
. 
0 
2 H 
W S 2 H 
W S is thus root of the transcendent equation: 
2 H 
2 NR  
cosh X 
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p 
= 
X. 
W S 
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This equation has two roots [An2-b Figure] if: 
2 NR p > 0p, 
W S 
with: 
p 
= sinh X 
0 
0 
and: 
X 
= cotanh X 
X 
0 
0 
0 > 0. 
2 Np 
W S 
1 
cosh X 
W S 
2 H 
X 
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W S 
Appear An2-b: Calculation of 2 A.m. 
The smallest root, which corresponds to the greatest tension of the cable, is only useful. The other root 
corresponds to a sag of the considerable cable, of about size of its range. 
W S being calculated, the arrow results from [éq An2-1]: 
2 H 
S 2 H  
W S 
 
S = 
cosh 
-  
1 . 
2 W S  
2 H 
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Finite elements of right pipe and curve  
with ovalization, swelling and warping  
in elastoplasticity  
 
 
 
 
 
Summary:  
 
This document presents the modeling of a finite element of pipe usable in calculations of pipings in  
elasticity or in plasticity. The pipes, curves or rights, can be relatively thick (thickness report/ratio on  
ray of the transverse section up to 0.2) and are subjected to various combined loadings - internal 
pressure,  
cross-bendings and anti-plane, torsion, extension - and can have a nonlinear behavior.  
 
This linear element combines at the same time properties of hulls and beams. The average fibre of the 
pipe  
comprise like a beam and the surface of the pipe like a hull. The element carried out is an element of  
right pipe or curve in small rotations and deformations, with an elastoplastic behavior in  
plane constraints.  
 
Three modelings, corresponding to three various types of elements, are available:  
 
· TUYAU_3M, which takes into account 3 modes of Fourier to the maximum, and which can rest on  
meshs with 3 nodes or 4 nodes.  
· TUYAU_6M, which takes as a count up to 6 modes of Fourier, and is pressed on meshs with 3 
nodes.  
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1 Introduction  
 
There is an important bibliography on the modeling of pipings and many elements  
stop pipes right and bent are available in the great codes of finite elements.  
syntheses were already realized [bib1], [bib5], [bib6], in the past that one supplemented in  
incorporating the last developments known in the field [bib11]. Important effects with  
to take into account are swelling due to the internal pressure and the ovalization of the transverse 
sections  
by combined inflections plane and anti-plane. One places oneself on the assumption of small rotations 
and  
deformations within the framework of this document.  
 
It is about a linear element with 3 or 4 nodes, of curved or right beam type with local plasticity  
taking into account ovalization, warping and swelling. The kinematics of beam is  
enriched by a kinematics of hull for the description of the behavior of the transverse sections.  
This kinematics is discretized in M modes of Fourier of which the number M must at the same time be 
sufficient  
to obtain good results in plasticity and not too large to limit the computing time.  
literature encourages us to use M=6 [bib9], [bib13] in plasticity. In elasticity, for thick pipes, one  
can be satisfied with M=2 or 3.  
 
2  
Various theories of hulls and beams for  
finite elements of right or bent pipes  

file:///Z|/process/refer/refer/p660.htm (2 of 29)10/2/2006 2:52:26 PM

http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p660s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p660s.html%230
http://64.233.179.104/translate_c?&u=http://oregonstate.edu/~nimmalas/refer/html/p660s.html%230


file:///Z|/process/refer/refer/p660.htm

 
One presents in this chapter the elements of kinematics in three-dimensional curvilinear geometry,  
as their restrictions within the framework of the models of beam and hull. Indeed, to build  
the finite element of piping enriched which answers the schedule of conditions defined in introduction, 
one exploits  
a technique of decomposition of three-dimensional kinematics. The kinematics of hull y  
bring the description of ovalization, swelling and warping, while kinematics  
of beam described there the movement general of the line of piping.  
 
The various theories of hulls and beams used for each element translate them  
assumptions chosen a priori on the type of deformations and behaviors.  
 
2.1  
The pipe in theory of beam  
 
2.1.1 Case of a bent pipe  
 
A first approaches relatively simple come down to consider the elbow represented below  
like a beam digs circular section. The beam is obtained by rotation of angle of  
circular section around OZ. A point of the beam is located by its distance R compared to the axis  
beam and by the two angles, where is the longitudinal angle with OY indicated above and  
the trigonometrical angle with OZ measured on the circular section.  
Z 
Z 
Z 
X 
2 
2 
· 
X 
ux 
· 
() 
X 
 
E 
uz 
R 
E 
U · 
y 
· 
1 
 

file:///Z|/process/refer/refer/p660.htm (3 of 29)10/2/2006 2:52:26 PM



file:///Z|/process/refer/refer/p660.htm

· 
1 
er 
Z 
· 
 
Z 
y 
Z 
Z 
Y 
R 
y 
Y 
R 
y 
 
 
X 
 
 
X 
O 
O 
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In the curvilinear frame of reference (R,), the relations between displacements U of  
points of the elbow of position R = OM = - E 
R ( 
0 
y) + Re ( 
R,) and deformations of  
Green-Lagrange are given by the following tensor in the natural base (R,):  
 
(0 
R + U) (0 
R + U) 0 
R 0 
R 
2 F = 
. 
- 
. 
, (,) {R,}.  
 
 
 
 
The vectors units in the directions (R,) are:  
 
0 
R 
1 0 
R 
1 0 
R 
0 
R 0 
R 
0 
R R 
E 
0 
R = 
E 
, 
= 
, E = 
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where A = 
. 
 
and B = 
. 
.  
 
 
R 
With  
 
B  
 
 
 
If one expresses the position of a point of the elbow in the local toric orthonormée base (E E 
R, E)  
by (yr,  
y,  
y) one has the following relations:  
 
0 
R 
0 
R 
0 
R 
er = 
E 
, = 
, E = 
.  
yr 
y 
y 
 
The form of the tensor of the deformations of Green-Lagrange in this base is then:  
 
(0 
R + U) (0 
R + U) 0 
R 
 
 
0 
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R 
2 = 
. 
- 
. 
.  
y 
y 
y y 
 
Relations of passage between the expression of the deformations of Green-Lagrange in the system of  
co-ordinates curvilinear and in the local toric base previously definite are:  
 
= F 
rr 
rr 
F 
= A2 
F 
= B2 
F  
= AB 
F R 
 
R = A 
F R 
 
R = B 
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The use of this base is particularly interesting because the relations of behavior in  
base toric orthonormée are simple of use. For elbow Ci above, if it is considered that them  
deformations remain small, one obtains then [bib4] after linearization of the deformations of  
Green-Lagrange:  
 
U 
R 
rr = R 
1 U 
 
U 
 
 
With 
 
ur 
= 
+ 
+ 
With  
AB R 
1 U 
ur 
= 
+ 
B  
R 
 
1 U 
 
1 U 
 
 
 
U With 
 
 
2 = = 
+ 
- 
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B  
With  
AB  
1 U 
 
U 
U 
R 
 
 
 
 
2 R 
= R 
= 
- 
+ 
With  
R 
R 
 
 
1 U 
 
U 
U 
 
 
R 
 
 
2 R 
= R 
= 
- 
+ 
B  
R 
R 
 
 
 
with:  
R + R sin 
With = R + R sin, B = R, R = 
, R = R.  
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sin 
 
The expressions of the deformations established above are written then:  
 
U 
R 
rr = R 
1 
U 
 
 
 
= 
( 
+ U 
 
cos + U sin) 
R + R 
R 
sin  
1 U 
 
 
 
= ( 
+ U 
 
) 
R 
R 
 
 
1 
U 
 
1 U 
 
 
2 = = 
( 
- U 
 
cos 
 
) + 
R + R sin  
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R  
1 
U 
 
U 
R 
 
 
2 =  
= 
( 
- U 
 
R 
R 
sin) + 
R + R sin  
R 
 
1 U 
 
U 
 
R 
 
2 = = ( 
- U 
 
R 
R 
) + 
R  
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Ur displacement,  
U,  
U of a point of the elbow in the toric base associated the transverse section  
of observation can easily express itself according to displacements and rotations associated with  
center transverse section. Indeed, if 1 is noted 
U, u2, u3 displacement in the curvilinear base  
local (O (), X (), y (), Z () associated the transverse section as indicated on [Figure 2.1.1-a]  
there are the following, valid relations within the framework of the kinematics of the beams of 
Timoshenko  
[R3.08.01]:  
 
U (R, 
1 
,) = ux  
() + Z  
() R sin - y  
() R cos 
U (R, 
2 
,) = U y  
() + X  
() R cos 
 
U (R, 
3 
,) = uz  
() - X  
() R sin  
 
where ux, U y, uz are the displacement of translation of the section and X, y, Z the rotation of its 
center  
O. The expression of the components of displacement in the local toric orthonormée base  
(E E 
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R, E) are obtained by change of reference mark:  
 
U (R, 
 
,) = U (R,) = U ( 
X) + ( 
Z) R sin - ( 
y) R cos 
1 
 
U (R, 
 
,) = U (R,) sin - U (R,) cos = U ( 
Z) sin - U ( 
y) cos - ( 
X) 
3 
2 
R  
U (R, 
R 
,) = [ 
- U (R,) cos + U (R,) sin] = [ 
- U ( 
Z) cos + U ( 
y) sin] 
3 
2 
 
The introduction of this field of displacement into the expression of the linearized deformations us  
allows to obtain the expression of the three-dimensional deformations associated the kinematics of  
beam:  
 
rr = 0 
1 
= 
(U X - U y - R cos 
X 
+ R sin 
Z  
- R cos 
y 
) 
R + R sin 
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, 
, 
, 
 
= 0 
1 
2 = 
(- U cos 
X 
- U 
cos 
y  
+ U 
sin 
Z  
- R X + R cos2 
y 
- R sin 
Z 
cos) 
R + R sin 
, 
, 
, 
 
 
+ (cos 
Z 
+ sin 
y 
) 
1 
2 R = 
(- U sin 
X 
- U 
sin 
y  
- U 
cos 
Z  
+ R sin 
y 
cos - R sin 2 
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Z 
) 
R + R sin 
, 
, 
 
+ (sin 
Z 
- cos 
y 
) 
2 R = 0 
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2.1.2 Case of the right pipe  
 
The expressions of the deformations established above also apply to the case of the right pipe, where 
one  
replace by S where S is the curvilinear X-coordinate along average fibre of the pipe, with:  
 
With =, 
1 B = R 1 
,/R =, 0 R = R.  
 
The expressions given for the elbow are written then for the right pipe:  
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U 
R 
rr = R 
U 
X 
xx = X  
1 U 
 
 
 
= ( 
+ U 
 
) 
R 
R 
 
U 
 
 
 
1 U 
X 
 
2 X = X = 
+ 
X 
 
R  
U 
 
U 
R 
X 
 
2 X-ray = X-ray = 
+ 
X 
 
R 
 
1 U 
 
U 
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R 
 
2 = = ( 
- U 
 
R 
R 
) + 
R  
 
R 
 
 
2 
Z 
Z 
· 
U  
U R 
X 
With 
Z 
X 
U 
X 
ux=u1 
U 2 
O 
U 
· 
3 
X 
Z 
U 
1 
U 
y 
y 
 
 
y 
y 
Z 
Z 
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Y 
Z 
X 
Transverse section: sight of 1 towards 2 
O 
 
Appear 2.1.2-a: Geometry and kinematics of a right pipe in theory of beam  
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As previously, ur displacement, U U 
X, of a point of the pipe in the associated toric base  
with the transverse section of observation can easily express itself according to displacements and  
rotations associated with the center with the transverse section. Indeed, if 1 is noted 
U, u2, u3 displacement  
in the local curvilinear base (O, X, y, Z) associated the transverse section as indicated on the figure  
below there are the following relations:  
 
U (R, X, 
1 
) = U (X) 
X 
+ (X) R sin 
Z 
- (X) R cos 
y 
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U (R, X, 
2 
) = U (X) 
y 
+ (X) R cos 
X 
 
 
U (R, X, 
3 
) = U (X) 
Z 
- (X) R sin 
X 
 
 
and:  
 
U (R, X, 
X 
) = U (R, X,) = U (X) 
X 
+ (X) R sin 
Z 
- (X) R cos 
1 
y 
 
U (R, X, 
 
) = U (R, X,) sin - U (R, X,) cos = U (X) sin 
Z 
- U (X) cos 
y 
- (X) 
3 
2 
R 
X 
 
U (R, X, 
R 
) = [ 
- U (R, X,) cos + U (R, X,) sin] = [ 
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- U (X) cos 
Z 
+ U (X) sin 
y 
] 
3 
2 
 
The introduction of this field of displacement into the expression of the deformations given below  
us allows to obtain the expression of the deformations associated with kinematics with beam:  
 
rr = 0 
xx = ux X + R sin 
Z X 
- R cos 
, 
, 
y, X 
 
= 0 
 
2  
X 
= - R X X + (y + U) sin 
Z X 
+ (Z - U) cos 
, 
, 
y, X 
 
2 X-ray = (Z - U) sin 
y X 
- (y + U) cos 
, 
Z, X 
 
2 R = 0 
 
2.1.3 Remarks  
 
The fact that rr, and R are simultaneously null shows that the kinematics of beam cannot  
to represent the deformations of the transverse sections to average fibre of the pipe. Indeed, them  
transverse sections are actuated by a rigid movement of body, which prohibits to model it  
warping, swelling and ovalization.  
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2.2  
The pipe in linearized theory of hull  
 
2.2.1 Case  
general  
 
The bent pipe is regarded as a thin hull of revolution (portion of torus). Surface  
average is obtained by rotation of angle of a circle of radius has whose center is at a distance  
R of the axis of revolution OZ. One indicates by H the thickness of the elbow. One imposes on this 
thickness  
to remain constant like with the section of the elbow being perfectly circular. A point on surface  
average is characterized by the two angles, and its position - H/2 +h/2 compared to  
surface average, where is the longitudinal, variable angle between 0 and, and the angle measured on  
transverse section.  
 
 
v y 
H 
W 
R 
 
O 
U: Axial displacement of average surface 
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U 
y 
v: Orthoradial displacement of average surface 
 
E 
R 
Z 
 
W: Radial displacement of average surface 
er 
: Rotation of average surface compared to E  
 
 
E 
: Rotation of average surface compared to E  
 
O 
 
Z 
E 
X 
R: Radius of curvature 
R: Ray of the cross section 
H: Thickness of the elbow 
: With 
ngle longitudinal 
: 
Angle of cross section 
X 
 
Appear 2.2.1-a: Geometry and kinematics of the elbow in theory of hull  
 
One places oneself first of all within the framework of the linearized theory of the hulls with shearing  
transverse such as it was described for example in Washizu [bib14]. This choice had already was 
made  
for the linear elements of hulls [R3.07.01]. It limits our study to the framework of small  
deformations. Moreover, great rotations of average surface are not taken into account.  
Displacements and rotations are thus defined compared to the initial geometry of the elbow. If them  
displacements of the points of average surface in the three directions axial,  
orthoradiale and radial is noted U, v and W those of any point of the elbow  
are written in the following way:  
 
U = U ( 
 
,) + ( 
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,) 
U = v ( 
 
,) - ( 
,)  
U = ( 
 
W,) 
 
where and are rotations compared to the vectors  
E and  
E respectively.  
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The deformations in any point are thus given by [bib14]:  
 
 
E 
+ 
= 1+/R 
E + 
= 1+/R 
2  
E 
+  
2  
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2 = = ( 
 
1+ /  
R) (1+/  
R) 
2  
E 
 
2 = = (1+/R) 
2nd 
 
2 = = (1+/R) 
with:  
R + has sin 
With = R + has sin, B = has, R = 
, R =. 
has  
sin 
 
where  
E, E and  
E are the membrane deformations of average surface, them  
deformations of inflection of average surface and  
E, E transverse distortions.  
deformations of average surface are connected to displacements of average surface in  
replacing the field of displacement of the preceding paragraph by that given above. One finds  
then:  
 
1 U 
v A 
W 
 
E 
= 
+ 
+ 
With  
AB  
 
R 
1 v 
W 
E = 
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+ 
B  
 
R 
1 U 
1 v 
U With 
2  
E 
= 
+ 
- 
B  
With  
AB  
1  
 
 
With 
= 
- 
With  
AB  
1  
= - B  
1  
To 1  
1 1 U 
1 
1 v 
U  
 
With 
2 = 
- 
- 
+[ 
+ 
( 
- 
)] 
B  
AB A  
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R B  
 
R 
With  
AB  
1 W 
U 
2  
E 
= + 
- 
With  
 
R 
1 W 
v 
2nd = - + 
- 
B  
 
 
R 
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That is to say still:  
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1 
U 
 
E = 
( 
+ v cos + wsin) 
R + has sin  
1 
v 
 
E = ( 
+ ) 
W 
has  
1 
v 
 
1 U 
 
= 
( 
- U cos) + 
R + has sin  
has  
1 
 
= 
( 
 
 
- cos 
 
) 
R + has sin  
1  
= - 
 
 
has  
1  
1 
 
sin  
1 U 
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1 
1 
v 
 
= 
- 
( 
+ cos 
 
) +[ 
+ 
( 
- U cos)] 
has  
R + has sin  
R + has sin has R + has sin has  
1 
W 
 
= + 
( 
- U sin) 
R + has sin  
1 
W 
 
= - + (- v) 
has  
 
 
In this theory there are thus five unknown factors; 3 displacements U, v and W like two  
rotations  
,  
. If the assumption of Coils-Kirchhoff is applied (thin tube) shearings  
transverses are null and there are nothing any more but 3 displacements U, v and W since:  
 
1 
W 
 
= - 
( 
- U sin) 
R + has sin  
 
1 
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W 
 
= (- v) 
has  
 
2.2.2 Case of the right pipe  
 
If one applies these equations to the case of the right pipe with:  
 
With =, 
1 B = has 1 
,/R =, 
0 R =. 
has  
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One finds the more usual expression for this kind of geometry:  
 
U 
 
Exx = X 
1 
v 
 
E = ( 
+ ) 
W 
has  
v 
 
1 U 
 
2Ex = 
+ 
X 
 
has  
 
 
 
xx = 
X 
 
1 X 
= - has  
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1  
X 
1 v 
 
2 = 
- 
+[ 
] 
X 
has  
X 
 
X has 
 
W 
 
2Ex = + X 
1 
W 
 
2nd = - + ( 
- v) 
X 
has  
 
 
In this theory there are thus five unknown factors; 3 displacements U, v and W like two  
rotations, 
X 
 
. If the assumption of Coils-Kirchhoff is applied (thin tube) shearings  
transverses are null and there are nothing any more but 3 displacements U, v and W since:  
 
W 
 
= - X 
 
1 
W 
 
= ( 
v) 
X 
- 
has  
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2.2.3 Notice  
 
One can directly introduce the kinematics of hull into the field of deformation 3D. In it  
case one a:  
=  
E 
+ 
= E + 
 
2 = = 2nd +  
2  
 
2 = = 2nd 
 
2 = = 2nd 
 
where expressions  
E, E and  
E for the membrane deformations, for  
deformations of inflection and  
E, E for the transverse distortions are given by the expression  
following in the case general:  
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U 
 
E = 
( 
+ v cos + wsin) 
R + R sin  
1 
v 
 
E = ( 
+ ) 
W 
R  
1 U 
 
1 
v 
 
2nd = 
+ 
( 
- U cos) 
R R + R sin  
1 
 
= 
( 
 
 
- cos 
 
) 
R + R sin  
1  
= - 
 
 
R  
1  
1 
 
2 = 
- 
( 
+ cos 
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) 
R  
R + R sin  
R + has sin  
1 
W 
 
2nd =  
+ 
( 
- U sin) 
R + R sin  
R + R sin  
1 W has 
 
2nd = - + ( 
- v) 
R 
R  
 
 
It is noticed that to order 1 in the two ways of proceeding give identical results. It is  
the definition of the deformation of membrane or inflection which changes. In the first case it is  
independent of the position in the thickness and is calculated for the average radius of the section  
transverse of the pipe, whereas it depends on it in the case on the approach 3D. The term between 
hook  
in the expression of [§2.2.1]. represent a coupling between the inflection and the membrane which 
appears  
when one expresses R + R sin and R according to R + has sin and A. In the continuation of our 
analysis  
we will use this expression 3D degenerated of the kinematics of hull.  
If moreover we use the assumption of Coils-Kirchhoff for transverse shearings,  
 
E 
=  
E 
= 0 one find well the following expressions of rotations:  
 
1 
W 
 
= - 
( 
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- U sin) 
R + has sin  
 
1 
W 
 
= (- v) 
has  
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and:  
1 
1 
2 
W U 
cos  
 
W 
= 
[- 
( 
- 
sin 
 
) - 
( 
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- v)] 
R + R sin  
R + has sin 
2 
 
 
has 
 
1 
2 
W  
 
v 
= - 
( 
- 
) 
 
2 
rear  
 
W 
cos 
cos has 
2 
= ( 
- U sin 
 
)[ 
+ 
]  
 
(R + R sin) (R + has sin) R (R + sin has) 2 
2 
W 
1 
1 
- 
[ 
+ 
] 
(R + R sin) R has (R + has sin) 
v 
1 
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U 
1 
+ 
+ ( 
sin + U cos) 
has (R + R sin) 
 
R (R + has sin) 
 
expressions for  
E,  
E 
and 
 
E remaining unchanged.  
 
One can easily extend this remark to the case of the right pipe.  
 
 
2.3  
Analyze right and bent pipes  
 
In conclusion of the two preceding analyses one can model the pipe like an element of  
beam whose section is a thin hull. This interpretation is made in the majority of the codes  
([bib2], [bib8], [bib9], [bib10], [bib12], etc…). In the absence of warping of the transverse sections  
(i.e the transverse sections remain plane) the axial displacement of beam gives the new position  
transverse section and displacements of ovalization (it is enough to take then u=0 in  
mean equations of hulls) make it possible to know how this one becomes deformed. Total deflection  
is obtained like superposition of the deformations of beam and the deformations of ovalization.  
field of displacement which one represents on the figure below writes:  
 
p 
S 
U = U +U.  
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In the first field of displacement the image of the transverse section is a transverse section  
identical obtained by translation and rotation of the first. In the second field of displacement,  
transverse section is deformed.  
 
M 
M 
inflection-torsion of a right beam 
In theory of the beams-Euler 
In theory of the hulls 
U 
v 
W 
Cross 
Transverse section 
Cross 
Transverse section 
warping 
ovalization 
 
Appear 2.3-a: Decomposition of displacement in fields of beam and hull  
 
Modeling finite element must thus give an account of two different mechanical answers: that  
beam and that of the hull for ovalization, swelling and warping. These three  
last modelings utilize degrees of freedom which are not nodal (decomposition  
in Fourier series for example).  
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3  
Mixed elements hull-beam for the right pipes and  
curves  
 
3.1 Kinematics  
 
One breaks up the field of displacement into a macroscopic part of “beam” and a part  
additional local of “hull”. V is the useful space of the fields of displacements  
three-dimensional definite on an unspecified section of pipe.  
 
For the beam part, as in [R3.03.03], one introduces space T of the fields associated with a torque  
(defined by two vectors):  
 
T = {vV/(T,) 
 
that 
 
such 
 
v (M) = T + GM}  
For the fields of displacement of T, T is the translation of the section (or the point G),  
infinitesimal rotation and fields v are displacements preserving the section S plane and not  
deformation there (One uses still the assumptions of NAVIER-BERNOULLI).  
T is a vectorial subspace of finished size equalizes to 6. It has additional orthogonal  
for the scalar product on V:  
 
 
 
 
 
T = v V/v W 
. =  
0 W  
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T.  
 
 
 
S 
 
Any field U of V breaks up then in a single way all in all of an element of T and one  
 
element of T:  
p 
S p 
S 
 
U = U + U U T U 
, 
T.  
One postulates then for displacements of surface of the pipe defined in [§2.2] the decomposition in  
following Fourier series who check the preceding principle of orthogonality with displacements of  
beam until order 3 in the thickness of the pipe:  
 
M 
U (X,) = I 
um (X) cos m  
m=2 
M 
+ O 
um (X) sin m  
m=2 
M 
v (X,) = I 
wn (X 
1 
) sin + I 
vnm (X) sin m  
m=2 
M 
............ - O 
wn (X 
1 
) cos + O 
vnm (X) cos m  
m=2 
( 
W X,) = wo (X) 
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N 
(uniform radial expansion)  
M 
......... + I 
wnm (X) cos m  
m=1 
M 
......... + O 
wnm (X) sin m  
m=1 
 
where X is the curvilinear X-coordinate along the elbow or of the right pipe, indifferently, and M the 
number of  
modes of Fourier. Rotations (X, 
X 
) and (, 
X) result from U (X,), v (X,) and ( 
W X,) by  
the relations of Coils-Kirchhoff [§2.2.1].  
Handbook of Reference  
R3.08 booklet: Machine elements with average fibre  
HT-66/03/005/A  

Code_Aster ®  
Version  
6.4  
 
Titrate:  
Finite elements of right pipe and curve  
 
 
Date:  
12/12/03  
Author (S):  
P. MASSIN, J.M. PROIX, A. Key BEN HAJ YEDDER  
:  
R3.08.06-B Page  
: 18/54  
 
 
Note:  
 
One can note that in the decomposition of v (X,) and ( 
W X,) terms in cos and sin  
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are not completely independent because of orthogonality with displacements of  
beam. This makes it possible moreover to avoid the movements of rigid body, because if  
I 
O 
I 
O 
vn, v 
1 
n1 and 
N 
W 1, N 
W 1 are independent, one can find a solution nonnull giving  
null deformations. In addition in the expression of U (X,) one notes the absence of the terms  
in cos and sin already present in the beam part.  
If one neglects the variation of metric with the thickness of the pipe the conditions of orthogonality  
rigorous between displacements of beam and those of the surface of the pipe are satisfied.  
In the contrary case, to satisfy this condition rigorously one would need one  
development in Fourier series of rotations (X, 
X 
) and (, 
X) starting with  
order 2. This is incompatible with the assumptions of Love_Kirchhoff for these rotations.  
 
3.2  
Law of behavior  
 
The behavior of the new element is a behavior 3D in plane constraints, because it  
total behavior of the structure is that of a thin hull. It results from it that = 0 and the law from  
behavior is written in a general way in the following way:  
 
 
xx  
pxx + S  
 
xx xx  
 
 
p 
S 
 
 
 
 
+  
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p 
S 
 
 
X =  
C  
+ 
 
 
X 
 
X = 
 
 
 
C  
X  
p 
S  
 
 
 
 
 
 
 
+ 
 
R 
 
 
 
 
 
 
X 
p 
S  
 
xr + 
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X  
 
 
X  
 
In our case one will neglect transverse shearings for the hull part of our field of  
displacement. It thus results from it that S 
X = S 
= 0. As in addition [§2.1.2] it was shown that  
p 
= 0 
= 
R 
it results from it that  
0 
 
. For an elastic behavior one has as follows:  
 
1  
0 
0  
1  
0 
0  
xx  
 
 
xx  
 
 
 
 
1 
0 
0 
 
 
 
 
1 
0 
0  
 
E 
1 - v 
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E  
1 - v 
 
 
= 
0 0 
0 
and C = 
0 0 
0 
.  
2 
 
 
 
 
 
 
 
 
X 1 - v 
2 
 
X  
1 
2 
v 
2 
 
- 
 
 
1 - v  
 
 
 
 
1 - v 
 
X  
0 0 
0 
 
 
X  
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3.3  
Work of deformation  
 
The general expression of the work of deformation 3D for the element of elbow with the type of  
above mentioned behavior is worth:  
 
L 2 H/2 
W 
= 
(  
+ + + FD 
def 
xx xx 
X 
X 
X 
X) 
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0 0 - H/2 
 
where L is the curvilinear X-coordinate which is worth L = (R + R sin  
) for an elbow where is the traversed angle  
to describe the elbow. In the case of an elbow, one has thus FD = (R + R sin)  
D 
 
rd  
D and for one  
right pipe FD = 
 
dxrd  
D where. is the position in the thickness of the elbow which varies between - h/2 and  
+h/2. In the continuation, in order to reduce the notations, one will employ the second expression.  
 
3.4  
Energy interns elastic elbow  
 
In the case of an elastic behavior, energy interns elastic elbow is expressed way  
following:  
 
L 2 H 
1 
/2 
E 
int = 
( 
(2 
2 
+ + 2) + G (2 
2 
+))FD 
 
xx 
 
xx  
X 
X 
 
2 
2 
 
- 
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0 0 - H 
1 
/2 
 
This energy can be broken up into part of energy of beam, part of energy for  
H/2 L 2 
surface pipe and terms of coupling of the type p 
. S 
xx xx FD.  
- H/2 0 0 
 
3.5  
Work of the forces and couples external  
 
With the decomposition of displacements stated at the head of paragraph, the work of the forces  
being exerted on the pipe expresses itself in the following way:  
 
L +h/2  
2 
L  
2 
+h/2  
2 
P 
S 
P 
S 
P 
S 
W 
= 
F 
ext. 
v. (U + U FD 
) 
+ S 
F. (U + U) (± H has/) 
2D dx 
+ C 
F. (U + U) rd D 
= 
0 - H/2 0 
0 0 
- H/2 0 
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L +h/2  
2 
L  
2 
+h/2  
2 
p 
p 
p 
F 
v U 
. 
FD + S 
F U 
. 
(± H has/) 
2D dx 
+ C 
F U 
. 
rd D 
+ 
 
0 - H/2 0 
0 0 
- H/2 0 
L +h/2  
2 
L  
2 
+h/2  
2 
S 
S 
S 
p 
S 
F 
v U 
. 
FD + S 
F U 
. 
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(± H has/) 
2D dx 
+ C 
F U 
. 
rd D 
= Wext +Wext 
0 - H/2 0 
0 0 
- H/2 0 
 
by simple linear decomposition, where v 
F, S 
F, C 
F are the voluminal, surface efforts and of contour  
being exerted on the pipe, respectively. One determines as follows:  
 
L +h/2  
2 
L  
2 
+h/2  
2 
W p 
p 
= 
F U 
. 
FD 
p 
+ 
F U 
. 
(± H has 
p 
ext. 
v 
S 
/ ) 
2  
D dx + C 
F U 
. 
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rd  
D  
0 - H/2 0 
0 0 
- H/2 0 
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and:  
L +h/2  
2 
L  
2 
+h/2  
2 
W S 
S 
= 
F U 
. 
FD 
S 
+ 
F U 
. 
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(± H has 
S 
ext. 
v 
S 
/ ) 
2  
D dx + C 
F U 
. 
 
rd  
D  
0 - H/2 0 
0 0 
- H/2 0 
 
The work of the external forces can thus be separate in two contributions distinct from same  
forces, on the kinematics of beam and its additional.  
 
3.6  
Principle of virtual work  
 
It is written in the following way:  
p 
S 
ext. 
W 
= ext. 
W 
+ ext. 
W 
= int 
W with:  
 
L 2 H/2 
W 
 
= 
( +  
+  
+) FD 
int  
xx xx  
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X 
X 
X 
X 
 
0 0 - H/2 
 
3.6.1 External efforts part and couples for the beam part  
 
The discretization of the principle of virtual work for the external efforts gives:  
 
L 
W 
pext = (F 
X U 
X + F y U 
y + F Z U 
Z + mxx + my y + mzz dx 
) +  
0 
[X U 
X +y U 
y +z U 
Z + µxx + µ there y + µzz] 0, L 
 
F X, F y, F Z: linear forces acting according to X, y and Z passing by the centre of gravity of  
transverse sections:  
 
+h/2  
2 
 
2 
fi = 
F. 
O C I 
 
rd  
D + F .e (has 
S 
I 
± H/) 
2  
D 
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where ex, ey, ez are the vectors of the base  
- H/2 0 
0 
curvilinear local.  
MX, my, mz: linear couples acting around axes X, y and Z:  
+h/2  
2 
 
2 
semi = 
(rxF.) 
v I.E.(internal excitation) 
 
rd  
D + (rxF.)E (has 
v 
I 
± H/) 
2  
D 
 
 
where ex, ey, ez are the vectors of the base  
- H/2 0 
0 
curvilinear local.  
X, y, Z: concentrated forces acting according to X, y and Z passing by the centre of gravity of  
transverse sections:  
+h/2  
2 
I = 
F. 
E.C.I. 
 
rd  
D 
 
where ex, ey, ez are the vectors of the local curvilinear base.  
- H/2 0 
µx, µy, µz: moments concentrated around axes X, y and Z:  
+h/2 2 
µi = (rxF.) rd D 
C I.E.(internal excitation) 
where ex, ey, ez are the vectors of the local curvilinear base.  
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3.6.2 External efforts part and couples for the hull part  
 
It is supposed that the external efforts applied to the elbow are independent the thickness of  
bend:  
 
L  
2 
W S = 
(F 
ext. 
xu + Fv + Frw+ MX + M 
X 
)  
D  
D 
0 0 
 
 
2 
+ [xu + v + rw + +] 0 L,  
D 
0 
where:  
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Fx, F, 
 
R 
F: surface forces acting according to X, and R:  
+h/2 
F = 
F .e rd 
v 
I 
+ F .e (H has/) 
2 
I 
S 
I 
± 
 
where ex, E, E 
R are the vectors of the local toric base.  
- H/2 
MR. M 
X, 
: surface couples acting around X and:  
+h/2 
M = 
(E xF) .e rd 
R  
v 
I 
+ (± H/2nd xF) .e (H has/) 
2 
I 
R 
S 
I 
± 
 
where ex, E, E 
R are the vectors of the base  
- H/2 
toric local.  
 
X, 
R: linear forces acting according to X, and R:  
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+h/2 
I = F. rd 
C I.E.(internal excitation) 
where ex, E, E 
R are the vectors of the local toric base.  
- H/2 
, 
X: linear couples acting around X and:  
+h/2 
I = (E xF) .e rd 
R 
C 
I 
where ex, E, E 
R are the vectors of the local toric base.  
- H/2 
 
Note:  
 
When the external forces applied are independent of external work on  
kinematics of hull is null except that of the compressive forces corresponding to the forces  
according to er. It is also noticed that the expressions of the moments linear and concentrated by  
report/ratio with R are null. One finds although exerted moment ago  
perpendicular to the plan of the hull.  
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3.7 Efforts  
generalized  
 
If S is the surface of the transverse section S of the pipe, one poses:  
 
NR = dS 
xx: normal effort in the centre of gravity of the transverse section.  
S 
T = dS = - (sin 
+ cos 
) dS 
y 
xy 
 
X 
X 
and  
S 
S 
T = dS = (sin 
- cos 
) dS 
Z 
xz 
 
X 
X 
sharp efforts following y and Z.  
S 
S 
M = (y - Z) dS = - dS 
X 
xz 
xy 
X: torque around X.  
S 
S 
M = Z dS = - R cos dS 
y 
xx 
 
xx 
: bending moment around Y.  
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S 
S 
M = - y dS = R sin dS 
Z 
xx 
 
xx 
: bending moment around Z.  
S 
S 
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4  
Numerical discretization of the variational formulations  
 
4.1 Discretization of the fields of displacement and deformation for  
the beam part  
 
In a point of average fibre, the field of displacement of beam is in the curvilinear reference mark  
U  
X  
 
 
U y  
 
 
room defined in [§2.1]:  
p 
U 
U = Z  
 
 
 
X  
 
y  
 
 
Z  
 
This field can be discretized in the following way:  
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NR 
NR 
U = H 
K 
K 
K 
K () K 
U 
[X xk + K 
U there y K + K 
uz zk] and = HK () [X xk + y yk + Z zk]  
K =1 
K =1 
 
It should be noted that the nodal values are given in the local reference marks attached to the nodes and  
that U and must be expressed in the local reference mark associated the current point.  
 
4.1.1 Beam  
curve  
 
One obtains then:  
 
 
U 
U (X .x) U (y .x) 
 
 
(X .x) (y .x) 
X  
kx K + K 
 
X  
K 
X 
K 
+ K 
 
NR 
 
y 
K 
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NR 
 
y 
K 
 
 
 
U 
y = 
H K 
K 
X (xk .y) + K 
(y .y) 
y = H K () K 
ux (xk .y) + K 
U (y .y) 
y 
K 
and  
( ) 
y 
K 
 
 
 
 
 
K = 
 
 
U 
1 
 
K 
U Z 
 
 
 
 
K =1 
K 
Z  
 
 
Z 
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Z K 
 
Z  
 
Z 
K 
 
 
According to the kinematics of beam presented higher to [§2.1]:  
 
rr = 0 
1 
= 
(U X - U y - R cos 
X 
+ R sin 
Z  
- R cos 
y 
) 
R + R sin 
, 
, 
, 
 
= 0 
1 
2 = 
(- U cos 
X 
- U 
cos 
y  
+ U 
sin 
Z  
- R X + R cos2 
y 
- R sin 
Z 
cos) 
R + R sin 
, 
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, 
, 
 
 
+ (cos 
Z 
+ sin 
y 
) 
1 
2 R = 
(- U sin 
X 
- U 
sin 
y  
- U 
cos 
Z  
+ R sin 
y 
cos - R sin 2 
Z 
) 
R + R sin 
, 
, 
 
+ (sin 
Z 
- cos 
y 
) 
2 R = 0 
 
Knowing that X, = - yety, = X with moreover  
. 
X xk =. 
y y K = cos (- K) = Ck and. 
y xk = -. 
X y K = sin (- K) = Sk.  
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That implies for the field of deformation:  
 
NR 
 
1 
K 
K 
K 
K 
= 
[H (kux 
 
cos (-) 
K - U y 
 
sin (-)) + H ( 
K 
K - U X 
 
sin (-) 
K - U y 
 
cos (-)) 
R + R sin  
K 
K 1 
= 
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- H (K 
K U X 
 
sin (-) 
K 
K + U y 
 
cos (-)) - Rh cos 
K 
K 
 
(kx 
 
cos (-) 
K - ky 
 
sin (-)) 
K 
- Rh cos 
K 
 
(kx 
 
sin (-) 
K + ky 
 
cos (-)) - Rh cos 
K 
K 
 
(kx 
 
cos (-) 
K - ky 
 
cos (-)) 
K 
+ Rh sin 
K 
K] 
Z 
= 0 
NR 
 
1 
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K 
K 
=  
[- H cos 
K 
(ux 
 
cos (-) 
K - U y 
 
sin (-)) 
R + R sin  
K 
K 1 
= 
- H cos 
K 
(K 
ux 
 
sin (-) 
K 
K + U y 
 
cos (-)) - H cos 
K 
K 
(K 
U X 
 
cos (-) 
K 
K - U y 
 
sin (-)) 
K 
K 
+ H U sin - 
 
K Z 
rHk  
(kx 
 
cos (-) 
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K - ky 
 
sin (-)) - Rh ( 
K 
K 
K 
- X 
 
sin (-) 
K - ky 
 
cos (-)) 
K 
+ Rh cos2 
K 
 
(kx 
 
sin (-) 
K + ky 
 
cos (-)) 
K 
- Rh K K sin 
Z 
cos] 
+ H sin 
K 
 
(kx 
 
sin (-) 
K + ky 
 
cos (-)) 
K 
+ H K K cos 
Z 
 
NR 
 
1 
K 
K 
=  
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[- H sin 
R 
K 
(ux 
 
cos (-) 
K - U y 
 
sin (-)) 
R + R sin  
K 
K 1 
= 
- H sin 
K 
(K 
ux 
 
sin (-) 
K 
K + U y 
 
cos (-)) - H sin 
K 
K 
(K 
ux 
 
cos (-) 
K 
K - U y 
 
sin (-)) 
K 
K 
- H U cos 
K Z 
+ Rh sin 
K 
cos  
(kx 
 
sin (-) 
K + ky 
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cos (-)) 
K 
- Rh K K sin 2 
Z 
] 
- H cos 
K 
 
(kx 
 
sin (-) 
K + ky 
 
cos (-)) 
K 
+ H K K sin 
Z 
 
 
 
Maybe in matric form:  
K 
U  
X  
K  
U y 
P  
 
 
 
NR 
K  
U 
P 
 
p 
U = Z  
= P P 
Bk The U.K. where K 
is the field of displacement to the node K  
K  
P 
K = 
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1 
X 
 
 
 
K 
 
y  
K  
Z  
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and  
 
H 
 
 
 
K Ck 
- HK Sk 
- R HK Sk cos 
- R HkCk cos 
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R + R sin 
R + R sin 
R + R sin 
R + R sin 
R H 
 
K sin 
 
 
- 
0 
2H 
 
K Sk 
- 2HkCk 
- 2rH 
cos 
2 
cos 
R 
 
+ R sin 
 
K Ck 
R HK Sk 
 
R + R sin 
R + R 
+ 
sin 
R + R sin 
R + R sin 
 
 
0 
0 
0 
0 
0 
0 
 
- H 
 
 
+ 2 
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K Sk cos 
- HkC cos 
H S (R sin 
R) 
H C (R sin + 2r 
K 
K K 
K 
K 
) 
 
 
B P = R + R sin 
R + R sin 
H sin 
R + R sin 
R + R sin 
RH cos  
K 
K 
K 
- 2H 
 
2 
 
 
K Ck cos 
H S 
K K cos 
R + R sin 
R H 
 
C 
R H S 
R + R sin 
K 
K 
K K 
+ 
 
R + R sin 
R + R sin 
- 
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+ 
R + R sin 
R + R sin 
 
- HS sin 
- HC 
 
 
K K 
K 
K sin 
 
 
R + R sin 
R + R sin 
- H cos 
K 
 
- RH S cos 
K K 
 
- RH C cos 
K 
K 
 
RH sin 
K 
 
- 2H C sin 
2H S 
 
 
K 
K 
K K sin 
R + R sin 
R + R sin 
R + R sin 
R + R sin 
 
+ 
 
R + R sin 
R + R sin 
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The matrix of passage of the deformations to the field of displacement is written as follows: P 
B = (P 
P 
B 
B 
 
1 L 
NR) 
 
4.1.2 Beam  
right-hand side  
 
U  
K 
U  
 
K 
 
X  
X  
X  
X  
 
NR 
NR 
U 
 
 
K  
y 
= HK (X) K  
 
 
U y and y = H K (X) 
 
 
y  
K = 
 
 
1 
K  
K = 
 
 
1 
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K  
uz  
uz  
Z  
Z  
 
According to the kinematics of beam presented higher [§2.1]:  
 
rr = 0 
xx = ux X + R sin 
Z X 
- R cos 
, 
, 
y, X 
 
= 0 
 
2  
X 
= - R X X + (y + U) sin 
Z X 
+ (Z - U) cos 
, 
, 
y, X 
 
2 X-ray = (Z - U) sin 
y X 
- (y + U) cos 
, 
Z, X 
 
2 R = 0  
 
that implies for the field of deformation:  
 
NR 
' 
' 
' 
xx =  
K 
H kux - H K R cos () K 
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y + H Kr sin () K 
Z  
 
 
 
k=1 
= 0 
NR 
 
' 
' 
' 
X = - HK cos () K 
U y + HK sin () K 
uz - 
K 
H K R X + H K sin () K 
y + H K cos () K 
Z  
 
 
 
k=1 
NR 
' 
' 
X-ray = (- HK sin () K 
U y - HK cos () K 
uz - H K cos () K 
 
y + H K sin () kz) 
k=1 
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Maybe in matric form:  
K 
U  
X  
 
K  
P 
 
U 
 
y 
X  
 
 
P 
NR 
K  
U 
= 
B U 
p 
U = Z  
P 
P P 
K 
K where  
is the field of displacement to the node K  
 
K 
K  
X  
K =1 
X 
P  
 
 
X  
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K 
 
y  
K  
Z  
and:  
 
H K 
0 
0 
0 
- rcos () H rsin () H  
 
K 
K  
0 
0 
0 
0 
0 
0 
 
P 
B 
 
K =  
 
0 
- cos () H  
sin () H  
K 
K 
- Rh K 
sin () H K 
cos () H K  
 
 
0 
- sin () H K - cos () H K 
0 
- cos () H K 
sin () H K  
 
The matrix of passage of the deformations to the field of displacement is written as follows: P 
B = (P 
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P 
B 
B 
 
1 L 
NR) 
 
4.2 Discretization of the fields of displacement and deformation for  
the additional part  
 
NR 
One discretizes the field of displacement for the surface of the pipe in the form:  
S 
U = HK (X) S 
The U.K.  
K =1 
with:  
I 
U  
I 
 
 
 
U 
m  
K m 
 
 
I 
v  
VI  
m  
K m 
 
 
I 
W 
wi 
m  
K m  
O  
O  
U m  
ukm 
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S 
U = O 
v and S 
U =  
 
K 
vo 
m =, 
2 Mr.  
m  
K m 
 
 
O 
W 
O 
 
m  
wkm  
I  
I  
w1  
W 
k1  
O 
W  
O 
 
 
1 
wk1 
 
 
 
 
O 
W  
O 
 
 
W  
K  
One has as follows:  
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U (X,) cos (m) 
0 
0  
sin (m) 
0 
0 
0 
0 
0 
 
 
 
v (X,) =  
0 
sin (m) 
0 
0 
cos (m) 
0 
sin () - cos () 0 S 
U 
W (X,) 0 
0 
cos (m) 
0 
0 
sin (m) cos () 
sin () 
1 
 
 
 
 
1 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
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4 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
3 
m=, 
2 M 
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if the indices m of S 
The U.K. are ordered in the following way:  
 
I 
U 
 
km=2  
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I 
v 
 
km=2  
I 
wkm=2  
O 
 
ukm=2  
O 
v 
 
km=2  
O 
wkm=2  
 
 
 
M 
 
I 
U 
 
S 
The U.K. = km=M 
I 
 
vkm=M  
I 
 
wkm=M  
O 
U 
 
km=M 
O 
 
vkm=M  
O 
 
wkm=M  
 
I 
W 
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k1 
 
 
O 
wk1  
 
O 
 
wk  
 
The kinematics of hull presented higher to [§2.2] is:  
 
=  
E + X 
= E + 
= 2  
E 
+ 2  
= 2  
E 
= 0 
= 2nd = 0 
 
4.2.1 Bend  
 
With:  
 
1 
U 
E 
= 
( 
+ v cos 
 
+ wsin) 
R + R sin  
1 v 
E 
= ( 
+ ) 
 
W 
 
R  
1 U 
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1 
v 
2nd 
= 
+ 
( 
- U cos 
 
) 
R R + R sin  
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and:  
 
1 
1 
2 
W U 
cos  
 
W 
= 
[- 
( 
- 
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sin 
 
) - 
( 
- v)] 
R + R sin  
R + has sin 
2 
 
 
has 
 
1 
2 
W  
 
v 
= - 
( 
- 
) 
 
2 
rear  
 
W 
cos 
cos has 
2 
= ( 
- U sin 
 
)[ 
+ 
]  
 
(R + R sin) (R + has sin) R (R + sin has) 2 
2 
W 
1 
1 
- 
[ 
+ 
] 
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(R + R sin) R has (R + has sin) 
v 
1 
U 
1 
+ 
+ ( 
sin + U cos) 
has (R + R sin) 
 
R (R + has sin) 
 
 
allows to break up the field of deformation of hull on the modes of Fourier in the way  
following:  
 
S 
 
xx  
S 
NR 
= 
B U 
S 
S S 
K 
K with:  
X k=1 
S  
X  
S 
Bk = (if 
if 
so 
so 
sg 
Bkm 
B 
=2 
L 
K m=M 
B km 
B 
=2 
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L 
K m=M 
Bk)  
 
where  
 
 
H 
 
 
 
 
K cos m sin 
HK cosm 
 
 
- 
 
H 
 
cos  
sin 
sin cos  
 
R + R sin 
(R + R sin) (R + has sin) 
K 
m 
HK 
m 
(1+ 
) 
1+ 
 
 
R + R sin 
(R + has sin) 
R + R sin 
 
 
has  
H 
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K m sin m cos 
 
+ 
 
has (R + R sin) 
 
 
 
m 
 
 
1 
 
m2  
 
 
0 
H 
1 
cos  
1 
 
 
 
K 
+ 
m 
HK 
cosm 
R 
 
 
has  
+ 
R 
 
 
has  
 
Bsi 
 
 
 
 
km = 
m 
H cosm cos 
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- 
H 
 
K 
K sin m - 
 
R 
R + R sin 
 
 
 
mH 
 
 
 
K sin m 
mHk sinm 
H 1+ 
 
 
+ 
 
 
K 
sin m 
 
cos sin 
H 
 
 
 
 
 
 
 
+ 
 
+ 
 
 
K cos m 
aHk cosm 
has 
R (R has sin) 
has (R R sin) 
- 
[ 

file:///Z|/process/refer/refer/p680.htm (32 of 61)10/2/2006 2:52:28 PM



file:///Z|/process/refer/refer/p680.htm

+ 
] 
 
(R + has sin) (R + R sin) R (R + sin has) 
R + R sin 
cos 
 
 
cosm H 
cosm H has 
+ 
 
[ 
K 
K 
+ 
] 
 
(cosm cos - msin m sin) 
R + has sin (R + R sin) R (R + has sin)  
+ H 
K 
 
R (R + has sin) 
 
 
 
0 
0 
0 
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H 
 
 
 
 
K sin m sin 
HK sinm 
 
 
- 
 
H 
 
sin  
sin 
cos  
 
R + R sin 
(R + R sin) (R + has sin) 
K 
m 
HK 
m 
[1+ 
] 
1+ 
cos 
 
 
R + R sin 
(R + has sin) 
R + R sin  
has  
H 
 
 
 
K m cos m 
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- 
cos 
 
(R + R sin has 
 
) 
 
 
m 
 
 
1 
 
m2  
 
 
0 
- 
H 1 
sin  
 
1 
 
 
K 
+ 
m 
HK 
sin m 
 
R 
 
 
has  
+ 
R 
 
 
has  
 
Bso 
 
km = m 
H sin m cos 
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H 
 
K 
K cosm - 
 
R 
R + R sin 
 
 
 
mH 
 
 
 
K cosm 
mHk cosm 
H 1+ 
 
-  
+ 
 
 
K 
cosm 
 
cos sin 
H 
 
 
 
 
 
 
 
+ 
 
+ 
 
 
K sin m 
aHk sinm 
has 
R (R has sin)  
has (R R sin) 
- 
 
[ 

file:///Z|/process/refer/refer/p680.htm (36 of 61)10/2/2006 2:52:28 PM



file:///Z|/process/refer/refer/p680.htm

+ 
] 
 
R + has sin R + R sin 
R (R + has sin) 
R + R sin 
cos 
H 
 
 
aHk sin  
K sin m 
+ 
 
m 
[ 
+ 
 
 
] 
(mcosm sin + sin m cos) 
R + has sin 
sin 
( 
sin)  
+ 
 
 
 
 
R + R 
R R + has 
 
HK 
 
R (R + has sin) 
 
 
 
0 
0 
0 
 
and  
2H 
2 
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2 
 
 
 
 
 
 
 
 
 
 
K cos sin 
Hkcos 
HK (sin 
- cos) 
Hksin 
HK sin 
 
- 
- 
 
R + R sin 
(R + R sin) (R + has sin) 
R + R sin 
(R + R sin) (R + has sin) (R + R sin) 
 
2 H 
2 
 
 
 
 
 
K cos sin 
2 H 
 
cos 
H 
 
 
 
K 
K 
+ 
- 
 
 

file:///Z|/process/refer/refer/p680.htm (38 of 61)10/2/2006 2:52:28 PM



file:///Z|/process/refer/refer/p680.htm

(R + R has 
- 
sin) 
(R + R has 
(R 
sin) 
+ sin has) (R + R sin) 
 
2  
 
2  
 
H 
 
 
1+ 
H 
 
1+ 
H 
K 
 
K 
 
K 
 
 
 
 
 
cos 
sin 
 
 
 
 
Bsg 
R 
has 
R 
has 
R 
 
K =  
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2  
 
 
2  
 
 
1+ 
H cos 
K 
 
 
 
+ 
 
has  
 
1 
 
 
has  
 
H sin 
(R + R sin) (R + has sin)  
K 
[ 
] 
- H cos 
K 
[ 
] 
 
R + 
+ 
R sin R (R + has sin) 
R + 
+ 
R sin R (R + has sin) 
 
 
Ha cos 
K 
 
 
 
H cos 
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K 
 
cos 
cos has 
H sin 
K 
 
cos 
cos has 
+ 
+ 
[ 
+ 
] 
+ 
[ 
+ 
] 
R (R + has sin) 2 
 
R + has sin R + R sin R (R + has sin) 
R + has sin R + R sin R (R + has sin) 
 
 
 
0 
0 
0 
 
 
 
4.2.2 Pipe  
right  
 
With:  
 
U 
 
Exx = X 
1 
v 
 
E 
= ( 
+ W 
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) 
R  
v 
 
1 U 
 
2Ex = 
+ 
X 
 
R  
 
 
 
 
xx = 
X 
 
1 X 
= - has  
1  
X 
 
2 X = 
- 
R  
X 
 
W 
 
= - X 
 
1 
W 
 
= ( 
v) 
X 
- 
has  
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the field of deformation of hull breaks up on the modes of Fourier in the following way:  
 
NR M 
xx = 
H (X) 
N 
(cos I 
m unm + sin O 
m unm) 
X N 1=m=2 
2 
 
NR 
 
M 
 
-  
H (X) 
N 
O 
wn +  
I 
m wnm + 
O 
m wnm  
2 
(cos 
sin 
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) 
X N 1 
= 
 
 
m 1 
= 
 
 
1 NR 
 
M 
 
 
I 
O 
I 
O 
= 
H (X) sin 
N 
 
wn - cos  
1 
W 1n + (sin  
m vnm + cos  
m vnm) 
R N 1 
= 
 
 
m=2 
 
 
1 NR 
 
M 
 
+ H (X) 
N 
O 
wn + (cos I 
m wnm + sin O 
m wnm) 
R N 1 
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= 
 
 
m 1 
= 
 
 
NR 
 
M 
 
+ 
H (X) sin 
N 
 
I 
wn - cos O 
I 
O 
1 
W 1n + (sin  
m vnm + cos  
m vnm) 
rear N 1 
= 
 
 
m=2 
 
 
2 
 
NR 
 
M 
 
- 
H (X) 
N 
O 
wn +  
I 
m wnm + 
O 
m wnm  
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2 
(cos 
sin 
) 
rear N 1 
= 
 
 
m 1 
= 
 
 
NR 
 
M 
 
 
I 
O 
I 
O 
 
X = 
H (X) 
N 
sinwn - cos 
1 
W 1n + (sin  
m vnm + cos  
m vnm) 
X N 1= 
 
 
m=2 
 
 
1 NR M 
+ 
H (X) 
N 
(cos I 
m unm + sin O 
m unm) 
R N 1 
= m=2 
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NR 
 
M 
 
+ 
H (X) sin 
N 
 
I 
wn - cos O 
I 
O 
1 
W 1n + (sin  
m vnm + cos  
m vnm) 
X has 
 
N 1 
= 
 
 
m=2 
 
 
2 
 
 
NR 
 
M 
 
- +  
H (X) 
N 
O 
wn + (cos I 
m wnm + sin O 
m wnm) 
R 
R  
X N 1 
= 
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m 1 
= 
 
 
X = 0 
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That is to say still:  
 
NR M 
xx = H (X) 
N 
(cos I 
m unm + sin O 
m unm) 
N 1 
= m=2 
NR 
 
M 
 
- H (X) 
N 
O 
wn + (cos I 
m wnm + sin O 
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m wnm) 
N 1 
= 
 
 
m 1 
= 
 
 
1 NR 
 
M 
 
 
I 
O 
I 
O 
= H (X) 
N 
coswn + sin 
1 
W 1n + (mcos  
m vnm - msin  
m vnm) 
R N 1 
= 
 
 
m=2 
 
 
1 NR 
 
M 
 
+ H (X) 
N 
O 
wn + (cos I 
m wnm + sin O 
m wnm) 
R N 1 
= 
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m 1 
= 
 
 
NR 
 
M 
 
+ 
H (X) 
N 
cos I 
wn + sin 
O 
I 
O 
1 
W 1n + (mcos  
m vnm - sin 
m 
 
m vnm) 
rear N 1 
= 
 
 
m=2 
 
 
NR 
M  
 
+ 
H (X) 
N 
(2 
m cos 
I 
2 
 
m wnm + m sin O 
m wnm) 
rear N 1 
= 
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m 1 
= 
 
 
NR 
 
M 
 
 
I 
O 
I 
O 
 
X = H (X) sin 
N 
 
wn - cos 
1 
W 1n (sin  
m vnm + cos  
m vnm) 
N 1 
= 
 
 
m=2 
 
 
1 NR M 
+ H (X) 
N 
(- sin 
m 
I 
m unm + mcos O 
m unm) 
R N 1 
= m=2 
NR 
 
M 
 
+ H (X) sin 
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N 
 
I 
wn - cos 
O 
I 
O 
1 
W 1n (sin  
m vnm + cos  
m vnm) 
has 
 
N 1 
= 
 
 
m=2 
 
 
 
NR 
M 
 
- + H (X) 
N 
(- sin 
m 
I 
m wnm + mcos O 
m wnm) 
R 
N 1 has 
= 
 
m 1 
= 
 
 
X = 0 
 
This gives in matric form:  
 
S 
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xx  
S 
NR 
= 
B U 
S 
S S 
K 
K with:  
X k=1 
S  
X  
 
S 
Bk = (if 
if 
so 
so 
sg 
Bkm 
B 
=2 
L 
K m=M 
B km 
B 
=2 
L 
K m=M 
Bk)  
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where:  
 
H cos ( 
K 
 
m) 
0 
- H cos ( 
K 
 
m) 
 
 
 
 
m 
 
1 
 
2 
m  
 
 
 
 
0 
H cos ( 
K 
 
m) 1 
H cos (m  
K 
) 1 
 
 
+  
+ 
 
if 
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Bkm  
R 
 
has  
= 
R 
 
has,  
m 
 
 
 
 
- H sin ( 
K 
 
m) 
H sin ( 
K 
 
m  
) 1 +  
+ H 
m sin ( 
K 
 
m)  
R 
 
has  
R has  
 
 
0 
0 
0 
 
 
H sin ( 
K 
 
m) 
0 
- H sin ( 
K 
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m) 
 
 
 
 
m 
 
1 
 
2 
m  
 
 
 
0 
H sin ( 
K 
 
m) 1 
H sin (m  
K 
) 1 
 
 
- 
+  
+ 
 
so 
Bkm  
R 
 
has  
= 
R 
 
has  
m 
 
 
 
 
H cos ( 
K 
 
m) 
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H cos ( 
K 
 
m  
) 1+  
- + H 
m cos ( 
K 
 
m) 
R 
 
has  
R 
has  
 
 
0  
0 
0 
 
and  
 
- H cos ( 
K 
) 
- H sin ( 
K 
) 
- H K  
 
 
2  
 
2  
 
H K  
1 + H cos ( 
K 
) 
1 + H sin ( 
K 
) 
sg 
R  
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has  
R  
has  
R 
 
Bk  
= 
 
 
 
 
 
2 
 
 
2 
 
1 + 
+ H sin ( 
K 
) - 1 + 
+ H cos ( 
K 
) 
0 
 
has 
R 
has 
R 
 
 
 
 
 
 
 
 
0 
0 
0 
 
 
4.3  
Discretization of the field of total deflection  
 
P 
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S 
 
xx xx xx  
P 
S 
NR 
NR 
NR 
= + = 
B U 
B U 
B U 
B U 
P 
S 
P P 
K 
K + S 
S 
K 
K =  
= 
with  
 
 
 
X  
 
X X  
K 
K 
K =1 
K =1 
K =1 
P S  
 
 
 
 
 
X X X  
P 
U  
B = (P S 
B 

file:///Z|/process/refer/refer/p680.htm (59 of 61)10/2/2006 2:52:28 PM



file:///Z|/process/refer/refer/p680.htm

K 
U =  
 
K B K) K, 
1 
= NR and  
 
 
S  
The U.K.K, 1 
= NR 
 
4.4  
Stamp rigidity  
 
The variational formulation of the work of deformation is:  
 
 
 
xx 
 
 
 
L  
2 H/2 
 
 
 
 
 
W 
= 
 
 
def 
(xx  
 
 
 
 
X 
 
X) rd 
 
dxd  
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0 0 - H/2  
 
X 
 
 
 
 
 
 
 
 
X  
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that is to say still:  
 
 
xx 
 
 
 
L  
2 
H/2 
 
 
 
 
 
W 
= 
 
C 
 
def 
(xx  
 
 
 
 
X 
 
X) 
rd  
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dxd  
 
 
0 0 - H/2 
 
X 
 
 
 
 
 
 
 
 
X  
L 
T 
 
2 
H/2 NR 
 
NR 
 
W 
= 
B U 
C 
B U 
 
rd dxd 
 
 
def 
 
 
 
 
K K 
K K  
 
 
 
 
0 0 - H/2 k=1 
 
k=1 
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L  
2 
H/2 NR 
T 
T  
NR 
 
= U B C B U 
 
 
 
rd dxd 
 
 
K 
K 
K K  
 
 
 
0 0 - H/2 k=1 
k=1 
 
 
 
 
 
 
2 
/2 
 
L H 
U 
 
 
 
1  
 
 
T 
T T 
 
 
= U 
U 
B 

file:///Z|/process/refer/refer/p690.htm (3 of 39)10/2/2006 2:52:29 PM



file:///Z|/process/refer/refer/p690.htm

C B  
 
1 
L 
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NR 
 
rd dxd 
0 0 - H/2 
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NR  
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T  
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NR 
 
 
 
M 
 
U 
 
 
 
 

file:///Z|/process/refer/refer/p690.htm (4 of 39)10/2/2006 2:52:29 PM



file:///Z|/process/refer/refer/p690.htm

NR  
The principle of virtual work is written UT then 
KU = F U 
where K is the matrix of rigidity which  
is worth:  
 
L  
2 
H/2 
K = {BT} 
CB rd 
 
dxd  
0 0 - H/2 
 
Note:  
 
One makes no assumption on the law of behavior. This expression is thus in  
private individual validates the nonlinear behaviors in the case of (plasticity).  
 
4.5  
Stamp of mass  
 
The terms of the matrix of mass are obtained after discretization of the variational formulation  
following of the noncentrifugal terms of inertia:  
 
u1 (X, R) 
 
u2 (X, R) 
L  
2 +h/2 
u3 (X, R) 
W ac 
U =  
 
mass = 
u&.v 
 
rdxd  
D 
 
with 
.  
U (X, R)  
0 0 - H/2 
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v (X, R)  
 
 
 
( 
W X, R)  
 
The notations used are those of [§2.1]: 1 
U, u2 and u3sont displacements of beam in a point  
section and U, v and W are displacements of average fibre of this section in this same  
not.  
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The discretization gives then:  
the U.K.  
X 
 
 
the U.K.  
y 
 
 
the U.K. 
Z  
K  
X 
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K 
y  
K  
Z 
 
 
ui  
NR 
km 
U = H 
 
 
K NR K v I 
km  
K 1 
= 
wi  
km 
 
m =, 
2 M 
U okm  
vo  
km 
 
 
wo 
 
km  
wi  
k1 
 
 
wo  
k1 
 
 
wo 
K  
 
where the Nk matrices have as an expression:  
 
X .x y .x 0 - R cos (X .y) - R cos (y .y 
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K 
K 
K 
K 
) R sin 
0 
0 
0 
0 
0 
L 
 
 
 
X .y y .y 0 
R cos 
 
(X .x) 
R cos (y .x 
K 
K 
K 
K 
) 
0 
0 
0 
0 
0 
0 
L 
 
0 
0 
1 - R sin (X .x) - R sin (y .x) 
0 
0 
0 
0 
0 
0 
L 
 
NR 
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K 
K 
 
 
K = 0 
0 
cos (m 
L 
) 
0 
0 
sin (m) 
0 
0 
0 
0 
0 
0 
0 
0 
sin (m 
L 
) 
0 
0 
cos (m) 
0 
sin () - cos () 0 
 
 
0 
0 
0 
0 
L 
cos (m) 
0 
0 
sin (m) cos () 
sin () 
1  
144444444444 2 
4 4 
3 
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44444444444 
m=2, M 
The matrix of mass has then as an expression:  
 
L  
2 +h/2 
M = 
T 
NR NR 
 
rdxd  
D 
 
.  
0 0 - H/2 
with  
NR = (H K Nk) K, 1 
= NR.  
 
Note:  
 
In the case of the right pipe, one has X .x 
K 
= y .y 
K 
=1 and X .y 
K 
= y .x 
K 
= 0 .  
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4.6  
Functions of form  
 
One chooses at least quadratic functions of form for the part beam (displacements and  
rotations) in order to avoid the phenomena of numerical blocking [bib3]. This choice implies the use of 
one  
finite element with three or four nodes. In the case of an element with 3 nodes, the functions of form are  
quadratic, and for an element with 4 nodes, the functions of form will be cubic. For the part  
additional, one chooses to take the same functions of form as for the beam part.  
 
The quadratic functions of form (element with 3 nodes) are as follows:  
 
X 
X 
H1 (X) 2 
 
 
 
= 
-1 -1 
 
 
L 
 
 
 
L 
 
X 
X 
H2 (X) 2 
 
=  
-1 
 
L L 
 
X X 
H3 (X) 
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=- 4 -  
1 
L L 
 
 
The cubic functions of form (element with 4 nodes) are related to Lagrange of order 3:  
 
- - -  
H1 (X) ( 
2 )( 
3 )( 
4 ) 
= (1 -2)(1 -3)(1 -4) 
- - -  
H2 (X) 
( 
1 )( 
3 )( 
4 ) 
= (2 -1)(2 -3)(2 -4) 
- - -  
H3 (X) ( 
1 )( 
2 )( 
4 ) 
=( 
 
3 - 1)(3 - 2 )(3 - 4 ) 
- - -  
H 4 (X) 
( 
1 )( 
2 )( 
3 ) 
=(4 -1)(4 -2)(4 -3) 
-1 1 
 
4.7 Integration  
numerical  
 
Integration is done by the method of Gauss along average fibre, the method of Simpson  
in the thickness and on the circumference. For the integration of Gauss, one uses 3 points of integration  
for the elements with 3 nodes, as for the elements with 4 nodes (those under-are thus integrated).  
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Integration in the thickness is an integration by layers of which the number could be fixed  
later on by the user. For each layer one takes 3 points of Simpson, the 2 points  
ends being common with the close layers. Thus for N layers one uses 2n+1 points.  
a many sectors for integration on the circumference, could also be fixed later on by  
the user. Currently the numbers of layers and sectors are fixed at their maximum value: 3  
layers (7 points) and 16 sectors (33 points), which gives 693 points of integration on the whole.  
The integration of Simpson amounts calculating the sum of the values of the function at the points  
integrations (ends and medium of each layer or sector) affected of the weights given  
by the table below.  
 
Cordonnées of the points  
Weight  
- 3 / 5 = -0,77459 66692 41483  
5/9=0,55555 55555 55556  
0  
8/9=0,88888 88888 88889  
3 / 5 =0,77459 66692 41483  
5/9=0,55555 55555 55556  
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2 
2 
4 
2 
4 
1 
 
 
 
 
 
 
 
 
 
 
3 
3 
3 
3 
3 
..... 3 3 3 3 3 
 
Weight of the points of integration for the method of Simpson  
Thus for a function F (X,) on a right geometry one a:  
 
L 2 H/2 
1 2 H/2 
 
~ 
F (X,) rdxd = L 
D 
F x~ 
(, R X 
d~ 
) 
dd 
2 
0 0 - H/2 
-1 0 - H/2 
 
NPG 2NCOU +1 2NSECT +1 
 
= L 
H 
2 
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[ 
~ 
W 
~ 
K wn wm RN 
F (xNPG, NR 
, NR 
) 
NECK 
SECT 
NECK 
] 
2 2NCOU 2N SECT k=1 n=1 
m=1 
 
 
K 
W 
N 
W 
m 
W being respectively weights of integration over the length, the circumference and  
in the thickness, ordered as the two tables show it above.  
 
4.8  
Discretization of external work  
 
The variational formulation of external energy for the beam part is written  
:  
L 
W 
pext = (F 
X U 
X + F y U 
y + F Z U 
Z + mxx + my y + mzz dx 
) +  
0 
[X U 
X +y U 
y +z U 
Z + µxx + µ there y + µzz] 0, L 
and for the additional part she is written by taking into account only the loading of  
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L 
pressure: W 
sext = R 
F dx 
W + [R W 
] 0, L  
0 
By taking account of the discretization of displacements, one can write:  
NR L 
Wp = (F H (X 
K 
K 
K 
K 
K 
ext. 
X K) (xk.xux +yk.xu) + F H (X 
y 
y 
K 
) (xk.  
y ux + yk .yu) + F H (X 
y 
Z 
K 
 
) uz + 
K =1 0 
m H (X 
K 
K 
K 
K 
K 
X 
K 
) (xk.  
X X + yk.x) + m H (X 
y 
y 
K 
) (xk .yx + yk.  
y 
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) + m H (X 
y 
Z 
K 
 
) 
) dx 
Z 
+ 
 
[H (X 
K 
 
K 
K 
K 
K 
K 
y HK (X  
) uy + Z HK (X  
) uz + µx HK (X  
) X + µy HK (X  
) y + µz HK (X  
)  
X 
K 
 
) ux + 
Z] 0, L 
 
NR 
L 
L 
L 
 
= H 
K (X) (F X (X .x) 
K 
+ F y (X .y) 
K 
) dx+ [xHk (X)]0, L H 
K (X) (fx (y .x) 
K 
+ F y (y .y) 
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K 
) dx+ [yHk (X)]0, L fzHk (X) dx+ [µxHk (X)]0, L 
K 1 
= 0 
0 
0 
L 
L 
L 
 
H (X) 
p 
 
 
µ 
µ 
µ 
 
K 
(m (X .x) 
K 
+ m (X .y) 
X 
y 
K 
) dx+ [H (X)] H (X) 
X 
K 
0, L 
K (m (y .x) 
K 
+ m (y .y) 
X 
y 
K 
) dx+ [H (X)] m H (X) dx+ [H (X)] 
y 
K 
0, L 
Z K 
Z 
K 
0, L 
The U.K. 
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0 
0 
0 
 
NR 
P 
p 
P 
p 
=  
 
 
K 
F The U.K. = F U 
K 1 
= 
and  
NR 
L 
 
 
W S = 
F H (X O 
O 
 
 
ext. 
R 
K 
 
) W dx + [H (X 
K 
R 
K 
 
) wk] 0, L 
 
 
K =1 0 
 
NR 
L 
 
 
= 
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0 0 0 0 0 0 
F H (X D 
) X 
 
+ [H (X 
 
S 
R 
K 
R 
K 
)]0, L the U.K. 
 
 
 
 
K =1  
0 
 
NR 
S 
S 
S 
S 
= 
F 
kUk = F U 
K =1 
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Note:  
 
For the extreme nodes of the elbow there are X .x 
K 
= y .y 
K 
=1 and X .y 
K 
= y .x 
K 
= 0. In the case of it  
right pipe, one has X .x 
K 
= y .y 
K 
=1 and X .y 
K 
= y .x 
K 
= 0 for all the element.  
 
 
 
5  
Geometrical characteristics of the pipe section  
 
One has in this chapter some useful results to characterize the element pipe and which are  
calculated by the option of calculation MASS_INER of Code_Aster. In the continuation the index D 
indicates them  
results for the right pipe and the index C for the curved pipe.  
 
L  
2 H/2 
V = 
rdxdd = 2 lah 
D 
 
 
·  
0 0 - H/2 
Volume:  
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.  
L  
2 H/2 
 
2 H/2 
V = 
rdxdd = 
[R + (has +) sin ( 
] +) D dd has = 2 R 
ah 
C 
 
 
 
0 0 - H/2 
0 0 - H/2 
· Centre of gravity: The position of this last is calculated starting from the point medium to both  
extreme nodes of the pipe section, in the reference mark associated with the node interns element  
(cf [§2.1.1]). In this reference mark, the co-ordinates of the centre of gravity are:  
X 
 
0 
 
Gd  
0 
xGc  
 
 
 
2 
 
 
 
2 
 
1 
2 
H 
 
y 
yGc = - R sin 
1 
( + 
[has + 
]) - cos  
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Gd = 0 and  
 
 
 
 
2 
2 2 
R 
4 
2  
 
 
zGd 0 
Z 
 
 
Gc  
 
0 
 
· Matrice of inertia: It is relatively easy to calculate the matrix of inertia in the center of  
curve of the elbow O in the reference mark defined above. To have his expression one uses  
then the fact that:  
2 
I (G) = I (O) - mb 
xx 
xx 
I (G) = I (O) 
yy 
yy 
 
2 
I (G) = I (O) - mb 
zz 
zz 
where B is the distance between the centre of gravity and the center of curve which is worth:  
2 
 
1 
2 
H 
B = R 
sin 
1 
( + 
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[2 
has + 
]) .  
 
2 
2 2 
R 
4 
In the case of a right pipe, the concept of center of curve does not have a direction. O and G are 
confused  
with the node interns element and the medium of the segment joining the two nodes top.  
If one notes A the surface of the transverse section and I his inertia compared to the center of the section 
one can  
to write:  
C 
I 
2 
I 1 sin  
I (O) = R 
(+ [AR + 3] [+ 
]) 
xx 
I D (O) = Li 
2 
2 2 
4 
xx 
C 
I 
2 
I 1 sin  
I D (O) = L 
(I/2 
2 
+ Al /12) 
yy 
and I 
(O) = R 
(+ [AR + 3] [- 
]) 
yy 
.  
2 
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2 2 
4 
I D (O) = L (I/2 
2 
+ Al/) 
12 
zz 
C 
I 
I (O) = R 
( 
2 
AR + 3) 
zz 
2 
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6 Connection  
pipe-pipe  
 
In order to be able to represent a line of piping correctly where the elbows are not  
coplanar, it is necessary to choose an origin common Des. Ainsi for two elbows belonging to two  
perpendicular plans between them, it is necessary to be able to take into account the fact that 
displacements in  
the plan of the first elbow are equal to displacements except plan of the second in the cross-section of  
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connection.  
· · 
Generating line 
2 
· 
· 
· · 
1 
 
Appear 6-a: Representation of two noncoplanar elbows connected by a right pipe  
 
In [bib12], this common origin is defined by a generating line continues along  
piping as indicated above. This generator intersects each transverse section in one  
not. The angle between Z defined on [Figure 2.1.1-a] and the line passing by the center of the section  
transverse and this point are worth.  
 
6.1  
Construction of a particular generator  
 
For a transverse section end of the line of piping, one defines a vector origin z1  
unit in the plan of this section. The intersection enters the direction of this vector and surface  
average of the elbow determines the trace of the generator on this section. One calls x1, y1, z1 it  
direct trihedron associated this section where x1 is the unit vector perpendicular to the section  
transverse built with [Figure 2.1.1-a]. For the whole of the other transverse sections, the trihedron  
xk, yk, zk are obtained either by rotation of the trihedron xk 1, y 
- 
K 1, Z 
- 
K 1 
- in the case of bent parts,  
maybe by translation of the trihedron xk 1, y 
- 
K 1, Z 
- 
K 1 
- for the right parts of piping. The intersection  
between the transverse section and the line resulting from the center of this section directed by zk is the 
trace  
of a generator represented below.  
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Z 
Z 
B 
 
z2 
x2 
generator 
y2 
O 
Y 
Z 
1 
Z 
x1 
With 
y1 
X 
 
Appear 6.1-a: Representation of the generator of reference  
 
The origin of the commune to all the elements is defined compared to the trace of this generator  
on the transverse section. The angle enters the trace of the generator and the current position on the 
section  
transverse is then called.  
 
6.2  
Connection from one element to another  
 
The kinematics of [§3.1] is given in the plan of the elbow. This one is determined by the arc of circle  
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generated by the axis of the elbow. The origin of the angles is the normal in the plan chosen as with 
[§2.1].  
To define the origin starting from a generator makes it possible to raise the problems of continuity of  
displacements of an element to another. Indeed if one postulates that relative displacements of  
M 
transverse sections are of type I 
U p cos p + O 
U p sin p where is the angle with the trace of  
p=1 
generator on the transverse section, the continuity of displacements is automatically assured  
from one element to another.  
One notes Z the vector perpendicular to the plan of the elbow corresponding at the selected origin of the 
angles  
up to now. It is noticed that vectors Z and zk are in the plan of the section K. is the angle  
defined compared to Z. If one introduces the angle counted starting from the trace of the generator on  
transverse section (thus compared to zk) one with the following relation: = - K where = (Z, 
) 
K 
Z K  
angle between Z and zk in the plan of the transverse section. Thus displacements are from now on  
M 
type I 
U p cos p (- K) + O  
U p sin p (- K). It should be noted that for an elbow given the angle K  
p=1 
whatever the selected transverse section is identical. It is at the time of the passage from one elbow to 
another  
that the value of K changes.  
 
Note:  
 
When piping consists of right elements colinéaires, one chooses arbitrarily  
= 0 .  
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6.3  
Numerical establishment  
 
The line of piping is with a grid by right or curved elements to order. The first element  
indicate the beginning of the line of piping. One determines for this element the associated trihedron  
x1, y1, z1. If this element is right, one chooses  
0 
1 = 
, if not one calculates 1 as indicated in  
preceding paragraph. If the first element is right the trihedron associated with the first section  
transverse of the second element x2, y2, z2 is obtained by translation of x1, y1, z1. If the first  
element is curved, the associated trihedron x2, y2, z2 is obtained by rotation of x1, y1, z1 in the plan  
elbow. In this case  
0 
2 
2 = 
if the second element is right and = (Z, 
) 
2 
z2 if the second  
element is curved where 2 
Z is built like Z of [Figure 2.1.1-a]. The continuation of construction  
results easily by recurrence from the preceding diagram.  
 
 
 
7  
Connections hull-pipe and 3D-pipe  
 
7.1 Step  
followed  
 
One adopts here a step similar to the cases 3D-beam [R3.03.03], and hull-beam [R3.03.06]: it  
acts to characterize the connection between a node end of an element pipe and a group of meshs of  
edge of elements of hulls or 3D. This makes it possible to net part of piping (for example one  
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bend) in hulls or elements 3D, and the remainder in right pipes.  
 
 
Appear 7.1-a: Connection between a right grid COQUE_3D and pipes [HI75-98/001]  
 
Thanks to the kinematics introduced into the element pipe, the connections hull - pipe and 3D - pipe 
must  
to allow to net in elements of hulls or 3D only the elbow, without right parts,  
since the damping of ovalization (and warping) is taken into account in the element  
pipe.  
 
The connection results in relations kinematics between the degrees of freedom of the nodes of S (which  
represent the section of connection, modelled by elements of edge of hull or 3D), and it  
node NR of pipe.  
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So that the connection is effective, it is necessary [R3.03.03] that it checks the following properties:  
 
1) to be able to transmit efforts of beam to the grid hulls or 3D, and to be able to transmit  
all degrees of freedom of the element pipe (or duaux efforts of those),  
2) not to generate in the elements of hulls or 3D of secondary stresses,  
3) not to support the static relations kinematics or conditions ones by report/ratio  
with the others,  
4) to admit unspecified behaviors and to function in dynamics.  
 
The linear relations will have the same form as in the case hull-beam, with equations  
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additional specific to the degrees of freedom of the pipe.  
 
One already introduced with [§3.1] space T of the fields associated with a torque (defined by two 
vectors):  
 
T = {vV/(T,) 
 
that 
 
such 
 
v (M) = T + GM}  
 
where for the fields of displacement of T, T is the translation of the section (or the point G),  
infinitesimal rotation and fields v are displacements preserving the section S plane and not  
deformation there (One uses still the assumptions of NAVIER-BERNOULLI).  
The displacement of the pipe is worth then:  
 
T 
p 
S 
p 
S 
 
U = U + U 
U T U 
, 
T  
where:  
 
 
 
 
 
T = v V/v W 
. =  
0 W  
 
T  
 
 
 
S 
 
The step consists in breaking up the field of displacement of hull C 
U or the field of  
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three-dimensional displacement 3D 
U in three fields:  
C 
p 
S 
 
U = U + U + U  
· a field of displacement following a kinematics of beam p 
U (torque),  
· a field of local displacement of the section according to the kinematics of pipe S 
U (series of  
Fourier) defined in [§3.1],  
· an additional field  
U orthogonal with the two first within the meaning of the scalar product.  
 
Note:  
 
When the decomposition in Fourier series of [§3.1] is infinite one has  
U = 0.  
 
To translate the equation above into linear relations, it is shown that the integrals should be calculated  
following, for the hull (or the 3D) and the pipe:  
 
· average displacement: C 
U dS  
S 
· average rotation: GM C 
U dS  
S 
GM 
· average swelling:  
C 
U 
. dS  
S GM 
GM 
· modes of Fourier  
: C 
U cos p dS 
, 
C 
U sin p dS 
, CPU  
cos pdS,  
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S 
S 
S 
GM 
GM 
GM 
GM 
CPU 
sin p dS 
,  
. C 
U cos pdS,  
. C 
U sin p dS 
. For  
S 
GM 
S GM 
S GM 
modes of Fourier one will choose the relations simplest to exploit since some are  
redundant (see remark of [§6.7]).  
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Note:  
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One passes easily from the analytical expressions of the connection 3D - pipe to those of the connection  
hull - pipe. It is enough to substitute 3D 
U with C 
U in the whole of the integrals of  
connection proposed above. One will thus speak again of this connection only to [§7.8] treating  
numerical establishment.  
 
7.2  
Kinematics of the pipe.  
 
In the curvilinear base (O, X, y, Z) associated the transverse section of [§2.1] one notes displacements  
1 
U, u2 and u3 where:  
 
U (R, X, 
1 
) = U (X) 
X 
- (X) R cos 
y 
+ (X) R sin 
Z 
+ U (X,) + (X,)  
U (R, X, 
2 
) = U (X) 
y 
+ (X) R cos 
X 
- v (X,) cos - ( 
W X,) sin + (X,) cos.  
U (R, X, 
3 
) = U (X) 
Z 
- (X) R sin 
X 
+ v (X,) sin - ( 
W X,) cos - (X,) sin  
 
Once discretized this expression becomes:  
 
NR 
U (R, X,) = H (X) (X .x) the U.K. 
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K 
+ H (X) (y .x) the U.K. 
K 
- H (X 
K 
) (X .y) 
K 
R cos - H (X 
K 
) (y .y) 
K 
R cos + H (X K 
) R sin + U (X,) + (X 
 
 
1 
K 
X 
K 
y 
K 
y 
K 
y 
K 
Z 
, ) 
K =1 
NR 
 
U (R, X,) = H (X) (X .y) the U.K. 
K 
K 
X R 
+ HK X 
y R 
- v X  
- W X  
+ X  
 
K 
+ H (X) (y .y) the U.K. 
K 
+ H (X 
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2 
K 
X 
K 
y 
K 
) (xk .x) 
cos 
() (yk .x) 
cos 
(,) cos 
(,) sin 
(,) cos 
K =1 
NR 
U (R, X, 
3 
) = H (X) K 
U - H (X) (X 
K 
K 
K 
Z 
K 
X R - HK X 
y R + v X  
- W X  
- X  
 
K .x) 
sin 
() (yk .x) 
sin 
(,) sin 
(,) cos 
(,) sin 
K =1 
 
where U (X,), v (X,), ( 
W X,), (X,) and (X,) are discretized as with [§3.1].  
 
Displacement in a node K of X-coordinate xk end of pipe is written then:  
M 
U (R, X,) = the U.K. 
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K 
- R 
K 
cos + R sin + (ui cosm + uo sinm) + (X 
 
 
1 
K 
X 
y 
Z 
km 
km 
K,) 
m=2 
M 
M 
U (R, X,) = the U.K. 
K 
+ R cos - cos (VI sinm + vo cosm) - sin (wi cosm + wo sinm 
2 
K 
y 
X 
km 
km 
km 
km 
) 
m=2 
m=2 
- wi sin2 + wo cos2 - wo 
+ 
 
 
k1 
k1 
K sin 
( 
xk,) cos 
 
M 
M 
U (R, X, 
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3 
) = the U.K. 
K 
- R sin + sin 
(VI sin m + vo cosm) - cos 
(wi cosm + wo sin m 
K 
Z 
X 
km 
km 
km 
km 
) 
m=2 
m=2 
- wi cos 
1 
 
2 - wo sin 
1 
 
2 - wo cos - (X 
 
 
 
K 
K 
K 
K,) sin  
 
GM 
For the pipe the kinetic vector moment GM U (M) and swelling  
.u (M) has for  
GM 
respective expressions:  
 
- U (X) R sin 
Z 
+ U (X) R cos 
y 
+ 2 
R (X) 
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X 
- rv (X,) 
 
GM U (M) =  
- Ru (R, X, 
1 
) cos 
,  
 
 
Ru (R, X, 
1 
) sin  
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and:  
GM .u (M) = U 
- (X) cos 
Z 
- U (X) sin 
y 
+ ( 
W X,).  
GM 
 
Note:  
 
The first component of the field of displacement utilizes U (X,) in an isolated way. It  
in goes in the same way for the first component of the vector rotation with respect to v (X,) and of  
swelling with respect to ( 
W X,). This remark will be used with [§5.6] to bind the modes of  
Fourier with the degrees of freedom of the edges of hull.  
 
7.3  
Kinematics of hull  
 
The kinematics of hull of Coils-Kirchhoff or of Naghdi-Mindlin is written in the thickness:  
 
CPU (M) = CPU (Q) + (C 
(Q) N 
) .y3  
 
·  
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C 
U (Q) constitutes the vector displacement of average surface in Q,  
·  
C 
(Q) constitutes the vector rotation in Q of the normal according to directions' T1 and t2 of the plan  
tangent with Q.  
 
x3 
y3 
N 
M 
y3 
H 
Q 
Q y 
T =e 
2 
E 
1 
1 
3 
E 
Section of hull: 
2 
G 
E 
S = L × I 
1 
x1 L: line of the points Q on the average layer 
H 
H H  
I = -, interval describing the thickness. 
 
 
 
 
2 2 
 
 
This displacement and this rotation are calculated in the total reference mark. It is possible by change  
of reference mark to have their expressions in the curvilinear base (O, X, y, Z) of [§2.1] associated the 
section  
transverse of the junction enters the hull and the pipe.  
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For each node, the program calculates the coefficients of the 9+6 (M-1) linear relations which connect:  
 
· 6 ddl of the node of beam P of the pipe,  
· 2+3x2 (M-1) ddl of Fourier of the pipe,  
· the ddl of swelling of the pipe,  
· with the ddl of all the nodes of the list of the meshs of the edge of hull.  
 
These linear relations will be dualisées, like all the linear relations resulting for example from  
key word LIAISON_DDL of AFFE_CHAR_MECA. They are built as for the connection 3D-beam has  
to leave the assembly of elementary terms.  
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7.4  
Calculation of average displacement on the section S  
 
It is a question of calculating the integral C 
U dS, where C 
U is the displacement of hull (comprising 6 ddl by  
S 
node), S is the edge of hull.  
 
Average displacement on the section S is written:  
 
CPU ( 
/2 
M) dS = 

file:///Z|/process/refer/refer/p700.htm (3 of 38)10/2/2006 2:52:30 PM



file:///Z|/process/refer/refer/p700.htm

H 
H CPU Q dl 
C 
Q N 
y Dy dl  
S 
( ) + 
L 
( ( ) ) 
 
L 
 
3 
3  
 
- h/2 
 
 
that is to say C 
U (M) dS = H C 
U Q dl.  
S 
( ) 
L 
In addition one also has for the pipe part:  
K 
U  
K 
U  
X  
X  
CPU (M) dS = 
p 
S 
[U M  
U M dS 
] 
U dS 
S U 
.  
S 
 
() + () = K  
y 
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= K  
S 
 
y 
S K 
U  
 
K 
U  
Z  
Z  
 
One establishes as well as the average displacement of the section of the pipe to the node K is equal to  
displacement of beam of the node K. One can thus linearly bind the degrees of freedom of beam of  
translation with the node K with the average of the degrees of freedom of displacement of the edge of the 
hull.  
 
One neglects in this expression the variation of metric in the thickness of the hull.  
 
7.5  
Calculation of the average rotation of the section S  
 
GM CPU ( 
/2 
M) dS = 
H 
GQ y N Q 
u.a. Q 
C 
Q N Q y dldy 
S 
L (+ 3 () (() + () () 3) 
- H/2 
3 
= 
/2 
hGQ CPU (Q) dl + 
H 
GQ 
C 
Q N Q dl 
y Dy 
 
L 
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( ( ) ( )) 
L 
- h/2 3 3 
H 
+ N ( 
/2 
Q) CPU (Q) 
 
H 
y Dy dl 
N Q 
C 
Q 
N Q 2 y2 Dy dl 
. 
L 
 
3 
3  
 
+ 
 
 
- h/2 
( ) ( ( ) ( )) 
L 
 
 
3 
3 
- H2 
 
3 
C 
C 
H 
that is to say GMu (M) dS 
. 
= hGQu (Q) dl + C 
(Q) dl.  
S 
L 
L 
12 
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In addition one also has for the pipe part:  
 
r2 K 
 
 
K 
 
 
X 
 
X  
GM CPU 
 
(M) dS = GM 
2 
2 
K 
K 
[ 
] 
cos  
.  
S 
 
up (M) + custom (M) ds = 
S 
R 
y dS = I y  
S r2 
2 
K 
K 
sin  
 
Z  
 
 
 
Z  
 
where I is the tensor of inertia of the beam. One establishes as well as the average rotation of the section 
of the pipe  
with the node K is equal to the rotation of beam to the node K. One can thus bind the degrees linearly of  
freedom of beam of rotation to the node K with the degrees of freedom of rotation of the edge of the hull.  
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One neglects in this expression the variation of metric in the thickness of the hull.  
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7.6  
Calculation of the average swelling of the section S  
 
C 
C GM 
GM 
GQ 
It is a question of calculating the integral U N 
. dS = U. 
dS, where N = 
= 
is the normal with  
S 
S 
GM 
GM 
GQ 
surface average hull.  
 
Average displacement on the section S is written:  
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/2 
CPU (M) N 
. dS = 
H 
H CPU Q N 
. dl 
C 
Q N N 
. 
y Dy dl 
H CPU Q N 
. dl.  
S 
( ) + 
L 
( ( ) )  
 
L 
 
3 
3  
 
= 
- H/2 
( ) 
 
 
L  
 
In addition one also has for the pipe part:  
 
GM C 
GM 
.u (M) dS 
p 
=  
. [U (M) 
S 
+ U (M) dS 
] 
= wodS 
K  
S 
S 
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GM 
GM 
S 
 
One establishes as well as the average swelling of the section of the pipe to the node K is equal to the 
degree of  
freedom of swelling of the pipe to the node K. One can thus linearly bind the degree of freedom of  
swelling of pipe to the node K with the degrees of freedom of displacement of the edge of the hull.  
 
One neglects in this expression the variation of metric in the thickness of the hull.  
 
7.7  
Calculation of the coefficients of Fourier on the section S  
 
GM 
It is a question of calculating the six integrals C 
U cos p dS 
, C 
U sin p dS 
, CPU  
cos pdS,  
S 
S 
S 
GM 
GM 
GM 
GM 
CPU 
sin p dS 
,  
. C 
U cos pdS and  
. C 
U sin p dS 
, where C 
U is it  
S 
GM 
S GM 
S GM 
displacement of hull (comprising 6 ddl by node), S is the edge of hull.  
 
One with the following relation for displacements on the section S:  
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CPU ( 
/2 
M) cos p dS 
= 
H 
H CPU Q cos p dl 
 
C Q N 
y Dy cos p dl 
3 
3 
 
S 
( ) 
+ 
L 
( ( ) ) 
 
L 
 
 
 
 
- h/2 
 
 
that is to say C 
U (M) cos p dS 
= H C 
U Q cos p dl 
and C 
U (M) sin p dS 
= H C 
U Q sin p dl 
.  
S 
( ) 
S 
( ) 
L 
L 
 
In addition one also has for the pipe part:  
U (R, X 
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1 
K,)  
 
 
C 
U (M) cos p dS 
= U (R, X, 
2 
) cos p dS 
K 
.  
S 
S U (R, X 
 
3 
K,)  
 
The first component of this relation then enables us to connect the coefficient linearly of  
Fourier I 
ukp with the components of displacements of the edge of hull in the following way:  
- R K 
cos2 dS 
 
 
if p 1 
= 
y 
C 
 
H U (Q) cos 
S 
1 
p dl 
= U (R, X,) cos 
1 
p dS 
= 
 
 
 
 
S 
K 
L 
ui cos2 p dS 
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if p 
kp 
 
 
1 
 
S 
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U (R, X 
1 
K,)  
 
 
Of the same C 
U (M) sin p dS 
= U (R, X, 
2 
) sin p dS 
K 
from where one deduces from it that:  
S 
S U (R, X 
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3 
K,)  
R K 
sin2 dS 
 
if p 
 
1  
= 
Z 
C 
 
H U (Q) sin 
S 
1 
p dl 
= U (R, X,) sin 
1 
p dS 
= 
 
 
 
 
S 
K 
L 
uo sin 2 p dS 
 
if p 
 
kp 
 
 
1 
 
S 
 
One with the following relation for rotations on the section S:  
 
+h/2 
CPU ( 
GM 
C 
GQ 
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M). 
cos p dS 
= H U (Q) 
cos p dl 
+ (C (Q) N) N (y Dy) cos p 
3 
3 
dl 
 
.  
S 
L 
L 
GM 
GQ 
- H/2 
 
The first component of this relation then enables us to connect the coefficient linearly of  
Fourier O 
vkp with the components of displacements and rotations of the edge of hull in the manner  
following:  
- [K 
Ru cos2 
y 
+ 
 
O 
rw cos2] dS if p 
1 
k1 
= 
GQ 
H [CPU (Q) 
 
 
] cos 
S 
1 
p dl 
=  
 
L 
GQ 
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O 
rv cos2 (p) dS 
if p 
 
kp 
 
 
1 
 
S 
In the same way one a:  
[K 
Ru sin 2 
Z 
+ 
 
I 
rw sin 2] dS 
 
if p 1 
k1 
= 
GQ 
H [CPU (Q) 
 
 
] sin 
S 
1 
p dl 
=  
 
L 
GQ 
 
I 
rv sin 2 (p) dS 
 
if p 
kp 
 
 
1 
 
S 
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One with the following relation for swelling on the section S:  
 
GM 
GQ 
. C 
U (M) .cos p dS 
= H 
. C 
U Q cos p dl 
.  
S 
 
( ) 
L 
GM 
GQ 
 
This relation enables us to connect linearly the coefficient of Fourier ikp 
W with the components of  
displacements of the edge of hull in the following way:  
 
[- K 
U cos2 
Z 
+ 
 
I 
W cos2] dS if p 
1 
k1 
= 
GQ 
H 
. C 
U (Q) 
 
cos p dl 
= S 
.  
L GQ 
 
I 
W cos2 (p) dS 
if p 
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kp 
 
 
1 
 
S 
In the same way, one a:  
- K 
U sin 2 
y 
+ 
 
O 
W sin 2 dS 
 
 
if p 1 
k1 
= 
GQ 
H 
. C 
U (Q) 
 
sin p dl 
= S 
 
L GQ 
 
O 
W sin 2 (p) dS 
 
if p 
kp 
 
 
1 
 
S 
One uses for all these relations the fact that cos p cosq dS 
= 0  
if p Q.  
S 
One neglects in this expression the variation of metric in the thickness of the hull.  
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Note:  
 
One can note that some of the relations established in this paragraph for p=1 are  
redundant with those established in the paragraphs [§7.4] and [§7.5]. On the six relations  
established starting from the calculation of the integral forms  
CPU cosdS 
 
, 
CPU sindS 
 
,  
S 
S 
C 
GM 
C 
GM 
GM 
GM 
U  
 
cos dS,  
U  
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sindS, 
CPU 
. 
cos dS 
 
and 
CPU 
. 
sindS 
 
, only  
S 
GM 
S 
GM 
S GM 
S GM 
two among the four last are linearly independent of the others. Thus both  
first were already established with [the §7.4] and of the combinations of the four last give again  
those of [§7.5].  
 
7.8  
Establishment of the method  
 
The calculation of the coefficients of the linear relations is done in three times:  
 
· calculation of elementary quantities on the elements of the list of the meshs of edges of hulls  
(mesh of type SEG2):  
- surface  
=  
1 ; 
X; 
y; 
Z.  
elt 
elt 
elt 
elt 
-  
summation of these quantities on (S) from where the calculation of:  
-  
WITH = S  
- position  
of  
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G.  
· knowing G, elementary calculation on the elements of the list of the meshs of edges of  
hulls of:  
GM = {X, y, Z} 
Ni; 
xNi; 
yNi; 
zNi 
: 
 
where 
elt 
elt 
elt 
elt 
Nor = 
 
 
of 
 
form 
 
of 
 
functions 
element  
 
It should be noticed that in the case of the connection hull - pipe, the integrals on the elements of edge  
are to be multiplied by the thickness of the hull: NR H NR where L represents average fibre of  
I = 
I 
elt 
L 
h3 
the element of edge of hull. Moreover, one adds the additional term:  
NR.  
I 
12 L 
· “assembly” of the terms calculated above to obtain of each node of the section  
of connection, coefficients of the terms of the linear relations,  
· connection between the modes of Fourier and displacements of hull as shown at the beginning  
[§7].  
 
More precisely:  
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· for the connection hull - pipe, one carries out elementary calculations on all the elements of  
edge of the section of connection S of the type:  
 
u.a.  
C 
N 
U  
2 
2 X  
Nb 
 
elements S 2 
X  
U 
U 
P 
 
cm = 1 
 
C cos ( 
1 
C 
1 
m) D = 
U cos  
 
C 
 
 
(m) D = 
cos (m) U D 
y 
 
 
C 
 
N 
0 
0 
= 
 
U  
1 
N 
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C 
1 
 
 
U  
R  
Z  
and  
u.a.  
C 
N 
U  
2 
2 X  
Nb 
 
elements S 2 
X  
U 
U 
P 
 
Sm = 1 
 
C sin ( 
1 
C 
1 
m) D = 
U sin  
 
C 
 
 
(m) D = 
sin (m) U D 
y 
 
 
C 
 
N 
0  
0 
= 
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U  
1 
N 
 
C 
1 
 
U  
R  
Z  
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if m > 1 where P is the matrix of passage of the local reference mark of the element to the total 
reference mark and  
1 
position orthoradiale of the element. By expressing displacement according to the degrees of freedom  
nodal:  
 
I 
U  
N 
 
N 
U  
m  
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Nbél 
 
éments S 2 
Nb _ nodes 
X  
U 
 
cm = 
1 
 
O 
v 
cos m P 
NR U 
D 
m = 
() N () N  
 
 
I  
y 
n=1 
N 
n= 
W 
1 
1 
 
 
 
N 
U  
m  
Z  
and  
O 
U  
N 
 
N 
U  
m  
Nb 
 
elements S 2 
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Nb _ nodes 
X  
U 
 
Sm = 
1 
 
I 
v 
sin m P 
NR U 
D 
m = 
() N () N  
 
 
O  
y 
n=1 
N 
n= 
W 
1 
1 
 
 
N 
U  
m  
Z  
 
where the NR are related to form of the element, one obtains for each calculation twice  
9 coefficients with the nodes of the element running of S:  
 
I 
U  
has 
has 
has 
U 
m 
11 
12 
13  
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N  
 
 
Nb _ nodes  
X  
O 
 
ucm = v 
has 
has 
has 
U 
. 
m =  
 
21 22 23 N  
I  
y 
 
 
elements S 
n=1 
 
 
W 
has 
has 
has 
 
 
 
N 
U  
m  
31 
32 
33  
 
Z 
 
 
2 
L 
1 
1 
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N 
has 
cos m P NR D 
cos MX P X NR X dx 
ij = 
() ij () N () = () ij () N () 
 
R 
 
 
0 
1 
 
and an equivalent expression for U 
where I is the length of the element of edge of hull.  
Sm 
 
· for the connection 3D - pipe, one carries out elementary calculations on all the elements of  
edge of the section of connection S of the type:  
 
U 3D  
X  
U 
= 2 u3d 
cm 
( 
2 
cos m) dS = U 3D cos  
 
(m) rd D 
S 
S 
S 
S U 3D  
R  
 
3 
N N 
 
D 
U N 
Nb 
 
elements S H 
2 2 
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Nb _ 
X 
nodes 
 
= 2  
cos (m) P NR (,) U3 rdd 
N 
 
D 
y  
S 
n=1 
N N 
n= 
H 
1 
3D  
1 1 
U Z  
and  
U 3D  
X  
usm = 2 3D 
2 
u.a. sin (m) dS = U 3D sin  
 
(m) rd D 
S 
S 
S 
S U 3D  
R  
 
3 
N N 
 
D 
U N 
Nb 
 
elements S H 
2 2 
Nb _ 
X 
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nodes 
 
= 2 
sin (m) P NR (,) U3 rdd 
N 
 
D 
y  
S 
n=1 
N N 
n= 
H 
1 
3D  
1 1 
U Z  
if m > 1 where P is the matrix of passage of the local reference mark of the element to the total 
reference mark, the position  
1 
orthoradiale of the element, H its position radial and the NR are related to form of the element.  
1 
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Establishment of the element PIPE in Code_Aster  
 
8.1 Description  
 
This new element (of name METUSEG3) is pressed on a mesh SEG3 or curvilinear SEG4. It 
supposes  
that the section of the pipe is circular. Contrary to elements POU_D_E, POU_D_T, [R3.08.01] this  
element is not <<exact>> with the nodes for loadings or torques concentrated with  
ends. It is thus necessary to net with several elements to obtain correct results.  
 
8.2  
Introduced use and developments  
 
The element is used in the following way:  
 
AFFE_MODELE (MODELING = “TUYAU_3M”…)  
 
The meshs with 4 nodes are generated starting from the meshs with 3 nodes using:  
 
EMAIL =CREA_MAILLAGE (MAILLAGE=MAIL,  
MODI_MAILLE=_F (OPTION = “SEG3_4”, ALL = “YES”)  
)  
 
One calls upon routine INI090 for the functions of form, their derivative and their derivative  
seconds (for the hull part) at the points of Gauss, as well as the corresponding weights.  
 
The characteristics of the section are defined in AFFE_CARA_ELEM  
 
AFFE_CARA_ELEM (BEAM = _F (SECTION = “CIRCLE”,  
CARA = (“R” “EP”),  
VALE = (.......),),  
ORIENTATION=_F (GROUP_NO=D, CARA=' GENE_TUYAU', VALE= (X Y Z),),  
 
TUYAU_NCOU = ' A NUMBER OF COUCHES', TUYAU_NSEC = ' A NUMBER OF 
SECTEURS',),  
)  
 
R and EP represent, as for the elements of beams traditional, respectively the ray  
external and the thickness of the section. One also defines on one of the nodes end of the line of  
piping the vector whose projection on the transverse section is the origin of the angles for  
decomposition in Fourier series. This vector should not be colinéaire with the average line of the 
elbow  
with the node end considered.  
One also defines in this level the number of layers and angular sectors to use for integration  
numerical.  
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AFFE_CHAR_MECA (DDL_IMPO = _F (  
DX =. , DY =. , DZ =. , DRX =. , DRY =. , DRZ =. , DDL of beam  
UI2 =. , VI2 =. , WI2 =. , UO2 =. , VO2 =. , WO2 =. , DDL related to mode 2  
UI3 =. , VI3 =. , WI3 =. , UO3 =. , VO3 =. , WO3 =. , DDL related to mode 3  
WO =. , WI1 =. , WO1 =. ,  
 
 
 
 
 
 
DDL of swelling and mode 1 on W  
 
FORCE_NODALE = _F (FX =. , FY =. , FZ =. , MX =. , MY =. , MZ =. )  
 
They are the conventional forces of beam, which work only on displacements of beam.  
 
Addition of a key word in AFFE_CHAR_MECA (FORCE_TUYAU = _F (CLOSE =. )) for the 
calculation of  
work of the internal pressure.  
 
The pressure works on the DDL of swelling WO, one calculates then:  
 
NR 
L 
2 
L 
NR 
2 
L 
 
O 
O 
 
2 
O 
W 
= 
pw R ddx = 
p 
H W R ddx = 
 
 
 
0 0 
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int 
0 0  
int 
H 
Pr D dx W 
near 
K 
K 
K 
0  
K 
 
0 
int 
 
 
K =1 
K =1 
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8.3  
Calculation in linear elasticity  
 
The matrix of rigidity and the matrix of mass (respectively options RIGI_MECA and MASS_MECA)  
are integrated numerically in the TE0582. Calculation holds account owing to the fact that the terms  
corresponding to the DDL of beam are expressed classically in total reference mark, and that DDL of  
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Fourier are in the local reference mark with the element. In the case or the element does not belong to 
any elbow, it  
locate local is defined by the generator and the directing vector carried by average fibre of the element  
as indicated on [Figure 8.3-a]. If the element belongs to an elbow, the local reference mark  
is defined starting from the plan of the elbow as mentioned with [§2.1].  
Z 
y 
Z 
X 
Z 
O 
Y 
generator 
X 
 
Appear 8.3-a: Locate local for a right pipe  
 
Elementary calculations (CALC_ELEM) currently available correspond to the options:  
 
· EPSI_ELGA_DEPL and SIEF_ELGA_DEPL which provide the strains and the stresses  
at the points of integration in the local reference mark of the element. Calculation is carried out in the 
TE0584,  
and currently gives the values to the 693 points of integration (for an element to 3 modes of  
Fourier). These fields are called fields at “under-points” of integration. One stores these  
values in the following way:  
-  
for each point of Gauss in the length, (n=1, 3)  
-  
for each point of integration in the thickness, (n=1, 2NCOU+1=7)  
-  
for each point of integration on the circumference, (n=1, 2NSECT+1=33)  
-  
6 components of strain or stresses:  
EPXX EPYY EPZZ EPXY EPXZ EPYZ or SIXX SIYY SIZZ SIXY SIXZ SIYZ  
where X indicates the direction given by the two nodes tops of  
the element, Y represents the angle describing the circumference and Z represents  
the ray. EPZZ and EPYZ corresponding to, 
in the case of them  
rr  
R 
deformations and SIZZ and SIYZ corresponding to, 
in the case of them  
rr R 
constraints are taken equal to zero.  
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· EFGE_ELNO_DEPL: who gives the efforts generalize of beam traditional: NR, VY, VZ,  
MT, MFY, MFZ. These efforts are given in the local curvilinear reference mark of the element. This  
option is calculated in the TE0585.  
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· SIGM_ELNO_TUYO, and VARI_ELNO_TUYO allow, starting from fields SIEF_ELGA or  
VARI_ELGA, and of the data of an angular position and a position in the thickness, of  
to calculate the constraints or variables intern with the nodes of the elements, with this position. One  
then obtains a field without under-points, i.e. a traditional field, usable for  
operations of postprocessing (for example the statement of a component of constraints length  
one line of piping).  
 
· Options EQUI_ELGA_SIGM and EQUI_ELGA_EPSI allow the calculation of the invariants, in  
each point of integration (fields at “under-points”)  
 
· Option VALE_NCOU_MAXI makes it possible to extract, of each of the 3 linear points of Gauss  
of an element, the values maximum and minimum of a component of a field.  
 
· In version 7, one can extract from other fields in a point of the section: EPSI_ELNO_TUYO  
for the deformations, SIEQ_ELNO_TUYO for the equivalent constraints,  
EPEQ_ELNO_TUYO for the equivalent deformations.  
 
Finally the TE0585 calculates also option FORC_NODA for operator CALC_NO.  
 
8.4  
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Plastic design  
 
The matrix of tangent rigidity (options RIGI_MECA_TANG and FULL_MECA) as well as projection  
plastic (options FULL_MECA and RAPH_MECA) are integrated numerically in the TE0586. One makes  
call to the option of calculation STAT_NON_LINE. All laws of plane constraints available in  
Code_Aster can be used: if they are not integrated directly, it is always possible  
to use a law of behavior formulated in plane deformation, and to treat the assumption of  
plane constraints using the method of Borst:  
 
STAT_NON_LINE (…  
 
COMP_INCR = _F (RELATION = ' “, ALGO_C_PLAN=' DEBORST”),  
.....)  
 
Elementary calculations (CALC_ELEM) currently available correspond to the options:  
 
· SIEF_ELNO_ELGA which makes it possible to obtain the efforts generalized by element with the nodes 
in  
locate beam. This option is calculated in the TE0587.  
· VARI_ELNO_ELGA which calculates the field of internal variables by element with the nodes for  
all layers and all sectors, in the local reference mark of the element. This option is  
calculated in the TE0587.  
 
 
8.5  
Test: SSLL106A  
 
It is about a right pipe of directing vector (4, 3, 0) fixed in its end O and which is with a grid with 18  
elements PIPE.  
 
y 
B 
X 
Y 
3 
L 
Z 
O 
X 
O 
4 
L = 5 
Z 
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The pipe is subjected to different types of load:  
 
· a tractive effort,  
· 2 sharp efforts,  
· 2 bending moments,  
· 1 torque,  
· an internal pressure.  
 
Displacements at the point B, the strain and the stresses in certain points are calculated  
of integration of the section containing B, as well as the first clean modes.  
This makes it possible to test the DDL of beam, the DDL of swelling and modes 1 of the development in  
Fourier series.  
 
 
 
9 Conclusion  
 
The finite elements of elbow which we describe here are usable for calculations of piping in  
elasticity or in plasticity. Pipings can be subjected to various combined loadings -  
internal pressure, cross-bendings and anti-plane, torsion, extension.  
For the moment, the element carried out is a linear element of beam type, right or curve, to three  
nodes, in small rotations and deformations, with a local elastoplastic behavior in  
plane constraints. It makes it possible to take into account ovalization, warping and swelling. It  
combine the properties of hulls and beams. The kinematics of beam for the axis of the elbow is  
increased by a kinematics of hull, of type Coils-Kirchhoff without transverse shearing, for  
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description of the behavior of the transverse sections. This last kinematics is discretized in  
M modes of Fourier, of which the number M, which the literature encourages us to choose equal to 6 
[bib8], [bib13],  
must at the same time be sufficient to obtain good results in plasticity and not too large to limit it  
computing time. In elasticity, for relatively thick pipings (the thickness report/ratio on  
ray of the transverse section higher than 0.1), one can be satisfied with M=2 or 3.  
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Elements of grid of reinforcement GRILLE_MEMBRANE  
 
 
 
Summary:  
 
This document describes the formulation and the establishment in Code_Aster of finite elements 
dedicated to the representation  
steel reinforcements in a solid mass (for applications of Civil Engineering standard reinforced 
concrete). The principal ones  
characteristics of these elements are as follows:  
 
· elements of membrane, without rigidity of torsion;  
· not of unknown factors of rotation, therefore not of additional unknown factors to modeling “solid 
mass”, but  
n the other hand not of possibility of offsetting;  
· geometrical support: any mesh surface (triangle, quadrangle; linear or quadratic);  
· only one direction of reinforcements.  
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1 Introduction  
 
The elements of the type GRILLE_MEMBRANE come to supplement the possibilities of modeling  
of reinforcement in Code_Aster, in complement of modeling ROASTS. They below are presented  
differences between modelings GRILLE_MEMBRANE and GRID.  
 
It is pointed out that modeling GRID is based on a kinematics of hull DKT with only one  
sleep in the thickness. This base DKT implies the presence of degrees of freedom of rotation  
with the nodes of the elements ROASTS: if it allows the concept of offsetting, it is useless when one 
does not have  
not need for offsetting (in this case it weighs down the useless model of way, because not only them  
degrees of freedom of rotation lengthen the vector of unknown factors, but it is necessary moreover 
block one number  
considerable of these degrees of freedom by double multiplier of Lagrange). Modeling  
GRILLE_MEMBRANE is a modeling based on a “surface” kinematics, it does not require  
not other degrees of freedom that usual displacements (on the other hand, obviously, this  
modeling does not make it possible to use the concept of offsetting).  
 
Modeling ROASTS, based on DKT, requires geometric standards of support of the type  
linear triangle  
; modeling GRILLE_MEMBRANE is developed starting from the supports  
geometrical surface triangle or quadrangle, linear or quadratic.  
 
For the two types of modeling, on the other hand, only a direction of reinforcement is available by  
finite elements. That makes it possible to model any type of reinforcement to several directions, while 
superimposing  
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an element by direction; the cost of calculation generated by these duplications is weak: no 
duplication  
degrees of freedom (thus constant cost of inversion of matrix), duplication of the computation 
functions  
elementary (but they remain simple, numbers some reduced in 3D elements of surfaces against  
elements of volume and elementary calculations for structures with great numbers of degrees of  
freedom are of cost weak compared with the cost of inversion).  
 
 
2  
Formulation of the elements of GRILLE_MEMBRANE  
 
For a tablecloth of uniaxial reinforcement, the deformation energy can be put in the form:  
 
= S ds 
 
 
 
with S the section of reinforcement per unit of length, the constraint (scalar) and deformation  
(scalar).  
 
The only difficulty is to obtain an expression of the type = DRUNK 
.  
nodal 
 
For that, it is necessary to use a little differential geometry. One leaves the expression of the derivative  
contravariante:  
I 
U 
 
I 
J 
I 
jk 
U = 
= U has has = U G has has  
I 
I 
K 
J 
J 
J 
 
with {J} an acceptable parameter setting of surface and I = X 
has 
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.  
 
I 
 
while noting at the natural base (nonorthogonal, only the 3rd vector, normal on the surface, is 
normalized)  
plan of the reinforcement and G metric the contravariante associated this base (cf [R3.07.04] .pour 
more  
details).  
One then defines the direction of reinforcement by the vector normalized E (which one supplements, 
for the facility of  
1  
the talk in a orthonormée base {E) and one calls R the operator of passage such as  
p 
= R E has.  
I} 
I 
I 
p 
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One has then:  
= ( 
U 
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U) 
I 
1 
1 
jk 
= 
R R G has  
11 
 
 
J 
 
I K 
 
 
 
By definition of R: 1 
R = 0 and per definition of G: 13 
23 
G = G = 0  
3 
One notes in Greek the indices taking only the values in (, 
1 2), one obtains:  
 
U 
 
= (U) 
 
1 
1 
 
= 
R R G has  
11 
 
 
 
 
 
 
 
 
 
If one now notes B^ the derivative of the functions of form at the point of Gauss considered, it comes:  
 
R1 
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= 
R1 G B^ has U 
 
 
 
N 
( 
) I in 
 
from where B sought. It will be noted that it with the shape of a vector, due to the scalar nature of the 
deformation  
sought.  
 
B 
R1 
= 
R1 G B^ has  
in 
 
 
N 
( 
) I 
 
From B, there are then all the traditional expressions of the deformation, the nodal forces and of  
the tangent matrix which is written:  
 
= DRUNK  
F = T 
B  
 
K 
T  
= B 
B  
 
 
It will be noted that in fact the laws of behavior 1D are used to obtain the constraint to be left  
deformation.  
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Summary:  
 
This document presents the elements of multifibre beam of Code_Aster based on a resolution of a 
problem  
of beam for which each section of a beam is divided into several fibres. Each fibre behaves  
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then like a beam of Euler.  
The beams are right (Element POU_D_EM). The section can be of an unspecified form.  
The assumptions selected are as follows:  
 
· assumption of Euler: transverse shearing is neglected (this assumption is checked for forts  
twinges),  
· the elements of beam introduces here do not make it possible to make correct calculation in torsion.  
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Notations  
 
One gives the correspondence between this notation and that of the documentation of use.  
 
DX, DY, DZ and DRX, DRY, DRZ are in fact the names of the degrees of freedom associated with the 
components  
displacement U, v, W, X, y, Z.  
 
 
E 
Young modulus  
E  
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Poisson's ratio  
NAKED  
G  
E 
G  
modulate of Coulomb = ( 
 
2 1+ ) 
I 
y,  
y, I Z  
geometrical moments of inflection compared to the axes  
Z  
IY, IZ  
J X  
constant of torsion  
JX  
K 
stamp rigidity  
 
 
M  
stamp of mass  
 
M 
X, y,  
X, M y, M Z  
moments around the axes  
Z 
MT, MFY, MFZ  
NR 
normal effort with the section  
NR  
 
S  
surface of the section  
With  
U, v, W  
translations on axes X, y, Z  
DX DY DZ  
V 
sharp efforts along axes y, Z  
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y, Vz  
VY, VZ  
 
density  
RHO  
 
rotations around axes X, y, Z  
X, y, Z 
DRX DRY DRZ 
 
 
 
qx, qy, qz  
External linear efforts  
 
 
Handbook of Reference  
R3.08 booklet: Machine elements with average fibre  
HT-66/03/005/A  

Code_Aster ®  
Version  
6.4  
 
Titrate:  
Multifibre elements of beams (right)  
 
Date  
:  
 
18/11/03  
Author (S):  
S. MILL, L. DAVENNE, F. GATUINGT Key  
:  
R3.08.08-A Page  
: 4/18  
 
 
1 Introduction  
 
The analysis of the structures subjected to a dynamic loading requires models of  
behavior able to represent non-linearities of material.  
Many analytical models were proposed. They can be classified according to two groups: has)  
detailed models founded on the mechanics of the solid and their description of the local behavior of  
material (microscopic approach) and b) of the models based on a total modeling of  
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behavior (macroscopic approach). In the first type of models, we can find them  
traditional models E.F as well as the models of the type “fibre” (having an element of the beam type  
how support).  
 
While “traditional” models E.F are powerful tools for the simulation of  
nonlinear behavior of the complex parts of the structures (joined, assemblies,…), them  
application to the totality of a structure can prove not very practical because of a computing time  
prohibitory or of the size memory necessary to the realization of this calculation. On the other hand, a 
modeling  
of multifibre beam type (see [Figure 1-a]), has the advantages of the simplifying assumptions  
of a kinematics of the beam type of Euler - Bernoulli while offering a practical and effective solution  
for a nonlinear analysis complexes composite elements of structures such as those which one  
can meet for example out of reinforced concrete.  
Moreover, this “intermediate” modeling is relatively robust and inexpensive in time calculation  
because of use of nonlinear models of behavior 1D.  
 
 
 
 
Appear 1-a: Description of a modeling of the multifibre beam type  
Handbook of Reference  
R3.08 booklet: Machine elements with average fibre  
HT-66/03/005/A  

file:///Z|/process/refer/refer/p710.htm (16 of 16)10/2/2006 2:52:31 PM



file:///Z|/process/refer/refer/p720.htm

Code_Aster ®  
Version  
6.4  
 
Titrate:  
Multifibre elements of beams (right)  
 
Date  
:  
 
18/11/03  
Author (S):  
S. MILL, L. DAVENNE, F. GATUINGT Key  
:  
R3.08.08-A Page  
: 5/18  
 
 
2  
Element of theory of the beams (recalls)  
 
One takes again here the elements developed within the framework of the elements of beam of Euler 
([bib4]).  
 
A beam is a solid generated by a surface of surface S of which the geometrical centre of inertia G  
followed a curve C called the average fibre or neutral fibre. The surface S is the cross-section (section  
transversal) or profile, and it is supposed that if it is evolutionary, its evolutions (size, form) are  
continuous and progressive when G describes the average line.  
 
For the study of the beams in general, one makes the following assumptions:  
 
· the cross-section of the beam is indeformable,  
· transverse displacement is uniform on the cross-section.  
 
These assumptions make it possible to express displacements of an unspecified point of the section, in  
function of displacements of the point corresponding located on the average line, and according to one  
increase in displacement due to the rotation of the section around the transverse axes.  
 
The discretization in “exact” elements of beam is carried out on a linear element with two nodes and  
six degrees of freedom by nodes. These degrees of freedom are the three translations U, v, W and the 
three  
rotations X, y, Z [Figure 2-a]).  
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Z 
y 
1  
2 
X 
U X  
U X  
v y  
v y  
W Z  
W Z  
Appear 2-a: Element beam  
 
 
Waited until the deformations are local, it is built in each top of the grid a base  
local depending on the element on which one works. The continuity of the fields of displacements is  
ensured by a basic change, bringing back the data in the total base.  
 
In the case of the right beams, one traditionally places the average line on axis X of the base  
local, transverse displacements being thus carried out in plan (y, Z).  
 
Finally when we arrange sizes related to the degrees of freedom of an element in a vector  
or an elementary matrix (thus of dimension 12 or 122), one arranges initially the variables for  
top 1 then those of top 2. For each node, one stores initially the sizes related to  
three translations, then those related to three rotations. For example, a vector displacement will be  
structured in the following way:  
 
U, v, W, U, v, W,  
11 1 4 
4 
4 1 21x y 4 
4 
4 1 31z 12 2 4 
4 
4 
4 
2 22x y2 4 
4 
4 
4 
3 
z2 
top 1 
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3  
Equations of the movement of the beams  
 
We will not include in this document all the equations of the movement of the beams. For  
more complements concerning this part one can refer to documentation concerning  
elements POU_D_E and POU_D_T ([bib4]).  
 
 
 
4  
Element of right beam multifibre  
 
One describes in this chapter obtaining the elementary matrices of rigidity and mass for the element  
of multifibre right beam, according to the model of Euler. The matrices of rigidity are calculated with  
options “RIGI_MECA” or “RIGI_MECA_TANG”, and matrices of mass with option “MASS_MECA”  
for the coherent matrix, and option “MASS_MECA_DIAG” for the matrix of diagonalized mass.  
We present here a generalization [bib3] where the reference axis chosen for the beam is  
independent of any geometrical, inertial or mechanical consideration. The element functions for  
an unspecified section (heterogeneous is without symmetry) and is thus adapted to an evolution not  
linear of the behavior of fibres.  
One also describes the calculation of the nodal forces for the nonlinear algorithms: “FORC_NODA” 
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and  
“RAPH_MECA”.  
 
4.1  
Element beam of reference  
 
[Figure 4.1-a] the change of variable shows us realized to pass from the real finite element  
[Figure 2-a] with the finite element of reference.  
 
y  
y 
1  
2 
1 
2 
X  
0  
L 
X  
u1 1 X 
u2 2 X 
Z  
Z 
v1 1 y 
v2 2 y 
w1  
1 Z 
w2 2 Z  
Appear 4.1-a: Element of reference vs real Elément  
 
One will then consider the continuous field of displacements in any point of the average line by report/
ratio  
with the field of displacements discretized in the following way:  
 
{Custom} = [NR] {U}.  
 
The index S indicates the quantities attached to average fibre.  
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By using the functions of forms of the element of reference, the discretization of the variables  
custom (X), vs (X), ws (X), sx (X), sy (X), sz (X) becomes:  
1 
U  
 
 
1 
v  
W  
1 
U 
 
S (X) 
 
 
N1 
0 
0 
0 
0 
0 
N2 
0 
0 
0 
0 
0 1 
X  
v 
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S (X) 
 
 
 
 
0 
N3 
0 
0 
0 
N4 
0 
N5 
0 
0 
0 
N6 1y 
 
ws (X) 
 
 
 
 
 
0 
0 
N3 
0 
- N4 
0 
0 
0 
N5 
0 
- NR 
0  
6 
 
 
=  
1 
Z  
 
 
sx 0 
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0 
0 
N1 
0 
0 
0 
0 
0 
N2 
0 
0 u2  
0 
0 
sy 
- NR, 3 
0 
X 
N4, 
0 
0 
0 
X 
- NR 
0 
NR 
0 v  
 
 
, 
5 X 
6, X 
2  
 
 
NR 
NR 
NR 
NR 
W 
sz  
0 
, 
3 
0 
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0 
0 
X 
4, 
0 
X 
, 
5 
0 
0 
0 
X 
6, X 2  
 
 
x2  
y2  
 
 
z2  
éq 4.1-1  
With the following functions of interpolation:  
 
X 
1 
N1 = 1 
; NR, 1 = - 
L 
X 
L 
X 
1 
N2 = 
; N2, = 
L 
X 
L 
2 
3 
X 
X 
6 
X 
N3 = 1 - 3 
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+ 2 
; NR, 3 = -  
+12 
2 
3 
xx 
2 
3 
L 
L 
L 
L 
2 
3 
X 
X 
4 
X 
 
 
éq  
4.1-2  
N4 = X - 2 
+ 
; N4, = - + 6 
2 
xx 
2 
L 
L 
L 
L 
2 
3 
X 
X 
6 
X 
N5 = 3 
- 2 
; NR, 5 = 
-12 
2 
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3 
xx 
2 
3 
L 
L 
L 
L 
2 
3 
X 
X 
2 
X 
N6 = - 
+ 
; N6, = - + 6 
2 
xx 
2 
L 
L 
L 
L 
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4.2  
Determination of the matrix of rigidity of the multifibre element  
 
4.2.1 Case general (beam of Euler)  
 
Let us consider a beam of Euler, right-hand side directed in direction X, subjected to efforts 
distributed  
qx, qy, qz [Figure 4.2.1-a].  
 
 
 
Y, v  
 
 
X, U  
Z, W  
 
Appear 4.2.1-a: Beam of Euler 3D  
 
The fields of displacements and deformations take the following form then when it is written  
displacement of an unspecified point of the section according to the displacement (custom) of the line 
of  
average:  
 
U (X, y, Z) = custom (X) - ysz (X) + zsy (X) éq  
4.2.1-1  
v (X, y, Z) = vs (X)  
éq  
4.2.1-2  
( 
W X, y, Z) = ws (X)  
éq  
4.2.1-3  
= u' 
' 
' 
xx 
X (X) - y sz (X) + Z sy (X)  
éq  
4.2.1-4  
xy = xz = 0  
éq  
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4.2.1-5  
 
 
Note:  
 
· Torsion is treated overall separately, one does not calculate yz here.  
· f' (X) indicates the derivative of F (X) compared to X.  
 
By introducing the equations [éq 4.2.1-4] and [éq 4.2.1-5] into the principle of virtual work one  
obtains:  
 
 
L 
xx xx 0 
FD = 
U 
X Q 
v 
X Q 
W 
 
X Q dx  
éq  
4.2.1-6  
V 
(S () X + S () y + S () Z) 
0 
0 
 
qx, qy, qz indicating the linear efforts applied.  
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What gives by using the equation [éq 4.2.1-1]:  
 
L (NR u' 
' 
' 
' 
S (X) + M xsx (X) + M ysy (X) + M zsz (X))dx =  
 
 
 
0 
L (custom (X) qx + vs (X) qy + ws (X) qz) dx 
0 
éq 4.2.1-7  
 
With:  
 
NR = xxdS; M y = Z dS; M 
y dS éq  
4.2.1-8  
S 
xx 
Z = 
S 
- 
S 
xx 
 
Note:  
 
· The torque M X is not calculated by integration but is not calculated directly with  
to leave the stiffness in torsion (see [éq 4.2.2-4]).  
· The theory of the beam associated with an elastic material gives: xx = E xx  
 
4.2.2 Case of the multifibre beam  
 
We suppose now that the section S is not homogeneous [Figure 4.2.2-a].  
Without adopting particular assumption on the intersection of axis X with the section S or on  
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orientation of the axes Y, Z, the relation between the “generalized” constraints and deformation  
“generalized” Ds becomes [bib2]:  
 
S 
F = KS Ds  
 
 
 
 
éq 4.2.2-1  
with:  
S 
F = (NR, M y, M Z, M) T 
X 
 
éq  
4.2.2-2  
D 
' 
' 
' 
' 
S = (custom (X), sy (X), sz (X), (X))T 
sx 
Center  
Cross-section  
Material 1  
Material 3  
Material 2  
 
Appear 4.2.2-a: Section S unspecified - multifibre beam  
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The matrix K S can then be put in the following form:  
 
K 11 
S 
K 12 
S 
K 13 
0 
S 
 
 
 
 
Ks22 Ks23 
0  
Ks  
 
éq  
4.2.2-3  
K 
0  
 
s33 
 
sym 
Ks44  
 
with:  
Ks11 = EdS; Ks12 = Ezds; K 
Eyds 
S 
 
s13 = - 
S 
S 
 
éq  
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4.2.2-4  
K 
2 
2 
s22 = Ez dS; Ks23 = - Eyzds; K 
Ey ds 
S 
 
s33 = 
S 
S 
 
where E can vary according to y and Z. Indeed, it may be that in modeling planes  
section [Figure 4.2.2-a]), several materials cohabit. For example, in a section concrete reinforced,  
there are at the same time concrete and reinforcements.  
The discretization of the fibre section makes it possible to calculate the integrals of the equations [éq 
4.2.2-4].  
The calculation of the coefficients of the matrix K S is detailed in the paragraph [§4.2.3] according to.  
 
Note:  
 
The term of torsion K s44 = GJ X is given by the user using the data of J X.  
 
The introduction of the equations [éq 4.2.2-1] to [éq 4.2.2-4] in the principle of virtual work leads to:  
 
L T 
D 
S KsDsdx -  
 
 
0 éq  
4.2.2-5  
0 
L (custom (X) qx + vs (X) qy + ws (X) qz) dx = 
0 
 
The generalized deformations are calculated by (Ds is given to the equation [éq 4.2.2-2]):  
 
Ds = { 
B U}  
éq  
4.2.2-6  
With the following matrix B:  
 
NR 
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0 
0 
0 
0 
0 
NR 
0 
0 
0 
0 
0 
, 
1 X 
2, X 
 
 
 
0 
0 
- NR 
0 
NR 
0 
0 
0  
, 
3 xx 
4, xx 
- NR 
0 
NR 
0 
, 
5 xx 
6, xx 
 
B =  
 
0 
NR 
0 
0 
0 
NR 
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0 
NR 
0 
0 
0 
NR 
 
 
, 
3 xx 
4, xx 
, 
5 xx 
6, xx  
 
0 
0 
0 
NR 
0 
0 
0 
0 
0 
NR 
0 
0 
, 
1 X 
2, X 
 
 
éq 4.2.2-7  
 
Discretization of space [, 
0 L] with elements and the use of the equations [éq 4.2.2-5] returns  
the equation [éq 4.2.1-6] equivalent to the resolution of a traditional linear system:  
 
KU = F éq  
4.2.2-8  
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The matrix of rigidity of the element [Figure 4.2.2-b] and the vector of the efforts results are finally  
given by:  
L 
K 
= 
BT K B dx 
elem 
 
S 
0 
éq  
4.2.2-9  
L 
F = 
NR T Q dx 
0 
 
Center 
Cross-section 
Points of integration 
Under-points of integration 
L 
 
E ds 
E y ds  
T 
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S 
S 
 
K 
B K B dx 
elem = 
K S = 
 
S 
 
2 
 
0 
E y ds 
E y ds 
S 
S 
 
 
Appear 4.2.2-b: Multifibre beam Calculation of Kelem  
 
With the vector Q which depends on the external loading: Q = (qx qy Q 0 0 0) T 
Z 
 
 
If we consider that the efforts distributed qx, qy, qz are constant, we obtain the vector  
nodal forces according to:  
 
T 
Lq Lq Lq 
L2q L2q 
Lq 
Lq 
Lq 
L2q L2q  
 
X 
y 
Z 
Z 
y 
X 
y 
Z 
Z 

file:///Z|/process/refer/refer/p720.htm (20 of 39)10/2/2006 2:52:32 PM



file:///Z|/process/refer/refer/p720.htm

y 
F 
 
=  
0 - 
0 
éq  
4.2.2-10  
2 
2 
2 
12 
12 
2 
2 
2 
12 
12  
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4.2.3 Discretization of the fibre Calculation section of Ks  
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The discretization of the fibre section makes it possible to calculate the various integrals which 
intervene  
in the matrix of rigidity. Thus, if we have a section which comprises N fibres we will have them  
approximation following of the integrals:  
 
N 
N 
N 
Ks11 = EiSi; Ks12 = EiziSi; Ks13 = I.E.(internal excitation) yiSi 
i=1 
i=1 
i=1 
 
 
éq 4.2.3-1  
N 
N 
N 
K 
2 
2 
s22 = I.E.(internal excitation) zi If 
; Ks23 = - I.E.(internal excitation) yi ziSi; Ks33 = I.E.(internal excitation) yi If 
i=1  
i=1 
i=1 
 
with I.E.(internal excitation) and If the initial or tangent module and the section of each fibre. The 
state of stress is  
constant by fibre.  
Each fibre is also located using yi and zi the co-ordinates of the centre of gravity of  
fibre compared to the axis of the section defined by order “COO_AXE_POUTRE” (document  
“AFFE_SECT_MULTI”).  
 
 
4.2.4 Integration in the linear elastic case (RIGI_MECA)  
 
When the behavior of material is linear, the element beam is homogeneous in its length,  
the integration of the equation [éq 4.2.2-9] can be made analytically.  
One obtains the matrix of following rigidity then:  
 
K 
K 
K 
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s11 
s12 
s13 
- Ks11 
- Ks12 
- Ks13  
 
0 
0 
0 
0 
0 
0 
 
L 
L 
L 
L 
L 
L 
 
 
12Ks33 -12K 
6K 
6K 
s23 
s23 
s33 
-12K 
12K 
6K 
6K 
s33 
s23 
s23 
s33 
0 
0 
0 
 
 
L3 
L3 
L2 
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L2 
L3 
L3 
L2 
L2 
 
 
12Ks22 
- 6Ks22 - 6K 
12K 
s23 
s23 
-12Ks22 
- 6Ks22 - 6Ks23  
 
0 
0 
0 
3 
2 
2 
3 
3 
2 
2 
 
 
L 
L 
L 
L 
L 
L 
L 
 
 
Ks44 
0 
0 
0 
0 
0 
- Ks44 
0 
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0 
 
 
L 
L 
 
 
4K 
4K 
s22 
s23 
- Ks12 - 6K 
6K 
2K 
2K 
s23 
s22 
s22 
s23  
 
0 
2 
2 
 
 
L 
L 
L 
L 
L 
L 
L 
 
 
4Ks33 
- Ks13 - 6K 
6K 
2K 
2K 
s33 
s23 
s23 
s33 
0 
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L 
L 
L2 
L2 
L 
L 
 
Kelem =  
K 
K 
K 
 
 
s11 
s12 
s13 
0 
0 
0 
 
 
L 
L 
L 
 
 
12Ks33 
-12Ks23 
- 6Ks23 - 6Ks33 
0 
 
 
L3 
L3 
L2 
L2 
 
 
12K 
6K 
6K 
 
 
SYM 
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s22 
s22 
s23 
0 
3 
2 
2 
 
 
L 
L 
L 
 
 
Ks44 
 
0 
0 
 
L 
 
 
4K 
4K 
 
 
s22 
s23  
 
L 
L 
 
 
4Ks33  
 
 
L 
 
 
 
éq 4.2.4-1  
with the following terms: K 11, 
S 
K 12, 
S 
K 13, 
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S 
Ks22, Ks33, Ks23, Ks44 are given to the equation  
[éq 4.2.2-4].  
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4.2.5 Integration in the non-linear case (RIGI_MECA_TANG)  
 
When the behavior of material is nonlinear, to allow a correct integration of  
efforts intern (see paragraph [§4.4]), it is necessary to have at least two points of integration it  
length of the beam. We chose to use two points of Gauss.  
The integral of Kelem [éq 4.2.2-9] is calculated in numerical form:  
L 
2 
T 
Kelem = 
B K 
 
S B dx = J I 
W B (X) T 
I 
Ks (xi) B (xi) éq  
4.2.5-1  
0 
i=1 
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where xi are the position of the point of Gauss I in an element of reference length 1,  
1 ± 0,57735026918963)/2  
I 
W is the weight of the point of Gauss I. I here is taken 
W = 0,5 for each of the 2 points  
J is Jacobien One takes J here = L, the real element having a length L and the function of form  
X 
to pass to the element of reference being  
.  
L 
Ks (xi) is calculated using the equations [éq 4.2.2-3], [éq 4.2.2-4] (see paragraph [§4.2.3] for  
the numerical integration of these equations)  
 
The analytical calculation of B (X) T 
I 
Ks (xi) B (xi) gives:  
 
21 
B K 11 
S 
- 1 
B 2 
B K 13 
S 
1 
B 2 
B K 12 
0 
S 
- 1 
B 3 
B K 12 
S 
- 1 
B 3 
B K 13 
S 
- 21 
B K 11 
S 
1 
B 2 
B K 13 
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S 
- 1 
B 2 
B K 12 
0 
S 
- 1 
B 4 
B K 12 
S 
- B B K  
 
1 4 
13 
S 
 
 
2 
2 
2 
B Ks33 
2 
B Ks23 
0 
2 
B 3 
B Ks23 
2 
B 3 
B Ks33 
1 
B 2 
B K 13 
S 
- 2 
2 
2 
B Ks33 
2 
B Ks23 
0 
2 
B 4 
B Ks23 
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2 
B 4 
B Ks33  
 
2 
2 
2 
 
2 
B Ks22 
0 
- 2 
B 3 
B Ks22 - 2 
B 3 
B Ks23 - 1 
B 2 
B K 12 
S 
2 
B Ks23 
- 2 
B Ks22 
0 
- 2 
B 4 
B Ks22 - 
 
2 
B 4 
B Ks23 
 
2 
1 
B Ks44 
0 
0 
0 
0 
0 
- 21 
B Ks44 
0 
0 
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2 
2 
 
 
3 
B Ks22 
3 
B Ks23 
1 
B 3 
B K 12 
S 
- 2 
B 3 
B Ks23 
2 
B 3 
B Ks22 
0 
3 
B 4 
B Ks22 
3 
B 4 
B Ks23  
 
2  
3 
B Ks33 
1 
B 3 
B K 13 
S 
- B B K 
B B K 
0 
B B K 
B B K 
 
 
2 3 s33 
2 3 s23 
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3 4 s23 
3 4 s33 
2 
 
 
1 
B K 11 
S 
- 1 
B 2 
B K 13 
S 
1 
B 2 
B K 12 
0 
S 
1 
B 4 
B K 12 
S 
1 
B 4 
B K 13 
S 
 
 
2 
2 
B Ks33 
- 22 
B Ks23 
0 
- 2 
B 4 
B Ks23 - B B K  
 
2 4 s33  
 
2 
2 
B Ks22 
0 
2 
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B 4 
B Ks22 
2 
B 4 
B Ks23  
 
2 
 
B K 
0 
0 
 
1 
s44 
 
 
2 
2 
4 
B Ks22 
4 
B Ks23  
 
2 
 
 
4 
B Ks33  
 
éq 4.2.5-2  
 
where I 
B are calculated with X-coordinate xi of the element of reference with:  
1 
B = - NR 
= NR 
1 
, 
1 X 
2, X = L 
6 
X 
B = NR 
= - NR 
I 
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2 
, 
3 xx 
, 
5 xx = - 
+12 
L2 
L2 éq  
4.2.5-3  
4 
X 
B = NR 
I 
3 
4, xx = - 
+ 6 
L 
L 
2 
X 
B = NR 
I 
4 
6, xx = - 
+ 6 
L 
L 
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4.3  
Determination of the matrix of mass of the multifibre element  
 
4.3.1 Determination of Melem  
 
In the same way, the virtual work of the efforts of inertia becomes [bib2]:  
 
L 
 
D 2u X, y 
D 2v X, y 
D 2w X, y  
inert 
W 
= , 
, 
 
, 
0  
U (X y) 
() + v (X y) () + (wx y) () dSdx 
S 
 
2 
2 
2 
 
 
dt 
dt 
dt 
 
 
 
2 
= L 
D U.S. 
U 
Sm S 
dx 

file:///Z|/process/refer/refer/p720.htm (36 of 39)10/2/2006 2:52:32 PM



file:///Z|/process/refer/refer/p720.htm

0 
dt 2 
éq 4.3.1-1  
 
with U.S. the vector of “generalized” displacements.  
 
 
What gives for the matrix of mass:  
 
M 11 
0 
0 
S 
M 12 
S 
M 13 
0 
S 
 
 
 
 
M 11 
0 
0 
0 
S 
- M 12 
S 
 
 
M 11 
0 
0 
S 
- M 
 
M S =  
13 
S 
éq  
4.3.1-2  
 
M s22 M s23 
0 
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M 
0 
 
 
s33 
 
 
sym 
M s22 + M s33 
 
with:  
 
M s11 = ds; Ms12 = 
zds 
 
; M 
yds 
 
S  
 
s13 = - 
S 
S 
 
éq  
4.3.1-3  
M 
2 
2 
s22 = Z 
ds; M s23 = - 
yzds 
 
; M 
y 
ds 
S 
 
s33 = 
S 
S 
 
with which can vary according to y and Z.  
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As for the matrix of rigidity, we take into account the generalized deformations and  
discretization of space [0, L]. What gives finally for the elementary matrix of mass:  
 
1 
M 
 
elem  
2 
M 
 
elem  
3 
M elem  
 
 
4 
M elem  
5  
M elem  
6  
M elem  
M elem =  
 
7 
 
M elem  
8 
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M 
 
elem  
9 
M 
 
elem  
10 
M elem  
 
 
11 
M elem  
12  
M elem  
with:  
 
LM 
M 
M 
LM 
LM 
LM 
M 
M 
LM 
LM 
1 
 
11 
S 
- 
13 
S 
12 
S 
12 
S 
13 
S 
11 
S 
13 
S 
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- 
12 
S 
- 
12 
S 
- 
13 
S 
 
M elem =  
0 
0 
 
3 
2 
2 
2 
12 
6 
2 
2 
12 
12 
 
 
LM 
M 
M 
LM 
M 
L M 
M 
M 
LM 
M 
M 
LM 
M 
L M 
M 
2 
13 
6 
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11 
S 
s33 - 6 
s23 - 7 
11 2 
12 
S 
s23 
11 
S 
s33 - 
9 
6 
6 
13 
S 
11 
S 
s33 
s23 - 3 
12 
S 
s23 - 13 2 
 
M 
sym 
elem =  
+ 
+ 
- 
11 
S 
+ s33  
 
35 
5L 
5L 
20 
10 
210 
10 
2 
70 
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5L 
5L 
20 
10 
420 
10  
 
LM 
M 
LM 
L M 
M 
M 
M 
M 
LM 
M 
LM 
L M 
M 
M 
3 
13 
6 
11 
S 
s22 - 7 
S 
-11 2 
13 
11 
S 
s22 - 
6 
9 
6 
s23 
12 
S 
s23 
11 
S 
S 22 - 3 
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13 2 
13 
S 
11 
S 
s22 - 
 
M 
sym sym 
elem =  
+ 
- 
- 
- 
s23  
 
35 
5L 
20 
210 
10 
10 
2 
5L 
70 
5L 
20 
420 
10 
10  
 
LM 
LM 
L M 
L M 
LM 
LM 
LM 
LM 
L M 
L M 
4 
s22 + 
2 
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s33 
S 
- 2 
13 
12 
S 
- 3 
12 
S 
- 3 
13 
S 
s22 + 
s33 - 
2 
2 
 
M  
sym sym sym 
elem =  
0 
13 
S 
12 
S 
 
 
3 
20 
20 
20 
20 
6 
30 
30  
 
3 
L M 
LM 
LM 
LM 
M 
L M 
M 
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L M 
L M 
LM 
LM 
5 
2 
2 
11 
S 
S 22 
s23 - 
12 
S 
- s23 -13 2 
2 
11 
S 
s22 
S 
- 3 
13 
11 
S 
S 22 - 
 
M 
sym sym sym sym 
elem =  
+ 
+ 
- 
- 
s23  
 
105 
15 
15 
12 
10 
420 
10 
30 
140 
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30 
30 
 
 
3 
L M 
LM 
LM 
L M 
M 
M 
L M 
LM 
L M 
LM 
6 
2 
11 
S 
s33 - 
13 2 
13 
S 
11 
S 
s33 
S 
- 2 
23 
12 
S 
- 
s23 - 
3 
 
M 
sym sym sym sym sym 
elem =  
+ 
- 
11 
S 
- 
s33  
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105 
15 
12 
420 
10 
10 
30 
30 
140 
30  
LM 
M 
M 
LM 
LM 
7 
 
11 
S 
13 
S 
- 
12 
S 
12 
S 
13 
S 
 
M 
sym sym sym sym sym sym 
elem =  
0 
 
 
3 
2 
2 
12 
12  
 
LM 
M 
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M 
LM 
M 
L M 
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8 
13 
6 
11 
S 
s33 - 6 
S 23 - 7 
12 
S 
- s23 -11 2 
 
M 
sym sym sym sym sym sym sym 
elem =  
+ 
11 
S 
- s33  
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210 
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LM 
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11 2 
 
M 
sym sym sym sym sym sym sym sym 
elem =  
+ 
13 
S 
11 
S 
+ 
s22 
s23  
 
35 
5L 
20 
210 
10 
10  
 
LM 
LM 
L M 
L M 
10 
s22 + 
s33 - 
2 
2 
 
M 
sym sym sym sym sym sym sym sym sym 
elem =  
13 
S 
12 
S 
 
 
3 
20 
20  
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3 
L M 
LM 
LM 
11 
2 
2 
 
M 
=  
11 
S 
sym sym sym sym sym sym sym sym sym sym 
elem 
+ 
S 22 
s23  
 
105 
15 
15 
 
 
3 
L M 
LM 
12 
2 
 
M 
=  
11 
S 
sym sym sym sym sym sym sym sym sym sym sym 
elem 
+ 
s33  
 
105 
15 
 
 
éq 4.3.1-4  
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with the following terms: M 
, M, M, M 
, M, M 
who are given to the equation  
11 
S 
12 
S 
13 
S 
s22 
s33 
s23 
[éq 4.3.1-3].  
 
Note:  
 
The matrix of mass is reduced by the technique of the concentrated masses ([bib4]). This  
stamp of diagonal mass is obtained by option “MASS_MECA_DIAG” of the operator  
CALC_MATR_ELEM.  
 
 
4.3.2 Discretization of the fibre section - Calculation of ms  
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The discretization of the fibre section makes it possible to calculate the various integrals which 
intervene  
in the matrix of mass. Thus, if we have a section which comprises N fibres we will have them  
approximation following of the integrals:  
 
N 
N 
N 
M 
S; M 
Z S; M 
y S 
s11 = I I 
s12 = I I I 
s13 = - I I I 
i=1 
i=1 
i=1 
éq  
4.3.2-1  
N 
N 
N 
M 
Z 2S; M 
y Z S; M 
y 2S 
s22 = I I 
I 
s23 = - I I I I 
s33 = I I 
I 
i=1 
i=1 
i=1 
 
with and S density and the section of each fibre. y and Z are the co-ordinates of  
I 
I 
I 
I 
centre of gravity of fibre defined as previously.  
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4.4  
Calculation of the internal forces  
 
The calculation of the nodal forces F due in a state of internal stresses given is done by  
int 
the integral:  
 
L 
F 
 
éq  
4.4-1  
int = 
BT F dx 
 
S 
0 
 
where B is the matrix giving the generalized deformations according to nodal displacements  
[éq 4.2.2-6] and where F is the vector of the generalized constraints given to the equation [éq 4.2.2-2],  
S 
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Center Section  
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Points of integration 
Under-points of integration 
L 
T 
 
 
ds  
F 
B F 
dx 
int = 
S int 
F 
 
S 
= S 
int 
 
0 
 
y ds 
S 
 
 
Appear 4.4-a: Multifibre beam Calculation of Fint  
 
T 
F = NR M 
M 
M  
éq  
4.4-2  
S 
[ 
y 
Z 
X] 
 
The normal effort NR and the bending moments M and M are calculated by integration of the 
constraints  
y 
Z 
on the section [éq 4.2.1-8].  
 
Behaviour in linear torsion remaining, the torque is calculated with displacements  
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nodal:  
 
- 
M = GJ 
x2 
x1  
éq.  
4.4-3  
X 
X 
L 
 
The equation [éq 4.4-1] is integrated numerically:  
2  
F = L T 
B F dx 
J 
W B X 
F X éq  
4.4-4  
I 
S 
= 
0 
I () T 
I 
S (I) 
i=1 
The positions and weights of the points of Gauss as well as Jacobien are given in the paragraph  
[§4.2.5].  
 
The analytical calculation of B (X) T F X gives:  
I 
S (I) 
 
[B (X) T F X = - B NR B M - B M 0 B MR. B MR. B N-B MR. B M 0 B MR. B M  
I 
S ( 
)]T 
I 
[1 2 Z 2 y 
3 
y 
3 
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Z 
1 
2 
Z 
2 
y 
4 
y 
4 
Z] 
éq 4.4-5  
 
where B are given to the equation [éq 4.2.4-1].  
I 
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4.5  
Nonlinear models of behavior usable  
 
The supported models are on the one hand the relations of behavior 1D of the type ECRO_LINE and  
PINTO_MENEGOTTO [R5.03.09], in addition the model Labord_1D [R7.01.07] dedicated to the 
behavior of  
concrete into cyclic. In addition all the laws 3D are usable thanks to a routine “shunting” which  
puts all the deformations other than the axial deformation (along fibre) at zero.  
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Note:  
 
The internal, constant variables by fibre, are stored in the attached under-points  
at the point of integration considered.  
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Summary: 
The model presented here results from the asymptotic analysis of the equations of thermics when the 
thickness from 
the structure tends towards zero. 
The temperature is described by 3 fields defined on the average surface of the hull. 
One shows on some examples, the capacities of the model by reference to 3D solutions. 
The applications concerned are thermomechanical calculations of hulls, the thermal restitution of 
wall for 
thermohydraulics of pipings, problems of identification. 
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1 Introduction 
The mechanical models of mean structures (hulls and plates) arrived at a stage of 
extremely at least advanced development for the homogeneous elastic structures in 
the thickness. The problem is known since strong a long time and various theories were born, 
generally dedicated to specific problems (thick hulls, buckling etc…). However one 
basic model, that of LOVE-KIRCHHOFF, achieve the unanimity in the most current applications. 
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The difficulties lie rather in the numerical calculation of this one of the fact, on the one hand, of the 
need 
to approach correctly the surface of the hull (in particular its curve), and in addition of the order 
raised partial derivative equations which should be solved (4th order). 
In thermics on the other hand, the situation is much less clear and a great number of approaches 
coexist. It is indeed only recently that the problem arose with the possibilities (and 
need) for thermomechanical calculations. The first models neglect conduction in parallel 
on average surface to retain only the thermal transfers in the thickness of the hull, this 
step is completely paradoxical among that of the mean structures where, on the contrary, the low 
thickness 
structure leads to simplifying assumptions on the variation in the thickness of the fields 
physical sizes. 
The most recent modelings take as a starting point the the mechanical ideas of thin hulls being 
attached 
with the second approach, one can classify them according to a completely similar order. 
1) Models utilizing a more or less thorough development polynômial of the temperature 
in the thickness [bib2], [bib9], [bib10]. It is primarily about formulation of finite elements. 
2) Models associated with the theories with surfaces to directors (Surfaces of COSSERAT) [bib5], 
[bib8]. 
The director is here the gradient of the temperature in the thickness. The problem of these approaches 
reside in the law of behavior to introduce. Coherence with the three-dimensional law led 
with choices which are interpreted like an assumption of linear distribution of the temperature in 
the thickness. This formalism thus joined practically the preceding models (the introduction of 
several directors being identified with various orders of development of the polynomials). 
3) Models of degenerated finite elements [bib11]: on the basis of a three-dimensional finite element, 
the introduction 
constraints between the degrees of freedom located on the same normal at average surface 
allows by condensation to deduce an element from “thermal hull”. Practically, there still, 
the basic element using a parabolic interpolation according to the thickness, the element of hull 
corresponds to a linear distribution in the thickness. 
Parallel to these approaches numerical (1) and (3) or based on assumptions a priori (2), 
results on the shape of the field of temperature of a thin section and problem of which it is 
solution were obtained by asymptotic methods [bib3], [bib1]. 
As for the mechanical model, those make it possible to justify the assumptions made a priori in 
mean theories of hulls, to even obtain the equations of the problem of hull. Results of 
[bib 1] are recalled low and will be used as a basis for the model suggested. Let us note simply here 
that the idea 
subjacent with any step of the asymptotic type is to introduce a small parameter (here the report/ratio 
thickness of the plate on a dimension characteristic of this one), then having obtained the problem 
limit when tends towards zero starting from the three-dimensional problem, to approach in the 
applications 
(where takes obviously a nonnull value) the solution by its limit. 
From a practical point of view, the limit obtained for the equations of stationary thermics seems 
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to be too “poor” to be of a real interest, (one will give of it an illustration in [ß2.2.2]). More 
precisely the values to reach to identify the solution with its limit are very small in 
real situations met.  
This is why one proposes in this note to keep the form of the limiting solution 
(parabolic distribution in the thickness) but to lay out about it like assumption a priori on 
the three-dimensional solution allowing to bring back itself to a problem arising on average surface. 
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One thus has an approximate model of mean structure converging towards the model limits 
three-dimensional equations. In this direction, it is “optimal” since a linear assumption of distribution 
in the thickness leads to a model not converging towards the limiting solution and only one model 
based on a richer development in the thickness sees its terms of a nature higher than two 
to converge towards zero when the hull is thin. 
The plan of the note is as follows: 
· one starts by pointing out the equations of the stationary thermal problem for the solid 
three-dimensional and their expressions in a frame of reference adapted to the cases where the solid 
is a “thin hull”, 
· then, having pointed out the results of an asymptotic study of these equations carried out in the case 
of a plate, one gives the complete description of the model suggested, 
· one then applies the model to a certain number of geometries and thermal loadings and 
a comparison is made compared to analytical solutions or numerical calculations 
three-dimensional, 
· finally, one gives some indications on the numerical aspects of the use of the model in one 
calculation by surface and linear finite elements. 
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2  
Presentation of the model 
2.1  
Position of the thermal problem in the hulls 
In this paragraph, we first of all will point out the description of the geometry of the hulls, sights 
like thin three-dimensional solids. One will pose then the thermal problem of conduction. 
2.1.1 Description of the geometry 
A hull is defined as being a solid, thin perpendicular to an average surface. 
One notes 2h the thickness of the hull; one chooses a frame of reference (x1, x2) on surface. 
One notes G the associated metric tensor, N the normal vector, C the tensor curve of. 
 
N 
x1 
X 2 
+ 
2h 
- 
 
I =] - H, H 
Appear: 2.1.1-a 
The hull is described by the frame of reference (X, x3), x3 according to N: = X] - H, H [ 
(The Greek indices, ß, are dedicated to the surface co-ordinates on). 
This description is appropriate of course for a hull thickness 2h lower than the smallest ray of 
curve of. 
In an unspecified point (X, x3) of the hull, the metric tensor G is expressed according to 
fundamental tensors G and C of average surface by: 
G X, x3 = G X - 2 x3 C X 
 
G 3 = 0, G33 = 1 
éq 2.1.1-1 
and det G = det G 1 - x3 tr C 
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= det G 1 + x3 1 + 1 
 
R 1 
R 2 
where R1, R2 are the principal radii of curvature of as in point X considered. 
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Note: 
It is known indeed that the trace (tr) of a tensor is an invariant (by basic change). One has 
the practice however to write the sizes in orthonormée physical base i.e. As follows: 
phy 
phy 
G X, x3 = - 2x3 C X. 
phy 
1 
C = -  
And if the base is principal of curve:  
R  
(without summation). 
1 + 1 = H 
1 
1 
- 1 = H2 
One will note: R 
. 
1 
R 2 
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and R1 
R 2 
One limited oneself here under the first order in x3 tr C; as it subsequently will be done. In 
practical, indeed, the thinness of the hull allows such a simplification. There will be advantage also 
with 
to place in a principal reference mark of curve, orthonormé. The tensor G is then the identity, C is 
diagonal. It is what one will do henceforth. 
2.1.2 Equation of heat 
The equations of three-dimensional thermal conduction are written (for a rigid driver): 
- div  
K grad T + C T =  
T 
éq 2.1.2-1 
where K indicates the tensor of conductivity, C the heat-storage capacity and R the possible sources. 
There is advantage to write the expression of the differential operator according to metric G's 
generated by 
surface average. One will consider indeed tensors of conductivity K isotropic transverse 
according to these axes of co-ordinates (multi-layer cf materials). 
 
 
I 
K 
0 
 
K =,  
K 
,  
X,  
X. 
J 
and K which can vary with  
X 
 
 
1 
2 
3 
0 
K 
The expression of the operator: 
1/2 
I 
I J 
- div  
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K  
grad T =  
- det G. 
- 1/2 .  
det G. K G T 
I 
J 
J 
is written then with the first order in x3/tr C, for an orthotropic conductivity according to directions' of 
curve principal: 
- 1 - X H.  
1 - X H K T + 1 + X H K T + H K T 
3 
1 
1 
3 
2 
11 
1 
2 
3 
2 
22 
2 
1 
3 
-  
K T 
3 
3 
éq 2.1.2-2 
If the curves are constant, this becomes: 
- 1 - 2x3/R1.  
1 k11 1 T-1 - 2x3/R2. 2 k22 2 T - H1 1 - x3 H1 K 3 T-3 K 3 T 
The effect of the curve is thus in the same way standard than a modified distribution of conductivity in 
the thickness. 
Handbook of Reference 
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2.1.3 Thermics for a mean structure 
The equations of stationary thermics on the hull can be written in the form of one 
problem of minimization. 
It is supposed in particular that the boundary conditions on ends X I of the hull are of 
even standard on all thickness I. One partitionne X I in: 
X I (zone at imposed temperature), 
T 
and X I (zone in condition of exchange or imposed flow). 
To find the field of temperature T: 
1 
T =  
Arg Min J (), with J ( 
) = A (,) - F (), with: 
V 
2 
 
WITH (T,  
) = K.  
T.  
D +  
T.  
d± +  
T.  
dS 
 
+ - 
X I 
F () =  
.  
d± +  
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.  
dS. 
+ - 
X I 
éq 2.1.3-1 
One notes: 
1 
· 
V = H (X I),  
= 0 on  
X I 
 
. 
T 
· Boundary conditions on + - (X I) are of the type exchanges or imposed flow: 
. N = T - = - (K T).  
N being a coefficient of exchange. 
The term of conductivity in A (T,) is written: 
K  
T.  
D 
 
= K 1 - X 1 + 1  
T.  
1 + X H dx dx dx, 
3 
T.  
+ K3 
3 
3 
1 
1 
2 
3 
I 
R  
R  
this, in a orthonormé principal reference mark of curve of (K and K are then the components 
physiques of the tensor of conduction K). 
The terms of exchange on surfaces + and - are: 
± 
T. D ± = ± T ±. 1 ± h. H 1 dx1. dx2 
+ - 
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The object of a thermal model of hull is thus to bring back from three to two variables of space 
dependence of the field of temperature T in the expression of the differential operator corresponding to 
[eq 2.1.2-2] or [eq 2.1.3-1], with the help of the choice and the justification of suitable assumptions. 
The model suggested in [§2.3] rests on the results of the asymptotic development of the equations 
thermics presented in [§2.2] hereafter. 
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2.2  
Recall of the results resulting from the asymptotic development 
2.2.1 The limiting model obtained 
One summarizes here the principal results obtained in [bib1] by a technique of development 
asymptotic. The case of a plate is considered: X I, thickness 2 h. the temperature is fixed at 0 
on edge X I, and flows +, - on the faces + and -. 
One seeks to study the dependence of the solution T of the thermal problem [éq 2.1.3-1] with respect to 
the thickness of the plate 2 h. One uses for that a technique of change of open which brings back it 
problem with a field fixes X I, with I =] - H, + H [. The parameter appears then explicitly in 
equations of the transported problem (P), X I to X I. 
On X I, the initial problem is written in variational form: 
 
1 
To find:  
T V = H X  
I, = 0 on  
X I 
such as: 
K.  
T.  
, + K T.  
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, = + + + - - ,  
V. 
33 
3 
3 
X I 
 
éq 2.2.1-1 
The results of the asymptotic development [bib 1] consist of the checked following properties 
by T (), the solution of the transported problem (P), posed on X I:  
1 
(I) 1 
T () tends towards T1 X; x3 = T1 X in H (X I). 
 
T1 X appears COM m E a tem pérature m oyenne on thickness I, at item X. 
 
(II) T, 3 (), which is the derivative of T () according to the variable thickness x3 I, tends towards 
2 
1 
1 
derived according to x3 from the cham p X; x3 in L () X H m (I), where H m (I) indicates the space of 
1 
functions of H (I) with m oyenne null. 
éq 2.2.1-2 
In conclusion, the solution T of the initial problem on X I can be represented by the two first 
terms of its development: 
 
 
 
T X, X 3 = 1 
T1 X + X, x3 = X 3 +… 
éq 2.2.1-3 
However the gradient of T is not represented by the gradient of the representation of T. This 
situation is generic problems of singular disturbances encountered in the study of 
mean structures (plates, beams…) : 
 
 
 
T X, X = 1 T 
/ , 
3 
1 X. E + X, x3 = X 3 
3  
e3. 
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éq 2.2.1-4 
The field of the “gradient of T” is thus not a field of gradient! 
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Fields T1 and are calculated on average surface. If conductivity is 
homogeneous in the thickness, one a: 
1 
T1 H 0 (), solution of: 
 
1 
H K T 
1 
1, . , =  
+ + -, H 0 () 
 
2 
éq 2.2.1-5 
2 
 
+ X + - X 
X 
+ X - - X 
X, X 
3 
3  
=  
.  
- H +  
. x3. 
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4 K X 
H 
3 
2 K X 
éq 2.2.1-6 
It is noted that T1 is the solution of a problem arising on, whereas is obtained explicitly in 
function of imposed flows. These two equations constitute the “limiting” model obtained by 
asymptotic development. 
Note: 
· In a language more coloured and more blur, the preceding results are interpreted while saying 
that for a thin section, the average temperature is governed by received average flow and 
conduction in the plan of the plate. The distribution in the thickness is not a function, in one 
not given, that the flows imposed in this point on the faces higher and lower, it 
is not affected by the presence of the close points. 
· The distribution of temperature in the thickness is “parabolic” according to the representation 
[éq 2.2.1-6]. 
2.2.2 One  
application 
One can illustrate the results of the asymptotic development for a simple example, which shows too 
limitations of the model obtained by using the representation of the temperature [éq 2.2.1-3] using 
fields T1 and, [éq 2.2.1-5] and [éq 2.2.1-6]. 
One considers an infinite plate subjected on his half x2 < 0 to a couple of constant flows (+ =, - = 
-) balanced, and insulated on other half x2 > 0. 
x3 
+ =  
= 0 
x1 
X 2 
- = -  
= 0 
T (0, 0) = 0 
I 
Appear: 2.2.2-a 
The problem [eq 2.2.1-5] of determination of average temperature T1 is an equation here 
2 
differential in X 
2 T1 (x2) = 0 
2: x2 
since average flow j+ + J is null. The solution is then T1 = 0 
everywhere. 
Handbook of Reference 
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The field (x2, x3) is calculated easily by [éq 2.2.1-6]: ` 
 
 
X 
for X 
2,  
x3 =. x3 
2 < 0, 
K 
= 0 
for x2 > 0. 
The discontinuity of the boundary condition of NEUMANN on ± thus refers directly on 
field of temperature: opposite the higher temperature T is as follows: 
+ 
T 
h/K 
0 
X 2 
Appear: 2.2.2-b 
This discontinuity appears of more independent the thickness H in this limiting model, once it 
flow brought standardized per h. 
This limitation of the limiting model obtained by asymptotic development is inherent in 
purely local determination of the parabolic complementary term (X, x3). Discontinuities 
induced will be awkward for the applications, in particular in thermomechanics. 
One is thus brought to differently formulate the model of thermics of hull, while keeping them 
results of this asymptotic development. 
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2.3  
Formulation of the stationary model of thermics of hull 
One saw on the results of the asymptotic study of the three-dimensional equations on the solid = X 
I, that the limiting model obtained comprised an average temperature solution of a problem of 2nd 
order posed on, and that the additional parabolic term was given only locally (not 
by point on). This thus had the disadvantage of providing discontinuous solutions when them 
thermal “loadings” are it. 
One thus presents in this paragraph a representation of the temperature, always parabolic 
in the thickness, but avoiding the preceding pitfall. One describes the equations obtained, and their 
properties. 
2.3.1 Equations of the model 
Following the results of the asymptotic development, one chooses the representation in the thickness 
following on = X I: 
T X, X =  
T X 
X 
X +  
T X 
X 
3 
1 
+  
T2 
.  
W 2 
3 
3 
.  
W3 
3 
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éq 2.3.1-1 
with (w1 = 1, w2, W3) a given base of the polynomials of degree 2. 
One thus replaces the determination of the field T to three variables of space by that of three fields 
scalars T1, T2, T3 with 2 surface variables on. This decomposition [éq 2.3.1-1] is practical for 
to show its bond with the asymptotic model. But one will use another representation for 
digital model: to see [§ 2.3.5]. 
One will inject this representation of the temperature T (X, x3) directly in the thermal problem 
[éq 2.1.3-1] posed on = X I. 
From the definition of space v in [éq 2.1.3 - 1], one adopts for the fields Ti: 
1 
3 
W = V = 1,  
2, 3 H (), I = 0 on  
T. 
By posing T = (T1, T2, T3) the formulation of the thermal problem on becomes: 
To find  
T W, 
1 
T =  
 
Arg Min J (), with  
J () = A (,) - F (), and 
2 
V W 
 
T 
T 
WITH (T,  
) = T.  
A.  
+ T.  
B.  
D 
 
T 
T 
F () = C.  
D +  
D.  
ds  
 
 
éq 2.3.1-2 
Handbook of Reference 
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Indeed, from [éq 2.3.1-1] one deduces the expressions: 
1 
 
(T) =  
T. W 2 
W3 
 
0 
T =  
T.  
3 
w'2 
w'3 
Tensor A of order 4 corresponds to surface average conductivities: 
With 
X 
K 
.  
W.  
1 -  
X. 1 + 1 
1 + X H 
dx 
I J =  
W I 
J 
3 
3 
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1 
3 
I 
R  
R  
éq 2.3.1-3 
(by using the metric sight in [éq 2.1.1-1]). 
The dependence of A following (X) comes from that of K ß and that of the average curve H1 from 
surface. 
The tensor B of order 2 described transverse conduction as well as the exchanges on the faces + and -: 
' 
' 
B 
X = K W.  
W 1 + X H 
dx +  
+ W (H).  
W (H) 1 + H  
H 
ij  
I 
J 
3 
1 
3 
I 
J 
1 
I 
+ - W ( 
( 
I - H).  
W J - H) 1 - H H 1 
éq 2.3.1-4 
With regard to the second member F, the vector C is: 
1 
1 
C X =  
1 + H  
H 
+  
 
1 - H  
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H 
+ 
W (H) 
W (- H) 
2 
1 
- 
2 
1 
W (H) 
3 
W (- H) 
éq 2.3.1-5 
3 
(One supposes the absence of heat sources in the thickness to simplify.) 
Finally: 
1 
D X = W X 
.  
1 + X H  
dx, for  
X 
2 
3 
3 
1 
3 
 
I 
W X 
éq 2.3.1-6 
3 
3 
With the examination of the formulation [éq 2.3.1-2] obtained for the thermics of hull, one notes that 
the differential operator remains of order 2, contrary to mechanics where this one passes to 4. In 
thermics the curve of average surface intervenes only in one modification of metric, and 
not directly in the operators, as an inhomogeneousness of conductivities would do it in 
the thickness. 
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2.3.2 Case of a homogeneous plate 
If a plate is considered, or if one neglects the variation of metric in the thickness of 
the hull (1 >> hH1) and by supposing homogeneous material in the thickness to simplify, one can 
to propose the choice of a base (1, w2, W3) of the polynomials of degree 2 (polynomials of Legendre), 
of kind 
that the tensors of conduction A and B are diagonalisent on indices I, J (in Ui, Vj): 
x2 
W 
X =  
X /h;  
W 
X =  
3 3 - 1 
2 
3 
3 
3 
3 
2 
2 
H 
3 
éq 2.3.2-1 
that is to say: W (H) = 1,  
I;  
W (- H) =  
- 1 =  
- W (- H) 
I 
2 
3 
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and: 
W = 0 = W = W.  
W = W '.  
W ' 
2 
3 
2 
3 
2 
3 
I 
I 
I 
I  
 
W 2 =  
2h; W 2 = 2h; W '2 = 2; W '2 = 6 
2 
3 
2 
3 
 
3 
5 
H 
H 
I 
I 
I 
I 
Thus T1 will be the average temperature, T2 will be associated the gradient in the thickness. 
One finds then: 
1 1 
2 2 
3 3 
I J 
With 
= 2 KH  
 
=  
2 KH  
 
=  
2 KH  
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= 0 if I  
J 
 
;  
With  
;  
With  
;  
With  
3 
5 
0 0 0 
1 0 1 
0 1 0 
B =  
2K 0 1 0 + + + - 0 1 0 + + - - 1 0 1 
H 
Moreover:  
0 0 3 
1 0 1 
0 1 0 
1 
0 
C =  
+ + - 0 + + - - 1 
 
1 
0 
 
I 
D  
=  
.  
X /h 
3 
I 
2 
3 x2/h - 1/3 
3 
 
2 
I 
, on  
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By writing the variational formulation of the problem [éq 2.3.1-2]: 
T1 
3 
3 
To find U =  
T 
H () such as,  
V H (): 
2 
1 
1 
T3 
 
T 
T 
T 
T  
U.  
A.  
V + U.  
B. V 
dx dx = C. V  
dx dx +  
D.V  
1 
2 
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1 
2 
 
 
 
one establishes the local equations to solve in: 
- 2 KH  
T +  
+ + - T + T + + - - T =  
+ + - 
1 
1 
3 
2 
 
- 2 KH  
T + 2 K T + + + -.  
T +  
+ - - T + T = + - - 
2 
2 
2 
1 
3 
3 
H 
 
- 2 KH  
T + 6K T + + + - T + T + + - - T =  
+ + - 
3 
3 
1 
3 
2 
5 
H 
éq 2.3.2-2 
with the boundary conditions following: 
T1, T2, T3 given on T 
T 
 
1,  
= 12 2 
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4k H 
I 
 
T 
X /h 
on  
 
2,  
= 9 
3 
 
2 2 
4k H 
I 
 
2 
T 
.  
3 .  
x2/h - 1/3 
3,  
= 25 
3 
2 2 
2 
4k H 
I 
The equations [éq 2.3.2-2] are thus valid for the thin plates and hulls which one neglects 
terms of curve in the metric one (1 >> hH1), and for a homogeneous material in the thickness. 
General solutions [Ti] of [éq 2.3.2-2] comprise the exponential ones of type E X has 
-/! with 
K 
± H 
lengths of damping! has depend on the values on K and K. For example, in the absence of 
 
conditions of the type exchanges on the walls + - (± = 0), one obtains for fields T2 and T3 them 
respective lengths of damping: 
= H  
K  
= H  
K 
. 
! has  
has  
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It in practice frequently arrives that to neglect the terms of curve (hH1 << 1) in the operator 
deteriorate that little the solution; on the other hand, one often may find it beneficial to keep the 
expression supplements in 
second member. Indeed this makes it possible to calculate the true quantity of heat brought by flows 
applied to the faces ± (cf example in [§3.1]). In this case, it is necessary to take C in [éq 2.3.1-2] and 
[éq 2.3.2-2]. 
1 
H H 1 
C =  
+ + - H H + + - -  
1 
1 
1 
H H 1 
éq 2.3.2-3 
2.3.3 Bond with the asymptotic model 
One can check easily that the model suggested here has well as a limit when the thickness H tends 
towards 0 
results of the asymptotic development presented in [éq 2.2.1-5] and [éq 2.2.1-6]. 
Indeed the thickness H intervenes here explicitly in the coefficients of the differential operator in 
local equations [éq 2.3.2-2], which are solved on average surface. 
In the case without heat exchange (+ = - = 0) considered in the asymptotic study, these equations 
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[éq 2.3.2-2] have the form: 
- 2 K T1 = 1 + + - 
H 
 
- 2 KH  
2 
2. T2 + 2 K T2 = H + - - 
3 
 
- 2 KH  
2. 2 T3 + 6 K T3 = H + + - 
5 
After a formal asymptotic development of the solution (Ti) according to the thickness in these 
equations, it is checked well that: 
· T1 is solution of the problem [éq 2.2.1-5] giving the principal term of the development 
asymptotic (cf [§2.2]). 
1 
and 1 
are: 
·  
T2 T3  
1 
(+  
H (+ + -) 
T 
- -); 1 T 
, which corresponds well to the definition 
2 = H  
3  
=  
2 K 
 
6 K 
[éq 2.2.1-6] of the complementary field. 
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The model [éq 2.3.1-1] to three scalar fields T1, T2, T3, parabolic in the thickness, appears in 
some kind the optimal model with respect to the asymptotic behavior of the equations of 
stationary thermics in the mean structures. The following diagram indicates the overlap of 
various possible models, with their behavior when the thickness tends towards zero (arrows): 
Model with  
Limiting model  
Model with 3 fields  
Models more  
2 fields (refines) 
asymptotic 
(parabolic) 
rich person 
T 
1 
1 X  
 
X 
 
 
T 
T 
 
1 X  
T1 
1 X  
+ 
+ 
+ 
+ 
T2 X W 2 x3  
T2 X W 2 x3  
 
 
 
X 
X 
T X 
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3 
X 
3 
 
+ 
 
+ 
2 
 
,  
H 
 
 
 
T3 X W3 x3  
T3 X W3 x3  
+ 
+ 
2 ... + ... 
T X 
X 
I 
W I 
3 
+  
: 
One saw the interest of the additional term to describe the evolutions of temperature in the thickness 
x3 (whereas T (X 
1 
) is constant on the thickness). 
However the preceding result proves that the T2 term of the model with 2 fields does not converge 
towards: it is necessary 
at least a representation with 3 fields for that. However, knowing that mechanical models of 
hulls consider thermal deformations closely connected in the thickness, one could have believed 
sufficient 
a thermal model with 2 fields. One will see in [§3.3] an example illustrating (for a thickness  
data) the effect of parabolic term T3 on average temperature T1 enters the various models. 
Other authors propose richer models of thermics (cf for example [bib9], [bib10], 
[bib2], probably interesting for thick hulls, but of which terms higher than the order 
2 become useless for the mean structures. 
Indeed, as shows it the preceding diagram, the terms of a higher nature only come 
to correct (when 0) expressions of which the principal parts are given by T1 on the one hand, T2 
and T3 in addition. Qualitatively, they thus do not bring anything (contrary to T2 and T3), quantitatively 
their contribution quickly becomes negligible in general in front of the principal parts. 
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2.3.4 Generalization with the problems of thermal evolution 
The model of thermics in the hulls presented previously was justified starting from the results of 
asymptotic development of the three-dimensional equations of stationary thermics. One 
do not have however results on the problem of evolution, except the convergence of the term in 
average temperature <T> (cf [bib3]) (see also the remark made hereafter in [éq 2.3.4-5]). 
One can however give some indications on the resolution of the problem of evolution, in particular 
within the framework of a modal approach (contrary to a direct integration in time). 
The three-dimensional equations are: 
- K  
T + C T = R on  
 
T 
 
with: 
 
T =  
T on  
,  
- K  
T =  
on  
 
D 
T 
N 
 
 
0 
T (X, T = 0) =  
T (X) on  
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éq 2.3.4-1 
One notes: (µ, T 
Q 
Q) eigenvalues and clean vectors of the following problem: 
K T + µCT = 0 on  
;  
T = 0 on  
, T = 0 on  
 
T 
N 
 
éq 2.3.4-2 
The solution (three-dimensional) of [eq 2.3.4 - 1] is then given by: 
 
T 
0 
- µ T 
- µ (T - S) 
Q 
Q 
T (X, T) =  
T. T 
 
Q  
E 
+  
 
R (S).  
Tq +  
(S).  
Tq E 
ds.  
Tq (X) 
Q = 1 
 
 
 
0 
 
éq 2.3.4-3 
The µq, opposite of relaxation time, are characteristic of the space modes of the problem 
[éq 2.3.4-2]. To solve the equations [éq 2.3.4-1] on a thin hull, one can adopt as in 
stationary the representation [éq 2.3.1-1] for the field of temperature in the hull: 
3 
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T X; x3, T = Ti X. fi (T). W I x3. 
I = 1 
One then obtains the problem of clean modes, posed on average surface, in form 
variational: 
3 
3 
3 
To find µ, T 
R X  
H () such as,  
H (): 
Q 
Q 
+ 
1 
1 
 
µ1 0 0 
Q 
T 
 
T 
T 
.  
A.  
+ T. B - 2h 
C.  
2 
.  
D = 0 
Q 
Q 
0 µ 0 
 
Q 
0 0 µ3q 
éq 2.3.4-4 
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Note: the operator T (.).  
A.  
(.) + (.) .  
B. (. is quite elliptic; it is pointed out that B described 
transverse conduction (coefficient K) as well as the exchanges on the two walls of the hull, then 
that A corresponds to surface conduction (coefficient K). It was supposed here that C was homogeneous 
in the thickness. 
For example, if one neglects the effect of curve in the thickness, in the absence of condition of exchange 
on 
walls +, -, and with a homogeneous material, one obtains the partial derivative equations 
following, to solve on (cf [éq 2.3.2-2]): 
 
C 
T1 + µ1 T1 = 0 
K 
 
C 
T2 + 3 - K + µ2 T2 = 0 
K 
2 
H C 
 
 
C 
T3 + 5  
- 3 K + µ3 T3 = 0 with µ I > 0 
K  
2 
H C 
éq 2.3.4-5 
It is noted here that the thickness H does not affect the modes of average temperature T1. On the other 
hand, one 
relative increase in transverse conductivity K/k or a reduction thickness H causes of 
to decrease times characteristic for the modes of “temperatures” T2 and T3. 
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The complete solution according to this representation thus appears in the form: 
T 
 
1 
1 
0 
- µ T 
- µ (T - S) 
T X 
Q 
Q 
 
; X 3, T =  
 
2h T1. T1q E 
+  
+ (S) + - (S). T1q E 
ds. T1q X 
q=1 
 
 
0 
T 
 
2 
2 
0 
- µ T 
- µ (T - S) 
X 
+ 2h T 
Q 
Q 
3 
2. T2q E 
+  
+ (S) - - (S). T2q E 
ds. T2q X  
 
q=1 
3 
 
H 
0 
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T 
 
3 
3 
2 
0 
- µ T 
- µ (T - S) 
X 
+ 2h T 
Q 
Q 
3 
3. T 3q E 
+  
+ (S) + - (S). T3q E 
ds. T 3q X 3  
- 1 
2 
q=1 
5 
 
2 
3 
0 
H 
éq 2.3.4-6 
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where an initial temperature was considered: 
T0 (X; x3) = T0i (X). wi (x3) 
and where one supposed the absence of heat sources in the thickness. 
By comparing the 3D solution [éq 2.3.4-3] and the model of hull [éq 2.3.4-6], one notes that in it 
the last the transverse modes Tq according to x3 are represented only by the functions wi (x3) given; 
what amounts truncating the Tq series. But another limitation appears in the product of convolution 
1 
for the relaxation times µq characteristic of the transverse modes in [éq 2.3.4-3] which 
disappear in the model [éq 2.3.4-6] beyond from a parabolic “mode”. 
In a diffusion of purely transverse heat (described by (T, µ) 
i0 
i0 in the model 
[éq 2.3.4-6]), the eigenvalue lowest being K/h2 C one can hope for a correct solution with 
model of hull if the relaxation times Tc of the loadings applied are such as: 
C 2 
Tc > H 
K 
éq 2.3.4-7 
This inequality can be used as practical limit of application of the model. 
2.3.5 Equations of the model with usual variables 
The choice of variables T1, T2, T3 of the representation [éq 2.3.1-1] corresponded to the development of 
the temperature according to the thickness. 
For the applications, it is however more convenient to replace them by the variables: Tm, Ts, Ti: 
Tm indicates the temperature on the average surface of the hull, 
Ts the temperature on “external” surface (x3 = + H), 
Ti the temperature on “interior” surface (x3 = - H). 
The representation in the thickness uses the polynomials of LAGRANGE then: P1, P2, P3: 
m 
S 
I 
T X;  
X 
=  
T X 
X 
+  
T X 
X 
+ T X 
X 
3 
.  
P 1 
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3 
.  
P 2 
3 
.  
P 3 
3 
with: 
2 
P X 
= 1 -  
X /h 
1 
3 
3 
X 
P X 
= 3 1 + X /h 
2 
3 
3 
2hx 
P X 
= - 3 1 - X /h 
3 
3 
3 
2h 
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The formulation of the thermal problem on is similar to [éq 2.3.1-2], but where one considers: 
m 
S 
I 
T = T,  
T,  
T 
P 
' 
1 
P 1 
 
T 
= T.  
;  
T =  
T.  
' 
 
P 2 
3 
P 2 
P 
' 
3 
P 3 
Tensor A of order 4 is written then: 
With X 
P 1 + X. H 
1 - X 1 + 1 
dx 
ij 
=  
K Pi J 
3 
1 
3 
3 
R  
R  
I 
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The tensor B of order 2 is: 
' ' 
B X = KP P 1 + X H dx + +P H P H 1 + hH + - P - H P - H 1 - hH 
ij 
I J 
3 
1 
3 
I 
J 
1 
I 
J 
1 
I 
For the second member, C becomes: 
0 
0 
C X = + 1 1 + hH + -  
1 - H 
H 
1 
0 
1 
0 
1 
And D: 
P X 
1 
3 
D X = P X 
.  
1 + X H 
, for  
X 
2 
3 
3 
1  
dx3 
. 
I 
P X 
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2.3.5.1 Case of a homogeneous plate 
Various integrals on I =] - H, H [necessary to the calculation of A and B are gathered hereafter: 
2 
16h 
2 
2 
4h 
P 
dx =  
; P 
dx = 
P 
dx =  
1 
3 
2 
3 
3 
3 
15 
15 
I 
I 
I 
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2h 
H 
P. P 
dx = 
P. P 
dx =  
; P. P 
dx = -  
1 
2 
3 
1 
3 
3 
2 
3 
3 
15 
15 
I 
I 
I 
2 
2 
2 
' 
8 
' 
' 
7 
P 
dx =  
; 
P 
= 
P 
=  
1 
3 
2 
3 
3h 
6h 
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I 
I 
I 
' 
' 
' 
' 
4 
' 
' 
1 
P. P 
dx = 
P. P 
dx = -; P. P 
dx =  
1 
2 
3 
1 
3 
3 
2 
3 
3 
3h 
6h 
I 
I 
I 
One finds then (by neglecting the correction of curve): 
To 11 
22 
33 
=  
16hk  
=  
With 
=  
4hk  
 
; With  
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15 
15 
To 12 
21 
13 
31 
23 
32 
=  
With 
=  
With 
= A 
= 2hk  
=  
With 
= -  
HK  
 
 
 
 
;  
With  
 
 
15 
15 
Then: 
16 
-8 
-8 
0 0 0  
B = K -8 
7 
1 
+ 0 + 0 
6h 
-8 
1 
7 
0 0 - 
0 
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C = + 
- 
 
2 
1 - X /h 
.dx 
3 
3 
I 
x3 
D  
 
=  
. .  
1 + X /h dx 
3 
3 
on  
2h 
 
I 
- X 
. 3 1 - X /h dx 
3 
3 
2h 
I 
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2.3.5.2 Relation between the variables of the two representations 
m 
T X = T X 
T X 
1 
- 1 
3 
 
2 
S 
T X = T X 
X 
X 
1 
- T2 
+ T3 
 
I 
T X = T X 
X 
X 
1 
+ T2 
+ T3 
 
and: 
m 
S 
I 
T X 
4 T X 
X 
X 
1 
= 1 
+ T 
+ T 
 
6 
S 
I 
T X 
 
T X 
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X 
2 
= 1 
+ T 
 
2 
m 
S 
I 
T X 
- 2 T X 
X 
X 
3 
= 1 
+ T 
+ T 
 
3 
2.3.6 Synthesis 
The problem to be solved on the hull, thickness 2h is written: 
m 
S 
I 
1 
3 
To find  
T = T,  
T,  
T W = = m,  
S, I H (), m = S = I = 0 on  
T 
such as: 
 
T 
T 
T 
T 
T.  
A.  
+ T.  
B.  
. D 
= C.  
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D +  
D.  
ds,  
W 
 
 
 
with: 
H 
With 
X 
K 
.  
P 1 + X H 
1 -  
X 1 + 1 
dx 
ij = P I 
J 
3 
1 
3 
3 
- H 
R  
R  
 
H 
B 
' 
' 
X 
K P.  
P 1 + X H 
dx +  
± .  
P (± H).  
P (± H) 1 ± H H 
ij =  
 
I 
J 
3 
1 
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3 
I 
J 
1 
- H 
 
H 
C X 
(± H) 1 ± H H +  
r.  
P 1 + X H 
dx 
I =  
± .  
P I 
1 
I 
3 
1 
3 
- H 
 
H 
D X 
.  
P 1 + X H 
dx, for  
X 
I =  
 
I 
3 
1 
3 
 
- H 
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and: 
m 
S 
I 
T X;  
X =  
T X 
X +  
T X  
X +  
T X 
X 
3 
.  
P 1 
3 
.  
P 2 
3 
.  
P 3 
3 
Pi (x3): 
three polynomials of LAGRANGE in the thickness [- H, H]: 
2 
X 
X 
P X 
= 1 -  
X /h 
;  
P X 
= 3 1 + X /h;  
P X 
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= - 3 1 - X /h 
1 
3 
3 
2 
3 
3 
3 
3 
3 
2h 
2h 
H 
+ 1 
H 
1 = 1 
1 : 
average curve:  
R 1 
R 2; 
 
(x1, x2): 
frame of reference orthonormées according to principal curves' of; D = dx1. dx2; 
kß: 
surface components of the tensor K of conductibility; 
K: 
transverse component of the tensor K of conductibility; 
± : 
coefficients of exchange on the faces + and -; 
± : 
flows applied to the faces + and -; 
R: 
sources distributed in the thickness; 
: 
flow imposed on the end of the hull. 
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3  
Validation of the model on some examples 
One presents here applications on cylinders and plates. First draft in fact of a case 
unidimensional in the thickness and allows to evaluate the effect of the terms of curve, in particular in 
the second member of the equations. The others make it possible to judge the capacity of the model to 
treat the case 
discontinuous thermal loadings, by reference to 3D solutions. 
3.1  
The infinite cylinder subjected to a uniform interior flow 
One considére an infinite cylinder (ray R, thickness 2h), subjected to a uniform flow inside: I, and with 
a condition of exchange in external skin + (T - Text) = +T - E. 
One notes K the coefficient of transverse conductivity. 
The analytical solution of this axisymmetric problem 1D is: 
T x3 =  
T1 + T0 ln  
1 + x3 /R  
X 2 
R 
R - H 
R + H 
X 
+ 
1 
T -  
R 
E = - KT, 3 
Z 
- KT, 3 = I > 0 
x3 
2h 
with: 
R  
T = - I 1 -  
H 
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0 
K 
R 
R I 
H 
H 
1 - h/R 
1 
T = 1 - ln  
1 + +  
 
+  
.  
1 
I 
E 
K 
R 
R 
1 + h/R 
+ 
A development limited to the 2nd order in x3 /R is: 
 
2  
+ 
2 
X 
X 
T (X 
I  
+ E 
I 
R 
3 
3 
3)  
 
-  
. H 1 - H -  
1 - 3 H -  
1 - H  
-  
. H +… 
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I H 
+ 
+ 
R 
R 
2 K 
2 R 
K 
R 
H 
2 
2 H 
R 
Now let us use the model with 3 fields T = (T1, T2, T3) defined in [§ 2.3.2]. Because of 
independence in x1 and x2 of the solution, one is reduced to the resolution of: B T = C. 
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2 
For the representation  
X 
X 
T (X 
3  
3 
one a: 
3)  
= T1 + T2  
+ 3. T3  
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- 1 
 
H 
2 
2 
H 
3 
0 
0 
0 
1 1 1 
B =  
2K 0 
1 
h/R 
+  
+ 1 + H 1 1 1 
H 
R 
0 
h/R 
3 
1 1 1 
1 
1 
C =  
1 - H  
+  
1 + H  
for the second member. 
I 
- 1 
E 
1 
R 
R 
1 
1 
H 
If one neglects the intervention of the curve in the metric one, one removes the terms in R 
in the preceding expressions. 
1 >> H 
The solution is, if the curve completely is neglected  
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R: 
 
 
 
X 
T X 
I  
+ E 
I  
. H 
3 
3  
=  
+  
1 -  
i.e. the solution of the plane “wall”. 
+ 
K 
H  
If one takes account of the curve in the second member like in the terms of exchange + 
(true surfaces of application of flows): 
+  
2  
+ R 
X 
T X =  
I 
E - I.  
H 1 - H  
-  
1 - H  
- H 1 - h.  
3 + 0 
3 
+ 
+ 
I 
R 
R 
2K 
R 
K 
R 
H 
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One finds the analytical solution developed with the 1st order in x3/R. the taking into account of the 
curve 
in the terms of conductivity in B would intervene on the level of the terms in (x3/R) 2. 
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3.2  
The infinite plate under a couple of antisymmetric flows 
Let us take again the case of the infinite plate subjected on its half x2 < 0 to a couple of constant flows 
(+ = 
, - = -) balanced, and adiabat on other half x2 > 0. 
The antisymetry of the loading imposes that: T (x1, x2, 0) = 0. One can also show that T is linear 
in the thickness in x2 = -, 0, +. 
The equations [éq 2.3.2-2] are reduced here to: 
" 
1 
0 
0 
T 
T 
1 
0 0 0 
1 
0 
- 2kh 0 
1/3 
0 
T 
+ 2K  
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T =  
 
2 
0 1 0 
2 
2 
H 
0 
0 
1/5 
T 
T 
3 
0 0 3 
3 
0 
x3 
 
= 0 
x1 
X 2 
 
= 0 
T (0, 0) = 0 
I 
The derivative Ti, 2 being cancelled ad infinitum, T1 and T3 are identically null everywhere. It remains 
to determine T2 
(depending only on x2) such as: 
3K 
3 
- T " 2 + 
. T = 
whose solution is form: 
kh2 2 
KH 
T2 x2 = has E 3K/k. X 2/h + H if x2 < 0, 
K 
T2 x2 = B E 3K/k. x2/h if x2 > 0. 
The continuity of T 
' 
2 and T2 in 0 gives: 
T2 x2 = H2 - E 3K/k. X 2/h if x2 0, 
2K 
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T2 x2 = h. E 3K/k. x2/h if x2 0. 
2K 
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After change for the variables Tm, Ts, Ti, one finds: 
m 
S 
I 
T X 
= 0 ;  
T X 
=  
T X 
;  
T X 
= -  
T X 
2 
2 
2 
2 
2 
2 
2 
The temperature of the plate, calculated within the framework of this model is thus linear in the 
thickness and 
express yourself with T2 (x2), or Ts (x2) and Ti (x2) by: 
X 
S 
X 
I 
X 
T X,  
X,  
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X =  
T X.  
3 =  
T X. 3 1 + X /h -  
T X. 3 1 -  
X /h 
1 
2 
3 
2 
2 
2 
3 
2 
3 
H 
2h 
2h 
[Figure 3.2-a] allows to compare the temperatures in higher skin (x3 = + H) of the plate under 
an external flow standardized (= K/h, with K = K = 1, H = 1), obtained by a numerical calculation 3D 
(Code Aster), the model hull, and the asymptotic limiting model (with the discontinuity observed in 
[§2.2]). 
One notes the good capacity of the model to describe the boundary layer appearing in the vicinity of one 
discontinuity of external flow. 
Temperature in higher skin of the plate pb1 
Homogeneous plate  
H = 1; K = K = 1  
 
Unit flows  
Opposed on X < 0  
Null flows on X > 0 
Caption:  
0 = model 3D  
= model of Hull  
X = Asymptot model. 
Appear 3.2-a: Temperature compared in higher skin of the plate 
subjected to antisymmetric flows. 
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3.3  
The infinite plate under a couple of symmetrical flows 
In the preceding example, the antisymetry of the loading involved the nullity of the even terms in x3 
(T1 = T3 = 0). One treats now another case of loading, symmetrical, (compared to x3 = 0) 
allowing to judge the effect of term T3, in particular on T1, which requires to take conditions 
in extreme cases of the type exchanges, for dédiagonaliser B [§ 2.3.2]. 
In x3 = + H, one has like condition: 
- KT 
= T + if x2 < 0 
= T - if x2 > 0 
In x3 = - H, one a: 
- KT 
=  
T + if x2 < 0 
= T - if x2 > 0 
X 3 
T +  
 
T -  
 
X 2 
T +  
 
T -  
 
T (0, 0) = 0 
I 
The conditions of symmetry and antisymetry force the solution to check: 
- T (x1, - x2, x3) = T (x1, x2, x3) = T (x1, x2, - x3) 
from where: T (x1, 0, x3) = 0, and 3 T (x1, x2, 0) = 0. 
The equations (18) are written in our case (Ti depends only on x2): 
 
- KH. T " 1 + T1 + T3 

file:///Z|/process/refer/refer/p760.htm (3 of 16)10/2/2006 2:52:34 PM



file:///Z|/process/refer/refer/p760.htm

= for x2 < 0 or - for x2 > 
 
0 
 
K 
- KH/3. T " 2 + + 
 
 
 
T 
0 
H 
 
2 
= 
 
 
3K 
- KH/5. T " 3 + T1 +  
+ 
 
 
 
 
T 
for X 
0 or 
for X 
0 
H 
 
3 = 
2 < 
- 
2 > 
 
T2 is thus identically null (what is coherent with the conditions of symmetry). 
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Solutions T1 and T3 are given by (cf [Year 1]): 
2 
2 
 
/kh - S 
 
2 
- S X  
/kh - S 
X  
1 
2 
1 
- s2 2 
T1 x1,  
x2 =  
- 1 -  
.  
E 
+  
.  
E 
sgn 
X 
 
2 
2 
2 
2 
2 
s1 - s2 
s1 - s2 
 
2 
2 
 

file:///Z|/process/refer/refer/p760.htm (5 of 16)10/2/2006 2:52:34 PM



file:///Z|/process/refer/refer/p760.htm

KH 
/kh - s1 /kh - s2 
- S X  
X  
1 
2 
- s2 2 
T3 x1,  
x2 =  
- . .  
E 
-  
E 
sgnx 
 
 
2 
2 
2 
s1 - s2 
s1 and s2 being positive roots of the characteristic polynomial. 
After change for the variables Tm, Ts, Ti, one finds: 
m 
T X,  
X 
=  
T X,  
X 
1 
2 
1 
1 
2 
S 
T X,  
X 
=  
T X,  
X 
+ T X,  
X 
1 
2 
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1 
1 
2 
3 
1 
2 
I 
S 
T X,  
X 
=  
T X,  
X 
1 
2 
1 
2 
If one adopts to solve the thermal problem a model with 2 fields (T, T) 
1 
2 
, with one 
representation closely connected in the thickness, one obtains as solution: 
 
T 
/kh. x2 
1 x1,  
x2 =/1 - E 
if x2 < 0 
 
 
= -/1 - E /kh. x2 if x2 > 0 
 
T2 x1, x2 = 0 
In such a model the temperature appears constant in the thickness. The asymptotic limiting model 
product the same solution. 
One compares the numerical solution 3D and that of a model with 2 fields (T1). The latter 
comparison makes it possible to judge effect of the parabolic term on the distribution of the temperature 
average. Indeed it is the latter which, in mechanical theory of the hulls, generates one 
membrane deformation. 
These comparisons are made for unit values of K, K, H, in units If. They are visualized 
isovaleurs 3D in the thickness on [Figure 3.3-a]. 
Average temperatures T1 and T1 are represented [Figure 3.3-b]. Finally it [Figure 3.3-c] shows 
change of the temperature in higher skin (x3 = + H) of the plate, for the three solutions 
considered, like by that of the asymptotic limiting model; [Figure 3.3-d] the same one presents 
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comparison for the average layer of the plate. 
One notes on these results the good adequacy between the solution supplements 3D (items 0) and that 
obtained with the model of hulls with 3 fields (points), whereas the model with 2 fields (points +) 
appears insufficient. 
linear 
These observations remain valid for other choices of K, K, H, since the problem is  
 
in, and that the variable of space x2 appears normalisable by  
KH in the equations. 
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Appear: 3.3-a: Isovaleurs of temperature by numerical calculation 3D 
model of hull 
model with 2 fields 
Appear: 3.3-b: Comparison of the average temperatures: effect of the parabolic term 
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model with 2 fields 
model 3D 
model of hull 
asymptotic model 
Appear: 3.3-c: Temperature compared in higher skin of the plate 
subjected to symmetrical exchanges 
m odèle 3D 
m odèle of hull 
m odèle with 2 cham PS 
m odèle asym ptotic 
Appear: 3.3-d: Temperature compared on the average layer 
plate subjected to symmetrical exchanges 
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3.4  
The infinite cylinder subjected to a horizontal stratification 
One is interested in this paragraph in a situation more industrial than the preceding cases. It is about one 
thermal problem of stratification in a horizontal pipe [bib12]. Under certain conditions 
thermohydraulics, the temperature of the fluid can vary very quickly with dimension Z (cf appears 
below). One can practically consider that there are two zones at constant temperatures of 
leaves and other of a horizontal interface. 
Z 
 
0 
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y 
0 
· Geometrical Caractéristiques: 
R = 1.0m 
H = 0.075m 
0 = - 30 ° 
· Caractéristiques physics: 
Conductivity 
K = 17 W/m/°C 
Exchanges: 
outside (air) 
= E 
= 12 W/m2/°C 
interior (hot water) 
= C 
= 1000 W/m2/°C 
interior (cold water) 
= H 
= 1000 W/m2/°C 
Temperatures: external: 25 °C 
interior: heat 250 °C 
cold 50 °C 
The determination of the temperature in the pipe is of two interests, first is to be able 
to lead to the distribution of constraint in the vicinity of the stratification, second is to estimate them 
heat transfers enters the “cold” water zone and the “hot” water zone via conduction 
tube. 
The problem being independent of variable X, it becomes unidimensional within the framework of the 
model of 
hull. To solve it, one first of all seeks the general solutions of the equation without second 
 
 
] -, 0 [and] 0, [ 
member on each segment  
2 
2 
: 
T 
T 
1 
1 
- A T 
+  
B  
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T = 0 
2 
2 
T 
T 
3 
3 
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Solving for that numerically a cubic equation (characteristic polynomial in S), 
one writes then the conditions of continuity of the fields tangential Ti and their derivative with 
the interface, by expressing those by the combination of the general solutions and the solutions 
particular in each field. The linear system to solve (12 X 12) is brought back to one 
system of dimension 6 X 6 by considerations of symmetries, then solved numerically. 
One has an semi-analytical solution thus [bib4] (numerical resolution of the equation of the third  
degree and of the linear system) although the situation is complex. The comparison with a calculation 2D 
by finite elements is given on [Figure 3.4-a] and [Figure 3.4-b]: the difference between the two 
solutions is indistinguishable. 
Extreme values  
47.3717  
247.6520 
Appear 3.4-a: Laminated piping: analytical solution by the thermal model of hull 
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extreme values  
47.1831  
247.2360 
Appear 3.4-b: Laminated piping: solution finite elements thermal 2D Aster 
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4  
Remarks on the numerical discretization 
In this paragraph one limits oneself to some observations as for the numerical resolution of 
equations of the thermal model of hull: first of all on the use of a method finite elements 
and then on numerical blocking appearing when the thickness 2h is low. This last comes 
intervention of H to powers different in the coefficients from the equations. 
4.1  
Resolution by finite elements 
The model of thermics of hull describes in [§ 2.3] shows the following characteristics: 
· it leads to an operator of a nature 2 acting out of the three scalar fields T = (Tm, Ts, Ti); 
· these three fields are defined on a surface field, plunged in IR3; 
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· the curve of surface intervenes, possibly, only in the expression of the coefficients 
With, B, C, D. 
In the case general of a hull of an unspecified form plunged in IR3, one can discretize 
geometry of its average surface by a grid in plane triangular elements (this method 
present certainly the defect not to be able to explicitly take into account the curve of). 
The thermal problem (see [§ 2.3.6]) being scalar, with 3 fields, of the second order, one proposes them 
usual finite elements: the plane triangles P1 (with 3 nodes) or P2 (with 6 nodes). 
Their formulation is the same one, that plane or is curved: one neglects the corrections thus of 
metric in the operators of rigidity A and B, (one saw in the cases of validation that that had little 
of effect in practice). On the other hand the user, if it connait the expression of the curve, will have 
interest with in 
to hold account in the values of the coefficients ± and flows ±, as in the expressions 
[éq 2.3.1-4] and [éq 2.3.1-5]. 
In the case of materials composite (just as if one wanted to take account of the curve), one has 
to envisage a preprocessing providing the coefficients A, B, C, D, as well as a postprocessing 
allowing to reconstitute the temperature and flows in any point thickness. 
There are situations where the problem does not depend any more but on one variable of space: they are 
the hulls 
of axisymmetric revolution loading, or “sections of hulls”, axis e3. 
The geometry is then represented by a meridian line: (see [Figure 4.1-a]). 
Y 
The average curve is then: 
1 cos  
B 
S 
- case revolution: H1 = 
+ 
 
 
 
 
X 
R 
X 
3 
1 
- case “slices”, or arc: H1 = 
T 
T  
 
R 
N 
T 
y 
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where R indicates the radius of curvature of the line 
meridian A B. 
With 
R 
X 
X 
Z 
Appear: 4.1-a 
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For these types of problems, one proposes also a finite element P2 with 3 nodes, using the same one 
formulation, where one neglects the correction of metric in the thickness, for the coefficients A and B. 
One 
use a formula of squaring at 4 points of GAUSS. 
This element is associated exactly that proposed in mechanics for studies 
thermomechanical chained [R3.07.02]. 
4.2  
Numerical blocking of a finite element of thermal hull 
Blocking is a phenomenon appearing in the numerical resolution by finite elements of 
certain problems such as that of the thin hulls or the arcs when the element is curved (blocking 
of membrane), that of the hulls or beams with taking into account of shearing (blocking of 
shearing), or that of plasticity (plastic blocking of incompressibility [bib7]). It was 
met initially in mechanics of the incompressible fluids and it is within this framework that its study 
theoretical began [bib6]. 
This phenomenon of blocking appears by a very great loss of precision and oscillations 
important on certain calculated quantities when a physical parameter of the model becomes “small”. 
The illustration of these nuisances is given in note HI-71/7131, (§4.2). The origin of these 
problems lies in the difference in order of magnitude which appears between certain components of 
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the bilinear form of “rigidity” when the physical or geometrical parameter tends towards zero (thickness 
hull for the blocking of membrane, reverses tangent module of compressibility for 
plastic blocking for example). Here, it is the thickness of the hull which will play the part of small 
parameter. 
Let us take again the equations of the stationary thermal problem posed on a plate in form 
variational; let us note 2 H its thickness (real without dimension): 
3 
1 
To find  
T = T,  
T,  
T  
 
W  
= H () 
such as 
 
1 
2 
3 
0 
1 
WITH (T,  
) + B (T,) = F ()  
= (,) W 
 
1 
2 
3 
éq 4.2-1 
with: 
1 0 0 
 
WITH (T,  
) = 2kh T.  
0 1 0 
.  
D 
 
 
3 
0 0 1 
5 
. indicating the usual scalar product, 
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0 0 0 
B (T,  
) = 2K T.  
0 1 0 
.  
D 
 
H 
 
0 0 3 
=, (gradients surfaciqu 
1 
2 
3 
An equivalent mixed formulation of this problem is obtained with the variables q2 and q3, flow of 
heat in the thickness (cf [Year 2]): one notes = (L2 ())2. 
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To find ( 
T, p)  
W X Q such as 
 
WITH (T,  
) - M (, p) = F ( 
)  
W 
- B (p, Q)  
- M (, Q) = 0  
Q Q 
éq 4.2-2 
where: 
Q = ( 
Q,  
Q)  
2 
3 
M (, Q) = Q + Q D 
 
2 
2 
3 
3 
 
1 0 
B (p, Q) =  
H p  
 
Q D 
2K 
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0 1 
3 
On this formulation, numerical blocking appears clearly (at least formally). Indeed, 
discretization of W X Q being carried out, (it is noted Wd X Qd), the problem tends formally when  
tends towards zero towards the following problem: 
WITH (T,  
)  
) = F ( 
) W 
D 
- M (,  
Pd 
D 
M (T, Q) = 0  
Q Q 
D 
D 
What amounts solving on the core of M: 
WITH (T,  
) = F ()  
W 
D 
D 
éq 4.2-3 
Blocking appears when the discretized core of M is too small or reduced to zero: the resolution of 
[éq 4.2-3] is done on a very small space even reduced to zero. Even if the grid is fine, the solution is 
then of very bad quality. 
The core of M in Wd being by definition, space: 
Ker M = W  
D 
D 
| M (, Q) = 0 
 
Q  
Qd  
It is seen that the choice of the discretization of Q is not innocent and strongly conditions it 
behavior of the solution when tends towards zero. There is a condition of convergence carrying 
on spaces Wd and Qd which ensures the good numerical behavior of the solution with small, it is 
condition known as LBB discrete, version adapted to the discrete case of continuous condition LBB 
(LADYJENSKAIA - BREZZI - BABUCHKA). We return to [bib 7] for a case study (plasticity) 
and a bibliography on this subject. 
Parallel to the theoretical studies quickly mentioned above, a remedy practises with 
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blocking, appearing once the selected discretization in Wd if this choice were unhappy, consists with 
under-to integrate the term “blocking” in the construction of rigidity, i.e. the term B here. Some 
choices of under-integration, in the primal formulation [éq 4.2-1] are interpreted like choices 
of interpolation of Wd and Qd in the mixed formulation and can thus, via the checking (sometimes 
hard) of discrete condition LBB, being justified on the theoretical level. 
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Let us consider indeed, a triangular finite element with 3 nodes and P1 interpolation to solve it 
problem [éq 4.2-2]. Then let us choose for discretization of Q a discontinuous P0 interpolation, it is 
with-statement a representation of [Q] constant by element. 
The second equation of [éq 4.2-2] is then a local equation, i.e to be solved on each element 
separately since p is unspecified on each element E. 
- H p Q + 1 p Q - T Q + T Q = 0  
(Q,  
Q) 
2 
2 
3 
3 
2 
2 
3 
3 
2 
3 
2K 
3 
E 
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E  
from where the immediate solution if |E| is the surface of E. 
 
p =  
- 2K  
1 T 
2 
 
2 
H 
E  
E 
 
 
p =  
- 6K  
1 T 
3 
 
3 
H 
E  
E 
By deferring these results in the form M, one has on the element E: 
2K 
1 
3 
M (, p) =  
T +  
T for all  
W 
 
2 
2 
3 
3 
D  
H 
E  
E  
E 
E 
E 
E 
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having thus eliminated p, one is brought back to a primal formulation on T only: 
2K 
1 
3 
M (, p) =  
T 
 
T 
 
 
2  
2 +  
3  
3 for all  
W D  
H 
E E 
E 
E E 
E 
who corresponds very exactly to the formulation [éq 4.2-1] in which the elementary term: 
 
B (T,  
) = 2K T + 3 T  
E 
 
2 
2 
3 
3 
H 
E 
under-is integrated by a diagram into a point of GAUSS: 
 
 
 
 
F. G  
1. F. G  
E  
E 
E 
E 
The examination of discrete condition LBB remains to be made for this discretization in order to 
conclude with its 
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convergence (cf [bib7]). 
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5 Conclusion 
An asymptotic analysis of the equations of thermics in a mean structure when the thickness 
tends towards zero leads to a limiting model characterized by an average temperature, solution of one 
problem in extreme cases, and a parabolic complementary term in the thickness, definite locally. 
One deduced the formulation from it from a model with 3 scalar fields definite on average surface from 
hull, giving a parabolic representation of the temperature in the thickness. The operator 
differential obtained is of order 2; the thickness of the hull appears in its coefficients. 
This model seems “optimal” for the mean structures: 
· its limit when the thickness tends towards zero is identical to the asymptotic limiting model; 
· of the possible additional terms would tend towards zero with the thickness. 
In a standard version the curve of the average surface of the hull does not intervene directly. 
Test examples show a good adequacy of the temperature obtained with solutions 
three-dimensional complete. 
This model thus appears completely entitled with: 
· to be used in a finite elements formulation to calculate the temperature in a hull 
thin of an unspecified form; the solution obtained being able to be easily injected into one 
thermomechanical calculation of the hull; one proposes surface and linear elements thus 
for the cases where a variable of space does not intervene; 
· to be introduced directly (or by coupling) into a method of resolution of the equations 
governing the thermohydraulic state of a piping for example, in order to take account of 
thermal restitution of the wall on the fluid; 
· to be used as model integrated in the resolution of problems of identification (problem 
opposite) starting from experimental measurements (for example for laminated conduits); 
· to seek analytical solutions in cases with simple geometry. 
The model describes here can also be used in the problems of thermal evolution, provided that 
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the thermal loadings do not vary too quickly. 
Lastly, it remains to study the numerical methods to use to avoid the blocking which could appear  
in a calculation by finite elements, when the thickness becomes low. 
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Appendix 1 Plates infinite under a couple of symmetrical flows 
In x3 = + H, the boundary conditions are: 
- K 3 T 
= T +  
if x2 < 0 
= T -  
if x2 > 0 
In x3 = - H, one a: 
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- K 3 T 
= T +  
if x2 < 0 
= T -  
if x2 > 0 
X 3 
T +  
 
T -  
 
X 2 
T +  
 
T -  
 
T (0, 0) = 0 
I 
The conditions of symmetry and antisymetry force the solution to check: 
T (x1, - x2, x3) = T (x1, x2, x3) = T (x1, x2, - x3) 
and thus: T (x1, 0, x3) = 0, 3T (x1, x2, 0) = 0. 
The equations [éq 2.3.2-2] are written in our case: 
" 
- KH T1 + T1 + T3 = for x2 < 0 or - for x2 > 0 
 
" 
- kh/3. T2 + K + T2 = 0 
H 
 
" 
- kh/5. T3 + T1 + 3 K + T3 = for x2 < 0 or - for x2 > 0 
H 
T2 is thus identically null (what is coherent with the conditions of symmetry). The system 
precedent admits as particular solution: 
 
 
-  
T p 
1 (X, X 
1 
2 ) = 
if X < 0 and 
if X 
2 
2 > 0  
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T p 
2 
 
3 (X, X 
1 
2) = 0 
on R 
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The polynomial characteristic in S of the homogeneous system is: 
2 
2 
K H s4 - K 6 H + 3K s2 + 3 K = 0 
, including 4 roots if are: 
5 
5 
H 
 
2 
2 
if = ± 1.  
3 .  
H + 5 K ±  
2 H + 25K + 10K H, s1 > s2 > 0 > s3 > s4 
H 
K 
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2 
4 
3 
Solutions T1 (x1, x2) and T3 (x1, x2), finished in x2 =, are thus expressed: 
 
T 
X 
X 
1 x1,  
x2 = + es1 2 + es2 2 
for x2 > 0 
 
 
 
 
 
= - - E S X 
X 
1 
2 - E s2 2  
for x2 > 0 
 
 
 
 
T 
X 
X 
3 x1,  
x2 = es1 2 + es2 2  
for x2 > 0 
 
 
= - E S X 
X 
1 
2 - E s2 2 
for x2 > 0 
The conditions of connection in x2 = 0 are naturally expressed by the conditions of antisymetry of 
T, already used above. The four constants, ß, are determined by: 
+ = - / 
 
 
nullity of T in x2 = 0 
+ = 0 
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2 
- KH s1 + = 0 
 
m odes T1 - T3 associated with s1, s2 
 
2 
- KH s2 + = 0 
From where: 
 
2 
 
 
/kh - S 
=  
- .  
2 
 
s2 - s2 
1 
2 
 
 
2 
 
 
/kh - S 
=  
.  
1 
 
s2 - s2 
1 
2 
 
 
2 . 
2 
 
. KH 
/kh - S 
/kh - S 
=  
.  
1 
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2 
2 
s2 - s2 
1 
2 
 
 
2 . 
2 
 
. KH 
/kh - S 
/kh - S 
=  
.  
1 
2 
2 
s2 - s2 
1 
2 
Solutions T1 and T3 are thus written: 
 
 
2 
2 
/kh - S 
 
2 
/kh - s1 
T 
X 
X 
1 x1,  
x2 = -. 1 -  
E s1 2 +  
E s2 2 sgn X 
 
2 
2 
2 
2 
2 
s1 - s2 
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s1 - s2 
 
 
 
2 
2 
KH 
/kh - s1 /kh - s2 
T 
X 
X 
3 x1,  
x2 = -  
.  
. E s1 2 - E s2 2 sgn x2 
2 
2 
2 
s1 - s2 
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Mixed appendix 2 Formulation of the stationary problem for 
plate 
In the case of the plate, the variational problem [éq 4.2-1] is equivalent to a problem of 
minimization (while revealing explicitly the thickness H in B) of the functional calculus: 
J () =  
1 A ( 
,) + 1 B (,) - F (). 
2 
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2  
To obtain the mixed formulation, let us notice that: 
Proposal: 
1 
 
2 
2 
B (,) =  
Sup 
 
-  
q2 2 + q3 3 - H Q 1 + 1 Q 3 
2  
2 
2 
 
4 
K 
 
3  
q2, q3 L () 
Demonstration: 
Let us write the condition of extremality of the functional calculus between hooks (its opposite is strictly 
convex, coercive and semi-continuous in a lower position) and let us note p the couple where the sup is 
reached: 
 
Q 
H 
2  
2 + q3 3 + q2 p2 + 1 q3 p3 = 0 Q 
2 K 
3 
p2 = - 2 K 2 
H 
 
 
p3 = - 6 K 3 
from where:  
H 
The value of the functional calculus in this point is thus: 
 
2 
2 
+ 2 K 2 
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2  
H  
2 
2 
2 
2 
2  
+ 6 K 3 -  
4 K 
2 + 3 6 K 3 = 1 2 K 2 + 3 K 3 
 
H 
H 
4 K 
2 2 
2 
H 
3 2 H 
2  
H 
H 
that is to say indeed the announced result. 
There is thus a formulation equivalent to the minimization of J on W: 
1 
 
Min max A (,) -  
B (Q, Q) - M ( 
, Q)  
- F (). 
W 
Q Q 
2 
2 
while noting: 
M (, Q) = Q + Q,  
B (Q, Q) = H p Q +  
1  
p Q 
2 
2 
3 
3 
2 

file:///Z|/process/refer/refer/p770.htm (16 of 20)10/2/2006 2:52:35 PM



file:///Z|/process/refer/refer/p770.htm

2 
3 
3 
 
2K 
3 
The condition of point-saddle of this Lagrangian led to the formulation [éq 4.2 - 2]: 
WITH (T,  
) - M (, p) = F ( 
)  
W, 
 
-  
B (p, Q)  
- M (T, Q) = 0  
Q Q 
Handbook of Reference 
R3.11 booklet: Thermal elements on average surface 
HI-75/93/098/A 

Code_Aster ® 
Version 
2.6 
Titrate:  
Model of thermics for the thin hulls 
Date:  
03/11/93 
Author (S): 
F. VOLDOIRE, S. ANDRIEUX 
Key: 
R3.11.01-A 
Page: 
44/44 
Intentionally white left page. 
Handbook of Reference 
R3.11 booklet: Thermal elements on average surface 
HI-75/93/098/A 

Code_Aster ®  
Version  
6.3  
 
Titrate:  
Pre and postprocessing for the “composite” hulls  

file:///Z|/process/refer/refer/p770.htm (17 of 20)10/2/2006 2:52:35 PM



file:///Z|/process/refer/refer/p770.htm

 
 
Date:  
13/09/02  
Author (S):  
P. MASSIN, F. NAGOT, F. VOLDOIRE, J.M.PROIX Key  
:  
R4.01.01-B Page  
: 1/20  
 
Organization (S): EDF/AMA, SEPTEN  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Handbook of Reference  
R4.01 booklet: Composite materials  
R4.01.01 document  
 
 
 
 
Pre and Postprocessing for the thin hulls  
out of “composite” materials  
 
 
 
 
 
Summary:  
 
One extends the results of the theory of the elements of plates exposed in documentation [R3.07.03] to 
the case  
multi-layer orthotropic materials. Documentation suggested gathers the thermal aspects and  
thermo-élasto-mechanics. The use of these materials is theoretically valid only in the case of one  
geometrical symmetry compared to the average layer of the plate. It is thus necessary that the 
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1 Introduction  
 
The modeling of the thermomechanical behavior by a theory of hulls of the structures  
composed of laminated composite materials present compared to the homogeneous case isotropic one  
certain number of characteristics:  
 
· coefficients intervening in the relations of linear behavior connecting the sizes  
mechanics and thermics defined on the average surface of the hull must be calculated  
starting from the space distribution in the thickness of various materials,  
· the materials constitutive of the hull are in general orthotropic:  
- it is necessary to define, in each point of the average surface of the hull, a direction  
material fixing the reference mark in which the relations of behavior are described,  
-  
the form of the anisotropy produced on the total behavior of the hull can be  
unspecified,  
· finally of the couplings between sizes characterizing of the symmetrical phenomena and  
antisymmetric compared to average surface can appear (coupling  
inflection-membrane, coupling temperature average average-gradient in the thickness). In  
thermo_mecanic the results presented are however theoretically valid only  
when the coupling membrane-inflection is null,  
· the analysis of the rupture or the damage of these structures requires to return to one  
level of description finer than that provided by the models of hulls: the criteria are  
formulated, layer by layer in the thickness, according to the constraints  
“three-dimensional”.  
 
The preprocessing makes it possible the user “to build” the sizes intervening in the theories of  
hulls starting from a simple space description of the distribution of the various materials (position,  
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thickness, orientation).  
 
Postprocessing intervenes once the structural analysis completed to provide, layer by layer,  
an evaluation of some criteria of rupture or damage.  
 
The party taken here is to specify pre and postprocessings so that they are independent, in  
the framework of the models of hull selected, the type of element chosen by the user to make the 
calculation of  
structure. Indeed, numerical difficulties of the calculation of the hulls and the representation of their  
geometry results in proposing according to the situations, several types of finite elements of hull or of  
plate.  
 
The note is divided into three parts. The first briefly points out the assumptions of the theory of  
hull used for thermomechanical calculations and the expressions of the coefficients homogenized 
with  
to introduce. The second specifies the choices retained for the description of the orientation of 
materials by  
report/ratio with the elements like some notations. The last part details the application of these 
choices  
with the case of the hulls made up of homogeneous layers.  
 
To allow the use of the options of calculations available in Code_Aster, it is thus  
necessary to define orders the pre one and postprocessing for composite materials  
laminates compatible with the existing orders.  
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2  
Homogenized characteristics of a thin hull in  
thermoelasticity and in thermics  
 
2.1  
Notations - Assumptions  
 
The hull is made up various layers of orthotropic materials parallel to laid out  
surface average (cf [Figure 2.1-a]).  
 
N 
2h 
x2 
X 
 
1 
I =] - H, [  
H 
 
Appear 2.1-a  
 
By noting (X) the co-ordinates (X, X out of and X 
1 
2 ) 
3 the normal co-ordinate on the surface  
X] - H, H, one can define the various characteristics of materials intervening in Thermics  
3 
[ 
and in Thermoelasticity. One will suppose moreover than one of the axes of orthotropism coincides 
with  
normal N at the item (X) with the hull.  
 
· Conductivité: K 
(X, X 
 
3), k33 (X, X 
 
 
 
3 ) 
· Voluminal Chaleur: C (X, X  
3 ) 
· Dilation coefficients: D 
(X X 
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, 
 
3 ) 
· Elastic Rigidité (plane constraint): µ (X, X  
3 ) 
· Rigidité of shearing:  
X, X  
3 3 (  
3 ) 
· Density: (X, X  
3 ) 
 
The Greek indices traverse {1, 2}. The system (X) necessarily does not correspond to the axes  
of orthotropism of materials in the tangent plan.  
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2.2 Thermics  
 
One places oneself within the framework of the thermal model of hull describes in [R3.11.01] and 
[bib1].  
 
A field of temperature “hull” is represented by the three fields (Tm T S Ti 
, 
,) definite on  
the following way in the thickness:  
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3 
T (X, X =  
= 
+ 
+ 
éq 2.2-1  
3 ) 
T J (X) P 
m 
S 
I 
 
 
J (x3) 
T (X) P1 (x3) T (X) P2 (x3) T (X) P3 (x3) 
J = 1 
 
 
2 
where the P are the polynomials of LAGRANGE  
I =] - H, [ 
H: 
P 
1 
1 (x3) = 
- (X/H 
3 
) 
J 
X 
P 
3 
1 
 
2 (x3) = 
(+ X /h 
3 
) 
2 H 
X 
P 
3 
1 
3 (x3) = - 
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(- X /h 
3 
) 
2 H 
The interpretation of the fields T J is then the following one:  
 
T m (X) = T (X,) 
0  
(temperature on the average surface of the hull),  
 
 
T S (X) = T (X, +h 
 
) 
(temperature on the upper surface of the hull),  
 
Ti (X) = T (X, - H 
 
)  
(temperature on the lower surface of the hull).  
 
Thanks to the representation [éq 2.2-1], one calculates bilinear form KT 
m 
S 
I 
 
of (T, T, T) 
T to be left  
form of the 3D problem (the indices ij take the values m, S 
, I):  
 
K T (T,) = (A ji. Ti 
J 
. 
 
+ B ji. Ti J 
 
. 
 
, 
 
(summation on the repeated indices),  
 
, 
) D 
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where is a virtual field of temperature and where  
 
 
Aij = A ji = Aij, Bij = B ji 
 
 
 
 
Aij (X) = K 
 
, 
 
éq  
2.2-2  
I (X 
X 
 
3) Pi (x3) Pj (x3) dx3 
 
 
P 
P 
Bij 
 
(X) = K 
 
, 
I 33 (X 
X 
 
3 ) 
I (x3) J (x3) dx 
 
X 
3 
3 
x3 
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The bilinear form related to voluminal heat in the problem of evolution is written:  
 
M (T,) 
ij 
= C. Ti J 
. 
 
 
 
 
éq  
2.2-3  
ij 
C (X) = C 
, 
I 
(X X 
 
3) Pi (x3) pi (x3) dx3 
 
2.3 Thermomechanical  
 
One places oneself within the framework of the modeling of hull of LOVE-KIRCHHOFF (hull thin) 
or  
REISSNER-MINDLIN (thick hull). In both cases, the sections are supposed to remain plane.  
 
The deformations of the tangent plan with are thus expressed, in the thickness, using the tensors of  
deformations E 
(X 
 
 
), of variation of curve K 
(X 
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) and of distortion (  
X) of surface  
[bib2]:  
 
 
 
X 
(  
X, X = 
+ 
= 
éq  
2.3-1  
3 ) 
 
E (X) x3  
K (X) 3 (X, x3) () 
 
 
2 
 
The material undergoing a local deformation of thermal origin given by (T réf is the temperature  
of reference):  
 
HT 
réf 
(  
X, X = 
- 
 
3 ) 
(T (X, x3) T) D (X, x3) 
 
The local stress field is given by the thermoelastic law in plane constraints:  
 
=  
HT 
µ (µ - µ)  
 
maybe with the preceding model for T:  
 
 
HT 
(X, 
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X =  
+ 
- 
3 ) 
µ (X, 
 
x3) [Eµ (X) X K 
3 
µ (  
X) µ (X, x3)] 
3 
 
 
éq  
2.3-2  
with HT 
J 
réf 
 
 
µ (X, 
 
X = 
- 
3 ) 
T (X). Pj (x3) T 
dµ (X, x3) 
j=1 
 
 
The generalized efforts (inflection M and membrane NR) are related to by:  
 
M 
 
(X 
 
=  
) 
, 
, 
I 
(X X 
 
3) X dx 
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3 
3  
éq  
2.3-3  
NR  
 
 
(X 
 
=  
) 
, 
, 
I 
(X X 
 
3) dx3 
 
so that the law of behavior of the hull is written as in point X:  
 
 
M = Pµ K + Qµ E + M 
µ 
µ 
HT 
 
éq  
2.3-4  
NR  
= Rµ E + Qµ K + NR  
 
 
µ 
µ 
HT 
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where  
Pµ 
µ 
= +  
(X 2 
3) X 
dx 
I 
 
3 
3 
Qµ 
µ 
 
= +  
(x3) X dx 
I 
 
3 
3 
 
Rµ 
µ 
= +  
(x3) dx éq  
2.3-5  
I 
3 
NR 
µ 
HT 
 
= -  
dx 
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HT 
I 
µ 
3 
M 
µ 
HT 
 
= -  
X dx 
HT 
 
I 
µ 
3 
3  
 
When the temperature is calculated by the model of Thermics one can express them directly  
“thermal” efforts according to the three “components” (Tm T S Ti 
, , ) :  
 
M 
J 
réf 
 
J 
réf 
= -  
3 
3 
3 
3 
- 
= 
- 
HT 
 
[ 
D 
µ 
µ (X) P (X) X dx 
I 
J 
] (T T) DMj (T T) 
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éq 2.3-6  
NR 
J 
réf 
 
J 
réf 
= -  
3 
3 
3 
- 
= 
- 
HT 
 
[ 
D 
µ 
µ (X) P (X) dx 
I 
J 
] (T T) DNj (T T) 
 
The quantities DN and DM depend only on materials constitutive of the hull and of their  
distribution.  
 
Note:  
 
When the provision of materials is symmetrical compared to, certain integrals, being  
summon odd terms, cancel themselves: 
µ 
 
 
 
Q 
= , 
0 DM 
= DM = 0; DN = 0.  
1 
3 
2 
 
The sharp efforts and stresses shear transverse are obtained by writing of  
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local equilibrium equations without voluminal force:  
 
ij = 0 where {I, J} {, 12,} 
3  
, J 
 
what makes it possible to write:  
 
V (X 
 
) = M, (X) 
 
3 ( 
X 
X, X 
3 
 
 
 
3 
= -  
 
) 
, 
, 
- 
(X Z 
 
) dz 
H 
 
 
by using the fact that 3 ( 
3 
 
X, + H) = (X, - H) = 0.  
The role of the preprocessing is to calculate various sizes A, B, C, P, Q, R, DM, DN, to leave  
description of the material (a number, orientation and thickness of the various layers,  
local characteristics C, K 
,  
, D 
).  
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3 Reference marks in the tangent plan with the hull. Notation  
matric  
 
3.1 Reference mark  
 
One considers the total reference mark of the structure (X, Y 
, Z 
): to see figure [Figure 3.1-a]. In the case of them  
laminated composites the orientation of full-course is defined compared to a direction of reference  
E in the tangent plan ( 
réf 
T).  
 
This vector E 
is determined by the projection of a vector X, given by the user under the key word  
réf 
1 
ANGL_REP of AFFE_CARA_ELEM [U4.24.01], on the tangent level (T) in an unspecified point of  
hull.  
 
Z 
X1 
X1 
Z 
2 Y 
0 
1 
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(T) 
X 
eréf 
Y 
Tangent plan (T) 
XYZ locates total 
X 
 
Appear 3.1-a  
 
Vector X is defined by the user by two directed angles:  
1 
 
: between 0X and X 
 
1 
1 proj (X, Y) 
: between X 
and X  
2 
1 proj (X, Y) 
1 
 
: fact of passing from the direction 0X to projection in plan X0Y of vector X.  
1 
1  
: fact of passing from this projection to X itself: to see figure [Figure 3.1-a].  
2 
1 
 
Whenever in a given zone of the hull, (T) is orthogonal with X, the user will have  
1 
to define another vector (in practice for certain meshs).  
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For a finite element of type facets planes, contained in the tangent plan (T), one defines the reference 
mark  
orthonormé (V, V room with the element using the classification of the tops. For example for  
1 
2 ) 
triangle:  
 
N3 
N2 
V1 
V2 
0 
E réf 
(T) 
N1 
 
Appear 3.1-b: Locate local element (V, V  
1 
2 ) 
 
The directed angle  
= V,  
E 
allows to pass from the local reference mark to the element to the reference mark of  
0 
(1 réf) 
reference.  
 
3.2 Notation  
matric  
 
In thermics as into thermomechanical, the programming of the elements requires to express them  
operators of elasticity and conduction in the local reference mark of the finite element (V, V. There is 
the practice  
1 
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2 ) 
to simplify the representation of the tensorial sizes as follows.  
 
3.2.1 Thermics  
 
One represents the tensorial sizes in the reference mark (V, V:  
1 
2 ) 
 
( 
2 
2 
Aij 
I, J m, S 
, I 
, 
 
( ) { 
} ( ) { ,1 }2 )  
 
in a vectorial form with 6 vectors by taking account of symmetries [§2.2]:  
 
ij 
With  
K 
11 
 
11 
H 
 
 
Aij 
ij 
= A  
22 
=  
I 
P (x3). Pj (x3). k22 dx  
 
3 
ij 
- H 
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A12 
K 
 
 
12  
 
K  
11 
 
0  
K 
 
where K = K 
indicate the thermal vector conductivity built using the tensor  
 
22  
0 
 
 
 
K 
0 0 K  
12  
 
33 
(cf [§2.1]),  
 
and of P (X, polynomials of LAGRANGE in the thickness. One makes in the same way for Bij Cij 
, 
.  
I 
3 ) 
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While being placed in the reference mark of the element (V, V, one uses the matrix of passage (m) 
P of the tensor  
1 
2 ) 
K 
K  
11 
of conductivity K = K 
of (V, V towards the reference mark associated with E [bib3]:  
1 
2 ) 
22  
réf 
 
 
 
k12 
 
C2 
S2 
2CS  
 
( 
2 
2 
 
m) 
C = cos  
P 
= S 
C 
- 2CS 
where  
( 0) 
 
K 
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S = sin (0) 
 
- CS CS C2 - S2 
It results from it that the matrix from passage P (m) - 1 of the tensor of conductivity of the reference 
mark associated with E 
 
K 
réf  
towards (V, V is given by:  
1 
2 ) 
 
C2 
S2 
- 2CS  
 
( 
1 
 
C = cos (0) 
2 
2 
 
m) 
P - = S 
C 
2CS 
where 
 
K 
 
 
 
 
 
S = sin (0) 
CS 
 
- CS C2 - S2  
 
3.2.2 Thermomechanics  
 
One also represents in a vectorial form in the reference mark (V, V:  
1 
2 ) 
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· on the one hand, normal constraints, 
, shearing in the plan and it  
11 22 
12 
transverse shearing and:  
13 
23 
 
 
11 
13 
= ,  
 
22  
=  
 
 
 
23 
12 
 
· in addition, corresponding deformations:  
 
 
11 
1 
13 
= ,  
2 
 
22  
=  
12 = 
 
 
2 
 
 
12 
23  
12 
 
who break up with the generalized deformations of membrane E and inflection K:  
 
(X =  
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-  
3 ) 
(U) (x3) 
HT (x3) 
with (U) (X = E + K 
 
3 ) 
x3 
HT (X = D 
 
-  
3 ) 
(x3) 
réf 
 
 
 
( 
T X 
 
 
3 ) 
T 
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for an ordinate X] - H, H [ 
3 
, and:  
 
E  
K  
D  
11 
11 
11 
E = E 
,  
,  
 
22  
K = K22 
D = d22 
 
E11 
 
K11 
 
d11 
 
where D is the vector associated with the dilation coefficients thermal.  
The vector forced is obtained using the matrix of rigidity (3 X 3):  
= 
 
R (( 
. U)  
HT 
- 
) with R, matrix of flexibility reverses (see in [§4.3]).  
While being placed in the reference mark of the element (V, V, one uses the matrix of passage () 
P m of the tensor  
1 
2 ) 
 
11 
deformations =  
of (V, V towards the reference mark associated with E [bib3]:  
1 
2 ) 
22  

file:///Z|/process/refer/refer/p780.htm (25 of 30)10/2/2006 2:52:35 PM



file:///Z|/process/refer/refer/p780.htm

réf 
 
12 
 
C2 
S2 
CS  
 
( ) 
 
C = cos (0) 
2 
2 
 
P m = 
S 
C 
- CS 
where 
 
 
 
 
S = sin (0) 
 
- CS 
CS C2 - S2 
2 
2 
 
 
 
While being placed in the reference mark of the element (V, V, one uses the matrix of passage (m) 
P of the tensor  
1 
2 ) 
2 
1 
13 
deformations  
= of (V, V towards the reference mark associated with E:  
1 
2 ) 
2 
 

file:///Z|/process/refer/refer/p780.htm (26 of 30)10/2/2006 2:52:35 PM



file:///Z|/process/refer/refer/p780.htm

réf 
23 
 
C 
S 
C = cos (0) 
( 
 
m) 
P 
= 
where 
2 
 
 
 
 
- C M 
S = sin (0) 
In the same way, while placing itself in the reference mark of the element (V, V, the matrix of passage 
(m) 
P of the tensor  
1 
2 ) 
 
 
11 
constraints =  
of (V, V towards the reference mark associated with E is worth:  
1 
2 ) 
22  
réf 
 
12 
 
C2 
S2 
2CS  
 
( 
 
C = cos (0) 
2 
2 
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m) 
P 
where 
 
= S 
C 
- 2CS 
 
 
 
 
S = sin (0) 
 
- CS CS C2 - S2  
 
It results from it that the form of the matrix of passage of the reference mark associated with E 
towards the reference mark of  
réf 
-1 
the element (V, V for the constraints above is such as: (m) 
(m) 
P 
= P (  
T 
- ) 
. This  
0 
= P (m) 
1 
2 ) 
 
 
property will be particularly useful in the continuation of the talk.  
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4  
Hulls made up of homogeneous layers  
 
4.1  
Description of the layers  
 
One considers the hull made up of a stacking of NR 
layers (parallel with the tangent plan) in  
couch 
the thickness] - H, H [made up each one of one of the M 
orthotropic homogeneous materials (hull  
to subdue 
laminated [Figure 4.1-a]).  
 
x3 
+ H 
2h 
E 
- H 
N  
Appear 4.1-a  
 
A layer N is defined by:  
 
· its thickness E with the ordinates of the interfaces lower and higher:  
N 
N 1 
- 
xn-1 = - H + E; xn = xn-1 + E;  
3 
J 
3 
3 
N 
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J =1 
· the constitutive material m, and its physical characteristics,  
· the angle of the first direction of orthotropism (noted L) in the tangent plan ( 
N 
T) by  
report/ratio with the direction of reference E 
(see figure [Figure 4.1-b]).  
réf 
 
Note:  
 
In the case of a layer made up of fibres in a matrix of resin, first direction  
of orthotropism corresponds to the direction of fibres.  
 
L 
V1 
 
 
N 
0 
T 
L 
V 
E 
2 
réf 
(T) 
 
Appear 4.1-b: On orthotropic layer  
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4.2 Thermics  
 
2 
The expression of the vectors Aij (I, J) {m, S, I}, I J) defined in [§3.2.1] is obtained from  
 
conductivities km of the material m constituting layers N.  
 
In the cases of orthotropism (L, T) of the material m, the coefficients of conductivity are:  
 
K  
L 
 
K ( 
= K  
L, T) 
T 
 
 
0 
 
In the case of a transverse isotropic material the coefficient K is equal to K.  
33 
T 
 
To have the expression of Aij in the reference mark of the element (V, V one must apply rotation  
1 
2 ) 
following, of the reference mark of orthotropism towards the reference mark of the element, as clarified 
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with [§3]:  
 
K C2 
S2  
with  
C  
= 
( 
cos  
 
+  
 
I 
0 ) 
11 
 
K  
( ) 
 
K m 
L 
= K 
2 
2 
 
S  
= 
( 
sin  
 
+  
 
I 
0 ) 
22 = S 
C  
K 
 
 
 
 
T (L, T) 
k12 CS - CS 
 
The Aij vectors can then be expressed by integration in the thickness of the contributions of  
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sleep:  
 
Ncouch 
N 
ij 
With = x3 P 
. 
X P 
. 
X .k 
dx 
. 
éq  
4.2-1  
n-1 
I (3) J (3) () 
X 
m 
3 
n=1 
3 
 
The ij terms ((I, J) { 
, 
2 } 
3 2 
B 
, I J) are:  
 
Ncouch 
N 
X 
 
 
3 
P X 
P X 
ij 
I (3) 
J (3) 
B =  
. 
.k 
dx 
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. 
 
n-1 
( 
33 
) 
X 
m 
3 
X 
X 
3 
n=1 
3 
3 
 
In the same way for Cij:  
 
Ncouch 
N 
ij 
C = x3 P X. P X. C dx 
. 
 
n-1 
I (3) 
J (3) 
( ) 
X 
m 
3 
n=1 
3 
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4.3 Thermomechanics  
 
4.3.1 Relation of behavior  
 
In the case of the laminated hulls, it is shown that the relation between the strains and the stress  
in layer “N” depends on the constants of orthotropic material” m “:  
 
That is to say:  
 
(m) (m) (m) (m) (m) (m) 
 
ELL, 
 
T 
E T, T 
L, G T 
L, GLZ, T 
G Z 
elastic coefficients  
 
 
( 
 
m) 
(m) 
 
dilation coefficients  
DLL, dTT 
 
 
In the axes of orthotropism (L, T) of the material m, the matrix of flexibility S is expressed by:  
 
1 
LT 
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- 
0  
E 
LL 
T  
E T 
 
TL 
1 
 
S (m) (L T,) = 
0  
 
 
T 
E T 
T 
E T 
 
 
1  
0 
0 
 
G 
 
T 
L 
 
 
(m) 
 
with  
 
TL 
LT = 
 
ELL 
ETT 
 
Rigidity (m) 
1 
- 
=S (being:  
m) 
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E 
 
LL 
TL .ELL 
 
0  
- 
1  
. 
- 
1  
. 
 
T L 
 
T 
L 
T L 
T 
L 
 
 
LT. ETT 
ETT 
 
(m) (L T,) = 
0  
- 
1 H T. 
- 
 
T 
L 
1 H T. T 
L 
 
 
0 
0 
G 
 
T 
L 
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(m) 
 
Rigidity in transverse shearing is expressed for its part in the following way:  
 
G 
LZ 
0  
(m) (L T,) = 
 
 
0 
T 
G Z (m) 
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While being placed in the reference mark of the element (V, V, one uses the matrix of passage () 
P m of the tensor  
1 
2 ) 
deformations defined in [§3] of (V, V towards the reference mark of orthotropism:  
1 
2 ) 
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C2 
S2 
2CS  
 
( ) 
 
C = cos (+  
I 
0 ) 
2 
2 
 
P m = 
S 
C 
- 2CS 
where 
 
 
 
 
S = sin (+  
I 
0 ) 
 
- CS CS C2 - S2 
 
In the same way the vector dilation is expressed in the reference mark (V, V:  
1 
2 ) 
 
D  
D  
C2 
S2  
11 
LL 
 
 
 
 
 
D  
(m) 
D 
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= D 
1 
2 
2 
 
22 = Pm- 
L L 
D  
= S 
C 
 
 
TT 
D 
 
 
 
 
 
 
T T (L, T) 
D 
0 
2 
2 
12  
 
( 
CS - CS 
L, T) 
 
One thus has in layer N (material: m), in X:  
3 
 
(m) - 1 
(m) 
 
HT 
T 
m 
m 
HT 
HT 
= P 
.  
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. P 

. 
U - 
= P.  
. P 
. 
U - 
=  
U - 
 
N 
 
L, T 
(( ) ) ( ) 
( ) 
L, T 
(( ) ) 
m (() 
) 
( ) 
( ) 
( ) 
( ) 
 
with:  
 
E  
K  
D  
11 
11 
11 
(U) E 
and  
. 
 
22 + x3 K22  
HT = d22 (T (x3) - Tréf 
= 
) 
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E12 
K12 
d12 
 
Note:  
 
In the code, one chose to carry out the passage of the reference mark of orthotropism to the reference 
mark of the element in  
two stages. A first stage relates to the passage of the reference mark of orthotropism to the definite 
reference mark  
by ANGL_REP. The data of DEFI_MATERIAU are thus transformed at the time of this first  
passage. One treats then equivalent material as one would do it with elements of  
traditional plates.  
The treatment of thermal dilation is made in the form of a contribution to the second  
member of the matric equation to solve resulting from the principle of virtual work. This contribution  
D 
 
T  
 
LL 
 
 
is written:  
T 
(m) 
HT (N) = - P. (.d T 
.  
L, T) 
TT 
 
 
0  
 
4.3.2 Shearing  
transverse  
 
Rigidity in transverse shearing of each layer is written in the reference mark (V, V of same  
1 
2 ) 
way that dilation:  
 
T 
(m) 
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(m) 
( 
= P. 
. P 
 
m) (V, V 
2 
2 
1 
2 ) 
 
 
(m) 
C 
S  
with (m) 
P 
= 
V, V towards the reference mark of orthotropism.  
2 
 
stamp passage vectorial from (1 
2 ) 
- C M 
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Rigidity in transverse shearing total of the hull [R calculated so as to be equal to  
C] 
that given by the law of three-dimensional elasticity [bib2], the matrix [R is defined so that  
C] 
surface density of transverse energy of shearing U2 obtained for a distribution  
three-dimensional of the constraints and is identical to that associated the model of plate of  
13 
23 
Noted REISSNER-MINDLIN U.  
2 
 
1 H 
-1 
U = 
 
 
=  
1 
2 - 
[m 
H 
] { } 
( ) 
d3 
13 
23 
 
1 
-1 
1 
H 
-1 
H 
 
U = 
V R 
V = 
 
H 
 
2 
[C] 
{} D 
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- H 
3 
[C] 
{} D 
 
 
 
- H 
3 
2 
2 
 
 
 
 
x3 
 
= -  
D 
, 
+ 
13 
 
- H (11 1 
12,2) 3 
with the equilibrium equations:  
X 
 
3 
= -  
D 
, 
+ 
23 
 
 
- H (12 1 
22,2) 3 
 
and conditions: 0 = = for X = ± h.  
13 
23 
3 
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Plane constraints, 
, 
express themselves according to the resulting efforts while making  
11 
22 12 
the assumption of pure inflection and absence of coupling membrane/inflection. It results from it that:  
 
(X 
1 
= 
- 
. () P.M and A (X 
1 
= 
- 
( ) 
 
3 ) 
X P 
3 ) 
X 
X 
3 
(m) 
3 
(m) 
3 
 
where P is the matrix of rigidity of inflection of the whole of multi-layer defined by [éq 2.3-5].  
These calculations, as well as the following are to be carried out in a single reference mark. One 
chooses in  
Code_Aster the intrinsic reference mark with the element. It is thus necessary to transform matrix A in 
this reference mark.  
 
One has then: {(X)} = D (X) V + D (X 
 
3 
1 
3 
2 
3 ) {} 
 
with V = M 
; 
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11,1 + M 
M 
12,2 
12,1 + M22,2 
 
 
= M 
; 
; 
; 
11,1 - M 
M 
12,2 
12,1 - M 
M 
M 
22,2 
22,1 
11,2 
 
H 
Z A + A 
WITH + A  
11 
33 
13 
32 
and D = - 
dz 
1 
 
 
- x3 
2 A + A 
WITH + A 
31 
23 
22 
33  
 
 
H  
Z A - With 
WITH - WITH 
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2 A 
2 A  
D 
11 
33 
13 
32 
12 
31 
= - 
dz 
2 
 
 
- X 
WITH - WITH 
With - 
3 
2 
With 
2 A 
2 A 
31 
23 
33 
22 
32 
21  
 
1 
C 
C V  
U 
11 
12 
is thus written: U = 
V  
 
1 
1 
 
T 
2 
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C 
C 
 
12 
22  
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1 
H 
- 
with  
T 
11 
C = 1 
D () 
1 
D d3 
- 
2 2 
H 
m 
× 
1 
H 
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- 
T 
12 
C = 
1 
D () D2 d3  
- 
2 4 
H 
m 
× 
1 
H 
- 
T 
C22 = 
D 
2 () D2d3 
- 
4 4 
H 
m 
× 
 
1 
C 
 
- H - 
C  
C 
V  
from where U1 =U 2 V  
11 
12 
 
=0V, {}  
C T 
C 
 
 
12 
22 
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one thus proposes the solution H = C -1.  
C 
11 
 
The coefficients of transverse correction of shearing correspond to the report/ratio of the terms of Hc  
with the integral on the thickness of the laminate of the terms of (m).  
 
4.3.3 Efforts  
generalized  
 
The efforts generalized defined in [§1.3] and put in a vectorial form are obtained by integration  
in the thickness of the hull by summoning the contributions of the layers (thickness  
N 
1 
E  
- 
N = 
N 
3 
X  
- 3 
X 
) :  
 
M11  
 
 
Ncouch 
N 
M= 
X 
M 
3 
22 = .x dx 
3. 
3 =  
. . 
1 
X dx 
L 
N () 3 3 
 
 
X 
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N 
n= 
3 
M12  
1 
 
N11  
 
 
Ncouch 
N 
N= 
X 
NR 
3 
22 = dx 
. 3 =  
. 
1 
dx 
L 
N () 3 
 
 
X 
N 
n= 
3 
N12  
1 
 
If one expresses like previously (with m material of layer N):  
 
N = Mr. (E+x3.K-d m ( 
réf 
T x3 - T) 
( ) 
( ) 
( ) ( ) 
 
 
one can note the efforts generalized in the form: (cf [§1.3])  
 
M-Mth =P K 
. +Q E 
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.  
N-Nth =Q K 
. +R E 
. 
 
with P, Q, R of the matrices 3 X 3 being expressed by:  
 
Ncouch 
N 
Ncouch 
3 
1 
3 
3 
P =  
X 
2 
N 
N 1 
 
(m) 1 X dx 
. 
. X 
X  
N 
3 
3 
= (m) (3) - (- 
3 
)  
x3 
3 
n=1 
n= 
 
 
1 
Ncouch 
N 
Ncouch 
3 
1 
2 
2 
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Q =  
X 
N 
N 1 
 
(m) 1 X dx 
. 
. X 
X 
N 
3 
3 
= (m) (3) - (- 
3 
)  
x3 
2 
n=1 
n= 
 
 
1 
Ncouch 
Ncouch 
R =  
N 
N 
( 
1 
m) ( 
. x3 - x3) = (m) e.n 
n=1 
n=1 
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the shearing action V is obtained by derivation of the moment [§4.3.2].  
 
The generalized efforts of thermal origin are calculated directly:  
 
Ncouch 
xn 
Mth 
3 
réf 
= . 1 . 
. 
. 
- 
3 
3 
- 
N 
X 
T X 
T 
dx 
m 
X 
( ( ) 
) 
( ) 
D (m) 
3 
N =1 
3 
 
Ncouch 
xn 
Nth 
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3 
réf 
=. 1 
. 
. 
- 
3 
- 
N 
T X 
T 
dx 
m 
X 
( ( ) 
) 
( ) 
D (m) 
3 
N =1 
3 
 
4.3.4 Localization of the constraints (postprocessing)  
 
Conversely, following a calculation by finite element and of obtaining the deformations E and variations  
of curve K, one can then calculate the stress field  
N = 1, NR 
in each  
N ( 
couch) 
( ) 
lay down element.  
 
It is necessary to calculate in each layer (N), the matrix (and the terms  
m) 
(T (X - 
. D (cf [§3.2]) (m = chechmate represents the characteristics material of the layer  
3 ) 
T réf) (m) 
N 
N).  
 
Constraints  
N 1 
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N 
with an ordinate X  
- , 
in layer (N) are then:  
3 
] X X 
3 
3 [ 
 
 
X =  
. E + X. K - D 
T X - T 
 
N (3) 
m 
[3 
m ( 
(3) réf)] 
( ) 
( ) 
( ) 
 
and transverse shearing:  
 
 
X = D X. V + D X.  
éq  
4.3.4-1  
N (3) 
1 ( 3 ) 
2 ( 3 ) 
( ) 
 
 
Note:  
 
In the code postprocessings of the elements of plates are generally defined in  
locate associated with ANGL_REP. Constraints in the reference mark in 
 
trinsèque of the element are thus  
brought back in the reference mark of the variety. One a: 
 
2 
2 
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C 
S 
+ 2CS  
 
where C = cos (0) 
11 
11 
 
 
 
 
 
 
 
 
2 
2 
 
= S 
C 
- 2CS 
 
S = sin (  
cf § 4.1 
0 ) ( 
[ ]) 
22 
22 
 
 
 
2 
2 
 
- CS + CS C - S  
 
 
12 
12 
where is the angle between V and E  
eref 
N 
0  
1 
réf 

file:///Z|/process/refer/refer/p790.htm (28 of 39)10/2/2006 2:52:36 PM



file:///Z|/process/refer/refer/p790.htm

 
 
4.3.5 Calculation of the criteria of rupture in the layers (postprocessing)  
 
The limiting values of breaking stresses depend on material of the layer, the direction and of  
feel request (for a group of elements corresponding to the same field material):  
 
X 
L 
 
feel 
 
 
 
in 
 
traction 
 
in 
 
limit 
: 
 
orthotropi 
 
direction 
 
(1st 
fibres) 
 
 
 
feel 
: 
 
E 
X  
compressio 
 
in 
 
limit 
: 
 
L 
 
feel 
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in 
 
N 
orthotropi 
 
direction 
 
(1st 
fibres) 
 
 
 
feel 
: 
 
E 
chechmate 
Y 
T 
 
feel 
 
 
 
in 
 
traction 
 
in 
 
limit 
: 
 
orthogonal 
 
direction 
 
(2nd 
èr 
 
1 
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with 
 
E 
E) 
N 
 
Y  
compressio 
 
in 
 
limit 
: 
 
T 
 
feel 
 
 
 
in 
 
N 
orthogonal 
 
direction 
 
(2nd 
èr 
 
1 
 
 
 
with 
 
E 
E) 
S 
cisailleme 
 
in 
 
limit 
: 
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LT 
 
feel 
 
 
 
in 
 
NT 
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It is necessary to calculate the constraints in the reference mark of the layer (defined by the axes  
of orthotropism) starting from the constraints in the reference mark of the element:  
 
the angle between V and E 
is, and that between E and the reference mark of orthotropism is:  
1 
réf 
0 
réf 
N 
 
 
C2 
S2 
+ 2CS  
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where 
C = cos (+  
N 
0 ) 
L 
 
 
 
 
11 
 
 
= S2 
C2 
- 2CS 
 
S = sin (+ cf §4.1 
N 
0 ) ( 
[ ]) 
T 
22 
 
 
 
2 
2  
 
 
- CS + CS C - S 12 
L T 
 
N 
N 
 
Maximum criterion of constraint:  
 
The 5 following criteria are calculated by layer: (N = 1, NR - couch)  
 
 
 
( 
L N) ( 
L 
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if L >0 
if 
 
< 0 
 
N 
) 
(N) 
(Ln) 
X (chechmate 
X  
N) 
( ) 
(matn) 
( ) 
 
 
( 
T N) ( 
T 
if 
T > 0 
 
if 
 
< 0 
 
 
N 
) (N) (Tn) 
( 
Y chechmate 
Y  
N) 
( ) 
(matn) 
( ) 
(T 
L N) 
S (matn) 
 
Criterion of TSAI-HILL:  
 
This criterion is written in each layer in the following way:  
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2 
L (N) L (N). T (N) 
2 
T (N) 
2 
LT (N) 
CTH = 
- 
+ 
+ 
 
X (2mat 
X 
Y 
S 
N) 
(2matn) 
(2matn) 
(2matn) 
 
The material is broken when C 
1.  
TH 
 
Values X and Y are replaced by X and Y when constraints ( 
,  
 
L N 
T N)  
( ) 
( ) 
corresponding are negative.  
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1 Introduction  
 
The objective of this document is to give the form of the matrices of flexibility and Hooke for  
elastic materials orthotropic, isotropic transverse and isotropic in the cases 3Dn 2D-constraints,  
plane 2D-deformations and axisymetry.  
 
We speak about “matrices” of Hooke because, by preoccupation with a simplification, we did not 
adopt  
notation of a tensor of order 4.  
 
In any rigour, for linear elastic materials, the constraints are linear functions  
deformations.  
 
One writes: ij = Hijkl. kl  
 
The symmetrical nature of [] and [] and adoption for these tensors of order 2d' a vectorial form  
allows to write:  
 
{} = [H] {}  
 
or {} and {} are the vectorial representation of the tensors of a nature 2 {} and [] and where [H] is one  
stamp 6 X 6.  
 
 
 
2  
Topology of the matrices of Hooke  
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2.1 Orthotropism  
 
One can show the symmetry of the matrix of Hooke H.  
 
We thus have twenty and one independent components in the case 3D.  
 
H11 
H12 H13 H14 H15 H16 
H 22 H23 H24 H25 H26 
[H] 
H33 H34 H35 H36 
= 
 
SYM 
H 44 H45 H46 
H55 H56 
H 66 
 
An orthotropic material has two orthogonal plans of elastic symmetry.  
 
This wants to say that if one calls [H'] the matrix [H] after symmetry (S)  
[H'] = [H].  
 
The relations obtained between the coefficients make it possible to write that [H] is defined by new  
independent components.  
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In the axes of orthotropism:  
 
H 
H 
H 
0 
0 
0 
11 
12 
13 
H 
H 
0 
0 
0 
22 
23 
[H] 
H 
0 
0 
0 
33 
= 
 
SYM 
H 
0 
0 
44 
H 
0 
55 
H66 
 
9 coefficients thus should be provided.  
 
 
2.2 Isotropy  
transverse  
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The transverse isotropy is a restriction of the orthotropism in where one has the isotropy in one of 
both  
orthogonal plans of elastic symmetry.  
 
The matrix [H] will have the same form as for the orthotropism but with additional relations  
between the components.  
5 components are enough to determine [H].  
 
 
2.3 Isotropy  
 
 
The material is isotropic if [H] remains invariant in any change of reference mark.  
 
Two coefficients are enough to determine [H].  
 
 
 
 
3  
Stamp of Hooke and flexibility  
 
3.1 Notations  
 
Instead of using indices 1, 2 and 3 to locate the axes, one will use the corresponding indices L,  
T and NR:  
 
L for longitudinal  
T for transverse  
NR for normal  
 
 
NR 
T  
L 
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The coefficients which intervene are as follows:  
 
E_L  
: Longitudinal Young modulus  
E_T  
: Transverse Young modulus  
E_N  
: Normal Young modulus  
G_LT  
: Modulus of rigidity in the plan (L, T)  
G_TN  
: Modulus of rigidity in the plan (T, NR)  
G_LN  
: Modulus of rigidity in the plan (L, NR)  
NU_LT: Poisson's ratio dasn the plan (L, T)  
NU_TN: Poisson's ratio in the plan (T, NR)  
NU_LN: Poisson's ratio in the plan (L, NR)  
 
Very important remark:  
 
Naked _ LT is different from Naked _ TL:  
If one applies a traction according to L  
LL 
LL = 
(law of Hooke following a direction).  
EL 
 
 
This traction is accompanied, proportionally, of a contraction according to  
LL 
T, - Naked _ LT. 
 
EL 
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and of a contraction according to  
LL 
NR, - Naked _ LN 
.  
EL 
 
The first index indicates the axis where the effect of the loading is exerted and the second index 
indicates  
direction of the loading.  
 
Then one exerts a traction according to T, then a traction according to NR; one obtains:  
 
 
 
 
 
LL 
 
= 
- Naked _ LT TT - Naked _ LN NN 
LL 
 
E 
E 
E 
L 
T 
NR 
 
 
 
 
 
 
= - Naked _ TL LL 
TT 
+ 
- Naked _ TN NN 
TT 
( 
S)  
E 
E 
E 
L 
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T 
NR 
 
 
 
 
 
 
= - Naked _ NL LL - Naked _ NT TT 
NN 
NN 
+ 
 
E 
E 
E 
L 
T 
NR  
 
 
The matrix of flexibility [H] 1 is symmetrical; one deduces some:  
 
U _ LT 
Naked _ TL 
= 
 
E 
E 
L 
T 
 
Naked _ LN 
Naked _ NL 
= 
 
E 
E 
L 
NR 
 
Naked _ TN 
Naked _ NT 
= 
 
E 
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E 
T 
NR 
 
In all that follows NAKED will be noted.  
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3.2  
Case 3D  
 
3.2.1 0rthotropie  
 
3.2.1.1 Stamps flexibility  
 
 
 
 
 
 
 
 
1 
-  
-  
LL 
LT 
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LN 
 
 
 
 
 
 
0 
0 
0 
 
 
 
E 
E 
E 
LL  
 
L 
NR 
 
 
 
 
 
 
-  
1 
- 
TL 
TN 
 
TT  
0 
0 
0 
 
 
E 
E 
E 
 
 
 
 
L 
T 
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3.2.2.2 Stamps of Hooke  
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3.2.3.3 Stamps flexibility according to the coefficients of Lamé and µ  
 
The law of Hooke takes the following form with the coefficients of Lamé and µ.  
 
ij = kk 
ij + 2µij  
 
By using the system of equations (S), one obtains:  
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4 Use  
in  
Code_Aster  
 
In Aster, the definition of the constant orthotropic elastic characteristics or functions of  
temperature are carried out by the order DEFI_MATERIAU, key word ELAS_ORTH or 
ELAS_ORTH_FO  
for the elements of hull and the solid elements isoparametric or the constitutive layers  
of a composite (see order DEFI_COQU_MULT).  
 
To define the reference mark of orthotropism (L, T, NR) related to the elements, one can refer to 
documentations  
[U4.42.03] DEFI_COQU_MULT and [U4.42.01] AFFE_CARA_ELEM.  
 
 
NR 
T 
L 
L, T and NR: directions of orthotropism  
longitudinal, transverse and normal  
 
 
 
/ELAS_ORTH = _F  
(E_L = ygl longitudinal Modulus Young.  
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E_T = ygt transverse Modulus Young.  
 
 
 
 
 
 
 
 
E_N = ygn normal Modulus Young.  
 
 
 
 
 
 
 
 
GL_T = glt Modulus of rigidity in plan LT.  
 
 
 
 
 
 
 
 
G_TN = gtn Modulus of rigidity in plan TN.  
 
 
 
 
 
 
 
 
G_LN = gln Modulus of rigidity in plan LN.  
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NU_LT = nult Poisson's ratio in plan LT.  
 
 
 
 
 
 
 
 
NU_TN = nutn Poisson's ratio in plan TN.  
 
 
 
 
 
 
 
 
NU_LN = nuln Poisson's ratio in plan LN.  
 
 
Important remark:  
 
The talk of this note of reference is based on the convention of the books of J.L.Batoz and D.Gay.  
Documentation U of DEFI_MATERIAU describes these choices, and coefficient NU_LT is interpreted  
the following way in Aster:  
if one exerts a traction according to the axis L giving place to a deformation according to this axis 
equalizes with  
L 
 
 
L 
L = 
, there is a deformation according to the axis T equalizes with: T = - nult* 
.  
ygl 
ygl 
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Document: R4.02.01 
Finite elements in accoustics 
Summary: 
This document describes in low frequency stationary accoustics the equations used, the formulations 
variational which results from this as well as the corresponding translation in finite elements, for 
each one of 
two methods used in Code_Aster: traditional '' formulation " with an unknown factor p (acoustic 
pressure), 
and “mixed” formulation with two unknown factors p, v (pressure and speed acoustics). 
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1 Introduction 
Options of modeling were developed in Code_Aster, making it possible to study 
low frequency stationary acoustic propagation, in closed medium, for fields of 
propagation with complex topology, i.e. to solve there under the quoted conditions the equation of 
Helmholtz. 
The solution by finite elements of this equation can be carried out according to two methods: 
· a first method consists in being fixed like unknown factors of the problem, only them 
nodal complex acoustic pressures, is 1 degree of freedom per node [bib1]; it is that 
that one qualifies formulation with the finite elements “traditional”, 
· in the second method, called to the finite elements “mixed”, one is fixed like unknown factors at 
time nodal acoustic pressures and 3 components nodal vibratory speed,  
that is to say on the whole 4 degrees of freedom per node [bib5]. 
To know the ways of propagation of energy in the fluid, the acoustics expert has 2 
sizes: the acoustic intensity activates I and the acoustic intensity reactivates J; these two sizes 
are defined like: 
1 
1 
I = Re [statement] 
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* J 
and = 
Im [statement] 
* 
éq 1-1 
2 
2 
where v * indicate the combined complex one vibratory speed. The knowledge of these sizes 
bring a very important further information in the resolution of problems of all kinds, 
such as for example the measurement of the powers radiated by the machines, recognition and 
localization of the sources. 
The calculation of the acoustic intensity by the finite element method mixed must provide values more 
precise that traditional method; indeed in the mixed case one ensures the continuity of the derivative 
first of the pressure and not simply the continuity of the latter. 
However if it is more precise, the mixed formulation consumes on the other hand more size memory 
and of time CPU, while keeping the advantage of having, with a number of degrees of freedom per 
length 
of wave equal, a relative error increasingly weaker on the calculation of the acoustic intensity. 
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2  
Equations and boundary conditions of the problem 
2.1  
Equations and boundary conditions 
The equation to be solved is the equation of Helmholtz [bib2]: 
(+k2) p = S 
éq 2.1-1 
·  
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K indicates the number of wave of the dealt with problem; it can be complex or real, according to 
whether 
propagation is carried out or not in a porous field [bib6]: 
 
K = 
éq 2.1-2 
C 
·  
C indicates the speed of sound, which can be complex in the case of a propagation in medium 
porous. 
·  
p is a complex size indicating the acoustic pressure and S, also complex, 
represent the sources terms of the problem. 
·  
is a reality in all the cases, which indicates the pulsation: 
= 2 F 
éq 2.1-3 
·  
F is the work frequency of the harmonic problem. 
We represent on the figure [Figure 2.1-a] the unspecified confined field where the equation applies 
of Helmholtz [éq 2.1-1] and conditions at the borders. 
·  
is open limited of R3 of regular border, partitionnée into v and Z; 
= v  
Z 
N 
Z Border absorban 
of impedance locali  
 
Z 
Fluid 
Vibratory source  
Z 
monochromatic  
of normal amplitude 
y 
V 
v 
N 
X 
Appear 2.1-a: Configuration of the problem 
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The equation [éq 2.1-1] is to be solved in a closed field. Boundary conditions to take in 
count on the border of the field express themselves in their most general form like: 
p 
p+  
=  
éq 2.1-4 
N 
/N appoints the operator of normal derivative.  
, are complex operators, who can be scalars, or integral operators 
according to whether the border of application of the boundary condition is with local reaction or 
reaction not 
local (case of the interaction fluid-structure). 
The developments currently carried out in Code_Aster relate to only conditions 
with the limit with local reaction, for which, are scalars; the cases spécifiables are 
the following: 
·  
= 0, 0, 0 which indicates a border of the field at imposed vibratory speed. In 
effect, there exists a relation connecting the acoustic gradient of pressure complexes at the speed 
vibratory particulate complex. 
p = - J 
éq 2.1-5 
 
V 
N 
0 N 
0 indicate the density of the fluid considered, and one imposes Vn, vibratory speed 
normal with the wall (Vn = v.n where N indicates the unit vector of the normal external with 
border). 
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·  
0, 0, = 0 relate to a border with acoustic impedance Z imposed. 
Acoustic impedance Z is defined like the report/ratio of the pressure at the vibratory speed 
particulate in the vicinity of the wall with imposed impedance: 
p 
Z = 
éq 2.1-6 
Vn 
·  
0, = 0, 0 represent the case where one imposes the acoustic pressure p on one 
border (generally = 0, corresponding to p = 0). 
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3  
Traditional formulation in pressure 
3.1  
Mathematical expression of the problem 
The standard procedure aiming at posing the problem with the traditional finite elements is as follows: 
· one supposes the sufficiently regular solution of the problem, p H2 (). One multiplies 
the equation: 
(+k2) p = 0 
éq 3.1-1 
by a function test. One integrates on and one uses the formula of Green. The border  
field, is subdivided in 2 zones, a zone at imposed vibratory speed, v and one 
zone with imposed acoustic impedance, Z. The equation obtained can be rewritten under 
form: 
 
2 
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0  
 
grad (p). grad () - 
p. FD + J 
p. dS + J 
0 V. 
N dS 
0 
 
2 
C 
 
 
 
 
= 
Z 
 
Z 
 
 
v 
éq 3.1-2 
·  
FD represents an element of differential volume in and dS represents an element of 
surface on. 
· particulate vibratory speed is then determined by: 
J 
v = 
grad (p) 
 
éq 3.1-3 
0  
3.2  
Discretization by finite elements 
In the case of the traditional finite elements, the elementary integrals are four 
Ke Me This Ue 
, 
, 
, 
according to the decomposition indicated in [éq 3.2-3] (K E is the matrix of rigidity, Me 
the matrix of mass, the This matrix of damping and Ue the vector source). Two of them 
come from voluminal integrals, the two others are the result of integrals respectively on 
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a vibrating surface and on a surface with imposed impedance. 
It will be supposed that the total co-ordinates of an element can be written thanks to the data of m 
elementary functions of form Hi: 
m 
OM = H OM 
I 
I 
éq 3.2-1 
i=1 
One is given moreover, of basic functions Ni, to describe the elementary pressure. 
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The pressure inside an element will be able to be written: 
m 
EP (,) = NR (, 
E 
X y Z 
I 
) IP 
éq 3.2-2 
i=1 
where EP 
I is the pressure with node I of the element E. 
In the case of the isoparametric finite elements, the basic functions Nor are equal to the functions 
of Hi form. 
On each element of the field, the problem with the finite elements in pressure is written: 
( 
Q 
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Q 
Q 
Ke - 2Me + This) (EP) 1 = - J (Ue 
J 
Q 
) 1 
éq 3.2-3 
Q 
where (EP) 1 is the matrix column of the nodal values of the pressure on the element. 
3.2.1 The matrix of rigidity 
 
The matrix of rigidity K E corresponds to the calculation of:  
(p). 
() FD 
E 
 
 
grad 
grad 
It admits like general term: 
 
Ke = 
 
 
FD 
ij 
éq 3.2.1-1 
 
 
NR 
NR 
I 
J 
E 
 
3.2.2 The matrix of mass 
 
1 
The matrix of mass corresponds to Me with the calculation of:  
FD 
2 
 
 
p. 
E 
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C 
It admits like general term: 
1 
M E =  
NR NR FD 
ij 
 
 
2 
I 
J 
éq 3.2.2-1 
E 
C 
3.2.3 The matrix of damping 
 
 
The matrix of damping This corresponds to the calculation of:  
0 
dS 
E 
 
 
p. 
Z 
Z 
It admits like general term: 
 
This =  
0 NR NR dS 
ij 
 
 
I 
J 
éq 3.2.3-1 
E Z 
Z 
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3.2.4 The vector source 
 
The vector Ue source corresponds to the calculation of:  
V dS 
N 
 
 
 
0 
ev 
It admits like general term: 
 
U.E. = 
V NR dS 
I 
0 N 
 
 
I 
éq 3.2.4-1 
E 
v 
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4  
Mixed formulation pressure-speed 
4.1  
Mathematical expression of the problem 
4.1.1 Formulation  
local 
The equation of Helmholtz [éq 1-1] with the boundary conditions [éq 2.1-3] result in fact from 
local equations below: 
I p + div v = 0 
in  
éq 4.1. - 
1 1 
I v 
0 
+ grad p = 0 
in  
éq 4.1. - 
1 2 
1 
v. N = 
p 
on  
éq 4.1. - 
1 3 
Z 
Z 
v. N = Vn 
on v 
éq 4.1. - 
1 4 
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where = 1 2 
/0 C is the adiabatic coefficient of compressibility of the fluid. 
The mathematical problem is as follows: being given functions Z L (Z) and 
1 
V 
2 
N H ( 
V 
), to find functions p and v defined in and with values in C checking these 
equations. They describe, in harmonic mode of pulsation, the small fluctuations in pressure 
p and speed v starting from at-rest state (c.à.d. acoustic pressure and particulate speed 
accoustics) of a fluid compressible homogeneous, isotropic, nonviscous, confined in and subjected to 
a distribution of normal velocity Vn on V. 
0, and C represent the density respectively, the coefficient of compressibility 
adiabat and the speed of sound relating to the fluid, in acoustic absence of disturbance; the coefficient 
= 1 Z is the localised admittance of material constituting V to the pulsation considered. 
To build a method of approximation by finite elements of this problem, it is necessary of 
to put in a variational form. 
4.1.2 Mixed variational formulation 
One takes the scalar product of the equation [éq 4.1.1-1] in 2 
L () with an unspecified function Q 
in  
1 
H () (it is the function-test). 
The formula of Green and the fact that v check the boundary conditions [éq 4.1.1-3] and [éq 4.1.1-4] us 
allow to lead to: 
 
 
 
 
I pq* 
pq* 
v. gradq * 
Vn q* 
éq 4.1.2-1 
 
 
 
+ 
- 
 
 
 
= - 
Z 
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v 
One proceeds in the same way with the equation [éq 4.1.1-1] by taking his scalar product in 2 
L () with 
an unspecified function-test U in (2 
3 
L ()) one obtains: 
 
 
I v.u * 
grad p.u* 0 
éq 4.1.2-2 
 
 
0 
+ 
= 
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Now we multiply [éq 4.1.2-1] by J 0 and [éq 4.1.2-2] by - J 0, then we do it 
change of function: 
J v 
v 
! 
Thus we obtain the mixed variational formulation [éq 4.1.2-3]: 
To find (p, v) X × M such as: 
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2  
2 
 
 
- 0 v. gradq*- 1 C pq*+ J 0 pq* = - 
 
J 
V q* 
Q 
X 
 
 
0 N 
 
 
 
 
 
 
 
 
 
 
 
 
 
V 
Z 
 
éq 4.1.2-3 
 
 
 
2 
 
0 v.u*+ 
0 grad. 
p u* = 0 U  
 
 
M  
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where: X = 
1 
2 
2 
H () = {p L (); p/X L () I 
I 
= 1 2 
, , } 
3 
and: M = (2 
3 
2 
L ()) = {v = (v) I 
I 
= 1 2 
, 3 
; I 
v L ()} 
4.2  
Discretization by finite elements. 
The field and its borders V and Z are cut out in fields and borders 
elementary: 
E, E 
E 
V, Z 
on which are calculated elementary integrals. 
To represent the fields of EP and ve inside the element the same functions are used 
basic Ni. 
Inside each element (comprising m nodes) one writes: 
m 
OMe = Nor (,) OMei 
i=1 
m 
E 
p = Nor (,) I.E.(internal excitation) 
p 
i=1 
m 
ve = Nor (,) vei 
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i=1 
, are the curvilinear co-ordinates of a three-dimensional element; 
OMei is the vector position of the Mi node of the element E with m nodes; 
NR, =, 
I I 
1 m are the basic functions on the element E; 
vei is the vector “acceleration” with the Mi node of the element E. 
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In this case the system of equations [éq 4.1.2-3] is written matriciellement for each element E: 
qe* 
 
 
qe*  
qe*  
qe*  
EP E 
E 
v K  
- 2 EP E 
E 
v M  
+ J EP E E 
v C  
= - J 
E 
S  
 
éq 4.2-1 
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e* 
e* 
e* 
E 
U  
U  
U  
U * 
 
 
 
 
 
 
 
 
 
where: 
T 
EP 
EP E 
E 
E 
E 
E 
E 
E 
E 
E 
v = = 
, 
, 
, 
, 
, 
, 
is the vector solution in 
E 
{statement v v 
statement 
v 
v 
1 
1x 
1y 
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Z 
1 
" 
m 
MX 
my 
mz} 
v 
 
the element E; 
4.2.1 The matrix of rigidity 
Ke is the matrix of elementary “rigidity”, corresponding to the calculation of the following part of 
[éq 4.1.2-3]: 
 
 
 
v.grad q* 
 
- 0 
 
 
E 
2 
 
0 v.u*+ - gradp.u* 
 
 
 
0 
 
E 
E 
 
One can write it by breaking up it into mxm pennies matrices K eij of dimensions 4 X 4 like 
below: 
Ke 
K E 
K E  
11 
“1j” m 
 
1  
Ke = Ke 
Ke 
Ke 
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i1 
“ij 
“im for I, J = 1, m 
# 
 
 
Ke 
Ke 
Ke 
m1 
“mj” mm 
 
 
with the following terms for K eij: 
 
Ni 
Ni 
Ni 
 
0 
-  
 
0 
 
NR J 
0  
 
NR J 
0 
 
NR J 
 
 
-  
X 
 
 
-  
y 
 
 
Z 
 
 
E 
E 
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E 
 
 
 
 
 
 
NR J 
-  
2 
 
0 
 
Ni 
0 NiN J 
 
0 
0 
 
 
X 
 
E 
E 
 
 
 
 
Keij = NR J 
 
- 
2 
0 
 
Ni 
0 
0 NiN J 
0 
 
 
 
y 
E 
 
 
E 
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NR J 
-  
 
 
2 
0 
 
Ni 
0 
0 
0 NiN J 
 
 
Z 
 
E 
 
E 
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4.2.2 The matrix of mass 
Is to me the matrix of elementary “mass”, corresponding to the calculation of: 
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1 2 
/C pq* 
 
 
 
Its coefficients are as follows: 
 
for I, J = 1, 
4 
, R 
# 
- 3, 4 
, m 
# 
- 3 
M E = 
1 c2 
ij 
NiN J 
 
 
with R 
= 1, m 
# 
 
The other terms are null 
4.2.3 The matrix of damping 
It is the matrix of elementary “damping”, coming from calculation from: 
 
 
0 pq* 
eV 
Its coefficients are as follows: 
 
for I, J = 1, 
4 
, R 
# 
- 3, 4 
, m 
# 
- 3 
Ceij = 
0 NiN J 
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with R 
= 1, m 
# 
E 
V 
 
The other terms are null. 
4.2.4 The vector source 
Is the vector elementary “source”, representing the calculation of the terms: 
 
 
Vn 
 
0 q* 
eZ 
Its components are as follows: 
 
for I 
, J = 1, 
4 
, R 
# 
- 3, 4 
, m 
# 
- 3 
= 
V 
I 
0 N Ni 
 
 
with R 
= 1, m 
# 
E 
Z 
The other terms are null. 
After having obtained the field p, v on the field by resolution of the equation [éq 4.2-1] assembled, 
one returns to the field p, v by the opposite change of function; one can calculate the intensities 
acoustics defined by [éq 1-1] which are in this case continuous in all the field. 
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5  
Orders specific to acoustic modeling 
At the time of a study by modeling in acoustic finite elements with Code_Aster one uses 
general orders and of the orders which are specific to accoustics, or of which key words and 
options are particular with this discipline; we present the list below of it. 
Definition of the characteristics of the propagation mediums 
It is necessary to give the density (actual value) and the celerity of propagation (value 
complex); one uses for that the order: 
DEFI_MATERIAU with the following key words: 
key word factor: 
FLUID 
key words: 
RHO  
(density 0) 
CELE_C 
(celerity c) 
Example: 
air = DEFI_MATERIAU (FLUID: ( 
RHO: 1.3 
CELE_C: IH 343. 0. )); 
In this case 0 = 343. + j0. 
Assignment of the model 
It is obligatorily necessary to specify that it is about the “acoustic” phenomenon and to choose one of 
the 3 
possible modelings of accoustics; the order is thus used: 
AFFE_MODELE with the following key words for which one specifies the values of assignment 
possible: 
key word: 
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PHENOMENON: “ACOUSTIC” 
MODELING: “3D” or “PLAN” or “3D_MIXTE” 
Example: 
guide = AFFE_MODELE (GRID: email 
AFFE: ( 
ALL: “yes” 
MODELING: “3d_mixte” 
PHENOMENON: “acoustic”)); 
Boundary conditions 
One must affect values normal vibratory speed per face (or edge into two-dimensional) to 
meshs defining the borders sources, and also values of acoustic impedance per face (edge 
into two-dimensional) with the meshs defining the borders in imposed impedance. 
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One uses the order specific to accoustics: 
AFFE_CHAR_ACOU with the following key words: 
key word: 
MODEL 
key word factor: 
VITE_FACE 
key word: 
NET 
GROUP_MA 
VNOR 
(normal vibratory speed Vn) 
key word factor: 
IMPE_FACE 
key word: 
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NET 
GROUP_MA 
IMPE 
(acoustic impedance Z) 
key word factor: 
PRES_IMPO 
NODE 
GROUP_NO 
NEAR 
(pressure p imposed on the nodes) 
Example: 
characou = AFFE_CHAR_ACOU ( 
MODEL: guide 
VITE_FACE: ( 
GROUP_MA: entry 
VNOR: IH 0.0135 0. )); 
In this case Vn = 0.0135 + j0. 
Calculation of the elementary matrices 
The various elementary matrices (rigidity, mass and damping) are calculated by options 
specific. The order is employed: 
CALC_MATR_ELEM with the key word OPTION for which one specifies the possible values of 
assignment: 
key words: 
OPTION: 
“RIGI_ACOU” 
“MASS_ACOU” 
“AMOR_ACOU” 
Example: 
matele_k = CALC_MATR_ELEM ( 
MODEL: guide 
CHAM_MATER: chamat 
OPTION: “rigi_acou”). 
Foot-note: 
the assembled matrices can be obtained directly with the macro order 
MACRO_MATR_ASSE and same options. 
Calculation of the elementary vector source 
The elementary vector is calculated by a specific option; it is obligatorily necessary to indicate it 
loading. The order is employed: 
CALC_VECT_ELEM with the key word OPTION for which one specifies the only value of assignment 
possible: 
key words: 
OPTION: 
“CHAR_ACOU” 

file:///Z|/process/refer/refer/p820.htm (16 of 22)10/2/2006 2:52:39 PM



file:///Z|/process/refer/refer/p820.htm

key words: 
CHARGE 
Example: 
vectelem = CALC_VECT_ELEM ( 
MODEL: guide 
CHAM_MATER: chamat 
OPTION: “char_acou” 
CHARGE: characou); 
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Calculation of the solution  
After assembly of the elementary matrices and vector the harmonic solution can be calculated 
directly with the order: 
DYNA_LINE_HARM 
Example: 
presharm = DYNA_LINE_HARM ( 
MATR_MASS: matasm 
MATR_RIGI: matask 
MATR_AMOR: matasi 
FREQ: F 
EXCIT: (VECT_ASSE: vectass COEF_MULT: - 1.); 
PUIS_PULS: 1 PHAS_DEG: 90.)); 
Postprocessings 
From the result of the resolution of the matric transcription of the equations [éq 3.1-2] or 
[éq 4.1.2-3], of the orders of postprocessing allow to obtain the nodal fields of sizes 
following acoustics: 
 
P 
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· level  
Acoustic LP of pressure P in dB: LP = 20 log10 
5  
. 
 
- 
2 0 10  
· real part of the acoustic pressure 
· imaginary part of the acoustic pressure 
1 
· acoustic intensity activates I = 
[ 
Re statement] 
* 
2 
1 
· acoustic intensity reactivates J = Im [statement] 
* 
2 
These fields are calculated by the use of the ordering of postprocessing CALC_ELEM (the concept 
result is of type “ACOU_HARMO” or “MODE_ACOU”): 
CALC_ELEM with the key words RESULT and OPTION for which one specifies the values of 
assignment 
possible: 
key word: 
RESULT 
key word: 
OPTION: 
“PRES_ELNO_DBEL” 
(level of pressure in dB) 
“PRES_ELNO_REEL” 
(real part of the pressure) 
“PRES_ELNO_IMAG” 
(imaginary part of the pressure) 
“INTE_ELNO_ACTI” 
(intensity activates) 
“INTE_ELNO_REAC” 
(intensity reactivates) 
Example: 
&presharm = CALC_ELEM ( 
MODEL: guide 
CHAM_MATER: chamat 
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RESULT: presharm 
OPTION: “pres_elno_dbel”); 
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6 Conclusion 
Modules were thus integrated in Code_Aster, making it possible to make calculations of accoustics 
interior in low frequencies for complex geometries by two methods: finite elements 
traditional acoustics and mixed acoustic finite elements. 
The two formulations were validated by comparison with the same analytical solution; cases tests 
are presented in the handbook of V7 validation under coding AHLV100. 
As it was envisaged, the precision, with identical grid, is higher in the mixed case; if one holds 
count obstruction memory this superiority is advantageous only if we want to obtain it 
field of intensity: one should use the mixed E.F only in this case there. 
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The elements described here make it possible to carry out calculations of the frequencies and clean 
modes of a structure 
coupled to a fluid. They also allow the acoustic calculation of answer. 
After the formulation of the problem of coupling fluid-structure, this document describes the step 
followed for 
to implement in Aster the new finite elements. 
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1 Introduction 
The vibratory behavior of a structure is often modified if this one is in the presence of a fluid: 
it is what is called the vibroacoustic coupling. One distinguishes the cases from coupling into two 
categories: either the fluid is infinite (it is the case of the immersed structures), or the fluid is contained 
in a limited medium (it is the case of the tanks more or less filled with fluid). 
The finite elements described here make it possible to solve the problems of coupling with a fluid of 
finished dimension. 
General notations: 
P: 
instantaneous total pressure in a point of the fluid, 
p0: 
pressure at rest, 
p: 
acoustic pressure, 
: 
instantaneous total density in a point of the fluid, 
T 
0 : 
density at rest, 
: 
acoustic density, 
: 
density of the structure, 
S 
X: 
acoustic displacement, 
U: 
displacement of the structure, 
: 
gradient of acoustic displacements, 
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, F: pulsation, frequency, 
C: 
speed of sound in the fluid, 
, K: wavelength, numbers wave, 
: 
tensor of the constraints of the structure, 
: 
tensor of the structural deformations, 
C: 
tensor of elasticity of the structure, 
T: 
tensor of the constraints of the fluid. 
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2  
Vibroacoustic coupling 
2.1 Presentation 
That is to say an elastic structure defined in a field S which vibrates in the presence of a true fluid, not 
weighing, compressible, in isentropic evolution defined in a field F. One indicates by 
=  
F 
S, their common surface. 
One notes N, the normal external with the fluid field F. 
NS 
Sf 
 
N 
F 
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Known 
S 
At a given moment, the state of the fluid is defined by its field of pressure P and that of the structure by 
its field of displacement U. 
It is considered that the coupled system is subjected to small disturbances around its state 
of balance where the fluid and the structure are at rest. 
As follows: 
P = p0 + p 
U = U (u0 = 0) 
The problem of interaction fluid-structure then consists in solving two problems simultaneously: 
· one in the structure subjected, on, to a field of pressure p imposed by the fluid 
· the other in the fluid subjected to a field of displacement U of the wall. 
2.2  
Formulation of the vibroacoustic problem 
2.2.1 Description of the structure 
Assumption: 
The structure is homogeneous and obeys the laws of linear elasticity. 
Taking into account this assumption, one can write the various following equations controlling the state 
of 
the structure [bib2]. 
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2.2.1.1 Conservation equation of the momentum 
The conservation equation of the momentum is written, in the absence of voluminal forces 
others that inertias: 
 
d2 U 
-  
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I = 0 
ij, J 
S 
dt2  
[éq 2.2.1.1 - 1] 
where: 
S 
is the density of the structure, 
U 
is displacement, 
ij 
is the tensor of the constraints. 
2.2.1.2 Relation of compatibility 
= 1 U + U 
kl 
K, L 
L, K 
2 
[éq 2.2.1.2 - 1] 
where kl is the tensor of the deformations 
2.2.1.3 Law of behavior in isotropic linear elasticity 
= C 
 
ij 
ijkl 
kl 
[éq 2.2.1.3 - 1] 
with the moduli of elasticity Cijkl checking the identities: Cijkl = Cklij = Cjikl = Cijlk 
C being the tensor of elasticity. 
2.2.2 Description of the fluid 
Assumption: the fluid obeys the laws of linear accoustics. 
Taking into account this assumption, the equations controlling the state of the fluid are: 
2.2.2.1 Conservation equation of the momentum 
The conservation equation of the momentum is written, in the absence of sources: 
2 
D X 
T 
-  
I = 0 
ij, J 
0 
2 
dt 
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[éq 2.2.2.1 - 1] 
where: 
T 
is the tensor of the constraints in the fluid, 
kl 
 
is the density of the fluid in a natural state, 
0 
X 
is the field of displacement of a particle of fluid. 
2.2.2.2 Conservation equation of the mass 
With the first order and in the absence of acoustic sources, it is expressed by the relation: 
p 
 
+  
X 
 
0 div 
0 
T 
 
 
 
T = 
[éq 2.2.2.2 - 1] 
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2.2.2.3 Law of behavior 
T 
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= - p  
ij 
ij 
[éq 2.2.2.3 - 1] 
The fluid is supposed in evolution barotrope (the pressure p is, for the fluid given, a function 
known only density) p = C 
20 ; 
where c0 is the speed of sound in the fluid at rest. 
2.2.2.4 Equation of propagation waves or equation of Helmholtz 
One deduces it by combination from the conservation equations from the mass [éq 2.2.2.2 - 1] and from 
momentum [éq 2.2.2.1 - 1] written in harmonic mode, with the pulsation: 
 
2 
p + K p = 0 
[éq 2.2.2.4 - 1] 
where K =/C is the number of wave. 
2.2.3 Description of the interaction fluid-structure 
With the interface fluid-structure (), the fluid being nonviscous, it does not adhere to the wall. One thus 
writes: 
· the continuity of the normal constraints: 
.n = T .n = - p .n 
ij 
I 
ij 
I 
ij 
I 
[éq 2.2.3-1] 
· the continuity normal speeds: 
 
dx 
i.n =  
i.n 
I 
I 
dt 
dt 
[éq 2.2.3-2] 
2.2.4 Formulation of the coupled problem 
Ultimately, the formulation of the problem of vibroacoustic in terms of displacements for 
structure and of pressure in the fluid led to the equations of the harmonic problem (P): 
C 
.u 
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+ 2 U = 0 
ijkl 
K, lj 
S I 
in S 
[éq 2.2.4-1] 
p + k2p = 0 in F 
C 
.u 
.n = - p .n 
ijkl 
K, L 
I 
ij 
I 
on  
 
1 
p 
U .n 
I 
I = 
2 
N on  
0 
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2.3  
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Variational equations associated the problem 
One solves the problem coupled by using the finite element method starting from the weak formulation 
problem. 
2.3.1 Variational equations associated the structure 
Either U, kinematically acceptable in S, the equation [éq 2.2.4-1] can be written in the form 
integral: 
C 
.u 
U + 2 U U FD = 0  
ijkl 
K, Li 
I 
S 
I 
I 
S 
After integration by part, one obtains the weak formulation: 
C 
.u 
U 
- 2 U U FD -  
C 
U U 
.ns dS = 0 
ijkl 
K, L 
I, J 
S 
I 
I 
ijkl 
I 
K, L 
I 
 
 
S 
Maybe, if one takes into account the boundary condition [eq 2.2.3 - 1]: 
C 
.u 
U 
- 2 U U FD -  
p U .n dS = 0 
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ijkl 
K, L 
I, J 
S 
I 
I 
 
I 
I 
S 
[éq 2.3.1-1] 
2.3.2 Variational equation associated the equation of the fluid 
That is to say p, kinematically acceptable in F. One writes in variational form the equation 
[éq 2.2.2.4 - 1]: 
 
2 
p p + K p p FD = 0 
F 
div (p 
.p) FD - 
p. p 
FD + K 2 
p p 
FD = 0 
 
 
 
F 
F 
F 
dp 
 
p 
. 
ds - 
p. p 
FD + K 2 
p p 
FD = 
 
0 
F 
N 
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F 
F 
Maybe, if one takes into account the boundary condition [éq 2.2.3-1] 
1 
 
p.p - k2 p.p FD - U .p dS = 0 
2  
N 
0 
F 
[éq 2.3.2-1] 
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2.4  
Discretization by finite elements 
The approximation by finished parts of the complete problem leads then to the system: 
U 
K 2M 
- C 
 
= 0 
Q 
- CT 
H 
-  
p 
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.2 

.c2 
0 
0 
maybe, 
K 
- C 
M 
0 
U 
U 
 
- 2  
 
= 0 
p 
Q 
p 
0 
H 
.CT 
0 
c2 
where: 
K and M are the matrices of stiffness and mass of the structure, 
H and Q are the fluid matrices obtained respectively starting from the bilinear forms: 
p.p FD 
p.p FD 
 
 
F 
and F 
C is the matrix of coupling obtained starting from the bilinear form  
p.u dS 
N 
F 
The choice of the formulation led to a nonsymmetrical system matric what does not make it possible to 
use 
traditional algorithms of resolution. 
2.5  
Choice of an additional variable for the description of the fluid 
2.5.1 Formulation of the new problem 
To obtain a symmetrical problem, one associates the variable pressure, a variable 
additional. This new variable is, that is to say the potential of displacement of the fluid such as X = 
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grad [bib1], [bib4], [bib5], that is to say the variable [bib3] such as = -. The variable makes it possible to 
take  
in account directly fluids with variable density. However, it does not represent anything 
physically. This is why, the potential of displacements is preferred to him. 
One thus replaces displacement X of the fluid by grad in the equations of the problem (P) [§ 2.2.4]. 
One thus obtains the new problem to be solved (P'): 
C 
.u 
+ 2 U = 0 
ijkl 
K, lj 
S 
I 
in S 
2 + k2p = 0 
0 
in F 
[éq 2.5.1-1] 
p = 2 
0 
in F 
[éq 2.5.1-2] 
C 
.u 
.n = - 2 .n 
ijkl 
K, L 
I 
0 
ij 
I on  
[éq 2.5.1-3] 
 
U .n 
I 
I = on  
[éq 2.5.1-4] 
N 
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2.5.2 Variational formulation associated the problem (P') 
One applies to the equation [éq 2.5.1-1] the formula of GREEN: 
2 
2 
+ K p FD = 0 
a.c. 
0 
F 
 
 
 
 
 
grad grad 
 
a.c. 
[K 2 p - 
2 
2 
0 
 
] FD + 
 
ds 
0 
= 
 
0 
F 
F 
N 
Maybe, if one takes into account the boundary condition [éq 2.5.1-3] 
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p 
 
 
 
FD -  
grad grad FD +  
U dS = 0 
a.c. 
[éq 2.5.2 - 1] 
 
 
N 
c2 
 
 
F 
0 
F 
 
Moreover, one writes in weak form the equation [éq 2.5.1 - 2] for Q a.c., 
pq 
Q 
p - 2 Q FD = 0 Q a.c.  
FD - 2  
FD = 0 
0 
 
c2 
c2 
F 
F 
0 
F 
[éq 2.5.2 - 2] 
By summoning the equations [éq 2.5.2 - 1] and [éq 2.5.2 - 2], one obtains the associated variational 
equation 
with the fluid: 
pq 
Q + p 
FD - 2  
FD -  
grad grad FD +  
.u dS = 0 
 
0 
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N 
c2 
 
c2 
 
 
F 
0 
F 
0 
F 
(Q,) a.c. 
[éq 2.5.2 - 3] 
2.6  
Discretization by finite elements 
While proceeding with the same step as that used in [§ 2.3], one is led to the system 
matric according to: 
U 
U 
K  
O 
0 
M 
0 
. M 
 
0 
 
 
M 
M 
0  
 
F 
0  
 
p 
- 2  
0 
0 
fl 
 
p 
= 0 
c2 
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c2 
0 
 
 
T 
 
T 
M 
 
0  
0 
0 
. M 
fl 
. H 
0 
 
0 
c2 
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K and M being respectively matrices of stiffness and mass of the structure, 
M being the matrix of coupling fluid-structure obtained starting from the bilinear form: 
U dS and 
 
 
M,  
,  
F Mfl H being fluid matrices, respectively obtained starting from the bilinear forms: 
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p2 FD,  
p FD and of 
 
grad 2 FD 
 
 
 
F  
F 
F 
2.7  
Calculations of acoustic answer 
2.7.1 Speed imposed on the fluid 
On a part v of the fluid border F, one can impose a limiting condition of normal speed type 
v0. 
The term of edge of the fluid is written then: 
- 2  
.u dS = - 2  
.u dS + I  
v dS 
0 
N 
0 
N 
0 
0 
 
- 
 
F 
F 
v 
v 
2.7.2 Impedance imposed on a wall of the fluid 
On a part Z of the fluid border F, one can impose a limiting condition of type impedance Z. 
p = Z vn 
where vn is the outgoing normal speed of the fluid. 
By deferring this condition in the equation translating the conservation of the momentum 
[éq 2.2.2.1 - 1] and by taking account of the law of behavior of the fluid [éq 2.2.2.3 - 1], one a: 
0 
grad p + p = 0 
Z 
[éq 2.7.2 - 1] 
To preserve the symmetry of the system, one expresses the equation [eq 2.7.2 - 1] according to the 
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potential of 
displacement of the fluid, one a: 
 
3 
0  
grad! + 
= 0 
Z 3 
T 
 
Maybe, in harmonic:  
0 
grad + I  
= 0 
Z 
The term of edge of the fluid is written then: 
2 
2 
 
2 
 
 
 
3 
0 
0 
. 
ds =  
 
0 
. 
ds + I 
ds 
- 
 
F 
N 
F Z 
 
 
N 
v Z 
Ultimately, to impose an impedance on a wall of the fluid amounts introducing into the system one 
term of damping. 
Handbook of Reference 

file:///Z|/process/refer/refer/p830.htm (18 of 21)10/2/2006 2:52:39 PM



file:///Z|/process/refer/refer/p830.htm

R4.02 booklet: Accoustics 
HI-75/7952/A 

Code_Aster ® 
Version 
2.3 
Titrate:  
Elements vibroacoustic 
Date:  
02/11/92 
Author (S): 
Fe WAECKEL 
Key: 
R4.02.02-A 
Page: 
11/12 
2.7.3 Discretization by finite elements 
If one imposes limiting conditions of imposed speed type or impedance of wall imposed on the fluid, 
one is led to solve the following matric system: 
K 
0 
0 
M 
0 
. M 
0 
S 
0 
0 
0 
0 
M 
- 2  
M 
- I 3  
 
0 
F 
0 
0 
0 
fl 
0 
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0 
0 
= I V 
.c2 
c2 
0 
2 
0 
T 
0 
0 
0 
0 
. 
M 
0 
0 
Q 
MT 
fl 
. H 
0 
S 
0 
Z 
c2 
Q being the matrix obtained starting from the bilinear form:  
2 dS and V, the vector obtained from 
Z 
v dS 
 
0 
0 
v 
. 
3 Integration  
in  
Aster 
The elements described previously belong, for the fluid part, with modeling 
“3D_FLUIDE” of the MECHANICAL phenomenon and, for the interface fluid-structure, with modeling 
“FLUI_STRU” of the same phenomenon. 
They lead to voluminal or surface elements, for the fluid part, in pressure-potential of 
displacement and with surface elements for the interface fluid-structure in potential of 
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displacement of the fluid-displacement of the structure. 
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Summary: 
One presents an element of coupling élasto - acoustic right which applies to an element of structure of 
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beam of Timoshenko. This element makes it possible to carry out, into vibroacoustic, the modal analysis 
of a piping 
right-hand side containing of the fluid under pressure (water, vapor…). One can also carry out 
calculations of answer to 
fluid sources (flow masses, volume flow rate, pressure) by modal recombination. Boundary conditions 
applicable to the nodes of these elements are of Dirichlet type: displacement, pressure or potential can y 
to be imposed. 
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1 Notations 
P 
: 
instantaneous total pressure in a point of the fluid 
p  
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: 
pressure realised on a cross-section 
~ 
p 
: 
fluctuating pressure 
U 
: 
displacement of the structure 
 
: 
potential of displacements of the fluid 
 
: 
density of the acoustic fluid 
0 
 
: 
density of the structure 
S 
, F 
: 
pulsation, frequency 
C 
: 
speed of sound in the fluid 
, K 
: 
wavelength, numbers wave 
 
: 
tensor of the constraints of the structure 
 
: 
tensor of the structural deformations 
FD 
: 
element of volume 
dA 
: 
element of surface 
 
: 
surface interaction between piping and the fluid 
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S 
: 
cross-section of the fluid 
F 
S 
: 
cross-section of piping 
S 
2 Introduction 
In order to be able to carry out calculations of dynamic response of structures filled of fluid to 
fluids, of the elements of coupling fluid-structure 3D were developed in Code_Aster 
(cf [bib2]). 
These voluminal elements have the advantage of allowing a fine description of the structure in 
particular places like, for example, connection enters a principal piping and one 
pricking of instrumentation. On the other hand, their systematic use for the analysis of ramified networks 
and complexes would lead to costs of modeling (realization of grid) and of calculation prohibitory. 
For this reason, and in order to facilitate simplified studies of dynamic behavior of 
pipings, one developed an element of beam right élasto-accoustics allowing to realize, with 
lower cost of calculation, and calculation labour of overall behavior of the parts 
right-hand sides of pipings in low frequency. 
One finds hereafter a presentation of the finite elements of pipings of the type beam élasto-accoustics. 
The vibratory behavior of the networks of pipings is conditioned by the flow of the fluid which 
traverses. 
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3  
The model of beam élasto-accoustics 
3.1 Assumptions 
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One studies low frequency the vibrations of a piping elastic, linear homogeneous and isotropic 
coupled to a compressible fluid. 
The effects due to viscosity and the flow of the fluid are neglected. 
Pipings are lengthened bodies. Indeed, their transverse dimensions are much lower than 
their length: D << L, and the thicknesses are such as one can neglect the modes of swelling and 
of ovalization of the pipe. One can use a model of beam. 
Low frequency the acoustic wavelengths associated the studied problems are large 
compared to transverse and small dimensions compared to the longitudinal dimension of the circuit: 
. L/C > 1 and. D/C << 1. Compressibility acts indeed mainly on displacements 
longitudinal. Transversely, it is considered that the fluid moves like a solid 
indeformable, i.e. it acts like an added mass. Pressure in a cross-section of 
pipe being then constant, it is said that the acoustic wave is plane. 
3.2  
Functional calculus of the coupled problem 
One can write the variational formulation of the problem of the pipings filled with fluid from 
and behavior equilibrium equations of the fluid and the pipe as well as boundary conditions. With 
to leave the general functional calculus of the three-dimensional coupled problem ([bib1], [bib2]), one 
can write 
functional calculus applied to the particular case of the beams. 
The variational formulation of the 3D problem amounts minimizing the functional calculus: 
1  
F (U, p,) = 
U U - 
2u2 
 
2 
[ ( ) : ( ) 
S 
] FD 
S 
P2 2P 
2  
+  
 
2  
- 
 
u.n 
2 
2 
(grad) FD} - 0 dA 
 
C 
0 
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C 
 
0 
 
 
 
F 
with: 
S, the field of the structure 
F, the field of the fluid 
, the fluid surface of interaction - structure. 
3.2.1 Contribution of piping 
The model of beam used is that of Timoshenko with deformations of shearing action and inertia of 
rotation of the cross section. It corresponds to the modeling POU_D_T of which it takes again 
calculations 
elementary. One does not take into account the effects of ovalization [bib3]. 
The terms associated with piping in the variational formulation are written then: 
[(U): (U) - S 2 u2] S ds 
L 
S 
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with: L, the average fibre of piping and Ss, the section of piping to the X-coordinate S 
(cf [Figure 3.2.1-a]). 
N 
N 
J 
S 
S 
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D 
M (S) 
M (S) 
J 
I 
L 
K 
S (S) 
F 
F 
 
 
S (s+ds) 
 
Appear 3.2.1-a: geometry of piping 
3.2.2 Contribution of the fluid 
In this paragraph, one is interested only in the fluid part of the functional calculus, i.e., term 
of coupling put aside, at the end which is written in 3D: 
P2 
2P 
 
2 
 
2 
 
-  
- 
 
2 
0 
2 
( 
) FD 
 
 
grad 
éq 3.2.2-1 
C 
C 
0 
0 
 
 
 
F 
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It is supposed that the pressure breaks up into two terms: 
P (M (S), T) = p (S, T) ~ 
+ p (M (S), T) 
where p is the value realised on a cross-section of the pressure: 
1 
p (S, T) = 
P 
, 
S 
S 
F ( 
M S T DM 
S) F (S) (()) 
and ~ 
p is a term of fluctuating pressure which corresponds to the contribution of the transverse modes. 
According to the assumptions of the paragraph [§1], p checks the equation 1-D of Helmholtz and ~ 
p the equation of 
Laplace (incompressible). The integral [éq 3.2.2-1] thus breaks up into two terms. 
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3.2.2.1 Term corresponding to the contribution of ~ 
p 
In the movements perpendicular to the axis of the pipe, one considers that the fluid intervenes 
only by its added mass [bib4], the term related to ~ 
p is thus a term of inertia: 
2 2 
0 (C) S ds 
L 
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F 
C being transverse components of the vector displacement of the structure and S F the section of 
fluid with the X-coordinate S. 
3.2.2.2 Term corresponding to the contribution of p 
P2 
2P 
2  
2 
 
 
 
- 0  
-  
S ds 
 
c2 
 
c2  
S  
F 
 
 
L 0 
0 
 
3.2.3 Term of coupling  
3.2.3.1 Section  
current 
According to the references [bib4] and [bib5], one shows that the term of coupling C: 
 
dS 
 
0 
 
C = - 
u.n dA 
0 
= - 
U. J S ds 
F 
+ 
u.i 
ds 
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R 
F 
0 
 
L 
 
 
ds 
L 
Equilibrium equations of the structure and the equation of propagation plane waves (Helmholtz) 
in the fluid are thus coupled with the level of the bent parts and the right parts where there is one 
change of section of piping. In the case of a pipe with constant cross-section: 
dS 
R 
F 
and 
= 0 thus C = 0 
ds 
There is thus no coupling between the movements of beam of the structure and displacements 
longitudinal of the fluid in the right parts of the circuit. In this case, the fluid is characterized 
only by its added mass related to transverse displacements. 
3.2.3.2 Melts of pipe 
Sf 
 
In the case of a bottom of pipe, one notes T = + S F, the total surface of intéraction between the fluid and 
piping. 
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In the case of a right piping with closed constant section, the term of coupling C is worth then: 
C = - 
u.n dA 
0 
= - u.ndA 
S 
+S 
F 
0 
F 
It is the basic effect. 
This term is added at the end of coupling of a current section. Thus, a free node which carries out one 
condition of null flow through the section [bib6] carries out an acoustic basic condition. Indeed, one 
incidental plane wave is completely considered on the bottom: the acoustic pressure in the conduit obeys 
the equation of Helmoltz with normal gradient of pressure no one (fluid displacements and solid being 
null). 
2 p 
2 
 
+ K p = 0 
2 
X 
p 
( 
) 
= 0 
 
X Sf 
One seeks the solution in the form: p = A cos (T 
- kx) + B cos (T 
+ kx) 
i.e. in the form of a linear combination of an incidental plane acoustic wave and one 
considered wave. 
The condition of null gradient on the bottom, checked for every moment, imposes: 
WITH = B 
The considered wave is thus “equal” to the incidental wave (coefficient of reflexion equal to the unit). 
3.2.4 Functional calculus of the system coupled in the case of pipings 
In the particular case that we treat of a not bent piping, with constant section, 
functional calculus of the coupled problem is thus written in the following form: 
1  
2 
F (U, p,) = 
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(U): (U) S ds 
2 
2 
S 
-  
 
+  
U 
2  
 
0 
T 
L 
L [S U 
S 
S S 
F ( 
)] ds 
P2 
2P 
2 
2 
 
 
+  
- 
 
 
- 
S D 
2 
 
 
u.n 
2 
0 
 
2 
F 
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} S 0 dA 
 
C 
0 
 
C 
S F 
0 
 
L  
 
3.3  
Discretization by finite elements 
The solution (U, p,) sought minimizes the functional calculus F. the approximation by finite elements of 
complete problem leads then to the symmetrical system: 
 
 
 
 
K 
 
0 
0 U  
M + M 
0 
M 
 
F 
 
U 
 
 
K 
 
M 
F 
2  
fl 
 
 
0 
0 p -  
0 
0 
p = 0 
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2 
 
2 
 
 
 
0 
.c 
 
C 
 
 
 
0 
0 
0  
 
MT 
 
 
 
 
MT 
fl 
 
. H 
 
2 
0 
 
 
C 
 
 
K and M being respectively matrices of rigidity and mass of the structure, 
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KF, Mfl, H being fluid matrices, respectively obtained starting from the quadratic forms: 
2 
 
 
p2S ds, p S ds, 
S ds 
F 
L 
L 
F 
 
 
 
 
 
S 
F 
 
 
L 
2 
MF being the fluid matrix obtained starting from the quadratic form: p S () ds 
F 
L 0 
C 
M being the matrix of coupling obtained starting from the bilinear form: p 
dA 
S F 0 U N 
. 
By discretizing p linearly and, one thus has: 
L X 
X 
L X 
X 
p = p 
+ p 
1 
2 
and = 1 
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+  
, L being the longor of the element considered. 
L 
L 
L 
2 L 
In this case, the elementary matrix of stiffness of the fluid is written: 
S L 
1 
1 2p  
K 
F 
1 
F = 
{1p p2} 
 
3 
1/ 
 
2 
1 
p 
 
2  
The elementary matrix of coupling is written: 
-1 
 
0 u1  
M = 0 Sf {1 2} 
 
0 
 
1 u2 
The various matrices of fluid mass elementary are written: 
S L 
1 
1 2p  
M 
F 
1 
fl = 
{1 
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2} 
 
3 
1/ 
 
2 
1 
p 
 
2  
S 
1 -  
1  
H 
F 
= - 
{ 
1 
1 
 
2} 
 
 
L 
-1 1 2  
3.4  
Establishment in Code_Aster 
On the principles which we have just described, a vibroacoustic element of beam, Timoshenko 
for the piping part, right to constant section, was established in Code_Aster. It belongs to 
modeling “FLUI_STRU” of the “MECHANICAL” phenomenon. 
This element has 8 ddl by node: displacements and rotations of piping, pressure and it 
potential of displacement of the fluid (cf [Figure 3.4-a]). The formulation is written for displacements 
buildings in the local reference mark with the element made up of neutral fibre (axis X) and of the 
principal axes 
of inertia (axis Y, axis Z) of the section. The two scalars p and (pressure and potential of 
fluid displacements) are invariants by change of reference mark. 
On each node of this element, one can impose boundary conditions of the Dirichlet type in 
pressure, potential of fluid displacements and displacements (translation or rotation). 
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Y 
Uy 
Z 
Uz  
Ury 
Y 
Urz 
Uz 
X 
Urz 
Z 
Uy 
Ux 
Urx 
p,  
Ury 
Ux 
Urx 
p,  
Appear 3.4-a: element of beam filled with fluid 
This element to date makes it possible only to calculate the clean modes of a right piping filled of 
fluid and to make harmonic calculation of answer. Effects of curve or abrupt widening 
of section are not taken into account for the moment, but these fluid-structure effects, lorqu' one has 
business with not very dense fluids like the vapor of a piping of admission, do not seem to have 
a determining importance on the calculation of the first modes: the correct mechanical representation 
elbow (coefficient of flexibility) seems sufficient to calculate these frequencies [bib7]. 
In modal analysis, one can quote the case of a right piping filled with fluid with loose lead: 
Fluid 
Structure 
Appear 3.4-b: beam filled with fluid embedded - free 
the Eigen frequency of the mode of traction and compression of this fluid coupled system/structure is 
data by the relation: 
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L 
S 
E 
tg ( 
) 
S 
= 
C 
S 
2 
F C 
0 
One indicates by: 
E: Young modulus of solid material 
SS: section of the solid 
S F: section of the fluid 
It is supposed here that the speed of speed of sound in the fluid is equal to the speed of sound in 
E 
solid Cs = 
S 
[bib7]. 
The transitory calculation of response for this type of finite element (U, p,) is not yet available in 
Code_Aster. 
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1 Notations 
P 
: 
stationary pressure in the fluid 
p 
: 
fluctuating pressure in the fluid, 
X 
: 
displacements in the fluid, 
F 
X 
: 
the field of displacements in the structure, 
S 
G 
: 
gravity, 
 
: 
potential of displacements of the fluid, 
F, S: density of the fluid, the structure, 
T 
: 
the tensor of the constraints in the fluid, 
 
: 
the tensor of the constraints in the structure, 
 
: 
the tensor of the deformations in the structure, 
C 
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: 
the tensor of elasticity, 
C 
: 
the speed of sound in the fluid, 
H 
: 
the height of the fluid (or average height), 
N 
: 
the normal external of the fluid. 
2 Introduction 
In order to study the behavior of structures filled of fluid, one can be led to take in 
hope the phenomena of shaking i.e. to add to the system coupled fluid-structure, the effect  
gravity on the level of the free face of the liquid. The structures concerned are, for example, 
tanks of nuclear thermal power stations of the rapid system, swimming pools of fuel storage [bib4]. 
One thus supplemented the developments already carried out in coupling fluid-structure [bib3] by 
the introduction of new surface elements which take into account, in their formulation, the effect 
gravity. 
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3  
Theoretical formulation of the problem 
The problem of interaction heavy structure-fluid amounts solving three problems simultaneously: 
· the structure is subjected to a field of pressure P imposed by the fluid on the wall; 
· the fluid is subjected to a field of Xs displacement imposed by the structure on; 
· gravity acts on the free face where p = G Z. 
It will be considered initially that the fluid is nonheavy before introducing gravity with 
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paragraph [§3.2]. 
3.1  
Recalls on the coupling fluid-structure 
In order to account for the interaction fluid-structure well, we will analyze them separately 
equations governing the behavior of the fluid and those which govern that of the structure, without 
to consider in this chapter the boundary conditions concerning the free face. 
3.1.1 Description of the fluid 
It is considered that the studied system is subjected to small disturbances around its state of balance 
where the fluid and the structure are at rest: thus, P = p0 + p and X = X (X 
S 
S 
0 = ) 
0. What allows 
to write [bib2]: 
= - 
2 
F div (X) of or p 
F 
= - F C div (X) 
F. 
With: 
·  
p fluctuating pressure of the fluid, 
·  
the disturbance of density of the fluid, F density of the fluid at rest, 
·  
X (, 
F R T) the field of displacement of a particle of fluid. 
The fluid is: 
· perfect (i.e. nonviscous) 
· barotrope  
: 
p = c2 
éq 3.1.1-1 
2  
·  
and irrotational: there is a potential of displacements, such as p = F t2 
The behavior of the volume of fluid eulérien is thus described by the following equations: 
· law of behavior: 
T = - p 
ij 
ij 
 

file:///Z|/process/refer/refer/p850.htm (4 of 24)10/2/2006 2:52:41 PM



file:///Z|/process/refer/refer/p850.htm

· conservation equation of the momentum in the fluid in the absence of source: 
2 
X 
div (T) 
F 
= F 
2 
éq 3.1.1-2 
T 
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· conservation equation of the mass: 
 
xs  
+  
 
div 
0 
éq 3.1.1-3 
T 
F 
 
T = 
By combining the conservation equations of the momentum [éq 3.1.1-2] and of the mass 
[éq 3.1.1-3] written in harmonic mode with the pulsation, one obtains, thanks to [éq 3.1.1-1], the 
equation 
of Helmholtz: 
2 
p + 
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p = 0 
c2 
3.1.2 Description of the structure 
It is considered that the structure is elastic linear and that one remains in the field of the small ones  
disturbances. Taking into account these assumptions, one writes: 
· the law of behavior in linear elasticity: 
ij = ijk 
C L kl 
· the conservation equation of the momentum in the structure in the absence of 
voluminal forces others that inertias: 
2 X 
div () =  
S 
S t2 
· the equation of compatibility on the tensor of deformation: 
1 
kl = (the U.K.L, + read, K) 
2 
3.1.3 Description of the interface fluid-structure 
With the interface () between the fluid and the structure, like the fluid is not viscous, there is continuity 
of 
normal constraints and normal speeds to the wall, and nullity of the tangential constraint 
(absence of viscous friction). These boundary conditions are written: 
 
ij in = iTj in = - p ij I 
N 
 
xf 
X 
.n = 
S .n 
 
T 
T 
 
3.1.3.1 Formulation of the coupled problem 
Finally, the equation of the problem coupled fluid-structure is written, by taking p like variable 
describing the field of pressure in the fluid and xs the field of displacements in the structure: 
C 
 
X 
+ 2 X = 0 
dansV 
ijkl 
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S 
S 
S 
S 
K, lj 
I 
 
 
2 
p 
+ 
p = 0 
dansV 
c2 
F 
N 
 
= C 
X 
N = - p N 
ij I 
ijkl 
S 
I 
ij I 
on  
K, L 
p 
 
 
= 2 X N 
on  
N 
F 
F 
I 
I 
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Fields of xs displacements for the structure and pressure p for the fluid sought 
minimize the functional calculus: 
1 
1 
1 
p2  
L (X, p, Z) 
2 
2 
2 
S 
= 
 
 
 
 
2 [ 
(X) 
(X) - 
X 
S 
S 
S] - p X N D + 
 
2 
(grad p) 
S 
- 
2 
2 FD 
ij 
ij 
S 
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C 
V 
F 
 
V  
 
 
S 
F 
3.2  
Action of gravity on the free face 
3.2.1 Formulation of the problem 
One points out the linearized dynamic equations here describing the small movements of a fluid 
perfect. One chooses a description eulérienne fluid: 
2x 
grad P = ( 
S 
G - 
) 
V 
F 
t2 
in 
F 
 
With balance the particle of fluid was in M0 and thus: grad P 
G 
in V 
0 = F 
F. 
One considers movements of low amplitude around the state of balance (it is the assumption of 
small disturbances): then M = M0 + X (M 
F 
0, T) 
Are p the fluctuation in pressure eulérienne and pL the fluctuation in Lagrangian pressure, then:  
(pM, T) = P (M, T 
0) - P0 (M0) 
p = P 
L 
(M, T) - P0 (M0) 
Taking into account the assumption of small displacements: 
p 
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p gradP (M, T) X (M, T) 
L - 
= 
O 
F 
O 
= - G X (M, T) 
éq 3.2.1-1 
F 
F 
O 
If one considers the case of a heavy fluid having a free face in contact with a medium to 
constant pressure Patm, one can write, by neglecting the effects of surface tension: 
P (M, T) = Patm on free face SL i.e.: pL = 0. Maybe, with [éq 3.2.1-1], 
p = G 
F 
(X F. ) 
Z 
Taking into account the assumption of the small movements, the instantaneous slope of the tangent plan 
is one 
infinitely small first order. X. Z 
F 
thus merges with the second order near with rise 
vertical h. 
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xf 
G 
SL O 
Mo 
SL 
P (M) = P 
O 
O 
atm 
Appear 3.2.1-a: approximation on the free face 
Thus, if one adds in the boundary conditions the condition of gravity on the free face, that returns 
to consider in Z = H the linearized condition: 
p = G Z 
F 
éq  
3.2.1-2 
The equations of the total problem become: 
C 
 
X 
+ 2 X = 0 
dansV 
ijkl 
S 
S 
S 
S 
K, lj 
I 
 
 
2 
 
 
p 
+ 
p = 0 
dansV 
 
c2 
F 
 
N = C 
X 
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N = - p N 
ij I 
ijkl 
S 
I 
ij I 
on  
K, L 
 
p 
= 2 X N 
on and SL 
N 
F 
F 
I 
I 
 
p = G Z 
on SL 
 
F 
 
To express the functional calculus, one uses the law of behavior on the free face. By considering one 
acceptable field of displacement Z one obtains [bib2]: 
G Z Z ds = p Z ds 
 
 
SL 
SL 
Maybe, finally, the functional calculus of the total system fluid structure subjected to gravity: 
1 
1 
1 
p2  
L (X, p, Z) 
2 
2 
2 
S 
= 
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2 [ 
(X) 
(X) - 
X 
ij 
S 
ij 
S 
S 
S] - p X .n D + 
 
2 
(grad p) 
S 
- 
2 
2 FD 
 
 
C 
V 
F 
 
V  
 
 
S 
F 
1 
+ 
G z2ds - p Z ds 
2  
 
SL 
SL 
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This taking into account of gravity implies two additional terms in the functional calculus 
describing the fluid: 
1 
· a term of potential energy related to the free face:  
2 
G Z ds 
 
2 SL 
· a term due to the work of the hydrodynamic pressure in the displacement of the free face 
:  
p Z ds 
SL 
However it should be noted that it is not the single effect of gravity since in any point of the wall 
be exerted a permanent pressure - G Z (or Z is the altitude of the point M considered: one supposes 
that Z = 0 on the level of the free face to balance). The point M is actuated by a Xs movement 
infinitesimal, the element of surface D thus varies and the effort due to the permanent pressure too. This 
effort is responsible for an additional term of rigidity being added to the rigidity of structure in 
system. It could cause a buckling of the structure by cancelling structural rigidity. This effect is 
negligible on the vibratory characteristics ([bib2], [bib1]), one thus does not take it into account. 
3.2.2 Discretization by finite elements 
To obtain the discretized form of the functional calculus, one replaces each integral by a sum 
integrals on each element I of the discretized system, then one uses an approximation by elements 
stop unknown functions of displacement and pressure on each element I [bib18]. 
The unknown factors are Xs (U, v, W), p, Z, one has then by posing Nor the functions of forms (or 
functions 
of interpolation nodal on element I): 
xs = NR U 
= D  
 
I 
X. N 
S 
= NR U 
 
p (X, y, Z) = NR p 
I 
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I 
 
= B U 
Z = NR Z 
if 
 
 
p = NR p 
I 
where, p, are the unknown factors with the nodes structures and the fluid nodes, and Z the unknown 
factors with 
free face. 
From where the discretized expression of the functional calculus associated with the problem: 
H 
Q 
L = C (K - 2 M) U + Pt ( 
- 
) p + zt G K Z 
T 
T 
 
2 
2 
2 
2 
F 
Z 
- p M Z 
Z 
- PC U 
F  
F C 
with 
K = NT LT D B NR 
I I I I I I 
FD 
stamp stiffness of the structure 
I VI 
M = NT NR 
I F I I 
FD 
stamp mass of the structure 
I If 
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and 
Q = NT NR 
 
T 
I 
I 
I 
FD 
M = NR NR 
Z 
I I I 
dS 
I VI 
I 
fl 
I 
K = NT NR 
T 
Z 
If If I 
dS  
M = NR NR 
Z 
I If I 
dS 
I If 
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I If 
H = NT NR 
I I I 
FD 
I Vifl 
where C is the speed of sound in the fluid, F the density of the fluid and where KF corresponds to 
potential energy of the fluid, K Z with the potential energy of the free face, H with the kinetic energy of 
fluid, M with the coupling fluid-solid and Mz with the coupling p - Z on the free face. 
The approximation by finished parts of the complete problem leads then to the following matric system: 
K 
 
- C 
0 U 
M 
0 
0 
U 
 
 
 
Q 
 
2 
 
0 
H 
0 p - C 
M 
 
 
p 
F 
2 
F 
Z = 0 
 
 
C 
 
 
0 - MR. K  
Z 
Z Z  
0 
0 
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0 
Z  
The first equation corresponds to the movement of the structure subjected to the forces of pressure, 
second with that of the movement of the fluid coupled with the structure and the free face, third is 
the free equation of face. 
However the written problem of the kind has matrices masses and rigidity nonsymmetrical what 
prevent the use of the traditional algorithms of resolution of Code_Aster. 
3.2.3 Introduction of an additional variable 
To make the problem symmetrical and to be able to use the traditional methods of resolution, one 
introduced an additional variable: potential of displacements in the fluid [bib2]. 
X 
2 
F = grad i.e. = p 
This additional unknown factor is related to the unknown factors of the problem, which leads to a matrix 
of 
singular rigidity. 
One reformulates the problem coupled heavy structure-fluid: 
C 
 
X 
+ 2 X = 0 
dansV 
ijkl 
S 
S 
S 
S 
K, lj 
I 
 
 
2 
 
+ 
p = 0 
dansV 
c2 
F 
 
F 
p = 2  
dansV 
F 
F 
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N = C X N = - 2 N 
ij I 
ijkl 
S 
I 
F 
ij I 
on  
K, L 
 
= X N 
 
on  
N 
F 
I 
I 
 
p = G Z 
on SL 
F 
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What leads to the functional calculus of the coupled system: 
1 
1 
p2 
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1 
L (X, p, Z) 
2 
2 
2 
S 
= 2 [(X) (X) - X 
ij 
S 
ij 
S 
S 
S] + 
FD + 
G Z ds 
2 2 
2  
C 
V 
V 
SL 
S 
F 
 
 
 
F 
p 
2 
2 
 
- X N D + Z ds + 
 
 
(grad) 
 
F 
S 
+ 2 FD 
F 
 
2 
C  
 
SL 
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V 
 
F 
 
 
Maybe while discretizing: 
1 
L = T (K - 2 M) + 
T 
p Q p + 
T 
G Z K Z 
2 
F 
Z 
F C 
F 
1 
 
- 2 2  
T H + F T C + F T M Z 
Z 
+ 
T 
p Q  
2 
 
2 
C 
 
What is written, in matric form: 
M 
0 
C 
0 
 
K 
 
0 
0 
0 
F 
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Q 
 
Q 
 
 
0 
0 
0 
0 
0 
0 
 
 
 
 
2 
2 
C 
p 
p 
 
2  
C 
 
F 
 
 
 
- 
 
 
Qt 
= 0 
0 
0 
0 
0 
 
 
 
 
 
 
Ct 
F 
H 
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F 
M 
 
2 
F 
Z  
 
 
0 
0 
0 G K Z 
C 
Z 
 
 
F 
Z 
 
 
 
0 
0 
MT 
F 
Z 
0 
 
 
 
4  
Establishment in Code_Aster 
The library of the finite elements of Code_Aster was enriched by five surface elements 
isoparametric having like degrees of freedom the deflection of the free face and the potential of 
displacements of the fluid on the free face. They are compatible with the élments 3D which treat it 
fluid problem of coupling/structure [bib3] 
One names: 
MEFP_FACE3 and MEFP_FACE6 respectively triangles with 3 or 6 nodes, 
MEFP_FACE4, MEFP_FACE8 and MEFP_FACE9 respectively quadrangles with 4, 8 or with 9 nodes. 
These elements belong to modeling 2D_FLUI_PESA of the MECHANICAL phenomenon. 
Handbook of Reference 
R4.02 booklet: Accoustics 
HP-61/95/029/A 

Code_Aster ® 
Version 

file:///Z|/process/refer/refer/p850.htm (23 of 24)10/2/2006 2:52:41 PM



file:///Z|/process/refer/refer/p850.htm

3 
Titrate:  
Fluid coupling - Structure with Free Face 
Date:  
29/09/95 
Author (S): 
G. ROUSSEAU, Fe WAECKEL 
Key: 
R4.02.04-A 
Page: 
10/10 
5 Bibliography 
[1]  
J.TANI, J. TERAKI: Free vibration analysis of FBR vessels partially filled with liquid. SMIRT 
1989 
[2]  
R.J. GIBERT: Vibration of sructures - interaction with the fluids - sources of excitation 
random. CEA/EDF/INRIA 1988 
[3]  
F. WAECKEL: Modal analysis in acoustic vibration in ASTER. Note intern 
HP-61/91 160 EDF/DER 
[4]  
C. LEPOUTERE, F. WAECKEL: Effect of gravity on the free face of a fluid coupled to 
a structure, Notes intern HP - 61/93.139 
Handbook of Reference 
R4.02 booklet: Accoustics 
HP-61/95/029/A  

file:///Z|/process/refer/refer/p850.htm (24 of 24)10/2/2006 2:52:41 PM



file:///Z|/process/refer/refer/p860.htm

Code_Aster ® 
Version 
5.0 
Titrate:  
Elements of absorbing border 
Date:  
02/04/01 
Author (S): 
G. DEVESA, V. TO MOW 
Key: 
R4.02.05-A 
Page: 
1/20 
Organization (S): EDF/RNE/AMV 
Handbook of Reference 
R4.02 booklet: Accoustics 
Document: R4.02.05 
Elements of absorbing border 
Summary 
This document describes the establishment in Code_Aster of the elements of absorbing border. These 
elements of 
type paraxial, which one describes the theory here, are assigned to borders of elastic ranges or fluid for 
to deal with problems 2D or 3D of interaction ground-structure or ground-fluid-structure. They make it 
possible to satisfy 
condition of Sommerfeld checking the assumption of anechoicity: the elimination of the elastic plane 
waves or 
diffracted acoustics and not physiques coming from the infinite one. 
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1 Introduction 
1.1  
Problems of a semi-infinite medium for the ISS 
Standard problems of seismic answer and interaction ground-structure or ground-fluid-structure 
bring to consider infinite or supposed fields such. For example, in the case of stoppings 
subjected to the seism, there is often business with reserves of big size which enable us to make 
the assumption of anechoicity: the waves which leave towards the bottom reserve “do not return” not. 
This has 
for goal to reduce the size of the structure to be netted and to allow to pass from complex calculations 
with average data processing current. One proposes on [Figure 1.1-a] below diagram which 
described the type of situations considered. 
Fields modelled with the finite elements: 
F 
fluid field (for example retained stopping) 
B 
structure field (for example vault of stopping) 
S 
non-linear ground field 
Surface absorbing 
fluid 
'S linear ground field 
F 
 
B 
S 
'S 
Surface absorbing 
rubber band 
 
Appear 1.1-a: Field for the interaction ground-fluid-structure 
In all the document, one considers that the border of the grid finite elements of the ground is in 
a field with the elastic behavior. 
The elliptic system theory ensures simply the existence and the unicity of the solution of 
acoustic or elastoplastic problems in the limited fields, under the assumption of conditions 
with the limits ensuring the closing of the problem. It goes from there differently for the infinite fields. 
One must 
to have recourse to a condition particular, known as of Sommerfeld, formulated in the infinite directions 
of 
problem. This condition ensures in particular, in the case of the diffraction of a wave planes (elastic 
or accoustics) by a structure, the elimination of the diffracted waves not physiques coming from the 
infinite one 
that the traditional conditions on the edges of the field remotely finished are not enough to ensure. 
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1.2  
State of the art of the numerical approaches 
The privileged method to treat infinite fields is that of the finite elements of border (or 
integral equations). The fundamental solution used checks the condition automatically of  
Sommerfeld. Only, the use of this method is conditioned by knowledge of this 
fundamental solution, which is impossible in the case of a ground with complex geometry, for example, 
or when the ground or the structure is nonlinear. It is thus necessary then to have recourse to the finite 
elements. 
Consequently, of the conditions particular to the border of the grid finite elements are necessary for 
to prohibit the reflexion of the outgoing diffracted waves and to reproduce the condition thus artificially 
of 
Sommerfeld. 
Several methods make it possible to identify boundary conditions answering our requirements. 
Some lead to an exact resolution of the problem: they are called “consistent borders”. 
They are founded on a precise taking into account of the wave propagation in the infinite field. 
For example, if this field can be supposed elastic and with a simple stratigraphy far from 
structure, one can consider a coupling finite elements - integral equations. One of the problems of 
this solution is that it is not local in space: it is necessary to make a separating assessment on all the 
border 
the finished field of the infinite field, which obligatorily leads us to a problem of 
under-structuring. This not-locality in space is characteristic of the consistent borders. 
To lead in the local terms of border in space, one can use the theory of the infinite elements 
[bib1]. They are elements of infinite size whose basic functions reproduce as well as possible 
elastic or acoustic wave propagation ad infinitum. These functions must be close to 
solution because the traditional mathematical theorems do not ensure any more convergence of the result 
of 
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calculation towards the solution with such elements. In fact, one can find an analogy between the search 
for 
satisfactory basic functions and that of a fundamental solution for the integral equations.  
geometrical constraints are rather close but especially, this research presents a disadvantage 
of size: it depends on the frequency. Consequently, such borders, local or not in space, 
can be used only in the field of Fourier, which prohibits a certain category of 
problems, with non-linearities of behavior or great displacements for example. 
One thus arrives at having to find borders absorbing powerful who are local in 
space and in time to treat with the finished parts of the transitory problems posed on fields 
infinite. 
We will present in the continuation the theory of the paraxial elements which carry out absorption 
sought with an effectiveness inversely proportional to their simplicity of implementation as well as 
description of the constraints of implementation in Code_Aster. The developments are presented 
to deal with 3D problems. Those for the cases 2D were carried out and their theory results 
simply of modeling 3D. 
Handbook of Reference 
R4.02 booklet: Accoustics 
HT-62/01/003/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Elements of absorbing border 
Date:  
02/04/01 
Author (S): 
G. DEVESA, V. TO MOW 
Key: 
R4.02.05-A 
Page: 
4/20 
2  
Theory of the paraxial elements 
One presents in this part the principle of the paraxial approximation in the case of the elastodynamic one 
linear. Two theoretical approaches make it possible to determine the spirit and the practical application 
elements 
paraxial rubber bands: one owes the first in Cohen and Jennings [bib2] and the second with 
MODARESSI 
[bib3]. The application of the theory of the paraxial elements to the fluid case will be made in the part 
following. 
Subsequently, as presented on [Figure 1.1-a], one supposes that the border of the grid of 
ground is located in a field at the elastic behavior. 
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The approach of Modaressi established in Code_Aster at the same time makes it possible to build borders 
absorbing and to introduce the incidental seismic field. 
2.1  
Spectral impedance of the border  
To obtain the paraxial equation, we should initially determine the shape of the field of displacement 
diffracted in the vicinity of the border. For that, one leaves the equations of the elastodynamic 3D: 
2 
2 
2 
2 
U 
2 U 
2 
U 
2 U 
- E C 
- E C 
- E C 
= 0 
2 
11 
T 
2 
12 
x' 
x' 
22 
2 
x3 
x3 
u'  
2 
1 C 
0  
1 
0 1 
With: U = E = 
P 
E 
2 
2 
12 = 
CP - C 
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2 ( 
S) 
 
U 
11 
2 
2 
3  
C 0 
 
C 
C 
1 0 
S  
 
 
2 
1 C 
0  
E 
S 
22 = 
2  
2  
C 0 
 
CP  
Constant C, homogeneous at a speed, is introduced to return certain quantities 
adimensional. The equations and their solutions are of course independent of this 
constant. 
One calls x' and u' the directions and the components of displacement in the tangent plan and x3 and 
u3 according to e3, normal direction at the border. 
One proceeds to two transforms of Fourier, one compared to time, the other compared to 
variables of space in the plan at the border. One limits oneself to the case of a plane border and without 
corner: 
The equations are written then: 
( 
2 
 
! U  
 
 
c2 - c2 
3 
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2 
2 
2 
P 
S) -. ! U + I 
 
C - + 
! U +! U = 0 
X + S 
2 
 
3  
 
X 
 
3  
( 
2 
2 
 
! U U  
 
 
! 
c2 - c2 
3 
2 
2 
2 
P 
S) - I. 
+ 
+ C - + 
! U +! U = 
X 
2 
2 
3 
3 
0 
 
3 
X 
S 
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X 
 
3  
 
3  
where! U and! u3 indicates the transforms of Fourier and the vector of wave associated with x'. 
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It is about a differential connection in x3 which one can solve by diagonalisant it. One deduces some: 
(! U) .e3 = A ( 
exp - I X 
S 
3 ) 
 
! U. = [A exp (- I x3) + A 
( 
exp - I X 
P 
P 
S 
S 3)] 
! u3 = - A  
( 
exp - I 3 
X) - A E ( 
xp - I 3 
X 
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P P 
P 
S S 
S 
) 
2 
2 
2 
 
2 
With: P = 
- and = 
-  
c2 
S 
2 
P 
S 
C 
To determine constant A, A and A 
S 
P, one supposes known! ( 
U ',) 
0 on the border of the field 
finite elements. One expresses them according to! (',) 
0 = ! ' 
u' 
U and! U (',) 
0 
0 
3 
=! u30.  
One now will evaluate the vector forced on a facet of normal e3 in x3 = 0, which us 
the impedance of the border will give. One subjects to T (x', x3) the same transform of Fourier in 
space that for the equations of elastodynamic, so that: 
 
 
 
 
! 
U 
U 
T (, X) 
! 3 
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! 
= I! U. + (+ 2µ) 
E 
3 + 
 
µ  
 
+ I 
3 
! u3 
 
x3  
x3 
 
One wishes to free oneself in x3 = 0 from the terms containing from derived in x3. The system obtained 
previously allows it to us according to! ' 
U and! U 
0 
30 : 
! u0. = I 2 U 
 
! 30 
3 
X 
! U 
 
 
0 .e3 = - iS (! u0) .e 
 
3 
3 
X 
 
! U 
 
 
30 
 
= 
 
I P! U. 
0 
S 
+ 
+ 
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2 
(P S) U 
 
! 30 
3 
X 
 
 
 
 
 
One thus obtains the spectral impedance of the border: 
! 
T = a0 E + b0 + c0 E 
0 
3 
3 
where a0, b0 
c0 
and 
are related to and which depends linearly on! ' 
U and! U 
0 
30 
One can then write: ! T = ( 
With,)! U 
0 
0(, ) 
where A appoints the operator total spectral impedance. One returns to physical space by two 
transforms of Fourier opposite. 
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2.2  
Paraxial approximation of the impedance 
The spectral impedance calculated previously is local neither spaces some nor in time since it makes 
to intervene! u0 (“,), transformed of Fourier of u0 (X”, T) for all x' and any T. 
 
The idea is then to develop P and S according to powers' of. This approximation will be good 
either high frequency, or for small. 
Let us examine the dependence in x3, for example of! u3: one will have, for u3 (x', 3 
X, T) of the terms of 
form:  
[ 
exp I (X + T - X 
P 3)] 
 
 
2 
C  
 
With the development of  
P 
1 
 
P:  
 
P = 
-  
+... 
CP  
 
 
 
It is shown that for small, one will have waves being propagated according to directions' close to 
normal e3 at the border, because the exponential one is written: 
 
 
 
 
X  
 
3 
 
exp I 
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T - 
+ I O 
 
 
 
C 
 
 
P  
 
 
 
 
Consequently, with an asymptotic development of P and S, while multiplying by a power 
suitable to remove this quantity with the denominator, one obtains: 
A0 (,)! T = A 
0 
1(, ) ! 
u0 
where A0 and A1 are polynomial functions in and. 
Maybe, after the two transforms of Fourier opposite: 
 
 
With  
, 
T = A  
, 
0 
0 
1 
u0 
X T  
X T  
One thus obtains the final form of the approximate transitory local impedance according to the last term 
 
in retained. One can find the calculation detailed of Have in [bib5]. 
For example, for order 0: 
U 
U 
T 
3 
= C 
E 
0 
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P 
3 +  
 
C  
T 
S T 
This corresponds to viscous shock absorbers distributed along the border of the elements field 
finished. 
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With order 1: 
T 
2 
2 
2 
2 
 
 
0 = U 
U 
U 
U 
3 
C 
E 
P 
+  
Cs 
+  
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3 
C 2c - C 
+ C - 
 
2c 
2 
3 
2 
S ( 
S 
P)  
e3 (P 
S)  
 
 
T 
T 
T 
 
X  
T 
X  
T 
 
 
 
2 
2 
. 
+ 2  
CP U.E. 
3 3 
 
C 
 
C C 
S 
P 
S - 
+ 2 
U 
C C 
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- 
2 2 
X 
S 
P 
 
 
 
 
2 2 
X 
One sees appearing the derivative compared to the time of the vector forced. In the digital processing, 
it will be necessary to have recourse to an integration of this term on the elements of the border. 
To conclude, it will be retained that the paraxial approximation led to a transitory local impedance 
utilizing that derivative in time and in the tangent plan at the border. In way 
symbolic system, one writes: 
U 
t0 = 
 
A0  
 
with order 0 
T  
T 
2 
U U  
0 = A  
, 
, U 
1 
 
2 
 
with order 1 
T 
T 
T  
2.3  
Taking into account of the incidental seismic field 
It is pointed out that the behavior of the ground is supposed to be elastic at least in the vicinity of the 
border. With 
the infinite one, the total field U must be equal to the incidental field ui (one of the consequences of the 
condition of 
radiation of Sommerfeld). One thus introduces the field diffracted ur such as: 
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U = ui + ur 
lim ur = 0 
X 
At the border of the grid finite elements, one writes the condition of absorption for the diffracted field: 
U 
T 
R 
0 (ur) = 
 
A0  
with order 0 
T 
 
T 
2 
 
 
 
0 ( 
U 
U 
U 
R 
R 
R) = A  
, 
, U 
1 
 
2 
R 
 
with 'order 1 
T 
T 
T 
 
One deduces from it the total vector forced on the border from the grid finite elements: 
U 
U  
T 
I 
0 (U) = t0 (ui) + t0 (ur) = t0 (ui) + A0 
- A0 
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T  
 
with order 0 
T  
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One thus obtains the variational formulation of the problem in the vicinity of the border for order 0: 
2u 
U 
 
 
 
U 
v + U: v - With  
v = T U 
I 
- A  
v 
2 () () 0 
(I) 
T 
 
0 
T  
T  
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For any field v kinematically acceptable 
For order 1, one preserves the traditional formulation: 
2 
 
U v + U: v - T U v = 0 
2 ( ) ( ) ( ) 
T 
 
 
 
where ( 
T U) follows the law of following evolution: 
T (U) T (U 
2 
 
 
 
2 
 
 
 
I) 
U 
U 
U 
U 
= 
+ A  
, 
, U 
I 
I 
 
1 
- A  
, 
, U  
T 
T 
t2 T  
1 t2 T I 
The request due to the incidental field appears explicitly in the case of order 0, but it is 
contained in the law of evolution of ( 
T U) for order 1. 
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3  
Anechoic fluid elements in transient 
This part presents the main part of the general constraints of implementation of fluid elements 
anechoic of border absorbents with the paraxial approximation of order 0 in Code_Aster. 
For reasons of simplicity related to the handling of scalar sizes such as the pressure or 
potential of displacement, in opposition to the vector quantities like displacement, one 
be interested initially in the fluid elements. 
3.1 Formulation  
standard 
One takes again here the reasoning of Modaressi by adapting it to an acoustic fluid field. In one 
the first time, one is interested in the only data of the size pressure in this fluid. One will return 
then on this modeling to adapt to the constraints of Code_Aster, by underlining them 
adjustments to be made. 
That is to say thus following configuration, by taking again conventions of the preceding part in the 
vicinity 
border: 
Border locally orthogonal with the axis x3 
x2 
Grid elements 
Fluid field 
x3 
finished 
infinite 
x1 
The definition of a local reference mark on the level of the element makes it possible to bring back for 
us systematically in 
such a situation. 
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9/20 
3.1.1 Finite elements formulation 
The pressure p checks the equation of Helmholtz in all the field modelled with the finite elements, it 
who gives, for any virtual field of pressure Q: 
1 
2 
 
p 
- p.q - 
pq + 
Q = 
 
2 
2  
 
0 
C T 
N 
 
 
 
represent the border of the field. 
p 
The size to be estimated on thanks to the paraxial approximation is here. 
N 
3.1.2 Approximation  
paraxial 
p 
p 
In the configuration suggested, the term corresponds to  
. 
N 
x3 
Let us consider a wave consequently planes harmonic being propagated in the fluid: 
p = A 
[ 
exp I (K X 
1 1 + K X 
2 2 + K X 
3 3 - T)] 
While replacing in the equation of Helmholtz, one obtains: 
 
C 2 
K 
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2 
2 
= 
1- 
+ 
2 (K 
K 
3  
1 
2 ) 
C 
 
One obtains the following development then, for high frequencies (large) or in the vicinity of 
the border (k1 and k2 small): 
 
C 2 
 
K 
2 
2 
= 1- 
+ 
 
 
2 (K 
K 
3 
1 
2 ) 
C  
2 
 
 
Maybe, while multiplying by making disappear this quantity with the denominator and after one 
transform of Fourier reverses in space and time: 
2 p 
1 2 p 1 2 p 2 p 
= - 
+ 
 
+ 
 
 
C 
X  
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2 
 
2 
2  
3 T 
C T 
2 1 
X 
x2  
As had presented it Modaressi, this equation utilizes the derivative compared to the time of 
surface term. Within the framework of this part, one is interested only at the end of order 0, that is to 
say, after one 
integration in time, which makes disappear the awkward derivative: 
p 
1 p 
p 
1 p 
 
= - 
or more generally:  
= - 
X 
C T 
3 
N 
C T 
It is this relation of impedance which we will discretize on the border of the finite elements field. 
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Note: 
Taking into account the disappearance of the term of order 1 in the development of the square root, the 
order 
minimal of approximation for the paraxial fluids is in fact 1 and not 0. We will preserve 
the name of elements of order 0 for coherence with the solid. However, one speaks about elements 
fluids of order 2 at the time to consider elements of a strictly positive nature. 
3.2  
Impedance of the vibroacoustic elements in Code_Aster 
Code_Aster has vibroacoustic elements. One recalls in this paragraph the choices of 
formulation made at the time of their implementation. One is inspired to present existing it of 
reference material of Code_Aster [bib6]. 
3.2.1 Limits of the formulation out of p 
In the framework of the interaction fluid-structure in harmonic, the formulation in pressure only of 
acoustic fluid led to nonsymmetrical matrices. Indeed, the total system is expressed, under 
variational form, in the following way: 
C .u 
v 
- 2 U v - statement .n 
ijkl K L, I, J 
S I I I I = 0 for the structure 
S 
S 
 
1 
2 
p. Q 
- K 
p Q - U .n Q = 0 
2  
 
 
for the fluid 
 
I 
I 
F  
F 
F 
 
 
with K = 
, a number of wave for the fluid, v and Q two virtual fields in the structure and in 
C 
fluid respectively. 
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After discretization by finite elements, one obtains the following matric system: 
K - C U 
M 
 
0 U 
2 
 
T 
Q  
 
 
0 
0 
H - 
C 
= 
 
p 
 
F 
2 
p 
C  
where: 
K and M are the matrices of rigidity and mass of the structure 
H and Q are the fluid matrices obtained respectively starting from the bilinear forms: 
. 
p Q and pq 
 
F 
F 
C is the matrix of coupling obtained starting from the bilinear form: p U .n 
I I  
 
The nonsymmetrical character of this system does not make it possible to use the algorithm of resolution 
traditional of Code_Aster. This justifies the introduction of an additional variable into description 
fluid. 
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3.2.2 Symmetrical formulation out of p and phi 
The new introduced size is the potential of displacements, such as X =. According to [bib6], 
one obtains the new variational form of the system coupled fluid-structure: 
C .u 
v 
- 2 U v - 2 v .n 
ijkl K L, I, J 
S I I F I I = 0 for the structure 
S 
S 
 
 
 
1 
1 
2 
pq -  
 
 
 
F  
Q + p - 
 
.  
+ U N 
2 
 
( 
) 
0 
2 
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for the fluid 
 
I I = 
F C 
 
 
F C 
F 
F 
F 
 
 
 
With: p =  
2 
F in the fluid and a field of potential of virtual displacement 
This leads us to the symmetrical matric system: 
 
 
 
 
 
K 
 
M 
0 
M 
0 
0 
F 
U 
 
U 
 
 
M 
 
M 
0 
F 
0  
2 
p - 0 
0 
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fl p = 0 
2 
 
 
2 
 
 
 
 
F C 
C 
 
 
 
 
0 
0 
0  
MT 
 
 
 
 
MT 
fl 
 
H  
F 
2 
F 
 
 
C 
 
 
where: K and M are the matrices of rigidity and mass of the structure 
M is the matrix of coupling obtained starting from the bilinear form U N 
I I 
 
M, M 
F 
fl and H are the fluid matrices obtained starting from the bilinear forms:  
pq 
, p 
 
F 
F 
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(or  
Q 
) and. 
 
F 
F 
3.2.3 Imposition of an impedance with the formulation out of p and phi 
Generally, a relation of impedance at the border of the fluid is expressed as follows: 
p = Z v.n 
where: 
Z is the imposed impedance 
v.n is the outgoing normal speed of the fluid particles 
One deduces some, according to the law of behavior of the fluid, which connects the pressure to the 
displacement of 
2u 
fluid particles for an acoustic fluid p - F 
= 0 : 
t2 
F p p 
= 
Z T 
N 
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The discretization of such an equation leads to a nonsymmetrical term in a formulation out of p and 
. One prefers to formulate the condition compared to the potential of displacement, that is to say: 
F  
+ 
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= 0 
Z T 
One obtains then like expression for the term of edge associated with the relation with impedance: 
2 
 
3 2 
 
F 
F 
 
= 
 
 
 
T 2 
N 
T3 Z 
 
 
One then notes the appearance (somewhat artificial) of a term in derived third compared to 
time. In harmonic, which is the privileged applicability of the vibroacoustic elements in 
Code_Aster, that does not pose a problem. One treats a term into 3 without difficulty. For calculation  
transient, rather than to introduce an approximation of a derivative third into the diagram of 
Newmark implemented in the operators of direct integration in dynamics in Code_Aster 
DYNA_LINE_TRAN [U4.53.02] and DYNA_NON_LINE [U4.53.01], one prefers to operate a simple 
correction 
of the second member, which returns in fact to consider the impedance explicitly. Conditions of 
stability of the diagram of Newmark are not rigorously any more the same ones, but the experiment has 
us 
shown that it is simple to arrive at convergence starting from the old conditions. 
This choice of an explicit correction of the second member will be also justified at the time of 
implementation of paraxial elements of order 1, which it makes easier definitely. 
3.2.4 Formulation  
detailed 
One proposes here the precise formulation for an acoustic fluid modelled on a field with one 
anechoic condition on a part has border of the field. Apart from that, one 
break up the border into a free face and a part in contact with a rigid solid. The introduction 
requests external or the presence of an elastic structure is modelled easily by 
current methods. The elements of volume and surface are formulated out of p and. 
The equations in the fluid are: 
1 
F  
+ 
p = 0 
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c2 
in volume  
éq 3.2.4-1 
2 
p = F t2 in volume  
éq 3.2.4-2 
p = 0 on the free face 
éq 3.2.4-3 
= 0 
 
on the rigid wall 
éq 3.2.4-4 
N 
p 
1 p 
= - 
on the part of the border with anechoic condition 
éq 3.2.4-5 
N 
C T 
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One multiplies the equation [éq 3.2.4-1] by a field of virtual potential and one integrates in: 
1 
2 
2 
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p + F 
 
.  
+  
 
= 
 
according to the formula of Green 
2 ( 
) 
0 
2 
F 2 
C 
T 
 
T N 
 
 
 
F 
 
Maybe, with the boundary conditions on and the equation [éq 3.2.4-2]: 
1 
2 
 
 
p 
 
p + F 
.  
+  
= 
 
2 ( 
) 
0 
2 
 
C 
T 
F 
 
N 

file:///Z|/process/refer/refer/p870.htm (7 of 23)10/2/2006 2:52:43 PM



file:///Z|/process/refer/refer/p870.htm

 
 
F 
has 
One can consequently apply the condition of impedance formulated in pressure: 
p 
1 
p 
 
 
F 
= - 
 
 
 
F 
N 
C 
T 
has 
has 
Moreover, to arrive to a symmetrical formulation of the terms of volume, one multiplies the equation 
[éq 3.2.4-2] by a virtual field of pressure Q and one integrate in: 
pq 
2 
Q 
- 
= 0 
 
 
c2 T 2 
c2 
 
F 
F 
F 
By summoning the two variational equations, one obtains: 
 
 
1 
2 
 
1 
p 
pq +  
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F 
Q + p -.  
 
 
= 
2 
2 
 
( 
) 
1 
0 
2 
 
-  
 
T 
 
F 
C 
C 
C 
T 
F 
 
F 
F 
F 
F 
has 
 
 
Matriciellement: 
 
M fl  
M 
0p 
0 
1 0 A 
 
 
F 
p " 
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c2 p 
 
“0 
0 0 - 
 
C 0 0 +  
" 
MT 
= 
 
 
 
fl 
" 
H  
2 
F 
C 
 
 
where the submatrices M, M 
and H 
F 
fl 
the same bilinear forms discretize as previously. 
p 
Submatrix A discretizes the term  
 
 
F. The matrix of damping obtained is not 
T 
has 
symmetrical, as one had predicted higher. This is why one rejects this term with the second member. 
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3.2.5 Direct temporal integration 
In our case, because of nonthe symmetry of the matrix of impedance, one chooses to consider it 
anechoic term explicitly as we evoked before. That amounts calculating it 
at the moment T and to place it among the requests at the time of the expression of dynamic balance at 
the moment 
T + T 
. 
One solves: 
 
M fl  
M 
0p 
0 
 
2 
+  
p " + 1 0 A 
F 
T 
T 
C 
T 
T 
“tp  
 
 
 
0 
0 
+ 
 
MT 
 
=  
 
 
 
" 
" 
éq 3.2.5-1 
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T +t  
fl 
 
C 0 0  
H t+t  
 
T  
2 
F 
C 
 
 
Instead of: 
 
M fl  
M 
0p 
0 
+  
1 0 
 
With 
 
 
F 
T 
T 
“tp+ T  
c2 “T 
p " +t 
 
 
0 
0 0 
- 
 
C 0 
 
0  
+ 
" 
MT 
 
= 
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" 
T + T 
 
 
t+t fl 
 
H t+ T  
2 
F 
C 
 
 
Thus, there is not a nonsymmetrical matrix to treat in the system giving X at the moment T + T 
. 
Note: 
In a nonlinear calculation, one reactualizes the second member with each internal iteration. 
Calculation can thus prove more exact and more stable in this case. 
3.3  
Use in Code_Aster 
The taking into account of anechoic fluid elements and the calculation of their impedance require one 
specific modeling on the absorbing borders: 
· in 2D with modeling “2D_FLUI_ABSO” on the finite elements of type MEFASEn (n=2 
or 3) on the absorbing edges with N nodes. 
· in 3D with modeling “3D_FLUI_ABSO” on the finite elements of MEFA_FACEn type 
(n=3, 4, 6, 8 or 9) on the absorbing faces with N nodes. 
 
In harmonic analysis with operator DYNA_LINE_HARM [U4.53.11], one calculates one as a 
preliminary 
mechanical impedance by option IMPE_MECA of operator CALC_MATR_ELEM [U4.61.01] and one 
inform in DYNA_LINE_HARM (key word MATR_IMPE_PHI). 
In transitory analysis, the taking into account of the correct force due under the terms of impedance is 
automatic with modelings of elements absorbents in operators DYNA_LINE_TRAN 
[U4.53.02] and DYNA_NON_LINE [U4.53.01]. 
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4  
Elastic elements absorbents in Code_Aster 
This part presents the main part of the general constraints of implementation of elastic elements of 
border absorbents with the paraxial approximation of order 0 in Code_Aster. The relation is pointed out 
of paraxial impedance of order 0 such as it was established by Modaressi for an elastic range 
linear: 
( 
 
U 
U  
T U) =  
 
 
 
C 
/ / 
p 
+ Cs 
 
 
T 
T  
U becomes U and U 
/ 
T 
becomes U 
3 
// 
4.1  
Adaptation of the seismic loading to the paraxial elements 
One presented in the first part the principle of taking into account of the incidental field thanks to 
paraxial elements. It is advisable here to present the methods of modeling of the seismic loading 
in Code_Aster to be able to adapt the data to the requirements of the paraxial elements. 
The fundamental equation of dynamics associated with an unspecified model 2D or 3D discretized in 
finite elements of continuous medium or structure and in the absence of external loading is written in 
locate absolute: 
MX 
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“+ CX 
has 
“+ KX 
has 
= 0 have 
One breaks up the movement of the structures into a movement of drive Xe and a movement 
relative Xr. 
X 
X 
S 
has 
Xe 
Xr 
X 
X 
S: imposed displacement of the supports 
S 
Teststemxà: absolute movement 
Xe: movement of drive 
( 
Xr: relative movement 
has) 
Appear 4.1-a: Decomposition of the movement of the structures 
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Thus, X = X + X 
has 
R 
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E 
·  
Teststemxà is the vector of displacements in the absolute reference mark, 
·  
Xr is the vector of relative displacements, i.e. the vector of displacements of 
structure compared to the deformation which it would have under the static action of displacements 
imposed on the level of the Xs supports. Xr is thus null at the points of anchoring, 
·  
Xe is the vector of displacements of drive of the structure produces statically by 
the imposed displacement of the Xs supports: X = X 
E 
S, 
·  
is the matrix of the static modes. The static modes represent the answer of 
structure with a unit displacement imposed on each degree of freedom of connection (others 
being blocked), in the absence of external forces. Thus, K = 0, i.e., K Xe = 0. 
In the case of the mono-support (all the supports undergo the same imposed movement), is 
a rigid mode of body. 
Assumption in Code_Aster: 
It is supposed that the damping dissipated by the structure is of viscous type i.e. 
force damping is proportional to the relative speed of the structure. Thus, CX 
“E = 0. 
The fundamental equation of dynamics in the relative reference mark is written then: 
MX 
“+ CX 
R 
“+ KX = - MR. X 
R 
R 
“S 
Operator CALC_CHAR_SEISME [U4.63.01] calculates the term - M, or more exactly - M D 
, 
where D is an unit vector such as X = D 
S 
.f (T) with F a scalar function of time.  
One distinguishes two types of seismic loadings introduced into Code_Aster thanks to the operator 
CALC_CHAR_SEISME: 
1) The loading of the type MONO_APPUI, for which is the matrix identity (the modes 
statics are modes of rigid body), 
2) The loading of the type MULTI_APPUI, for which is unspecified. 
According to the method of taking into account of the incidental field with the paraxial elements 
presented 
in the first part, it is necessary for us to know on the border displacement and the constraints due to 

file:///Z|/process/refer/refer/p870.htm (16 of 23)10/2/2006 2:52:43 PM



file:///Z|/process/refer/refer/p870.htm

incidental field. For the loading of the type MULTI_APPUI, only displacement is directly 
accessible at any moment. It thus seems difficult to allow the use of such a load pattern 
with paraxial elements in the ground. Moreover, if such a loading models displacements 
imposed supports, it does not require a modeling of the ground since all the influence is taken in 
count to these displacements. 
Case MONO_APPUI can be perceived differently. It represents an overall acceleration 
applied to the model. Consequently, the propagation of wave in the ground can have a role to play in 
behavior of the structure, since the movements of the interface ground-structure are not 
imposed. Moreover, the paraxial elements are usable with this type of loading because it does not create 
no constraints at the border of the grid (a rigid mode of body does not create deformations). 
Consequently, one has all the data necessary to calculation of the impedance absorbing on 
border. 
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Notice 1: 
In the case of a seismic request MONO_APPUI, dynamic calculation is done in 
relative reference mark. If one amounts on the term discretizing on the paraxial elements (see first 
part), one notices that ui corresponds exactly to the displacement of drive Xe 
presented higher. Thus, U - ui corresponds to the relative displacement calculated during calculation. 
Consequently, the relation to be taken into account on the paraxial elements in such 
configuration is simply: 
U 
T (U) = A0 
 
T  
Notice 2: 
In the case of a calculation of interaction ground-fluid-structure with infinite fluid, pressure to be taken 
in account for the calculation of the anechoic impedance in the fluid is well the pressure 
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absolute, if there is not an incidental field in the fluid (what is often the case).  
correction which one could exempt to make for the ground must then be made for 
fluid paraxial elements. 
4.2  
Implementation of the elements in transient and harmonic 
4.2.1 Implementation in transient 
The mode of implementation of the elastic paraxial elements in transient is very close to that 
presented for the fluid elements. The difference comes primarily from the need for breaking up 
displacement in a component according to the normal with the element, corresponding to a wave P, and 
one 
component in the plan of the element, corresponding to a wave S. One is then capable 
to discretize the relation of impedance introduced into the first part: 
U 
/ 
3 
U 
T (U) = CP 
+ C 
T 
S T 
One does not reconsider the diagram of temporal integration which one already described in the part 
the preceding one, knowing that one always considers the relation of impedance explicitly by one 
correction of the second member. 
4.2.2 Implementation in harmonic 
The fluid acoustic elements of Code_Aster propose already the possibility of taking into account  
an impedance imposed on the border of the grid in harmonic. That corresponds to the treatment of one 
term in 3 in the equations, like city higher. It is trying to introduce the possibility 
to impose an impedance absorbing for an elastic problem in harmonic. 
For a harmonic calculation of response of an infinite structure, the taking into account of the impedance 
absorbing as a correction of the second member is obviously not applicable. However, 
relation of impedance to order 0 expresses the surface terms according to the speed of the nodes 
element. One can thus build a pseudo-matrix of viscous damping translating 
presence of the infinite field. 
Decomposition of the relation of impedance according to components' normal or tangential of 
displacement on the constrained element us to build the matrix of impedance in a local reference mark on 
the element. One defines this local reference mark in the elementary routine as well as the matrix of 
passage which 
the return to the total base allows. 
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Note: 
In the case of elastic paraxial elements of order 0, to create a matrix of damping 
could have allowed us to solve the problem in transient without deteriorating the stability of 
diagram of Newmark, contrary to the taking into account clarifies that we retained. 
However, we showed the problems that that created for the fluid elements and 
we wished to keep the homogeneity of the modes of implementation. Moreover, treatment 
elements of a nature 1 making the way explicit obligatory, the whole seems coherent. That 
also allows to take into account at the same time an infinite field with elements 
paraxial and a damping of modal the damping type for the structure. 
4.3  
Seismic load pattern per plane wave 
In complement of the methods of taking into account of the seismic loading already available and in 
reason of the inadequacy of mode MULTI_APPUI with the paraxial elements, it seems interesting 
to introduce a principle of loading per plane wave. That corresponds to the loadings 
classically met during calculations of interaction ground-structure by the integral equations. 
4.3.1 Characterization of a wave planes in transient 
In harmonic, a wave planes elastic is characterized by its direction, its pulsation and its type 
(wave P for the waves of compression, waves SV or HS for the waves of shearing). In 
transient, the data of the pulsation, corresponding to a standing wave in time, must be 
replaced by the data of a profile of displacement which one will take into account the propagation with 
run from time in the direction of the wave. 
More precisely, one will consider a plane wave in the form: 
( 
U X, T) = F (k.x - C tp) K for a wave P (with K unit) 
U (X, T) = F (k.x - C ts) K for a wave S (with always K unit) 
F then represents the profile of the wave given according to the direction K. 
O 
“Principal” face of wave 
K 
corresponding at the origin 
profile 
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H 
Function F 
H is the distance from the origin to the principal face of wave. To initialize calculation, the distance 
should be given 
H0 which separates the principal face of wave from the origin at moment 0. 
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4.3.2 User data for the loading by plane wave 
In accordance with the theory exposed in first part, it is necessary for us to calculate the constraint at the 
border 
grid due to the incidental wave and the term of impedance corresponding to incidental displacement, 
that is to say: 
U  
T (U 
I 
I) and A0 
 
T  
To express the constraints, it is necessary for us to have the deformations due to the incidental wave, the 
law of 
behavior of material allowing us to pass from the ones to the others. 
On the elements of border, one can express the tensor of the deformations linearized in each 
node by the traditional formula: 
1 
(X T) = [U (X T) T 
, 
, + U (X, T)] 
2 
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Finally, to consider the constraints due to the incidental field, we thus should determine them 
(ui) J 
derived  
for J and K traversing the three directions of space. One obtains these quantities with 
xk 
to leave the definition of the incidental plane wave: 
(ui) J = kk F (k.x-Cmt) K 
 
J with m = S or P 
xk 
U 
With regard to the term of impedance, it is necessary for us  
I 
. One also obtains it starting from the wave 
T 
plane: ui = mCf (k.x- mCt) 
 
K always with m = S or P 
T 
It is seen whereas the important function for a loading by wave planes with elements 
paraxial of order 0 is not the profile of the wave F, but its derivative f'. It is thus a this function which 
the user must enter like data of calculation. 
One can consequently recapitulate the parameters to enter for the definition of a loading per plane wave 
in transient: 
Type of the wave 
: P, SV or HS 
Direction of the wave 
: kx, ky, kz 
Outdistance principal face of wave with 
the origin at the initial moment 
: H0 
Derived from the profile of the wave 
: f' (X) for X] -, + [ 
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4.4  
Use in Code_Aster 
The taking into account of elastic elements absorbents and the calculation of their impedance requires 
one 
specific modeling on the absorbing borders: 
· in 2D with modeling “D_PLAN_ABSO” on the finite elements of type MEPASEn (n=2 
or 3) on the absorbing edges with N nodes. 
· in 3D with modeling “3D_ABSO” on the finite elements of type MEAB_FACEn (n=3, 4, 
6, 8 or 9) on the absorbing faces with N nodes. 
In harmonic analysis with operator DYNA_LINE_HARM [U4.53.11], one calculates one as a 
preliminary 
mechanical cushioning by option AMOR_MECA of operator CALC_MATR_ELEM [U4.61.01] and one 
informs in DYNA_LINE_HARM (key word MATR_AMOR). 
In transitory analysis, the taking into account of the correct force due under the terms of impedance is 
automatic with modelings of elements absorbents in operators DYNA_LINE_TRAN 
[U4.53.02] and DYNA_NON_LINE [U4.53.01]. 
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Sensitivity of the thermomechanical fields 
with a variation of the field 
Summary 
To know the influence of a variation of the field on the thermomechanical fields, the traditional approach 
consist in making several calculations and evaluating, by difference, the sensitivity. Method described in 
it 
document makes it possible to obtain in only one calculation with Code_Aster the value of the fields of 
temperatures, 
displacements and forced and their derivative compared to the variation of the field. 
The method is initially exposed in its general information: thermics and linear static mechanics, 2D and 
3D, 
variation of an unspecified edge. Then various calculations in the case 2D and for some are detailed 
loadings. 
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1 Introduction 
The developments presented in this document aim at allowing probabilistic studies of 
brutal rupture by a coupling mechanic-reliability engineer. The geometry of the field is treated like one 
random field. The evaluation of the probability of starting of the rupture is ensured by coupling with 
software PROBAN, with methods FORM/SORM. This evolution supposes to know them 
variations of the constraints and the temperatures by report/ratio geometry. Thus, a first application 
industrial seeks to determine the probability of rupture of the nuclear reactor vessel, of which 
the thickness of the lining is regarded as a random variable. These constraints and 
temperatures being calculated by Code_Aster, the traditional technique consists in carrying out series 
of calculation for several values thickness of the coating. Then by difference, one deduces some 
the influence thickness on these fields. 
This technique has limits; in particular: 
· precision: how to choose the values of the parameter thickness so that the difference enters 
does two calculations represent its influence well? 
· performance: for a value of the parameter, at least two calculations with Code_Aster are 
necessary to calculate the influence. 
The method developed in this work makes it possible to obtain in only one calculation with Code_Aster 
the value 
constraints and temperatures and their derivative compared to the thickness of the coating. 
The technique selected is based on a direct derivation of the equations expressed in form 
variational. It takes again the method as under the name of “method” already introduced for 
calculation of the rate of refund of energy in Code_Aster. This fact a certain number of results of 
base are not redémontrés but are the subject only of references in appendix. 
The first part relates to the derivation of the temperature, in stationary regimes and transitory, in 
linear thermics. The principal loadings are studied: convectif exchange, temperature 
imposed, internal source. 
Then, we expose the derivation of the field of displacement in linear static mechanics.  
loadings taken into account are limited to imposed displacements and pressures distributed.  
derivation of the stress field is summarized then with a postprocessing of derived from the field from 
displacement. 
The method is presented in its general information: 2D or 3D, influence of an unspecified variation of 
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edge of the field. In practice, the functionality is currently available only in 2D, for  
loadings mentioned herebefore. 
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2  
Determination of the gradient of the temperature 
2.1  
problem 
A first stage of the calculation of the gradients of the rate of refund of energy G is the calculation of 
gradient of the temperature compared to a real parameter. This parameter controls the variation of 
field of calculation: starting from the area of reference, one studies a transformed field, where  
is the parameter symbolizing the transformation. The required gradients are those which are expressed 
at the place of the resolution of reference, i.e. for = 0. One will refer to appendix 1 for 
notations employed. 
We leave the variational equation governing it thermal of the problem on the field 
transformed. While following [R5.02.01], we define the borders by: 
1: imposed temperature 
2: imposed normal flow 
3: convectif exchange 
what gives the following variational equation: 
 
 
T 
C 
T * + 
T.T* 
 
+ H T T* = 
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S T * + Q T* + H T T * 
p 
 
 
 
 
ext. 
 
T 
 
 
 
 
 
 
 
3 
 
2 
3 
with: 
T 
Temperature 
C 
voluminal heat with constant pressure 
p 
 
thermal conductivity 
H 
coefficient of convectif exchange 
S 
thermal voluminal source 
Q 
 
normal heat flow entering imposed on edge 2 
T * 
 
function of test in H1 (), null on 1 
Note: 
We present here only the problem with boundary conditions of temperature 
imposed, of imposed normal flow and convectif exchange. The taking into account of the conditions 
of exchange between wall or radiation will be done later on. 
2.2  
Derivation of the variational equation 
We will derive each integral successively forming the equation. Each time, us 
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F 
will use the formula of Reynolds, after having defined the vector from for 
transformation F (cf Appendix 2). represent the direction of variation of the field. 
We choose functions of test T * which are independent of the parameter. In addition, one 
is here in a case where derivations Lagrangienne and temporal commutate (cf Annexe 3). 
In all the formulas presented, we note with a point the Lagrangian derivative of 
size: ! 
T is the Lagrangian derivative of T. 
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2.2.1 Integral of the temporal variation 
 
T 
 
I = 
C 
 
* 
 
T 
1 
p 
 
T 
 
 
· 
 
dI  
T 
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T 
1 
* 
 
 
= 
 
*  
C 
 
T + C 
 
T 
div 
 
 
D 
p 
 
 
T 
p 
 
T 
 
 
 
 
 
 
 
We suppose that voluminal heat CP is independent of the parameter i.e. 
purely Lagrangian (attached to the material point).  
 
By using proposal 2 of appendix 2! 
= 
+  
. 
=  
 
 
, we have here! 
. From where 
the expression: 
· 
· 
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T 
· 
 
T 
 
 
T 
C 
 
 
p 
= CP 
C 
 
T  
 
 
 
 
+ 
T 
p T  
 
 
 
 
 
! 
= ( 
T 
 
 
T 
CP). 
+ C 
T 
p T 
 
dI1 
T! * 
T 
* 
 
= 
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T 
C 
T 
 
* 
p 
+ C 
div T 
p 
+ 
 
(CP). T 
D 
T 
T 
T 
2.2.2 Integral of thermal conductivity 
I = 
. 
 
* 
 
T T 
2 
 
dI  
 
· 
 
2 
 
= T.T 
* + T.T 
* div 
D 
 
[ 
] 
 
 
 
 
 
We suppose that thermal conductivity is also independent of the parameter. Thus, 
we have: 
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· 
 
* 
* 
·  
·  
T.T =! T.T + T. T* T.  
* 
T  
 
 
 
 
 
 
 
 
+  
 
 
 
With the general result of appendix 2, we have: 
·  
 
! 
 
 
T = T - T. 
·  
T* 
T! * 
T *.  
T *.  
 
 
 
=  
-  
= - 
 
! 
= . 
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From where the result: 
D I 2 = 
T 
T* + 
 
!. 
(  
.) T 
. T 
* 
D 
 
- (T.). T 
* - T 
. (T 
*.) 
+ div T 
. T 
* 
2.2.3 Integral of the convectif exchange - Part 1 
I = 
hTT 
3 
 
* 
 
3 
 
We use this time the proposal 4 (cf Annexe 2) which establishes derivation for an integral 
surface. 
dI  
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·  
3 = 
hTT * 
hTT *div  
D 
 
+ 
S 
 
3 
 
 
 
We suppose that the coefficient of heat exchange by convection is him still independent of 
parameter. Thus! H =. 
h. 
D I 3 = H TT* + (H 
 
) TT* + hTdiv T 
! 
. 
* 
 
 
D 
S 
 
3 
 
2.2.4 Integral of the internal thermal sources 
I = 
St * 
4 
 
dI  
·  
4 
 
= 
sT* + sT* div 
 
 
D 
 
[ ] 
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We suppose that the thermal voluminal source is independent of the parameter. Thus, 
! S =. 
D I 4 = ((S). ) T* + S div T* 
 
 
D 
 
2.2.5 Integral of the boundary conditions with imposed flow 
I = 
Q T * 
5 
2 
dI  
·  
5 
 
= 
Q 
T* + Q T*div  
D 
S 
 
2 
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We suppose that the external heat flow is independent of the parameter. Thus! Q = Q. 
D I 5 = (Q  
. ) T* + Q T* 
 
div  
D 
S 
 
2 
 
2.2.6 Integral of the convectif exchange - Part 2 
I = 
H T 
T * 
6 
ext. 
3 
 
dI  
 
· 
 
6 
 
= H T T* + H T T*div  
D 
ext. 
ext. 
S 
 
3 
 
 
 
We suppose that the coefficient of heat exchange by convection and the outside temperature 
are independent of the parameter. 
D I 6 = (H) T T* + H 
 
. 
* 
* 
ext. 
(T 
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ext.) T + HT T div  
D 
ext. 
S 
 
3 
 
2.2.7 Assessment 
In all these expressions of derivations of integrals, only the Lagrangian derivative of 
temperature is unknown. We can thus form a new variational equation of which! 
T is 
the unknown factor. 
! 
 
T 
C 
T * 
* 
* 
 
p 
+ T 
!. T + hTT 
! 
 
 
= 
 
T 
 
3 
-  
 
-  
 
( 
T * 
 
 
T 
C 
* 
p). 
T 
C div 
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T 
T 
p 
 
T 
- (  
.) T 
. T* 
+  
[T 
]. T* 
+ T 
 
-  
 
 
 
 
[. T*] div T.T* 
 
+ 
(H 
.) 
 
(T - T * 
* 
* 
ext. 
) T + H 
(T - T 
ext. 
) div T + H 
S 
(T 
ext.) T 
3 
3 
3 
+ (S.) T* + 
 
S div T* 
 
+ (Q.) T* + 
 
Q div T* 
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S 
2 
2 
Border 1 of boundary conditions of Dirichlet for the calculation of T corresponds to the same type of 
boundary conditions: ! 
T is imposed on a zero value along this border. 
2.3  
Comments on this equation 
One can notice that the first member of this equation is, formally, identical to that of 
the variational equation which allows the calculation of the temperature. It is thus a question of solving 
the same one 
equation, with a second modified member. 
The solution of this equation provides the Lagrangian derivative of T. To have the derivative which us 
T 
interest, it remains to achieve the last operation: 
T 
! 
= T - T 
. 
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2.4  
Discretization in time 
The temporal resolution will be done by using the method known as of - diagram, as for the equation 
who controls the change of the temperature. To know the size at the moment T + T 
, us 
will pose: 
! T+ 
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! T (T 
T 
) and! T 
= 
+ 
=! T (T) 
! T 
! T + -! T - 
The derivative in time approaches thus by:  
~ 
- 
T 
T 
 
At the current moment we will use the approximation: 
! T ~ -! T + + (1 -)! T 
I 
I 
We will apply this technique for the principal variables of the problem: ! 
T, T, H, Q, S. All them 
fields at the moment T being known, the equation discretized in time can be written:  
CP T+! T* +  
 
 
+ 
* 
+ + * 
I  
T 
! . T 
 
+ 
H T! T 
 
= 
 
T 
I 
 
 
3 
CP T! T 
 
* - (1- 
- 
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* 
- - * 
I) T! . T 
 
- (1-i) H T! T 
 
T 
 
 
3 
+ 
- 
+ 
- 
- 
* 
- 
-  
T 
T 
T 
T 
C div 
T 
 
* 
p 
-  
. 
 
(CP) 
T 
T 
 
T 
 
+  
 
+ 
- 
 
+ 1- 
 
. . * 
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([T 
I 
(I) T)] T 
+  
(T+ ( 
- 
* 
I) T 
). [T 
.] 
I  
+ 1-  
- (.) 
 
 
1  
 
( + 
- 
* 
I T 
+ (- I) T 
). T 
 
- 
div 
 
1  
 
[ + 
- 
* 
I T 
 
+ (- I) T]. T 
 
+  
1  
( 
+ 
- 
* 
I S 
+ (- I) S 
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). T 
+ div 
 
1  
 
( + 
- 
* 
I S 
+ (- I) S) T 
+  
1  
( 
+ 
- 
* 
I Q 
 
+ (- I) Q). T 
2 
+  
1  
( 
+ 
- 
* 
I Q 
+ (- I) Q) divs T 
2 
+ 
With div 
 
* 
S T 
3 
+ (h+ + ( 
- 
+ 
+ 
- 
- 
1 - 
* 
I 

file:///Z|/process/refer/refer/p880.htm (21 of 26)10/2/2006 2:52:44 PM



file:///Z|/process/refer/refer/p880.htm

) H). (I (T - T 
ext. 
) + (1 - I) (T - T 
ext. 
) 
I 
 
T 
3 
+ (h+ 
- 
+ 
- 
* 
I 
+ (1 - I) H) (T 
I 
ext. + (1 - I 
) T 
ext.). T 
3 
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The term of flow of convectif exchange, A, takes two expressions distinct according to the dependence 
from H 
and Text with respect to time. 
If H and Text are independent of time, only the temperature is with impliciter. From where: 
H 
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(T - T+ - (1 -) T 
 
 
 
) div T* 
ext. 
I 
I 
S 
3 
If not, the whole of flow undergoes it - diagram: 
 
* 
3 
[ + 
+ 
+ 
- 
- 
- 
I H (ext. 
T 
- T) + (1-i) H (ext. 
T 
- T)]divs T 
Note: 
One will have noted the nuisance to have to treat with “Dupond and Dupont of numerical”, with 
to know it - diagram and method… to keep coherence with the remainder of 
documentation of Code_Aster, we chose to preserve the notations for both 
parameters of these methods. Insofar as it is the “method” which interests us it 
more in this work, of the “diagram” was affected of an index I, like “implicitation”. 
Let us hope that that will have been clearly… 
2.5 Discretization  
space 
The space discretization of this equation is copied exactly on that employed for 
resolution of thermics. We return to [R5.02.01] for his description. 
3  
Calculation of the gradient of displacement 
3.1  
problem 
A second stage necessary to the calculation of the gradients of the rate of refund of energy is calculation 
gradient of the field of displacement compared to the variation of the field. We begin again 
exactly same conventions as in the preceding chapter for the calculation of the gradient of 
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temperature. 
Only certain loadings are taken into account. The extension to other types of change would be done  
while following the principles which will be stated. We place ourselves in the case of linear elasticity 
isotropic, in two dimensions. The relation between the tensor of the constraints and the tensor of 
deformations is then of the type: 
= + K (T - Tref) Id 
The field of calculation is noted, where is the real parameter of piloting of the variations of the field. 
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For this application, we retain only three types of behavior at the edge of: 
1: border with imposed displacement 
2: border with “uniform connection” 
3: border with imposed external pressure 
what gives the following variational equation: 
 
(U): (v) = v 
p .n 
 
3 
with: 
U 
field of displacement 
(U) 
tensor of the constraints related to displacement U 
(v) 
tensor of the deformations associated with displacement v 
p 
 
pressure distributed on edge 3 
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3.2  
Derivation of the variational equation 
We will derive the two integrals which constitute the variational equation by applying it 
theorem of Reynolds (cf Appendix 2 and [§2.2]). 
3.2.1 Integral  
voluminal 
I = U:  
( ) 
(v) 
 
Because of isotropy of the problem, we have the equality of the scalar products: 
: (v) =: S (v) 
where S (v) is the symmetrized gradient of v. 
The integral and its derivative are thus written: 
I  
= 
U:  
() S (v) 
 
dI  
 
· 
 
 
= (U) S 
: (v) 
S 
+ U: v div 
D 
 
[ ( ) ( )] 
 
 
 
 
 
We will use the property of derivation of a gradient of vector, where FT is a tensorial function, 
described in appendix 2: 
·  
v 
v 
( 
FT v,) 
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= - 
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We have: 
 
· 
 
(U): S (v) =! (U): S 
S 
v + (U): ! 
(v) 
 
 
 
 
=! (U): S 
S 
S 
v + (U): [(v!) - ( 
T v,)] 
=! (U): S 
S 
v - (U): F ( 
T (v),) 
because functions v are supposed to be independent of the variations of the field, therefore! v = 0. For 
to calculate the derivative not, we notice that is a function of the deformation and of 
temperature: 
 
 
! (U) = 
! E + 
! T 
E 
T 
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In the particular case of isotropic linear elasticity: 
(E, T) = E + K (T - Tref) Id 
 
 
=  
E 
 
= K Id 
T 
from where: ! (U) =! E + K! T Id 
It remains to express the derivative of the deformation E, starting from its expression according to 
displacement U. 
1 
E = 
T 
2 [U 
+ U 
] 
1  
· T  
 
 
E! =! U 
+ 
U 
 
 
 
2  
 
 
 
 
 
 
 
1 
1 
E! = [U 
! - ( 
FT U,)] + [U 
! - ( 
FT U 
,)]T 
2 
2 
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1 
1 
E! = 
T 
T 
! 
! 
FT 
,  
FT 
,  
2 [U 
+ U 
] - 2 [(U) + (U 
) ] 
The final expression of the derivation of the integral is then: 
dI  
T 
S 
1 
T 
S 
= 
! U +! U: v - FT U, + FT U, 
:  
1 
v 
D 
2 [ 
] ( ) 
 
2 [ [ 
( 
) 
( 
) ] 
( ) 
+ K T 
S 
! Id: (v) - (U): F (S 
T (v),  
) 
+ [(U) S 
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: (v)] div 
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3.2.2 Integral  
surface 
I = 
p 
3 
v 
3 
 
D I 3 
 
 
 
= 
statement 
statement div 
· 
 
D 
S 
 
3 
 
 
+ 
By choice of functions v we have! v = 0. We suppose that the external pressure is 
independent of the parameter. As follows: 
· 
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statement 
[p.] v 
 
=  
D I 3 = [p 
.]v + p div v 
D 
S 
 
3 
 
3.2.3 Assessment 
In all these expressions of derivations of integrals, only the Lagrangian derivative of displacement 
is unknown. We can thus form a new variational equation of which! U is the unknown factor and 
where v are the symmetrized gradient of v. 
1 
! U +! C: v = 
 
[ 
] 
2 
1 
FT U, + FT U, T: v 
2 [ [ 
( 
) 
( 
) ] 
- K! T Id: v 
 
+ (U) 
 
: F ( 
T v,) 
 
- [(U): v] div 
 
+ [.p] v 
3 
 
+ p divs 
3  
 
On border 1, displacement is imposed. Whatever the position of this border, 

file:///Z|/process/refer/refer/p890.htm (5 of 29)10/2/2006 2:52:45 PM



file:///Z|/process/refer/refer/p890.htm

boundary condition follows the matter, which involves! U = 0. 
On border 2, with uniform connection, the degrees of freedom are identical, but free: uy = 
constant for example. It is the same for the derivative! U. 
3.3  
Comments on the equation to be solved 
We will note that, as for the problem in temperature, the problem to be solved here is 
formally the same one as that of the determination of displacement U. The matrix is the same one. Only 
the second member evolves/moves. 
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If we set out again of the initial variational equation: 
 
(U): (v) = 
v 
p .n 
 
3 
we can transform it by using the expressions of and of: . 
 
(U): v 
= 
statement 
 
3 
 
 
 
(U) 
[ 
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+ K (T - Tref) I] D: v = statement 
3 
[(U)]: v 
= - 
 
K 
(T - Tref) Id: v 
+ 
statement 
3 
1 
Like (U) = [U 
+ U 
T], we find well the same expression with the first member as 
2 
for the transformed equation. 
4  
Determination of the gradient of the constraints 
The following stage aims at determining the gradient of the constraints. It will be calculated from 
knowledge of the gradients of the temperature and displacement. 
We saw that in the particular case of isotropic linear elasticity! could express itself under 
form (cf [§3.2.1]): 
1 
1 
! (U) =  
T 
T 
K T 
2 [! U +! U] - 2 [ 
 
( 
FT U 
,) + F ( 
T U,)] +! Id 
This stage, all the quantities on the right of the sign = are known; there is not any more but to do one 
postprocessing to obtain! . 
In the same way, knowing that: 
 
= ! -  
, 
the derivative eulérienne of the constraints is expressed in postprocessing of the quantities previously 
calculated. 
Note: 
This phase of derivation imposes that calculation took place with quadratic elements. 
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5 Conclusion 
To continue this work, it remains to make the calculation of derived from the rate of refund of energy. 
That 
is envisaged in a later version. 
The use of this functionality, planned initially for probabilistic mechanics, can extend to 
other fields: optimization of forms, identification. 
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Appendix 1 the transformation of the field 
The technique used to calculate the various gradients during a variation of the field is that of 
method known as “method”. This method was developed for calculation of the rate of refund of 
energy G; it is described in [bib1] and [R7.02.03]. We give here the various expressions which are 
used in this document. 
The field of calculation of reference is noted. It is transformed into a noted field, where  
is one  
real parameter. The whole of the transformations is represented by the functions F. We agree that F0 
corresponds to the identity. 
In a general way, the only sizes which interest us are the gradients expressed at the point of 
resolution. They are thus the derivative compared to the parameter expressed for = 0. This is why, for 
to reduce the notations, in all the document we write: 
 
 
 
instead of =0 
 
F 
The field of vectors is noted. 
We will use the following deduced sizes: 
· field  
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scalar  
div, voluminal divergence, and divs, surface divergence, 
· tensor  
. 
Appendix 2 Form 
We will recall here, the principal formulas useful for calculations of derivation. One will refer to [bib1] 
for 
their demonstrations. 
That is to say (, M) an unspecified field. We note: 
(M) = (  
, 
, F (M)) 
 
Lagrangian derivative: ! 
=  
( ) 
(  
 
) - 1 
F 
F 
( 
 
 
det F) 
Proposal 1: (I) 
= (II) 
= - (III) 
= div 
 
 
 
 
 
Proposal 2: (I)! 
= 
+  
 
! 
is the Lagrangian derivative for the movement F 
 
is the derivative eulérienne 
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· if  
is a scalar field, 
is a scalar product, which gives 
 
 
! 
= 
+  
 
 
X K 
K 
K 
· if  
is a field of vector, is a tensor, which gives: 
I 
 
! 
 
I 
I = 
+  
 
 
 
K 
X 
K 
K 
· if  
is a tensor, the same formula applied to each component of the tensor gives: 
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I, J 
I, 
! 
 
J 
I, J = 
+  
 
 
 
K 
X 
K 
K 
Note: 
The analytical expression of this formula is the same one in plane 2D or axisymmetric 2D. Indeed, it 
term complementary to if is a vector is R/R. It would be to multiply by the component 
orthoradiale of the vector; that one being null, there is no modification of the expression. One passes 
thus of the formula plane 2D to the axisymmetric formula 2D by the formal analogy (X, y) (R, Z). 
Proposal 2: (II) (! 
) =! - FT (,) 
Operator FT is the matric operator which is connected formally with the matric product. 
· if  
is a scalar field, in plane 2D: 
On the basis of the expression (2i) and by deriving it compared to X: 
 
 
! = 
+ 
X + 
 
 
y 
X 
y 
! 
 
 
2 
 
 
 
= 
+ 
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X + 
 
 
y 
X 
 
X  
 
X X 
y  
! 
 
 
2 
 
2 
 
2 
X 
 
 
= 
+ 
X + 
+ 
y + 
y 
X  
X  
X 
X X  
X y 
y X 
 
 
 
X  
= 
 
 
y 
X 
 
 
 
X + 
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X  
 
X + 
 
y  
 
X y + 
+ 
X X 
y X 
By applying the formula (2.i) to the first three terms of this sum, we have: 
· 
 
 
! X y 
= 
+ 
+ 
X X X X there X 
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The same technique used while deriving (2.i) compared to makes it possible it to establish: 
· 
 
 
!  
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X 
y 
 
 
+ 
 
 
 
 
X  
X 
X X 
y X 
 
 
= - 
!  
 
X 
y 
 
 
y y  
+ 
 
 
X y 
y y 
 
 
 
· 
 
 
! 
( 
FT,) 
 
 
 
= - 
 
· if  
is a scalar field, in axisymmetric 2D, its gradient in axisymmetric 2D is worth the vector: 
 
 
= 
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er + 
 
E 
R 
Z Z 
The starting point is still the expression (2.i): 
 
 
! 
= 
+ 
R + 
 
R 
Z Z 
By deriving this formula compared to R or with Z, we find the same expression formally 
 
 
that in plane 2D, for the terms in and 
. 
R 
Z 
From where the expression: 
· 
 
 
! R 
Z  
 
 
 
+ 
 
R  
R 
R R 
Z R 
= -  
! 
 
 
R 
Z 
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+ 
Z  
Z R Z 
Z Z  
 
 
Summary for a scalar: 
· 
 
 
 
! 
K 
 
= 
-  
X  
I  
xi 
X 
K 
K xi 
 
 
front 
I 
K 
EC. and {X,} 
y 
{R 
or,} 
Z 
· when  
is a vector or a tensor, we apply the same reasoning to each one of its 
components in Cartesian co-ordinates: 
· 
 
 
J! J  
J K 
 
=  
-  
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X  
 
I 
X 
 
I  
X 
X 
K 
K I 
 
 
· 
 
 
J L! J L,  
J L, K 
 
=  
-  
X  
 
I 
X 
 
I  
X 
X 
K 
K I 
 
 
with I, J, K, L {X,} 
y 
· for a vector or a tensor into axisymmetric, it is necessary to take account of the characteristics of the 
gradient. 
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We have indeed: 
R 
R  
 
0 
 
R 
Z  
 
=  
R 
R er + ze Z =  
 
0 
0 
R 
 
Z 
Z  
 
0 
R 
R  
J 
Derivations of the terms in are obtained as considering previously. It is necessary from now on 
I 
X 
 
to apply the expression (2.i) at the end exchange R: 
R 
R  
R  
R 
· 
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R  
 
R  
 
R  
 
R  
= 
+ 
 
 
R + 
 
R  
 
R 
 
Z 
Z 
 
· 
1 
 
 
R 1  
 
R 
 
 
R  
1 R 
R 
1  
 
= 
+  
R 
 
R 
+ 
R - 
 
2 R +  
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R R  
 
R R 
R 
R  
Z 
Z 
 
1 
The derivative eulérienne of is null by construction. Terms 1, 3 and 5 of the sum are 
R 
the expression (2.i) applied to R. What gives: 
· 
 
R R 
= ! 
1 
- 
 
 
2 
rr 
R  
R 
R 
 
From where the expression 
· 
 
 
R 
R R! 
R!  
0 
 
0 
 
 
R 
Z  
R 
Z 
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R 
R 
 
! 
0 
0 
= 0 
0 
 
 
R 
 
R 
 
Z 
Z Z! 
! Z  
0 
 
0 
 
 
R 
Z R 
Z  
 
 
R R R Z 
R R R Z  
 
+ 
0 
+ 
 
R R 
Z R 
R Z 
Z Z  
R 
-  
0 
- 
R 
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0 
R 2 
 
Z R Z Z 
Z R Z  
 
+ 
0 
+ 
Z 
R R 
Z R 
Z Z 
Z Z  
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Proposal 3 (theorem of Reynolds) 
With I = 
D 
 
 
,  
 
 
field of R 
3 : 
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(D I 
I) 
= (! + div) D  
D 
 
 
(D I 
 
II) 
= 
D + 
. 
Nd S 
 
 
D 
 
 
Proposal 4: 
With J = 
D S, S 
 
surface of R3 and by noting N the normal external with S: 
S 
 
(D J 
I) 
= [! + divs] ds 
D 
S 
Appendix  
3  
Lagrangian commutation of derivations and 
temporal 
Proposal: 
· 
 
 
!  
= 
 
T 
 
T  
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Proof: 
For the transformation F, we pose classically: 
(M T) = (  
, 
, 
, F (M), T) 
By definition, the Lagrangian derivative is worth: 
 
! 
(M, T) =  
If the transformation applied is the same one at every moment, the moment, T, and the parameter of 
transformation are independent one of the other. Derivations compared to T and can thus commutate. 
! 
 
 
= 
 
= 
 
(  
, F (M), T) 
T 
T 
 
T  
 
 
= 
(  
 
, F (M), T) 
T 
 
 
· 
 
 
 
 
 
= 
 
 
 
T = T  
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Appendix 4 Implementation numerical 
A4.1 Calculation of the variation in temperature 
A4.1.1 Principle general 
We saw with [§2.2] whom the equation to solve is the same one as that which controls calculation  
thermics, except for the second member. That encourages us to insert the calculation of derived from the 
temperature 
in the calculation of the temperature itself (operator THER_LINEAIRE). It will be thus possible with 
each moment to re-use the assembled matrices and to treat all the loadings of the problem 
thermics. 
A4.1.2 total Algorithm 
More precisely, calculations of T and! 
T are imbricated in the following way: 
· Initialisation of the field of temperatures T, and its gradient! 
T, with two possibilities: 
-  
zero setting 
-  
resumption of a field previously calculated 
· Boucle in time: 
1) 
Calculation of the elementary matrices, then assembly 
2) 
Calculation of the second member of the equation of thermics 
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3) 
Resolution 
This stage, one knows T and T 
N 
n+1. One can connect on the calculation of! 
T. 
4) 
Calculation of the second member of the calculation of! 
T 
-  
term due to the thermal source and the boundary conditions of flow 
-  
term due to the derivation of the equation 
-  
term due to the method of implicitation. One uses the same program as for 
the calculation of T, while having replaced the field T by the field! 
T 
5) 
Resolution of the system to know the new value of! 
T 
6) 
Rock of the values of T 
and T 
n+1 
N 
! +1 in T and T 
N 
N 
! 
A4.1.3 Boundary conditions of Dirichlet 
Everywhere where one has boundary conditions of Dirichlet on the thermal problem, one finds 
boundary conditions of Dirichlet for the calculation of! 
T. In these points, T being imposed, T are 
independent of the variations of the field: 
T 
= 0 
As we have the relation: 
T 
 
! T = 
+ T. 
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we deduce the values from them from the boundary conditions of Dirichlet: 
! T 
T. 
di =  
 
This value is thus calculated in each node of border 1. 
A4.1.4 Detail of the various terms of the second member 
We will gather under the same integral the obligatory terms due to the derivation of 
the equation, then to examine each possible change. The result will be written in the form of 
contribution of node I to the point of Gauss pg the element running in the calculation of the integrals by 
formulate Gauss, knowing that all its contributions are to be cumulated. 
Term due to derivation 
It is necessary to calculate the contribution of: 
I = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8, with 
C 
 
I 
p 
* 
1 = 
T - 
! T 
T 
I 
* 
2 = - (1 - 
- 
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I 
) T 
! T 
 
T + - T - 
I 
* 
3 = 
- div C 
 
T 
 
p 
 
T 
 
T + - T - 
I 
* 
4 = 
- 
 
 
 
(CP). 
T 
T 
 
I 
* 
5 =  
 
 
([T+ 
- 
I  
+ (1 - I) T 
)]. T 
 
I 
* 
6 =  
 
 
(T+ 
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- 
I  
+ (1 - I) T) [T] 
I 
( .) 
 
(I +T + (1-i) - T) * 
7 = 
- 
. T 
I = div 
 
[I +T + (1 
8 
- I) -  
T] * 
T 
· Calcul  
of  
I1 
In stationary regime, this term does not exist. In transient, one will have expressed! 
T -, derived 
Lagrangian of T at the previous moment at the points of Gauss. CP is supposed to be constant by 
element. From where the contribution: 
C 
 
I 
p 
= 
T - 
1, , 
! (pg) ui (pg 
I pg 
)  
T 
pg 
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· Calcul  
of  
I2 
In stationary regime, this term does not exist. In transient, one will have expressed the gradient of! 
T with 
points of Gauss. is supposed to be constant by element. From where the contribution: 
ui 
I 
- 
2 I pg = (1 
, , 
- I) (T! ) 
 
pg, J 
xj 
pg 
 
J 
· Calcul  
of  
I3 
In stationary regime, this term does not appear. CP is supposed to be constant by element. 
div, T + 
T - 
and 
will have been calculated at the points of Gauss as quoted in appendix 5. From where 
contribution: 
C 
 
I 
p div 
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+ 
- 
3, , 
= - 
(pg) (T (pg) - T (pg) ui (pg 
I pg 
)  
T 
pg 
 
· Calcul  
of  
I4 
CP is supposed to be constant by element. Its gradient is thus null by element. From where: 
I4 I pg 0 
, , 
= 
· Calcul  
of  
I5 
is supposed to be constant by element. +, - 
T 
T and will have been calculated at the points of Gauss. 
One starts by calculating the quantity  
+ 
- 
I T 
 
+ (1-i) T 
. The result is a vector of which them 
components at the point of Gauss are: 
ui 
With (pg) = 
[T+ (I) + (1 -) T 
 
 
(I)] (pg 
J 
I 
I 
) 
xj 
I 
The tensorial product contracted A 
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is written: (A) = 
 
K 
Aj jk 
J 
 
y 
 
Example: (A) = 
X + 
Z 
With 
Ay 
+ 
X 
X 
Z 
With 
X 
X 
X 
etc, from where the formula: 
ui 
I5, = (  
With) (pg) 
(pg 
I pg 
 
K 
). 
xk 
pg 
K 
In axisymmetric 2D, product A 
is written: 
( 
 
 
 
With) = 
R 
With 
+ 
Z 
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Z 
With 
+ A 
R 
R R 
X 
 
X 
( 
 
 
 
With) = 
R 
With 
+ 
Z 
 
Z 
With 
+ A 
Z 
R Z 
Z 
Z 
( 
 
With) = 
R 
With 
 
R 
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Here, component A is always null. We thus find the same expression as in 
Cartesian co-ordinates 2D. 
· Calcul  
of  
I6 
is supposed to be constant in the element. +, - 
T 
T and div will have been calculated at the points of 
Gauss. The vector  
+ 
- 
I T 
 
+ (1-i) T 
A will be noted, like previously. The product  
tensorial contracted T * has on the knot slip I for component: 
( 
U 
T*) = I (pg) 
I, K 
X 
J K 
J 
J 
Ex: ( 
U 
 
U 
 
y 
U 
 
 
T*) = I (pg) X + I (pg) 
+ I (pg) Z 
I, X 
X 
X 
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y 
 
X 
 
Z 
 
X 
 
from where the formula: 
I 
= A 
* 
6, , 
(pg) (T 
I pg 
K 
) . 
I, K 
pg 
K 
As for the preceding integral in axisymmetric 2D, component A is null. 
The expression is thus the same one in Cartesian 2D or axisymmetric. 
· Calcul  
of  
I7 
is supposed to be constant in the element. Its gradient is thus null there. From where: 
I7 I pg 0 
, , 
= 
· Calcul  
of  
I8 
is supposed to be constant in the element. +, - 
T 
T and div will have been calculated at the points of 
Gauss. The vector  
+ 
- 
I T 
 
+ (1-i) T 
A is noted, like previously. We have then: 
U 
I 
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div 
8, , 
= 
(pg) A (pg) I (pg 
I pg 
K 
)  
X 
pg 
K 
K 
Source term of energy 
We calculate the two integrals: 
I = 
div 
+ 
- 
* 
1 
(if + (1 - I) S) T 
I 
+ 
- 
* 
2 = (S 
I 
+ (1 - I) S 
). T 
s+ 
S 
and 
are known at the points of Gauss. div was calculated at the point of Gauss. From where 
contribution: 
I 
div 
+ 
- 
1 
(pg) (S (pg) (1 
, , 
= 
+ -) S (pg) U (pg 
I pg 
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The source S being constant by element, its gradient is null. From where: 
I2 I pg 0 
, , 
= 
Term of the boundary conditions of imposed flow 
I 
+ 
- 
* 
1 = (Q + (1 -) Q) div T 
I 
I 
S 
q+ 
Q 
and 
are known at the points of Gauss. div () is calculated at the point of Gauss. 
I 
+ 
- 
1 
[Q (pg) (1 
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, , 
= 
+ -) Q (pg)] × div (pg) U (pg 
I pg 
I 
I 
S 
I 
) pg 
Note: 
The calculation of the J/xk is done at the points of Gauss of the element of edge, for example on one 
segment for a calculation 2D. However on this segment, one knows only the derivative curvilinear of 
functions of form, i.e. the derivative tangential. It is thus necessary to calculate them as a preliminary 
quantities J/xk while basing itself on the elements of volume and that with the nodes of 
elements of edge. Then, one evaluates their values at the points of Gauss of the element of edge 
with the functions of this element of edge. 
The expression is the same one in axisymmetric 2D as into Cartesian because the complementary term 
R 
of  
, 
, is multiplied by the component orthoradiale of normal N. However this 
R 
component is null. 
I 
+ 
- 
* 
2 = (Q 
 
+ (1 -) Q 
). T 
I 
I 
2 
 
Q is supposed to be constant by element. Its gradient is thus null there. From where: 
I2 I pg 0 
, , 
= 
Term of the boundary conditions of convectif exchange 
If H and Text are independent of time, we calculate the following expression: 
I = - 
(1 -) H T! T* + H 
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(T 
- T + - (1 -) T - 
 
 
) div T* 
I 
ext. 
I 
I 
S 
3 
3 
What gives: 
I 
- 
I, pg = 
([1 - I) H T! (pg)] + 
(HT - T+ 
- 
ext. 
I 
(pg) - (1 - I) T (pg) × divs (pg) ui (pg) pg 
If H or Text is independent of time, it is then necessary to calculate: 
I = - (1 
- - * 
I 
) H T! T + 
3 
 
+  
 
* 
 
3 
[h+ 
+ 
+ 
- 
- 
- 
I 
(T - T 
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ext. 
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What gives: 
I 
- 
- 
I, pg = 
([1 - I) H T (pg)] 
+ [h+ + 
+ 
- 
- 
- 
I 
(T - T 
ext. 
(pg) + (1 - I) H (T - T 
ext. 
(pg)] × 
div ( 
pg) ui (pg) pg 
Same remarks that to the preceding paragraph apply to the calculation of the quantities J/xk. 
The two integrals utilizing H and Text are null, insofar as H and Text are 
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presumedly constant by element. 
A4.2 Calculation of the gradient of displacements and the constraints 
A4.2.1 Principle general 
As for thermics, the calculation of the gradient of displacement is inserted in the calculation of 
displacement, i.e. operator MECA_STATIQUE. 
 
Then the calculation of! and will be done in postprocessing, in orders CALC_ELEM and 
CALC_NO. 
A4.2.2 Boundary conditions of Dirichlet and uniform connection 
Nothing is to be made for these two types of boundary conditions. Their treatment is ensured by 
standard operation of the calculation of static mechanics linear. 
A4.2.3 Detail of the various terms of the second member 
We will gather under the same integral the obligatory terms which had with the derivation of 
the equation, then to examine each possible loading. The result will be written in the form of 
contribution of node I and the point of Gauss pg for the current element. 
Term due to derivation 
It is necessary to calculate the contribution of: 
1 
I = 
FT U,  
FT U,  
: 
2 [ [ 
() + () T] S 
v 
 
- K T 
S 
! Id:  
 
v 
 
(U) 
 
: F (S 
T v,) 
 
-  
[(U) 
S 
: v] div 
where sv is the symmetrized gradient of v is 1 + T 
2 (v 
v). 
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To format this writing symbolic system, we will leave the broken up analytical form  
and to write derivations on the scalar terms. 
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One will remember (cf [§3.2.1]) that this integral results from derivation from: 
 
(U): sv 
 
and that we broke up it into: 
· 
[ 
 
 
(U): sv] + (U): 
 
sv +  
 
! (U): S 
div 
 
v 
 
 
 
 
 
We start by clarifying the first integral because that will make it possible to set up them 
various terms according to the mode: plan or axisymmetric. 
· In plane deformations: 
v 
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vy 
v 
v 
 
: sv = 
X 
X 
y 
xx 
+ yy 
+ xy  
+ 
 
X 
 
y 
 
y 
 
X  
The divergence of the field is a data, calculated at the points of Gauss. 
The tensor of the constraints (U) is known at the points of Gauss. Tensor v is known. 
From where contributions: 
 
v 
v 
 
I 
I 
I 
1 I, pg, X = - xx (pg) 
+ xy (pg) 
div 
() (pg). 
X 
 
y 
pg 
 
 
 
v 
v 
 
I 

file:///Z|/process/refer/refer/p900.htm (14 of 45)10/2/2006 2:52:46 PM



file:///Z|/process/refer/refer/p900.htm

I 
I 
1 I, pg, y = - xy (pg) 
+ yy (pg) 
div 
() (pg). 
X 
 
y 
pg 
 
 
The term of the integral second breaks up into: 
· 
· 
· 
 
 
 
 
 
 
v 
v  
 
v 
X  
y 
v 
 
 
X 
y 
xx 
+  
 
 
 
yy  
+  
+ 
X  
 
xy 
y 
y 
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X  
 
 
 
 
 
 
 
 
 
 
It is then enough to use the formulas shown in appendix 2 for function FT and to establish 
the following expression, knowing that! v =! v 
X 
y = 0: 
vx X v  
-  
 
X 
y 
xx  
+ 
 
 
X X 
y X  
vy  
v  
+ 
X 
y 
y 
yy  
+ 
 
X y 
y y  
v 
v 
v 
X X 
v  
 
X 
y 
y  
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+ 
X 
y 
y 
xy  
+ 
+ 
+ 
 
X y 
y y 
X X 
y X  
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While distributing on the functions of form, we have: 
 
 
v 
 
 
y 
y v  
I 
X 
X 
I 
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I 
2 I, pg, X = - xx 
+  
 
 
 
 
X 
xy  
y  
+ 
+ 
 
X 
xx 
X 
xy 
 
X 
 
y 
pg 
 
 
 
 
 
 
 
v 
 
y 
y v  
I 
X 
X 
I 
I 
2 I, pg, y = - yy 
+  
 
 
 
 
y 
xy 
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X  
+ 
+ 
X 
yy 
 
y 
xy 
 
X 
 
y 
pg 
 
 
 
 
 
The third integral is worth: 
v 
v 
 
v  
X 
y 
v 
 
! 
X 
y 
xx 
+! yy 
+ !  
+ 
 
 
X 
 
xy 
y 
y 
X  
In the isotropic elastic case, we have: 
U 

file:///Z|/process/refer/refer/p900.htm (19 of 45)10/2/2006 2:52:46 PM



file:///Z|/process/refer/refer/p900.htm

U 
 
X 
y 
xx = 1 
+ 2 
+ K (T - ref. 
T) 
X 
y 
U 
U 
 
X 
y 
yy = 2 
+ 1 
+ K (T - ref. 
T) 
X 
y 
U 
U 
 
X 
y 
zz = 2 
+ 2 
+ K (T - ref. 
T) 
X 
y 
1 
U 
U 
 
 
 
X 
y 
xy = 
3 
+ 
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2 
y 
X  
E (1 -) 
with 
1 = (1+)(1- 2) 
E 
2 = (1+)(1- 2) 
E 
3 = 1+ 
Let us detail the calculation of! 
xx: 
·  
·  
uy  
uy  
! 
 
= 1 
+ 2  
+ K! 
xx 
 
T 
y 
y 
 
 
 
 
 
 
 
 
! uy  
! uy  
=  
 
1 
+  
 
2 
+ K! 
 
T 
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X  
y  
U 
 
U 
U 
 
X X 
U  
 
X 
y 
y  
 
 
X 
y 
y 
- 1 
+ 
 
 
- 2  
+ 
 
X X 
y X 
X y 
y y 
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How it was seen with [§3.2], the terms in! U and! U 
X 
y are to the first member. The same one 
technique of derivation applied to yy, zz and xy encourages to pose notation LAGUGT for 
1 
T 
the expression  
FT U, + FT U, 
2 [ 
( 
) 
( 
) ] 
ux X U  
U 
X 
y 
y  
U  
LAGUG ( 
T) 
1 = 
 
X 
y 
y 
1  
+ 
+ 2  
+ 
 
X X 
y X  
X y 
y y  
ux X U  
U 
X 
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y 
y  
U  
LAGUG ( 
T 2) = 
 
X 
y 
y 
2  
+ 
+ 1 
+ 
 
X X 
y X  
X y 
y y  
U 
 
 
U 
 
X X 
U  
U 
LAGUG (  
T) 
3 = 
 
X 
y 
y 
X 
y 
y 
2  
+ 
+ 2  
+ 
 
X X 
y X  
X 
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y 
y y 
 
 
1 
 
 
 
 
 
LAGUG ( 
T 4) 
U  
 
U  
U 
 
X 
X 
ux 
y 
y 
X 
y 
y 
= 
 
+ 
+ 
+ 
 
2 
3 
X 
y 
y 
 
y 
 
X 
X 
y 
 
X 
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what gives: 
! U 
U 
X 
! 
! 
 
y 
= 1 
+ 2 
- LAGU 
xx 
( 
WP) 
1 + ! 
kT 
X 
y 
! U 
U 
X 
! 
! 
 
y 
= 2 
+ 1 
- LAGU 
yy 
( 
WP 2) +! 
kT 
X 
y 
! U 
U 
X 
! 
! 
 
y 
= 2 
+ 2 
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- LAGU 
zz 
( 
WP) 
3 + ! 
kT 
X 
y 
1 
! U 
U  
X 
! 
! 
 
y 
= 3 
+ 
- LAGU 
xy 
( 
WP 4) 
2 
y 
X 
 
 
The contribution to the second member is thus: 
 
v 
v  
I 
I 
I 
3 I, pg, X = [LAGUG 
 
( 
T) 
1 - kT!] 
+ LAGUG ( 
T 4) 
 
X 
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y pg 
 
 
 
v 
v  
I 
I 
I 
3 I, pg, y = LAGUG 
 
( 
T 4) 
+ [LAGUG ( 
T 2) - kT!] 
 
X 
y pg 
 
 
· In axisymmetric 2D 
The starting expression is: 
v 
 
v 
v 
v 
v 
 
 
S 
R 
Z 
R 
R 
Z  
: v = rr 
+ zz 
+  
+ rz 
+ 
R 
Z 
 
R 
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We thus find the same formal writing as in plane 2D, increased by a term 
complementary: 
 
v 
v 
v  
I 
I 
I 
I 
1 I, pg R 
, = - rr (pg) 
+ rz (pg) 
+ (pg) 
div () (pg). 
 
 
R 
Z 
 
R 
pg 
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v 
 
v  
I 
I 
I 
1 I, pg, Z = - rz (pg) 
+ zz (pg) 
div () (pg). 
 
 
R 
 
Z 
pg 
 
The second integral breaks up into: 
R 
v!  
v! Z  
R 
v!  
vr! v 
 
! Z  
rr 
zz 
 
 
 
 
R +  
rz 
Z + 
 
R + 
+ 
 
Z R  
In appendix 2, we established the Lagrangian expressions of each one of the derivative. It is enough 
to defer them here, by sorting them by type of component: 
 
 
v 
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Z 
rz 
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+ 
+ 
R 
zz 
 
 
Z 
rz 
 
R Z 
pg 
 
The third integral is worth: 
R 
v 
vz 
vr 
vr v 
 
 
! 
 
Z 
rr 
+! zz 
+ ! 
+ ! 
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rz 
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In the isotropic elastic case, we have: 
ur 
U 
U 
 
Z 
R 
rr = 1 
+ 2 
+ 2 
+ K T - T 
R 
Z 
R 
(ref.) 
 
 
ur 
U 
U 
 
Z 
R 
zz = 2 
+ 1 
+ 2 
+ K T - T 
R 
Z 
R 
(ref.) 
 
 
ur 
U 
U 
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Z 
R 
= 2 
+ 2 
+ 1 
+ K T - T 
R 
Z 
R 
(ref.) 
 
 
1 
R 
U 
U 
 
Z  
rz = 
3 
+ 
2 
 
Z R  
where 1, 2, 3 is worth like previously. 
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rr gives: 
·  
·  
·  
ur  
U  
U  
! 
 
R 
R 
= 1 
+ 2 
+ 2 
+ ! 
rr 
 
 
kT 
R  
 
Z  
 
R  
 
 
 
 
 
! ur  
! uz  
! ur  
= 1 
2 
 
! 
 
 
kT 
R + 
 
Z + 2 R + 
ur R R 
U Z  
uz R uz  
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1 
2 
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+ 
R R 
Z R - 
 
R Z Z Z 
R 2  
By taking again the axisymmetric equivalent of LAGUGT: 
ur R ur Z  
uz R uz  
U 
Z 
rr  
LAGUG ( 
T) 
1 = 1 
+ 
2 
2 
 
R R 
Z R + 
+ 
+ 
 
R Z Z Z 
R 
 
 
ur R ur  
U 
Z 
rr  
uz R uz Z  
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+  
1 r2  
LAGUG ( 
1 
T 4) 
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R R 
 
U 
R Z 
U 
Z R 
 
U 
Z Z 
= 
3 
+ 
+ 
+ 
 
2 
 
R Z 
Z 
Z 
R 
R 
 
Z 
 
R 
 
we have the same expression symbolic system: 
! ur 
! uz 
! U 
! 
 
R 
= 1 
+ 2 
+ 2 
- LAGUG 
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! ur! U  
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Z 
= 3 
+ 
LAGUG 
rz 
( 
T 4) 
2 
 
Z 
R - 
The contribution to the second member is thus: 
 
v 
v 
I 
I 
I 
3 I, pg R 
, = [LAGUG ( 
T) 
1 - kT!] 
+ [LAGUG ( 
T) 
3 - kT!] 
 
 
R 
R 
v 
+ 
 
LAGUGT (4) I  
Z 
pg 
 
 
v 
 
v  
I 
I 
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I 
3 I, pg, Z = LAGUG ( 
T 4) 
+ [LAGUG ( 
T 2) - kT!] 
 
 
 
R 
 
Z 
pg 
 
Term of the loading in pressure 
I1 = [p.] v + pdivs v 
3 
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The loading in pressure is supposed to be known, therefore the tensor which expresses its gradient is 
calculable 
easily: 
p 
p 
X 
X  
 
 
X 
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X y  
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p 
p 
y 
y 
 
p  
. ] v =  
X 
+ 
y 
v X +  
X 
+ 
y 
v 
X 
y 
 
X 
y 
y 
The calculation of the divs term is done as in the case of thermics. From where contributions: 
p 
p 
 
I 
X 
X 
1 I, pg, X =  
(pg) X 
(pg) + 
(pg) y 
(pg) + px (pg) divs ( 
pg)]ui  
X 
 
y 
pg 
 
 
p 
 
p 
I 
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y 
y 
1 I, pg, y =  
(pg) X 
(pg) + 
(pg) y 
(pg) + py (pg) divs ( 
pg) ui  
X 
y 
 
] pg 
 
In axisymmetric 2D, the gradient of P comprises a complementary term out of Pr/R. This 
component would be to multiply by the component orthoradiale field. That one being null, there is not 
no the particular contribution and we thus use formally the same expression as in 2D 
Cartesian. 
A4.2.4 Passage to the gradient of the constraints 
Knowing the Lagrangian derivative of the field of displacement U and temperature, us 
let us calculate the Lagrangian derivative of the tensor of the constraints by (cf [§4]). 
1 
1 
! = U 
C 
U 
U 
T 
kT Id 
2 [! + ! ] -  
2 ( 
( 
FT,) + F ( 
T,)) +! 
Analytical expressions of the various components of the tensor! 
were seen in the paragraph 
precedent. It is enough to apply them in postprocessing. 
A4.2.5 Calculation of derived the eulérienne from the constraints 
The last stage of the treatment is conversion Lagrangian/eulérien for the derivative of the tensor of 
constraints. It is enough to apply the formula: 
= ! - 
 
 
Like the vector does not have component orthoradiale, the expression of the product  
is the same one 
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in plane 2D or axisymmetric 2D. We have as follows: 
 
I, J 
 
 
I, J 
I 
! , J 
X 
y 
 
= 
- 
+ 
X 
y 
I, J 
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During digital simulations obtaining a rough result is not sufficient any more. The user is moreover 
in  
petitioning of calculation of sensitivity compared to the data input of the problem. That allows him  
to estimate the uncertainty which the field result according to the law of variation of the data answers. 
This  
derived is also the basic substrate of problems opposite (retiming of parameters…) and of problems  
of optimization.  
This sensitivity can be obtained “manually”, but the experiment shows that these parametric studies  
are often expensive, little mutualisables and less reliable than an analytical calculation established in 
the software of  
calculation.  
In this note, one places oneself in the perimeter of use of the standard thermal operators of  
Code_Aster and one are interested in this analytical sensitivity of the field of temperature and its flow 
by  
report/ratio with the characteristics material and the loadings. One described the process allowing 
there to exhume  
the linear system which this derivative checks. In order to minimize the overcost calculation, a 
particular effort was  
brought to bind its resolution to that of the initial problem.  
One details theoretical, numerical work and data processing which governed the establishment of 
these  
calculations of sensitivity in the code. One specifies their properties and their limitations while 
connecting these  
considerations with a precise parameter setting of the accused operators and with the choices of 
modeling of the code. One has  
tried constantly to bind different the items approached while detailing, has minimum, the 
demonstrations a little  
techniques.  
Required environment, the parameter setting and the perimeter of use of this new functionality  
are described. An example extracted from an official case-test is clarified.  
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1 Problems  
 
During digital simulation, obtaining a result starting from a data file is not sufficient any more.  
Taking into account uncertainties which weigh on the evaluation of the loadings, the geometries and 
of  
characteristics material, taking into account also the numerical approximations due to modelings  
employees, with their space-time discretizations and the algorithms of resolution, the user is  
increasingly petitioning of calculations of sensitivity [bib5]. One then seeks to evaluate  
sensitivity of a variable compared to an input datum of the problem. It makes it possible to estimate  
the uncertainty (the probabilistic function) to which answers the field result according to the law of  
variation of certain data.  
 
This derivative can be estimated “manually”, but these of parametric studies are often  
expensive, little mutualisables and less reliable than an analytical calculation established in the code.  
 
Note:  
 
· The sensitivities by finished differences are of course dependent on the parameters on  
shift and of the grid, but into non-linear, another worsening factor is superimposed:  
degree of convergence of the solution. In any rigour, this one also intervenes on quality  
analytical sensitivities, because one uses the field of temperature solution for  
to assemble the linear system “derived”.  
· The third way gathers the techniques of automatic differentiation (ODYSSEY [bib7],  
[bib9]…) but they are not plantable in Code_Aster because of sound  
software architecture (transmission of arguments between the routines by pointer…). Of  
any way these products are still “relatively embryonic” and their use  
seem fixed quotas for with model problems or parts of software well  
specific. The ideal would be of course to incorporate these problems as of the compiler…  
 
Recently, the introduction of calculations of sensitivity of thermomechanical fields [R4.03.01] and of  
rate of refund of energy [R7.02.01] compared to a variation of field, showed  
relevance and the feasibility of this type of approach in Code_Aster. By coupling this last with  
software PROBAN, one can thus know the probability of starting of the rupture for a distribution  
of variation of field given. This type of studies mechanic-reliability engineers, for example, was 
carried out in  
the framework of project PROMETE [bib4] to determine the probability of rupture of a tank 
REFERENCE MARK in  
considering the variability the thickness of its lining.  
These sensitivities can also intervene in a crucial way in the resolution of problems opposite  
(retiming of parameters…) and in many problems of optimization.  
 
In this document, one restricts oneself with the linear and non-linear thermal problems  
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Code_Aster and thus with the analytical sensitivities of the field of temperature T (and its flow) by  
report/ratio with the characteristics material and the loadings. One places oneself in the perimeter  
of use of the standard thermal operators (the loadings are supposed to be fixed, one  
do not thus be interested in the phenomena of convection-diffusion in pointer of  
THER_NON_LINE_MO [R5.02.04]) for isoparametric finite elements (one does not treat it  
thermal problem for the thin hulls [R3.11.01] (modeling COQUE_*) and for  
elements of Fourier (resp. AXIS-FOURIER)) (THER_LINEAIRE [R5.02.01] and 
THER_NON_LINE  
[R5.02.02]) and also in that of the operators of preprocessing of data (DEFI_MATERIAU  
[U4.44.01], AFFE_MATERIAU [U4.44.03] and AFFE_CHAR_THER [U4.44.02]).  
 
One is interested only in derivation of T and his flow, fields depending on the variables of space  
X and of time T and parameters materials and loadings, compared to one of these parameters  
(which must be a constant scalar by geometrical zones (these under-parts are supposed to be distinct  
and motionless, one neglects thus in particular the phenomena of dilation)). Thus let us consider, by  
example, a Bi-material whose isotropic thermal conductivity is a constant reality by zones: 1 on  
1 and 2 out of 2  
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1  
2  
 
 
 
Appear 1-a: Designation of thermal conductivities for a Bi-material  
 
One thus models total thermal conductivity in the form:  
 
(X): = I X + I X 
,  
éq  
1-1  
1 1 ( ) 
2 2 ( ) 
( 1 ) 
2 
2 
 
1 if X  
with I 
I 
I the indicating function of the ième part (I X 
). One is interested in the sensitivity  
I () = 
: 0 if not 
T  
 
field of temperature compared to one of the two parameters  
 
(, xt) 
 
. The problem  
 
 
I 
0 
i= I 
formulate same manner for a loading or a limiting condition.  
 
By parameterizing advisedly the “derived loadings and materials” (cf [§6.2], [§6.4]) calculations  
developed thereafter and the data-processing developments that they underlie can too  
to take into account the modelings more sophisticated with several space dependences and  
temporal. For example, considering a thermal source,  
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S (X, T): = S I X X + 
X X 
 
éq  
1-2  
1 1 ( ) 
1 (, T) 
S I 
2 2 () 2 (, T) 
 
T 
 
S 
on 
1 
 
one can calculate  
1 
 
 
 
 
(, xt) while parameterizing  
= I  
and  
1 
1 = 
 
 
S 
 
S 
 
0 on 
1 
 
I  
 
S 
0 
2 
I =si 
S 
0 on  
= I  
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in the definition of the derived sources. In the remainder of the document,  
2 
2 =  
1 
S 
on 
2 
2 
2 
we restrict ourselves with the first modeling [éq 1-1], in order not to overload them  
later theoretical developments, but also because it appears closer to the real needs  
users. On a case-by-case basis, we specify however more sophisticated derivations which are  
accessible taking into account the new introduced functionalities and the perimeter from use of the 
code.  
 
In order to more easily be able to commutate space or temporal derivation with derivation by  
report/ratio with one of the parameters, one works with a derivation “within the meaning of the 
distributions” on  
initial parabolic problem (derivation clarified in appendix 1). But the same exercise could  
to be carried out starting from its version semi-discretized in time, of the variational formulation or of  
linear system (one then takes the “discrete derivative” i.e. compared to the components of  
discretized parameter) resulting from its discretization. In linear thermics, one shows that these  
derivations, to each stage of the numerical process, lead to the same result. The problem  
derived discretized being identical to the discrete derived problem, theoretical results exhumed on  
continuous problem can apply to the problem actually implemented.  
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The approach adopted for the calculation of the sensitivity is thus purely analytical. Him could  
to prefer an semi-analytical method (it is the step partly retained by the codes  
MSC/NASTRAN, FEMtools and ABAQUS (cf [§9] [bib8])) : broadly analytical for the determination  
derived problem and using differences finished at the local level to determine the derivative of  
matrices and of the second elementary derived members. But the latter, although easier with  
to establish and to maintain, is also more expensive and it introduces a dependence with respect to  
parameter of shift.  
 
For linear thermics, the “derived” problem is very similar to the initial problem.  
first member of the resulting linear system is preserved. He does not have thus to be reassembled,  
only the second member is to be packed by suitable a source term. Theoretical results of existence,  
of unicity and convergence of the solution are not appreciably modified. Obtaining the derivative  
in temperature require the same processes numerical (dualisation and inversion of the system  
linear resulting).  
 
On the other hand, in non-linear thermics, the derived problem is metamorphosed: the operator  
parabolic is modified. He became linear, just like the limiting conditions. These last  
are more than of two types: Dirichlet or Robin, exit conditions of Neumann and radiation.  
Because of its linear character, the usual theoretical results are thus much easier with  
to exhume. In addition the resolution of the derived problem is faster and more robust than that of  
initial problem. One does not need to have recourse to an algorithm of Newton-Raphson for  
to determine the increment of temperature between two contiguous moments. A linear solvor is 
enough: no one is not  
need to assemble a tangent matrix with each under-iteration.  
This time the two members of this equation are fundamentally different from those of the problem in  
temperature. However, after each step of time, once determined T+ starting from T, one does not have  
to reassemble all the matrix of the linear system and its second associate member. It is enough to  
to supplement the first tangent matrix of the step of time following by the term due to the non-
linearity of  
thermal conductivity. One also leaves the second member of the problem in temperature for  
to constitute that which interests us: one packs it by the terms of implicitation of non-linearities of  
thermal conductivity and of the limiting conditions.  
 
One details theoretical, numerical work and data processing which governed the establishment of 
these  
calculations of sensitivities in the code. One specifies their properties and their limitations while 
connecting these  
considerations with a precise parameter setting of the accused operators and with the choices of 
modeling of  
code. One tried constantly to bind different the items approached while detailing, has minimum, them  
a little technical demonstrations.  
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In short, the perimeter of use of this functionality gathers it or not thermal, linear,  
isotropic or anisotropic, stationary or transitory, being pressed on isoparametric finite elements  
lumpés or not. Within this framework there, it covers the same perimeter as that with the operators  
accused thermics.  
The request for one or more sensitivities does nothing but enrich the structure of data  
thermics (EVOL_THER) and provides also the thermal field of which they are the derivative. In term  
of performance, the calculation of an analytical sensitivity is much less expensive than a calculation  
standard since the same factorized matrix is re-used.  
 
In addition to the calculation of sensitivities in thermics, Code_Aster proposes their hanging in 
mechanics  
statics or quasi-static [R4.03.03] and in dynamics [R4.03.04]. All these functionalities and theirs  
postprocessings associated (impressions, tests…) are included in the user's documentation  
[U4.50.02] and belong to deliverable project “Uncertainties of numerical calculations” [bib5].  
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This document is articulated around the following parts:  
 
· initially, one is interested in the various problems resulting from  
derivation of the linear problem of thermics (THER_LINEAIRE) compared to the parameters  
characteristics material and loadings,  
· then one reiterates this process on the nonlinear problem of thermics (THER_NON_LINE),  
· various linear systems “derived”, - directly plantable in Code_Aster  
to determine such or such sensitivity -, are recapitulated in the third part,  
· in the following paragraph, one describes necessary postprocessings to obtain the sensitivities  
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heat flow (CALC_ELEM/CALC_NO),  
· one concludes by approaching the practical difficulties from implementation, the environment, it  
parameter setting and the perimeter of use. An example of use extracted from an official case-test  
(SENST04A) is also detailed.  
 
 
Warning:  
 
The reader in a hurry and/or not very interested by the theoretical springs genesis of these  
sensitivities and the details of modeling of the code can, from the start, to jump to [§4] and [§6] which  
the principal theoretical and practical contributions recapitulate preceding chapters.  
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2 Thermics  
linear  
 
One considers a limited open body occupying related of Rq (q=2 or 3) of border  
lipschitzienne characterized by its voluminal heat with pressure constant CP (X) (the variable  
vectorial X symbolizes here the couple (X, y) (resp. (X, y, Z)) for q=2 (resp. q=3)) and its coefficient of  
isotropic thermal conductivity (X). These data materials are supposed to be independent of  
time (modeling THER of Code_Aster) and constants by element (P0 discretization).  
 
Note:  
 
With modeling THER_FO these characteristics can depend on time. As of  
first versions of the code and before the installation of THER_NON_LINE, it allowed  
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to simulate “pseudo” non-linearities. Taking into account its rather marginal use, us  
we will not interest, initially, with its derivation.  
 
One is interested in the changes of the temperature in any item X of opened and at any moment  
T [, 
0 [(> 0), when the body is subjected to limiting conditions and loadings  
independent of the temperature but being able to depend on time. It is about voluminal source S (X, 
T),  
boundary conditions of imposed the temperature type F (X, T) (on the external portion of surface),  
1 
normal flow imposed G (X, T) (on) and exchanges convectif H (X, T) and T 
).  
2 
ext. (X, T) (on 3 
One places oneself thus within the framework of application of operator THER_LINEAIRE 
[R5.02.01] of  
Code_Aster by retaining only the conductive aspects of this linear thermal problem.  
This problem in extreme cases interfered (type Cauchy-Dirichlet-Neumann-Robin (also called 
condition of  
Fourier) inhomogenous, linear and with variable coefficients) is formulated  
 
T 
C 
 
 
p 
- div (T) = S 
× ] , 
0 [ 
 
T 
T = F 
 
 
1 × ] , 
0 [ 
 
T 
 
= G 
 
 
éq  
2-1  
2 × ] , 
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0 [ 
N 
T 
 
+ HT = HT 
 
ext. 
3 × ] , 
0 [ 
N  
 
T (X) 
0 
, = 0 
T (X) 
 
 
Note:  
 
· The condition of Robin modelling the convectif exchange (key word EXCHANGE) on a portion of  
edges of the field, can be duplicated to take account of exchanges between two pennies 
parts of the border in opposite (key word ECHANGE_PAROI). This limiting condition  
model a thermal resistance of interface  
T 
 
1 + HT 
HT 
1 = 
2 
12 × ] , 
0 [ 
With  
N 
T 
T 
has 
 
one 
éq  
2-2 
3 = 12  
, 
21 
I = 
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ij 
 
T2 + HT 
HT 
2 = 
1 
21 × ] , 
0 [ 
N 
· The condition of Dirichlet can spread in the form of linear relations between the ddls  
(key word LIAISON_*) to simulate, in particular, of geometrical symmetries of  
structure.  
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With =, T 
 
has 
 
one 
I = T 
ROUP) 
(LIAISON_G 
1 
12 
21 
ij 
T I X T 
X 
X 
éq  
2-3 
I 
+  
T J 
T 
J 
= 
T 
on × 
1 
1 ( , ) 
2 2 ( , ) ( , ) 
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1 
] ,0[ 
I 
J 
or  
simply 
more  
T X 
X 
I 
I (, T) 
= (, T) on × 
1 
] ,0[ 
DL) 
(LIAISON_D 
I 
· One will not speak about functionalities LIAISON_UNIF and LAISON_CHAMNO which allow  
to impose the same temperature (unknown) on a whole of nodes, because they are not  
that a surcouche of the preceding conditions imposing of the couples (,) particular.  
· When the material is anisotropic (modeling THER_ORTH), conductivity is  
modelled by a diagonal matrix expressed in the reference mark of orthotropism of material.  
That basically does not change calculations according to which only hold account  
isotropic case. Guard should just be taken not to commutate more, under the conditions limit  
Neumann and of Robin, the scalar product with the normal and multiplication by  
conductivity. In practice, in elementary calculations, one is not interested in the derivative  
normals. The problem thus arises only in the preliminary theoretical part.  
The sensitivity compared to one of the components of anisotropic conductivity is not  
not yet available. These calculations were set up in the accused subroutines  
(elementary calculations YOU.), they await nothing any more but the software evolution consisting with  
to extend the taking into account of the anisotropy to the functions (a modeling  
THER_ORTH_FO). Indeed, from a point of view structures (cf DEFI_PARA_SENSI [bib6]),  
variable ASTER representing the significant parameter must be a data-processing object of  
function type.  
· In all following calculations of sensitivities, one calculates only it derived by report/ratio  
with a constant parameter by zone. If not, it would be necessary to introduce a concept of derivative  
directional!  
This does not exclude a temporal or space dependence from characteristics material or  
loadings. By parameterizing advisedly the “derived” loadings and materials  
in the command file, one can also have access to some derivatives made up  
(cf [§6.2]/[§6.4]).  
· For a transitory calculation, the initial temperature can be selected in three manners  
different: by carrying out a stationary calculation over the first moment, by fixing it at one  
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uniform or unspecified value created by a AFFE_CHAM_NO and by carrying out a recovery with  
to start from a preceding transitory calculation. This choice will affect the initialization of  
derived problem.  
· We will not treat the case where (almost) all the loadings are multiplied by one  
even function dependent on time (option FONC_MULT (this well adapted functionality  
for certain mechanical problems is disadvised in thermics, because it can return in  
conflict with the temporal dependence of the loadings and, in addition, it applies  
selectively with each one of them. It was not included besides in THER_NON_LINE)).  
 
In order to be able to consider different the derivative from the temperature in configurations  
multimatériau and multichargement one introduces the following notations:  
 
= 
 
U I 
I 
 
I = ij (I = 1, 2ou 3) 
Ui 
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The characteristics material and the loadings will be subscripted to notify their membership of such  
or such opened or portion of border. Thus, if one is interested in a Bi-material, 1 models heat  
voluminal of material occupying the open first and  
1 
2 that of material occupying the second  
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opened.  
2 
 
 
1  
2  
 
 
 
1  
2  
 
 
 
 
 
Appear 2-a: Designation of voluminal heats for a Bi-material  
 
 
2.1  
Derived compared to voluminal heat  
 
2.1.1 Elements  
theoretical  
 
One models total voluminal heat penny the form C X 
I X 
 
. All them  
p () = I 
I () 
(I) 
I 
C 
opened being solidified, one has 
p = I the indicating function of the ième part. The derivation of  
I 
 
I 
I 
[éq 2-1] then leads us “trivialement” (cf Appendix 1) to the new problem in extreme cases of which is  
T 
 
solution sought sensitivity, noted U = 
,  
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I 
 
U 
~ 
C 
 
 
p 
- div (U) = S 
× ] , 
0 [ 
 
 
~ T 
U = F 
 
, 
0  
1 × ] 
[ 
 
 
U 
 
= ~g 
 
, 
0  
éq  
2.1.1-1  
2 × ] 
[ 
N 
U 
 
+ hu = ~h 
 
, 
0  
3 × ] 
[ 
N 
 
U (X 
= ~ 
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) 
0 
, 
u0 
 
with the new source voluminal and the new limiting conditions and initial  
~ 
~ 
~ 
~ 
T 
~ 
F = G = H =, 
0 
S = - I 
and 
U 
 
éq  
2.1.1-2  
I 
= 0 
0 
T 
One is thus brought to solve a homogeneous problem out of U similar to that which T answers. One fixes  
 
a step of time T 
such as  
that is to say an entirety NR. Semi-discretization in times of [éq 2.1.1-1],  
T 
 
[éq 2.1.1-2] by - method leads to the following problem: to find a continuation.  
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Note:  
 
By using an adaptation of the theorem of Lax-Milgram to the parabolic problems  
([R4.10.03 §1] or [bib1] theorems 1 & 2 chap XVIII pp615-620 or [bib3] pp220-241) one  
show, under certain conditions of regularity on opened, materials, the loadings and  
the initial condition, that this problem admits a single solution.  
 
(U 
éq  
2.1.1-3  
N) 
V = U H U = 
0nN 
{1 
0 
( )/ 1 } 
0 
 
This space comprises also the conditions of “generalized” Dirichlet of linear relations type  
between ddls when they exist.  
 
such as:  
 
n+1 
U 
- N 
~n+1 ~ 
U 
N 
n+1 
N 
S 
- S 
C 
 

file:///Z|/process/refer/refer/p920.htm (7 of 33)10/2/2006 2:52:48 PM



file:///Z|/process/refer/refer/p920.htm

 
 
 
 
p 
- div (U) - (1 -) div (U) = 
0 N NR -1 
 
T 
 
N 
~ 
T 
+1 
U 
= n+1 
F 
0 N NR 1 
1 
- 
n+1 
 
U 
 
= ~n+1 
G 
 
0 N NR 1  
2 
- 
 
N 
n+1 
U 
n+ 
N  
~ 
1 
+1 
n+1 
 
+ H U = H 
0 N NR 1 
3 
- 
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N 
0 
U (X = ~ 
) u0 
 
éq 2.1.1-4  
while posing:  
 
 
~ 
 
~ 
~ 
~ 
 
N 
 
 
C 
U = U, 
X N 
, S N = - 
p (X)  
 
N 
N 
N 
N 
 
 
T, 
X N 
, F = G = H = 0 and H =  
H, 
X N 
 
 
NR  
I 
 
NR  
 
NR  
éq 2.1.1-5  
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By applying the theorem of Green to [éq 2.1.1-3], [éq 2.1.1-4], [éq 2.1.1-5] and by introducing them  
following notations  
+ 
 
 
- 
 
 
= , 
X (N +) 
1 
and =, 
X N 
with {U, T,} 
H and 0 N NR -1  
 
NR  
 
NR  
one is brought to solve the following variational problem:  
 
± 
± 
- 
Being donn 
 
és H 
 
, T and U 
 
 
 
+ 
To calculate U V 
that 
 
such 
 
éq  
2.1.1-6  
0 
v 
+ 
V 
has 

file:///Z|/process/refer/refer/p920.htm (10 of 33)10/2/2006 2:52:48 PM



file:///Z|/process/refer/refer/p920.htm

0 
(+u, v) = ±l (v) 
 
 
with the bilinear form depending on the current moment (via h+)  
+ 
has (+ 
U v) = 1 
, 
 
+ 
C U v dx 
 
éq  
2.1.1-7  
p 
+  
+ 
U v dx + + + 
H U v  
D 
T  
 
3 
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and the linear form parameterized by the moments running and precedent (via H, U and T)  
± 
1 
L (v) = 
 
- 
C U v dx 1  
1 
 
p 
+ ( - ) 
- 
U v dx + (-) - - 
H U v D + 
T  
 
3 
éq 2.1.1-8  
1 II (- + 
T - T) v dx 
T  
Note:  
 
· Contrairement to the initial problem, the unknown field and the function test belong to same  
functional space, which is more comfortable from a theoretical and numerical point of view.  
· The first member of this equation is formally identical to that of the equation in  
temperature. After each step of time, once determined T+ starting from T, one rests  
also on H, h+ and U to determine u+. The matrix of the linear system corresponding does not have  
not with being reassembled. Only the second member is to be packed by suitable the source term.  
· By deriving the variational formulation (cf [§5.1.3]) from the problem in temperature [R5.01.02]  
one finds well [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8].  
· For a condition of exchange between walls, the term of usual exchange is of course replaced  
by (by taking again the notations of [éq 2-2]) ± 
H (± 
± 
U 
.  
I - U J) v D 
ij 
· These problems of suitable initialization of the problem derived is recurring. It was found  
in the calculation of the derivative Lagrangian of the field of temperature compared to one  
variation of field (cf [R4.03.01] operand DEUL_INIT).  
· The reader interested by a theoretical study of the thermal problem actually put in  
place in the code, which underlines these holding and bordering and their bonds with the choices of  
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modeling, will be able to refer to [§1] Doc. R: “Indicating of error in residue for  
transitory thermics” [R4.10.03]. It relates to a related field of improvement and of  
calibration of the studies, that of the space errors due to the grids finite elements.  
 
To solve this problem numerically one spatially discretizes it by considering one  
subspace H 
V of V of dimension finished  
0 
0 
N 
U ± = u± NR V H 
 
0 
= ± 
: 
/ 
0 
 
± 
 
H 
I 
I 
{U V K 
U 
H 
H 
H K 
K (K)} 
i=1 
by noting (Th) H a regular family of triangulations of the polygonal or polyhedric field discretized  
, P 
H 
K (K) the space of the polynomials of degree < (k+1) on K and Ni the function of form associated with  
node n°i. From where the discretized variational problem  
 
Note:  
 
This property of total continuity of the elements and maximization of their characteristics  
geometrical (which ensures the convergence of the finite element method) is checked for  
all isoparametric elements of the code: segment, triangle, quadrangle, tetrahedron,  
pentahedron and héxaèdre.  
 
± ± 

file:///Z|/process/refer/refer/p920.htm (13 of 33)10/2/2006 2:52:48 PM



file:///Z|/process/refer/refer/p920.htm

- 
Being donn 
 
 
és H, T and U 
 
 
H 
H 
H 
 
+ 
To calculate U H 
V 
that 
 
such 
 
éq  
2.1.1-9  
H 
0 
v V has U, v L v 
H  
H 
+ 
0 
H (+ 
H 
H) = ± 
H (H) 
 
 
leading to the linear system of order N.  
In U+ = L  
éq  
2.1.1-10  
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The p boundary conditions of the Dirichlet type are taken into account in Code_Aster by one  
technique of double dualisation [R3.03.01] via “ddls (degrees of freedom)” of Lagrange  
= ( 
. That is to say J the whole of the nodes belonging to the portion of border on which  
I) I, 
1 
= p 
apply the condition of Dirichlet (card (J) = p), one considers the new unknown vector  
~ 
U [+ 
= U 
 
] T 
and the operator B (of order p X N) checking  
( + 
B U) = u+ with I J  
I 
I 
The homogeneous condition of Dirichlet of [éq 2.1.1-1], [éq 2.1.1-2] is realized while imposing  
B U+ = C = 0  
The dualized problem then consists in reversing the system of order n+2p  
With LT 
LT + 
U  
L 
~ ~ + 
~ 
 
 
 
WITH U = L  
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B - Id 
Id 
= 
 
 
0  
éq  
2.1.1-11  
B Id - Id 0 
 
 
 
 
Note:  
 
· One carries out the possible taking into account of limiting conditions of Dirichlet generalized like  
in the problem in temperature (here p=1) but with a second null member  
+ 
 
B U =  
+ 
 
U 
with J 
J and C 
 
J 
J 
 
= 
= 0 
 
J 
I 
 
We now will see how these calculations are declined in the code.  
 
 
2.1.2 Establishment in Code_Aster  
 
The matrix of this system results from the assembly of the following elementary terms, due to  
contribution of the nodes (I, J) to the point of gauss (of weight (this weight gathers in fact “truth  
G 
G  
weight” of the formula of squaring multiplied by the jacobien of the element considered and possibly  
by the ray of the point of gauss rg (in modeling AXIS or AXIS_DIAG))) element running K  
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(in Code_Aster the conditions limit are affected on particular elements of skin of  
dimension q-1. No confusion not being really possible, one will make formal distinction here  
between those and the elements of volume which support them).  
WITH K  
WITH K  
éq  
2.1.2-1  
ij ( 
, G) 
3 
= iij (, G) 
i=1 
with  
· the thermal term of mass (calculated by option MASS_THER)  
 
A1 K, = 
C K NR NR  
ij ( 
) G 
G 
p ( 
) J (G) I (G) 
T 
 
 
· the thermal term of rigidity (RIGI_THER)  
A2 K, = K NR. NR  
 
ij ( 
G) 
G 
() J (G) I (G) 
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· the term of rigidity due to the conditions limit of exchange (RIGI_THER_COEF_F/R)  
A3 K 
, 
= 
+  
 
3  
H 
K 
NR 
3 
NR  
ij ( 
G) 
G 
( 
) J (G) I (G) 
In the event of exchange between walls this term is replaced by (RIGI_THER_PARO_F/R)  
A3 K 
, 
 
3  
= h+ K 
NR 
3 
- NR 
NR  
ij ( 
G) 
G 
( 
) (J (G) F J (G) I (G) 
( ) 
by noting F the bijection putting in opposite the two walls.  
 

file:///Z|/process/refer/refer/p920.htm (18 of 33)10/2/2006 2:52:48 PM



file:///Z|/process/refer/refer/p920.htm

The second member is written, with the same notations,  
L K  
L K  
éq  
2.1.2-2  
J ( 
, G) 
3 
= ij (, G) 
i=1 
where  
· the term resulting from the implicitation of the matrix of rigidity and mass (new option  
CHAR_SENS_EVOL, copy of CHAR_THER_EVOL with U instead of T, the field material  
derived and standard and the new source term)  
 
L1 K, = 
C K U NR + -1 K U  
. NR  
 
J ( 
) G 
G 
p ( 
) (G) J (G) () G () (G) 
J (G) 
T 
 
 
· the term resulting from the implicitation of the conditions limit of exchange  
(CHAR_THER_TEXT_F/R with Text=0 and U instead of T)  
L2 K 
, 
1 
 
3  
= - H K 
U 
3 
NR  
J ( 
G) 
G ( 
) ( 
) (G) J (G) 
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In the event of exchange between walls this term is replaced by (CHAR_THER_PARO_F/R with U  
instead of T)  
L2 K 
, 
1 
 
3  
= - H K 
U 
3 
- U F  
NR  
J ( 
G) 
G ( 
) ( 
) ((G) ((G)) J (G) 
 
· the term due to the “new source” comprising the field derived material (cf.  
CHAR_SENS_EVOL above)  
 
L3 K, = - 
I K T + - T -  
NR  
 
J ( 
) 
G 
G 
I ( 
) ((G)  
(G) J (G) 
T 
 
 
As one already specified all the elementary terms of the matrix are the subject of an option  
of calculation and will already have been evaluated for the calculation of T+. It thus remains to 
estimate the second member  
by re-using (with a different parameter setting) the existing options of calculation or by introducing one  
news (CHAR_SENS_EVOL). This new option is common with the other derived material  
(thermal conductivity) and it redirects towards the same routine of elementary calculation (TE.). The 
chain  
of character power station (SENS instead of THER) joined to a detection of the nullity of the field 
material  
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derived, allows to parameterize this routine towards one of its three possible orientations: calculation of  
term of mass and rigidity standard implicities, idem of sensitivity compared to one of both  
characteristics material which thus adds a new source term.  
 
In accordance with the principles of architecture set up in the code to treat calculations  
of sensitivity [bib6], the assembly and the resolution of [éq 2.1.1-11] are started by the analysis of  
table of correspondence associated with the significant variable. It was seen that this calculation is very 
close to one  
standard linear thermal calculation, only the initial condition and the loadings are modified  
 
F = 
T 
, 
0 
G =, 
0 T 
and 
 
ext. = 
, 
0 
0 
S = - I 
U 
I 
= 0 
T 
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This feedback is carried out via the succession of orders  
 
v = DEFI_PARA_SENSI (VALE = < value of I >)  
my = DEFI_MATERIAU (THER = _F (RHO_CP = v))  
affe = AFFE_MATERIAU (AFFE = _F (GROUP_MA = < definition of I >,  
MATER = my))  
...  
one = DEFI_CONSTANTE (VALE = 1. )  
MEMO_NON_SENSI (NAME =_F (NOM_SD = “my”, PARA_SENSI = “v”,  
NOM_COMPOSE = “ma_v”))  
ma_v = DEFI_MATERIAU (THER = _F (RHO_CP = one))  
MEMO_NON_SENSI (NAME = _F (NOM_SD = “affe”, PARA_SENSI = “v”,  
NOM_COMPOSE = “affe_v”))  
affe_v = AFFE_MATERIAU (AFFE = _F (GROUP_MA = < I >, MATER = ma_v))  
...  
resu = THER_LINEAIRE (CHAM_MATER = affe,  
 
SENSITIVITY  
=  
(  
v)  
 
 
 
 
...)  
 
Note:  
 
· In its command file, the user will not have soon any more but to specify the first and it  
third blocks of instruction. The block of the medium will be generated automatically by  
supervisor thanks to the tree of dependence which it builds between the various orders.  
 
C 
· The essential data of this calculation, derived voluminal heat  
p 
I = 
, is provided by  
I 
 
I 
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ma_v.  
· To take into account a more sophisticated modeling of voluminal heat  
C X 
I X X 
 
 
p () = I 
I () 
I () 
(I) 
I 
 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new term  
 
C 
source  
p = I in the definition of the field derived material  
I 
I 
 
ma_v.  
I 
 
We will unroll the same process for the various sensitivities, to start with that  
concerning the other characteristic material: thermal conductivity.  
 
 
2.2  
Derived compared to thermal conductivity  
 
2.2.1 Elements  
theoretical  
 
T 
 
One poses (X) = I X 
 
and U = 
required sensitivity. All the open ones  
I 
I () 
(  
I 
) 
 

file:///Z|/process/refer/refer/p920.htm (23 of 33)10/2/2006 2:52:48 PM



file:///Z|/process/refer/refer/p920.htm

 
I 
I 
 
being solidified, one has  
= I the indicating function of the ième part. The derivation of [éq 2-1] us  
I 
 
I 
I 
conduit with a problem in extreme cases identical to [éq 2.1.1-1] but with a nonnull voluminal source  
and of the new conditions of Neumann and Robin  
~ 
T 
~ 
 
G = H = - I 
and 
s~ = div  
éq  
2.2.1-1  
I 
(I T 
I 
) 
N 
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It is a homogeneous problem of Cauchy-Dirichlet and inhomogenous Neumann-Robin similar to that  
which T answers. Its semi-discretization in time led to seek a continuation (U 
 
N) 
V 
0nN 
0 
checking a system similar to [éq 2.1.1-4] whose first relation is rewritten  
N 1 
+ 
U 
- one 
C 
 
 
 
 
 
 
 
p 
- div ( 
N 1 
+ 
U 
) - (1 -) (one) ~ 
div 
N 1 
= 
+ 
S 
+ ( - )~ 
1 
S N 
0 N NR -1 
T 
éq 2.2.1-2  
with the new source term  
~sm = div (I T m 
 
éq  
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2.2.1-3  
I 
) m {, nn+} 1 
and new limiting conditions  
+ 
~ 
~ 1 
+1 
 
N 
N 
T N 
G 
= H 
= - I 
 
éq  
2.2.1-4  
I 
N 
 
From where a variational problem identical to [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] comprising  
even bilinear form [éq 2.1.1-8] joined to the linear form [éq 2.1.1-7] of which only the fourth  
integral is modified to adapt to the new source  
± 
L (v) = 
- I  
1 
L 
 
 
éq  
2.2.1-5  
I ( 
+ 
T + (-) - 
T) vdx 
 
 
Note:  
 
· The first member of this equation is formally identical to that of the equation in  
temperature. After each step of time, once determined T+ starting from T, one rests on  
H, h+ and U to determine u+. The matrix of the linear system corresponding does not have to be  
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reassembled. Only the second member is to be packed by suitable the source term.  
· By deriving the variational formulation (cf [§5.1.3]) from the problem in temperature [R5.01.02]  
one finds well [éq 2.2.1-5].  
· In stationary regime this complementary source term is tiny room to  
L (v) = 
- I 
. 
L 
 
I T 
v dx 
 
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead to  
dualized linear system [éq 2.1.1-11].  
 
 
2.2.2 Establishment in Code_Aster  
 
Compared to [§2.1.2], only the term due to the new source is to be modified  
 
L3 K, =  
- I K T + + 1 - T -  
NR  
 
éq  
2.2.2-1  
J ( 
G) 
G I ( 
) ( 
(G) () (G) 
J (G)  
 
What is made in the new option of calculation CHAR_SENS_EVOL with the field derived material and  
standard.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. It was seen that this calculation is very close to 
a calculation  
standard linear thermics, only the initial condition and the loadings are modified  
 
F = 
T 
, 
0 
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G = HT 
and 
 
ext. = - I 
, S 
I 
= div (IiT) 
0 
U = 0 
N 
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HI-23/03/001/A  

Code_Aster ®  
Version  
6.0  
 
Titrate:  
Calculation of sensitivities in thermics  
 
 
Date:  
01/07/03  
Author (S):  
O. BOITEAU Key  
:  
R4.03.02-A Page  
: 17/66  
 
 
This feedback is carried out via the same succession of orders as with [§2.1.2] in  
substituent LAMBDA (or LAMBDA_L/T/N into orthotropic) with RHO_CP in the DEFI_MATERIAU.  
 
Note:  
 
 
 
· The essential data of this calculation, derived thermal conductivity I = 
, is provided  
I 
 
I 
by ma_v.  
· When the material is anisotropic the thermal matrix of conductivity is expressed in  
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locate orthotropism of material: it is thus diagonal (in our q=2 example)  
 
0 
1 
 
=  
 
0 2  
One can then dissociate derivation compared to a value of one of his diagonal terms  
derivation compared to a value of this diagonal. The formulas detailed here are  
 
 
 
 
identical whatever the configuration selected. Only the evaluation of  
ij 
ij 
or 
must  
 
 
 
K 
kl 
to take account of these characteristics.  
· In practice, one has access to the sensitivity compared to an isotropic conductivity  
constant by zone. Sensitivity compared to a component of conductivity  
anisotropic is not yet available. These calculations were set up in  
subroutines accused (elementary calculations YOU.), they await nothing any more but the evolution  
software consisting in extending the taking into account of the anisotropy to the functions (one  
modeling  
THER_ORTH_FO). Indeed, from a point of view structures  
(cf DEFI_PARA_SENSI [bib6]), the variable ASTER representing the significant parameter  
must be a data-processing object of function type.  
· One reasoned here as if the condition of initial Cauchy of the problem had been fixed  
uniform or unspecified. If it is given by carrying out a stationary calculation on  
first moment it is necessary to reiterate this process with the derived problem. On the other hand, if it 
results  
of a recovery starting from a preceding transitory calculation, the derived problem must be initialized 
with  
to leave the value of the same derivative at the same moment of recovery.  
In short, two initializations (that of the problem in temperature and that of the problem  
derived) must be homogeneous. On the other hand, contrary to a calculation of thermics  
standard, one cannot thus modify the conditions limit and it is necessary to carry out a recovery with  
to start from a calculation of comparable nature.  
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· To take into account a more sophisticated modeling of thermal conductivity  
(X) = I X X  
 
I 
I () 
I () 
(I) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new one  
 
 
source term  
= I in the definition of the field derived material  
I 
I 
 
ma_v.  
I 
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HI-23/03/001/A  

Code_Aster ®  
Version  
6.0  
 
Titrate:  
Calculation of sensitivities in thermics  
 
 
Date:  
01/07/03  
Author (S):  
O. BOITEAU Key  
:  
R4.03.02-A Page  
: 18/66  
 
 
2.3  
Derived compared to the source  
 
2.3.1 Elements  
theoretical  
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T 
 
One poses S (X) = S I X 
S 
and U = 
required sensitivity. All the open ones being  
I 
I () 
(I) 
 
I 
if 
S 
 
solidified, one has  
= I the indicating function of the ième part. The derivation of [éq 2-1] leads us  
I 
S 
I 
I 
with a problem in extreme cases identical to [éq 2.1.1-1] but with another voluminal source  
s~ = I  
éq  
2.3.1-1  
I 
It is a homogeneous problem similar to that which T answers. Its semi-discretization in time  
conduit to seek a continuation (U 
checking a system similar to [éq 2.1.1-4] of which  
N) 
V 
0nN 
0 
first relation is rewritten  
N 1 
+ 
U 
- one 
C 
 
 
 
 
éq  
2.3.1-2  
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p 
- div ( 
N 1 
+ 
U 
) - (1 -) (one) ~ 
div 
= S 
0 N NR -1 
T 
From where a variational problem identical to [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] comprising  
even bilinear form [éq 2.1.1-7] joined to the linear form [éq 2.1.1-8] of which only the fourth  
integral is modified to adapt to the new source  
± 
L (v) = L + I v dx  
éq  
2.3.1-3  
I 
 
 
Note:  
 
· The first member of this equation is formally identical to that of the equation in  
temperature. After each step of time, once determined T+ starting from T, one rests  
also on H, h+ and U to determine u+. The matrix of the linear system corresponding does not have  
not with being reassembled. Only the second member is to be packed by suitable the source term.  
· By deriving the variational formulation (cf [§5.1.3]) from the problem in temperature [R5.01.02]  
one finds well [éq 2.3.1-3].  
· In stationary regime this complementary source term is not modified.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead to  
dualized linear system [éq 2.1.1-11].  
 
 
2.3.2 Establishment in Code_Aster  
 
Compared to [§2.1.2], only the term due to the new source is to be modified  
L3 K, = I K NR  
 
éq  
2.3.2-1  
J ( 
G) 
G I ( 
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) J (G) 
 
It is enough to re-use standard option CHAR_THER_SOUR_F/R with the derived field source.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. It was seen that this calculation is very close 
to a calculation  
standard linear thermics, only the initial condition and the loadings are modified  
F = G = T 
and 
 
ext. = 
, 
0 
0 
S = I 
U 
I 
= 0 
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This feedback is carried out via the succession of orders  
 
v = DEFI_PARA_SENSI (VALE = < value of if >)  
chth = AFFE_CHAR_THER_F (SOURCE = _F (GROUP_MA = < definition of I >,  
SOUR = v))  
...  
one = DEFI_CONSTANTE (VALE = 1. )  
MEMO_NON_SENSI (NAME =_F (NOM_SD = “chth”, PARA_SENSI = “v”,  
NOM_COMPOSE = “chth_v”))  
chth_v = AFFE_CHAR_THER_F (SOURCE = _F (GROUP_MA = < I >, SOUR = one))  
...  
resu = THER_LINEAIRE (EXCIT = chth,  
 
SENSITIVITY  
=  
(  
v)  
 
 
 
 
...)  
 
Note:  
 
S 
 
· The essential data of this calculation, the derived field source I = 
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, is provided by  
I 
chth_v.  
S 
I 
· This calculation is independent of the three types of modeling of the source: constant by mesh  
(AFFE_CHAR_THER + SOUR), constant by point of Gauss (AFFE_CHAR_THER +  
SOUR_CALCULEE) and constant by mesh and dependent on time (AFFE_CHAR_THER_F +  
SOUR). These considerations do not even return in line of account during the effective calculation of  
S 
in chth_v, because this size represents the derivation of a function parameterized by  
S 
I 
one of its constant parameters. One is not interested here in derivative of the type  
S 
 
S 
 
X, 
O 
X.  
S 
 
X, 
I (jg) ( 
T) U if (tj) (T) 
· To take into account a more sophisticated modeling of the source  
S (, 
X T) = S I X, 
X T 
S 
 
I 
I () 
I ( 
) (I) 
I 
 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new term  
S 
 
source  
= I in the definition of the derived loading  
I 
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I 
 
chth_v.  
if 
 
2.4  
Derived compared to the imposed temperature  
 
2.4.1 Elements  
theoretical  
 
T 
 
One poses F (X) = F I X 
F 
and U = 
required sensitivity. Portions of  
I 
I () 
(I) 
 
I 
fi 
F 
 
external border being solidified, one has  
= I the indicating function of the ième portion.  
1 J 
I 
F 
I 
1 
I 
derivation of [éq 2-1] leads us to a problem in extreme cases identical to [éq 2.1.1-1] but with one  
another voluminal source and a new condition of Dirichlet  
~ 
~ 
F = I 
and 
S 
 
éq  
2.4.1-1  
I 
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= 0 
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It is an inhomogenous problem of Dirichlet and Cauchy- Neumann-Robin homogeneous similar to that  
which T answers. Its semi-discretization in time led to seek a continuation (this space can  
to comprise, if necessary, also conditions of “generalized” Dirichlet of linear relations type  
between ddls)  
(U  
V = U H1 
 
éq  
2.4.1-2  
0 
1 
/u = I 
N) nN 
{ 
() I 
1 
} 
checking a system similar to [éq 2.1.1-3] whose first relation is rewritten  
N 1 
+ 
U 
- one 

file:///Z|/process/refer/refer/p930.htm (4 of 31)10/2/2006 2:52:49 PM



file:///Z|/process/refer/refer/p930.htm

C 
 
 
 
 
éq  
2.4.1-3  
p 
- div ( 
N 1 
+ 
U 
) - (1 -) div (one) = 0 
0 N NR -1 
T 
with the new limiting condition  
~n 
F +1 = I  
éq  
2.4.1-4  
I 
From where a variational problem identical to [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] with the same 
form  
bilinear [éq 2.1.1-7] joined to the linear form [éq 2.1.1-8] whose fourth integral is null.  
 
Note:  
 
· The first member of this equation is formally identical to that of the equation in  
temperature. After each step of time, once determined T+ starting from T, one rests  
also on H, h+ and U to determine u+. The matrix of the linear system corresponding does not have  
not with being reassembled. On the other hand this time it is necessary to constitute the Lagrangian part 
of  
second member dualized in order to approximate new functional space V1.  
· By deriving the variational formulation (cf [§5.1.3]) from the problem in temperature [R5.01.02]  
one finds well [éq 2.4.1-3], [éq 2.4.1-4].  
 
Space discretization in a subspace H 
V and the taking into account of the condition of Dirichlet  
1 
inhomogenous lead to a linear system dualized similar to [éq 2.1.1-11]  
 
With LT 
LT + 
U  
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L 
~ ~ + 
~ 
 
 
 
WITH U = L  
B - Id 
Id 
= 
 
 
C  
éq  
2.4.1-5  
B Id - Id C 
 
 
 
with  
F 
J 
C = 
= éq  
2.4.1-6  
K 
ij 
F 
I 
by noting fj the value of the condition of Dirichlet to the node n°k (classification room) of 1.  
 
2.4.2 Establishment in Code_Aster  
 
Compared to [§2.1.2], only the second member is modified since  
3 
L K  
 
éq  
2.4.2-1  
J ( 
, G) = 0 
There is not thus an option of calculation particular to envisage, it is just necessary to assemble the 
linear system  
dualized associated the derived imposed temperatures.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
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correspondence associated with the significant variable. It was seen that this calculation is very close 
to a calculation  
standard linear thermics, only the initial condition and the loadings are modified  
F = I, G 
and 
 
I 
= Text = S = 0 
0 
U = 0 
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This feedback is carried out via the succession of orders  
 
v = DEFI_PARA_SENSI (VALE = < value of fi >)  
chth = AFFE_CHAR_THER_F (TEMP_IMPO = _F (GROUP_MA = < definition of i1 >,  
TEMP = v))  
...  
one = DEFI_CONSTANTE (VALE = 1. )  
MEMO_NON_SENSI (NAME =_F (NOM_SD = “chth”, PARA_SENSI = “v”,  
NOM_COMPOSE = “chth_v”))  
chth_v = AFFE_CHAR_THER_F (TEMP_IMPO = _F (GROUP_MA = < i1 >, TEMP = one))  
...  
resu = THER_LINEAIRE (EXCIT = chth,  
 
SENSITIVITY  
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=  
(  
v)  
 
 
 
 
...)  
 
Note:  
 
F 
 
· The essential data of this calculation, the field imposed temperature derived I = 
, is  
I 
F 
I 
provided by chth_v.  
· This calculation is independent of the three types of modeling of the imposed temperature:  
constant by mesh (AFFE_CHAR_THER + TEMP), plus the dependence in time provided by  
a function (AFFE_CHAR_THER_F + TEMP) or provided by a structure of data  
“EVOL_THER” (AFFE_CHAR_THER_F + EVOL_THER + “TEMP”). These considerations  
F 
 
do not even return in line of account during the effective calculation of  
in chth_v, because this  
F 
I 
size represents the derivation of a function parameterized by one of its parameters  
F 
 
constant. One is not interested here in the derivative  
X.  
F 
X, 
I ( 
T J) (T) 
· The calculation of derived from T compared to one of the parameters of the relations of Dirichlet  
generalized [éq 2-3] same manner would be carried out. A distinction only appears  
on the level of the Lagrangian components of the dualized system:  
T 
 
+ 
With U = 
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B U =  
+ 
U 
with J 
J and C 
T éq  
2.4.2-2 
J 
J 
 
= - J + 
 
J 
 
 
I 
J 
J 
I 
T 
 
+ 
+ 
 
 
With U = 
B U = U 
with J J and C = 
 
éq  
2.4.2-3 
J 
J 
 
 
 
 
I 
J 
I 
The taking into data-processing account of these calculations would be carried out, like above, via the 
word  
keys COEF_MULT_1/2 and COEF_IMPO of the key words factors LAISON_GROUP and  
LIAISON_CHAMNO.  
· Sensitivity compared to a multiplying coefficient of this condition of Dirichlet  
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generalized [éq 2.4.2-2 is not available] because it has little direction with coefficients  
often discrete. One does not have access, by parameterizing advisedly the condition of Dirichlet  
generalized derived, that with derivation compared to the total coefficient [éq 2.4.2-3].  
· To take into account a more sophisticated modeling of a condition of Dirichlet  
F (, 
X T) = F I X, 
X T 
F 
 
I 
I () 
I ( 
) (I) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new one  
F 
 
source term  
= I in the definition of the derived loading  
I 
I 
 
chth_v.  
fi 
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2.5  
Derived compared to imposed normal flow  
 
2.5.1 Elements  
theoretical  
 
T 
 
One poses G (X) = G I X 
G 
and U = 
required sensitivity. Portions  
I 
I () 
(I) 
 
2 J 
I 
gi 
G 
 
being solidified, one has  
= I the indicating function of the ième portion. The derivation of [éq 2-1]  
I 
G 
2i 
I 
us leads to a problem in extreme cases identical to [éq 2.1.1-1] but with another voluminal source  
and a new condition of Neumann  
~ 
~ 
G = I 
and  
S 
 
éq  
2.5.1-1  
I 
= 0 
It is a problem of inhomogenous Neumann and homogeneous Cauchy-Dirichlet-Robin similar to that  
which T answers. Its semi-discretization in time led to seek a continuation (U 
 
N) 
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V 
0nN 
0 
checking a system similar to [éq 2.1.1-3] whose first relation is rewritten  
N 1 
+ 
U 
- one 
C 
 
 
 
 
éq  
2.5.1-2  
p 
- div ( 
N 1 
+ 
U 
) - (1 -) div (one) = 0 
0 N NR -1 
T 
with the new limiting condition  
~n 
G +1 = I  
éq  
2.5.1-3  
I 
From where a variational problem identical to [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] comprising  
even bilinear form [éq 2.1.1-7] joined to the linear form [éq 2.1.1-8] of which only the fourth  
integral is modified to adapt to the new “surface” source  
± 
L (v) = L + I v dx  
éq  
2.5.1-4  
I 
2 
Note:  
 
· The first member of this equation is formally identical to that of the equation in  
temperature. After each step of time, once determined T+ starting from T, one rests  
also on H, h+ and U to determine u+. The matrix of the linear system corresponding does not have  
not with being reassembled. Only the second member is to be packed by suitable the source term.  
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· By deriving the variational formulation (cf [§5.1.3]) from the problem in temperature [R5.01.02]  
one finds well [éq 2.5.1-4]  
· In stationary regime this source term is not modified.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead 
to  
dualized linear system [éq 2.1.1-11].  
 
2.5.2 Establishment in Code_Aster  
 
Compared to [§2.1.2], only the term due to the new source is to be modified  
L3 K 
, 
= 
 
 
éq  
2.5.2-1  
2  
I K 
NR 
2 
 
J ( 
G) 
G I ( 
) J (G) 
 
It is enough to re-use standard option CHAR_THER_FLUN_F/R with the field derived flow.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. It was seen that this calculation is very close 
to a calculation  
standard linear thermics, only the initial condition and the loadings are modified  
F = S = T 
and 
 
ext. = 
, 
0 
0 
G = I 
U 
I 
= 0 
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This feedback is carried out via the succession of orders  
 
v = DEFI_PARA_SENSI (VALE = < value of gi >)  
chth = AFFE_CHAR_THER_F (FLUX_REP = _F (GROUP_MA = < definition of 2i >,  
FLUN = v))  
...  
one = DEFI_CONSTANTE (VALE = 1. )  
MEMO_NON_SENSI (NAME =_F (NOM_SD = “chth”, PARA_SENSI = “v”,  
NOM_COMPOSE = “chth_v”))  
chth_v = AFFE_CHAR_THER_F (FLUX_REP = _F (GROUP_MA = < 2i >, FLUN = one))  
...  
resu = THER_LINEAIRE (EXCIT = chth,  
 
SENSITIVITY  
=  
(  
v)  
 
 
 
 
...)  
 
Note:  
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G 
 
· The essential data of this calculation, the field normal flow derived I = 
, is provided by  
I 
G 
I 
chth_v.  
· This calculation is independent of the three types of modeling of the condition of Neumann:  
constant by mesh (AFFE_CHAR_THER + FLUN), plus the dependence in time provided by  
a function (AFFE_CHAR_THER_F + FLUN) or components of vectorial flow  
dependent on time and constants by meshs (AFFE_CHAR_THER_F + FLUN_X/Y/Z).  
One can then dissociate derivation compared to the q-uplet components of derivation  
compared to one of its components. The formulas detailed here are identical whatever  
that is to say configuration selected. Only possibly the evaluation of  
G L 
 
G L 
 
I 
I 
or 
, , 
must take account of these characteristics.  
K 
(L {X y Z}) 
G 
 
G 
 
J 
J 
· The dependence in time of the condition of Neumann is not taken into account at the time of  
G 
 
calculation of  
because this size represents the derivation of a function parameterized by one  
G 
I 
G 
 
of its constant parameters. One is not interested here in the derivative  
X.  
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G 
X, 
I ( 
T J) (T) 
· In practice, one thus has access to the sensitivity compared to a scalar flow or vector,  
constant by zone. By parameterizing advisedly the vector derived flow, one can too  
T 
 
to obtain the sensitivity compared to one of its components  
, 
X 
.  
J ( 
T) 
G 
I 
· To take into account a more sophisticated modeling of a normal flow  
G (, 
X T) = G I X, 
X T 
G 
 
I I () 
I ( 
) (I) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new one  
G 
 
source term  
= I in the definition of the derived loading  
I 
I 
 
chth_v.  
gi 
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2.6  
Derived compared to the coefficient from convectif exchange  
 
2.6.1 Elements  
theoretical  
 
T 
 
One poses H (X) = H I X 
H 
and U = 
required sensitivity. Portions being  
I 
I () 
(I) 
 
3 J 
I 
hi 
H 
 
solidified, one has  
= I the indicating function of the ième portion. The derivation of [éq 2-1] us  
I 
H 
3i 
I 
conduit with a problem in extreme cases identical to [éq 2.1.1-1] but with another voluminal source 
and  
a new condition of Robin  
~ 
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H = I 
and 
 
éq  
2.6.1-1  
I (Text - T) 
~s = 0 
It is an inhomogenous problem of Robin and homogeneous Cauchy-Dirichlet-Neumann similar to 
that  
which T answers. Its semi-discretization in time led to seek a continuation (U 
 
N) 
V 
0nN 
0 
checking a system similar to [éq 2.1.1-3] whose first relation is rewritten  
N 1 
+ 
U 
- one 
C 
 
 
 
 
éq  
2.6.1-2  
p 
- div ( 
N 1 
+ 
U 
) - (1 -) div (one) = 0  
0 N NR -1 
T 
with the new limiting condition  
~n 1+ 
H 
= I T 
T 
 
éq  
2.6.1-3  
I (N 1 
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+ 
N 1 
+ 
ext. 
- 
) 
From where a variational problem identical to [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] comprising  
even bilinear form [éq 2.1.1-7] joined to the linear form [éq 2.1.1-8] of which only the fourth  
integral is modified to adapt to the new “surface” source  
 
± 
L (v) = L + I  
 
 
éq  
2.6.1-4  
I {(+ 
+ 
Text - T) + (1 -) (- 
- 
Text - T)}vdx 
3 
Note:  
 
· The first member of this equation is formally identical to that of the equation in  
temperature. After each step of time, once determined + 
T from - 
T, one rests  
also on - 
H, + 
H and - 
U to determine + 
U. The matrix of the linear system corresponding  
does not have to be reassembled. Only the second member is to be packed by suitable the source term.  
· By deriving the variational formulation (cf [§5.1.3]) from the problem in temperature [R5.01.02]  
one finds well [éq 2.6.1-4].  
· These calculations spread without sorrow in the condition of exchange between walls of [éq 2-2]. It  
is enough to replace the ± terms 
( ± 
± 
T 
by  
ext. - T 
) v D 
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3i 
 
± (u± - u± v D with H, I, 1 - I.  
I 
J) 
{ 
I ( 
) I} 
ij 
 
· In hover this complementary source term is tiny room to  
L (v) = L + I 
 
I (Text - T) v dx 
3 
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead 
to  
dualized linear system [éq 2.1.1-11].  
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2.6.2 Establishment in Code_Aster  
 
Compared to [§2.1.2], only the term due to the new source is to be modified  
 
T + K 
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3 - T 
3 
 
+ + 
 
 
L 
K 
, 
éq2.6.2-1  
3  
= I K 
3  
NR  
J ( 
G) 
(ext. ( 
) 
(G) 
G I ( 
) 
- 
- 
 
(1 -) (T K 
3 - T  
ext. ( 
) 
(G) J (G) 
 
 
What is made in the new option of calculation CHAR_SENS_TEXT_F with the fields coefficient  
of standard exchange and derived.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. It was seen that this calculation is very close 
to a calculation  
standard linear thermics, only the initial condition and the loadings are modified  
F = S = G =, 
0 
HT 
and 
 
ext. = I I (Text - T) 
0 
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U = 0 
This feedback is carried out via the succession of orders  
 
v = DEFI_PARA_SENSI (VALE = < value of hi >)  
chth = AFFE_CHAR_THER_F (EXCHANGE = _F (GROUP_MA = < definition of 3i >,  
COEF_H = v, TEMP_EXT = W))  
...  
one = DEFI_CONSTANTE (VALE = 1. )  
zero = DEFI_CONSTANTE (VALE = 0. )  
MEMO_NON_SENSI (NAME =_F (NOM_SD = “chth”, PARA_SENSI = “v”,  
NOM_COMPOSE = “chth_v”))  
chth_v = AFFE_CHAR_THER_F (EXCHANGE = _F (GROUP_MA = < 3i >,  
COEF_H = one, TEMP_EXT = zero))  
...  
resu = THER_LINEAIRE (EXCIT = chth,  
 
SENSITIVITY  
=  
(  
v)  
 
 
 
 
...)  
 
Note:  
 
H 
 
· The essential data of this calculation, the field coefficient of derived exchange I = 
, is  
I 
H 
I 
provided by chth_v.  
· To take into account a more sophisticated modeling of a coefficient of exchange  
H (, 
X T) = H I X, 
X T 
H 
 
I I () 
I ( 
) (I) 
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I 
in these calculations of sensitivity, it is enough to substitute, with the indicating function, the new one  
H 
 
source term  
= I in the definition of the derived loading  
I 
I 
 
chth_v.  
hi 
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2.7  
Derived compared to the outside temperature  
 
2.7.1 Elements  
theoretical  
 
In the case of convectif exchange with the external medium, one poses T 
X 
T 
I X 
T 
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ext. () = iext 
I () 
(iext) 
I 
T 
 
T 
 
and U = 
required sensitivity. As previously  
ext. = I the indicating function of  
I 
T 
 
I 
I 
T 
ext. 
ext. 
the ième portion. The derivation of [éq 2-1] leads us to a problem in extreme cases identical to  
3i 
[éq 2.1.1-1] but with another voluminal source and a new condition of Robin  
~ 
~ 
H = H I 
and 
S 
 
éq  
2.7.1-1  
I 
= 0 
It is an inhomogenous problem of Robin and homogeneous Cauchy-Dirichlet-Neumann similar to 
that  
which T answers. Its semi-discretization in time led to seek a continuation (U 
 
N) 
V 
0nN 
0 
checking a system similar to [éq 2.1.1-3] whose first relation is rewritten  
N 1 
+ 
U 
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- one 
C 
 
 
 
 
éq  
2.7.1-2  
p 
- div ( 
N 1 
+ 
U 
) - (1 -) div (one) = 0 
0 N NR -1 
T 
with the new limiting condition  
~n 1+ 
N 
H 
= H 1+ I  
éq  
2.7.1-3  
I 
From where a variational problem identical to [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] comprising  
even bilinear form [éq 2.1.1-7] joined to the linear form [éq 2.1.1-8] of which only the fourth  
integral is modified to adapt to the new “surface” source  
 
± 
L (v) = L + I  
 
 
éq  
2.7.1-4  
I { 
+ 
H + (1 -) - 
H} vdx 
3 
Note:  
 
· The first member of this equation is formally identical to that of the equation in  
temperature. After each step of time, once determined + 
T from - 
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T, one  
also rest on - 
H, + 
H and - 
U to determine + 
U. The matrix of the linear system  
corresponding does not have to be reassembled. Only the second member is to be packed by the term  
suitable source.  
· By deriving the variational formulation (cf [§5.1.3]) from the problem in temperature [R5.01.02]  
one finds well [éq 2.7.1-4].  
· In stationary regime this source term is tiny room to  
L (v) = L + I H vdx  
I 
3 
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead 
to  
dualized linear system [éq 2.1.1-11].  
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2.7.2 Establishment in Code_Aster  
 
Compared to [§2.1.2], only the term due to the new source is to be modified  
L3 K 
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, 
= 
 
+ + 1- 
-  
éq  
2.7.2-1  
3  
I K 
3 
H K 
3 
H K 
NR 
3 
 
J ( 
G) 
G I ( 
){ ( 
) ( 
) ( 
)} J (G) 
 
It is enough to re-use standard option CHAR_THER_TEXT_F with the fields coefficient of exchange  
- 
standard and derived, and while it “bluffant” with a field T =0.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. It was seen that this calculation is very close 
to a calculation  
standard linear thermics, only the initial condition and the loadings are modified  
F = S = G =, 
0 
0 
T 
and 
 
ext. = I 
U 
I 
= 0 
This feedback is carried out via the same succession of orders as with [§2.6.2] in  
substituent TEMP_EXT with COEF_H in the AFFE_CHAR_THER_F.  
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Note:  
 
T 
 
· The essential data of this calculation, the field derived outside temperature  
ext. 
I = 
, is  
I 
I 
T 
ext. 
provided by chth_v.  
· To take into account a more sophisticated modeling of the outside temperature  
T 
, 
X T 
T I X  
, 
X T 
T 
 
ext. ( 
) = iext I () I () (iext) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new one  
T 
 
source term  
ext. = I in the definition of the derived loading chth_v.  
I 
I 
I 
Text 
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3  
Nonlinear thermics  
 
In nonlinear thermics the characteristics materials CP (X, T) and (X, T) can depend on  
temperature (in non-linear thermics, one cannot define anisotropic materials. There does not exist  
of modeling THER_NL_ORTH. Modeling THER_NL). The body is subjected to the same types of  
limiting conditions and of loadings which the linear problem to which are added two conditions  
non-linear: normal flow imposed I (X, T) (on) and radiation ad infinitum of a gray body (on).  
4 
5 
This last condition is modelled (P0) by its emissivity (X, T), the constant of Stefan-  
Boltzmann (X, T) and the temperature ad infinitum T (X, T).  
The operator of Code_Aster dedicated to this type of problem is THER_NON_LINE [R5.02.02]. It  
allows to solve the problem in extreme cases interfered according to (Cauchy-Dirichlet-Neumann-
Robin type 
Inhomogenous, non-linear radiation and with variable coefficients)  
 
C 
 
 
p () T 
T 
- div ((T) T) 
 
= S 
× ] , 
0 [ 
 
T 
T = F 
 
 
1 × ] , 
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0 [ 
 
() T 
T 
= G 
 
 
2 × ] , 
0 [ 
 
N 
 
() T 
T 
+ HT = HT 
 
ext. 
3 ×] , 
0 [ 
 
N 
 
éq  
3-1  
 
() T 
T 
= I (T) 
 
 
4 × ] , 
0 [ 
 
N 
 
() T 
T 
= ([ 
4 
4 
 
 
T + 
15 
. 
273 
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) - (T + 
15 
. 
273 
) ] 5 ×] ,0 [ 
 
N 
 
T (X) 
0 
, = 0 
T (X) 
 
 
Non-linearities pose theoretical problems to show the existence and the unicity of  
the solution [bib2]. They can be also prejudicial with the numerical resolution itself.  
Thus, with regard to the modeling of voluminal heat CP (X, T), during an iteration,  
either because the thermal transient is violent, or because the beach of phase shift is  
very small (for example, for a pure substance), two the reiterated successive ones of the temperature 
can  
to locate on both sides one of its discontinuities. One then missed a large part of information  
relating to the phase shift.  
To free itself from this type of problem one rewrites the first equation of [éq 3-1] while introducing  
a voluminal function enthalpy which will smooth these non-linearities (dependent on T (X, T) and 
while noting  
T*=T (X, t*) the value of the temperature at one moment t* < T arbitrary)  
(T) - div ((T) T) = S 
× ] , 
0 [ 
T 
T 
 
éq  
3-2  
with 
(T) = C D 
p () 
T * 
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Note:  
 
· Of share its definition (difference in a primitive (in temperature) of voluminal heat  
between the temperature considered and a temperature T * at one arbitrary moment), the function  
enthalpy is known except for a constant of integration. It will thus have to be taken care that this  
constant is eliminated in all the handled expressions.  
· The generalized conditions of type exchanges linear walls [éq 2-2] or relations between ddls  
[éq 2-3] are also usable. As in [§2] one will not be interested in derived by  
report/ratio with the parameters of functionalities LIAISON_*.  
· For a transitory calculation, as the problem of thermics linear, three strategies  
can govern the choice of the field of initial temperature and they have an incidence on  
the initialization of the derived problem.  
· Implicitement, THER_NON_LINE must tolerate conductivities rather badly strongly  
non-linear. Because the tangent matrices and the initial predictive phase does not comprise it  
term representing their derivative compared to the temperature. Moreover this term  
complementary would have the bad taste to make nonsymmetrical the tangent matrix of  
standard system and the matrix of the derived system! What is problematic to take in  
count by means of computer in the handling of the structures of data.  
In an any state of cause, with respect to the non-linear characteristics material  
generally used, the perimeter of use of calculations of sensitivity is the same one  
that that of the standard problem. It does not take into account rigorously  
nonlinear thermal conductivity.  
· In addition, as in linear thermics, one has calculates only the sensitivity by report/ratio  
with a constant parameter by geometrical zone. What does not exclude a dependence  
temporal, space or non-linear of characteristics material or loadings  
nonconcerned by derivation. By parameterizing advisedly the loadings and  
“derived” materials in the command file, one can also have access to  
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some derivatives made up (cf [§6.4]).  
· Into non-linear, obtaining a sensitivity by finished differences is even less reliable  
that into linear, because it can be very sensitive to the degree of convergence of the solution. In  
any rigour, that also influences the quality of the analytical sensitivity, the field of  
temperature solution intervening in the assembly of the linear system “derived”.  
· Within the framework of non-linear thermics, the derivative compared to the enthalpy will not thus 
have  
no the direction (a enthalpy is not constant!).  
· On the other hand, knowing the sensitivity U of the field of temperature compared to a parameter,  
one reaches easily that of enthalpy v compared to this same parameter, via the formula  
 
(T) 
 
 
T 
 
T 
 
v = 
: 
= 
= C 
= C U  
 
 
T 
p 
p 
 
 
 
 
 
 
 
3.1  
Derived compared to voluminal heat  
 
3.1.1 Elements  
theoretical  
 
That is to say C X 
I X 
 
, one will derive compared to the parameter the formulation  
p () = I 
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I () 
(I) 
I 
I 
T 
 
[éq 3-2]. The required sensitivity is noted U = 
. By noticing that the enthalpy can  
 
I 
to model like a function of time T and J (considered makes some like functions  
indicatrixes of the type of material)  
T (T, X, J) 
: (T, X 
 
 
 
= 
- 
 
J) 
C 
 
 
p (, 
J) D 
C p ( 
* 
T T)  
* 
T (X, J) 
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its derivative is written  
 
T 
 
C 
* 
p 
T 
T  
= 
D + 
 
CP  
- 
 
 
 
* 
 
 
 
I 
 
T 
I 
I 
I  
* 
= 
* 
T 
T 
I T T 
C 
I ( 
- ) 
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+ 
p  
- 
 
 
 
 
I 
I  
 
C 
Indeed quantity  
p 
I = 
is independent of the temperature (and thus time) because one  
I 
 
I 
suppose that the portions are fixed (the under-parts of the body are supposed to be motionless, one  
I 
neglect in particular the phenomena of dilation). The derivative in time of the first term in enthalpy  
of [éq 3-2] is thus worth  
 
(T) 
 
 
 
 
 
 
U 
 
I  
T 
 
 
T 
 
= I 
 
+ 
 
éq  
3.1.1-1  
T 
I 
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T 
 
T 
 
In addition one has  
 
 
( 
 
 
T (T, X, 
 
X 
 
J) 
T T 
T 
 
= 
 
 
+ T 
J 
+  
= 
U with {,} 
I 
 
T 
 
T 
 
 
 
 
I 
 
I 
I 
J 
T 
{ 
{ 
J {I 
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0 
0 
 
 
ij  
 
 
 
( 
 
 
T + 273 15 
. ) 4 
 
 
X 
 
= 4 (T + 273 15 
. ) 3 T T 
T 
 
+ T 
J 
+  
= 4 (T + 273 15 
. ) 3u 
 
T 
 
 
 
I 
 
{I 
{I 
J 
J {I 
 
0 
0 
 
 
ij  
éq 3.1.1-2  
 
The derivation of [éq 3-2] leads us to the new problem in extreme cases out of U  
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U 
T  
 
 
- 
 
C + U = ~ 
div 
S 
× ] , 
0 [ 
 
T 
T 
 
U = ~f 
 
, 
0  
1 × ] 
[ 
 
 
 
+ 
U 
U  
= ~g 
 
, 
0  
2 × ] 
[ 
N 
N 
 
 
 
U ~ 
 
+ hu +  
= H 
 
, 
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0 éq  
3.1.1-3  
3 × ] 
[ 
N 
 
N 
 
 
I  
U ~ 
 
- 
U +  
= I 
 
, 
0  
4 × ] 
[ 
N T  
N 
 
 
U 
 
+ 4 (T + 
) 3 
 
U +  
= ~ 
15 
. 
273 
 
 
, 
0  
5 × ] 
[ 
N 
 
N 
 
U (X 
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= ~ 
) 
0 
, 
u0 
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with the new source voluminal and the new limiting conditions and initial  
T ~ 
~ 
~ 
~ 
~ 
~ 
~ 
S = - I 
, F 
 
and 
éq  
3.1.1-4  
I 
= G = H = I = = 0 
U = 0 
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0 
T 
 
Note:  
 
· The derivation of the formulation in voluminal heat [éq 3-1] led of course to same  
result because voluminal heat is a function of the J (considered in fact  
indicating functions of the type of material) and the temperature (depending itself on  
time, of the variable of space and the J!)  
C, T T, 
X  
 
p (J 
( 
J) 
Its derivative compared to I is thus written  
 
 
 
 
C 
C  
C  
X 
 
p 
p 
J 
p T 
T 
T 
 
=  
+ 
 
+ T 
J 
+  
= I + 
 
 
 
 
 
 
I 
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J 
T 
T 
I 
J 
{I 
 
{I 
{I 
J 
J {I 
 
 
0 
0 
 
ij 
 
ij  
 
from where  
 
 
U 
C  
 
 
 
p 
T 
U 
T 
CP 
U 
 
T 
 
 
T 
 
+ C 
= I 
+ 
U + C 
= 
+ I 
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T 
p 
 
T 
I 
 
T 
 
T 
p 
 
T 
 
T 
I 
 
T 
 
I 
 
one finds well the formulation [éq 3.1.1-1] of the only term which distinguishes these two  
modelings.  
 
 
Contrary to linear thermics, the derived problem is completely metamorphosed.  
The parabolic operator is modified and it became linear out of U. All the problem is besides  
become linear because the conditions limit underwent the same treatment. The condition of Dirichlet  
is from now on homogeneous and those of Neumann and radiation left room to conditions  
of Robin. The condition of Cauchy became homogeneous. Contrary to the problem in  
temperature, the theoretical results of existence and unicity of the solution U are thus easier with  
to exhume.  
From a practical point of view, one does not need to have recourse, as in THER_NON_LINE, with one  
algorithm of crossbred Newton-Raphson of a predictive phase to determine the increment of  
temperature between two contiguous moments. A linear solvor is enough. No one is not need to 
assemble one  
stamp tangent with each under-iteration. The resolution of the “derived” problem is thus more  
rapid and more robust than that of the initial problem.  
Semi-discretization in times of [éq 3.1.1-3] by - method leads to the following problem:  
to find a continuation (U 
such as (with the notations of [§2.1.1])  
N) 
V 
0nN 
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n+1 
N 
 
 
n+1 
 
 
U 
- 
U N 
 
T 
T 
n+1 
 
 
 
- 
n+1 
div 
U n+1 
T 
+ n+1 
n+1 
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U 
 
 
 
 
 
T 
T 
 
 
N 
~ N 
~ 
 
+1 
N 
- ( 
N 
N 
N 
N 
S 
S 
1 - ) 
 
 
- 
 
div 
U T + U 
= 
0 N NR - 
 
 
 
 
1 
T 
 
T 
N 
~ 
+1 
U 
= n+1 
F 
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0 N NR 1 
1 
- 
n+1 
N 1 
 
n+ 
N 
U 
1 
+1  
+ 
~ 
 
U 
+  
= n+1 
G 
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N 
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+1 
+1 
4  
(+1 
T 
+ 273.15) +1 
+1  
U 
+  
= ~n+1 
 
 
0 N NR 1 
5 
- 
N 
 
N 
 
0 
U (0 = ~ 
) u0 
 
 
éq 3.1.1-5  
while posing  
 
 
~ 
~ 
N 
 
 
N 
 
~ 
~ 
~ 
U = U, 
X N 
, T = T, 
X N 
, S N = - I X 
, 
~ 
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NR  
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X T N) 
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, = ( , 
X T N) 
N 
, = ( , 
X T N) 
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H, 
X N 
 
 
 
NR  
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NR  
 
NR  
 
NR  
éq 3.1.1-6  
 
By applying the theorem of Green to [éq 3.1.1-5], [éq 3.1.1-6] and by introducing the notations  
following  
+ 
 
 
- 
 
 
=  
 
X, (N +) 
1 
and = X, N with {U, T, H, T, T 
0 
 
-1 
ext. 
} 
N 
NR 
 
NR  
 
NR  
 
+ 
 
 
 
- 
 
 
 
=  
 
X, T X, 
 
 
(N +) 1 and =, xT, xn  
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with  
 
 
 
 
 
 
{, I} 
 
 
NR  
 
 
NR  
one is brought to solve the following variational problem  
 
± 
± ± ± ± 
± 
± 
- 
Being donn 
 
 
és, I, H, T and U 
 
 
 
+ 
To calculate U V 
that 
 
such 
éq  
3.1.1-7  
0 
v 
+ 
V 
has 
0 
(+u, v) = ±l (v) 
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with the bilinear form depending on the current moment  
1 
 
 
 
+ 
has (+ 
U, v) 
+ 
+ 
= 
 
+ 
U v dx +  
+ 
+ + 
+ 
T U + U 
 
. v dx + 
 
 
 
 
T T 
T 
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+ 
+ + 
H U v D - I + 
U v  
D + 4 + + 
( + 
T + 
15 
. 
273 
) 3 +uv  
D 
T 
3 
4 
4 
éq 3.1.1-8  
and the linear form parameterized by the moments running and precedent  
1 
 
 
 
± 
L (v) 
- 
- 
= 
 
- 
U v dx + (-) 
1  
- - 
- 
- 
T U + U 
 
. v dx - 1 
 
 
 
 
II (+ 
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- 
T - T) v dx 
T T 
T 
 
T 
 
 
 
+ ( - ) 
1 - - 
H U v D 
 
3 
+ ( 
I 
1 - ) 
- 
- 
U v D + ( 
4 - ) 
1 - - 
( - 
T + 
15 
. 
273 
) 3 - U v  
D 
T  
4 
5 
éq 3.1.1-9  
 
Note:  
 
· While posing in [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9]  
± 
 
± 
= 
 
C, 
= 
± 
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0, = and  
 
4 = 5 =  
T 
p 
T 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] of the linear problem.  
In addition, by deriving the variational formulation [éq 4.2-1] from the problem in temperature  
[R5.02.02] one finds well [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9].  
· Contrairement to the initial problem, the unknown field and the function test belong to  
even functional space, which is more comfortable from a theoretical point of view and  
numerical.  
· This time the two members of this equation are fundamentally different from those from  
problem in temperature. However, after each step of time, once determined T+ with  
to start from T, one does not have to reassemble all the matrix of the linear system and his second  
associate member. It is enough to supplement the first tangent matrix (by taking them again  
notations of [R5.02.02]) of the step of next time (allowing to pass from + 
++ 
T = T with ++ 
T)  
1 
2 
by the term due to the non-linearity of thermal conductivity. One also leaves the second  
member of the problem in temperature L (- ± 
T, T) to constitute that which interests us: one  
fabric by the terms of implicitation of non-linearities of the thermal conductivity and of  
limiting conditions.  
· Concerning the initialization of the problem derived the remarks from the linear case apply in  
extenso (cf [§2.2.2].  
· Contrairement to calculation in temperature (at the time of the predictive phase of 
THER_NON_LINE,  
the elimination of this constant imposes a suitable reformulation of the elementary term  
CHAR_THER_EVOLNI), the constant of integration of the enthalpy does not appear here because one  
handle that its derivative in temperature.  
· For a condition of exchange between walls, the term of usual exchange is of course replaced  
by (by taking again the notations of [éq 2-2]) ± 
H (± 
± 
U 
.  
I - U J) v D 
ij 
Handbook of Reference  
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Space discretization of [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] provides the variational problem  
discretized  
 
± 
± ± ± ± 
± 
± 
- 
Being donn 
 
 
és, I, H, T and U 
 
 
H 
H 
H 
H 
H 
H 
H 
H 
 
+ 
To calculate U H 
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V 
that 
 
such 
 
éq  
3.1.1-10  
H 
0 
v V 
has U, v 
L v 
H  
H 
+ 
0 
H (+ 
H 
H) = ± 
H (H) 
 
 
The taking into account of the conditions of Dirichlet leads then to the dualized linear system [éq 2.1.1-
11].  
We now will see how these calculations are declined in the code.  
 
3.1.2 Establishment in Code_Aster  
 
With the same notations that with [§2.1.1] one can break up the elementary matrix into  
WITH K  
WITH K  
éq  
3.1.2-1  
ij ( 
, G) 
5 
= iij (, G) 
i=1 
with  
 
· the term of mass and thermal rigidity (option of calculation MTAN_RIGI_MASS by estimating them  
- 
characteristics material in T)  
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1 
 
+ 
WITH K, = 
NR NR + + NR  
. NR  
ij ( 
) G 
G 
(G) J (G) I (G) G (G) J (G) I (G) 
T 
 
T 
 
 
· a term of thermal rigidity due to the non-linearity of thermal conductivity (not introduced  
because one supposes, in the perimeter of use of the sensitivities, which is independent of T)  
2 
 
+ 
WITH K, =  
T + NR. NR  
ij ( 
G) 
G 
(G) 
(G) J (G) I (G) 
T 
 
 
· the term of rigidity due to the conditions limit of exchange (MTAN_THER_COEF_F/R)  
A3 K 
, 
= 
+  
 
3  
H 
K 
NR 
3 
NR  
ij ( 
G) 
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G 
( 
) J (G) I (G) 
 
In the event of exchange between walls this term is replaced by (RIGI_THER_PARO_F/R)  
A3 K 
, 
 
3  
= h+ K 
NR 
3 
- NR 
NR  
ij ( 
G) 
G 
( 
) (J (G) F J (G) I (G) 
( ) 
by noting F the bijection putting in opposite the two walls.  
 
· the term of rigidity due to the condition of non-linear Neumann (MTAN_THER_FLUXNL in  
- 
considering flow non-linear in T)  
4 
I 
+ 
With 
K 
, 
 
4  
= -  
NR NR  
ij ( 
G) 
G 
(G) J (G) I (G) 
T 
 
 
· the term of rigidity due to the condition of radiation (MTAN_THER_RAYO_F/R)  
A5 K 
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, 
= 4 
+  
+ 
+ 273.15 
 
5  
 
K 
T 
5 
 
3 NR NR  
ij ( 
G) 
G 
( ) ( 
) ((G) 
) J (G) I (G) 
 
The second member is written, with the same notations,  
L K  
L K  
éq  
3.1.2-2  
J ( 
, G) 6 
= ij (, G) 
i=1 
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where  
· the term resulting from the implicitation of the matrix of rigidity and mass (new option  
CHAR_SENS_EVOLNI copies CHAR_THER_EVOLNI with U instead of T, the fields  
derived and standard material and the new source term)  
 
1 
 
- 
L K, = 
U NR + -1 - U  
. NR  
J ( 
) G 
G 
(G) (G) J (G) G () (G) (G) J (G) 
T 
 
T 
 
 
· a term resulting from the implicitation of the non-linearity of thermal conductivity (not  
introduced because one supposes, in the perimeter of use of the sensitivities, which is independent  
T)  
2 
 
- 
L K, = -1 
U T -. NR  
J ( 
G) 
G ( 
) 
(G) (G) 
(G) I (G) 
T 
 
 
· the term due to the “new source” (cf CHAR_SENS_EVOLNI)  
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L3 K, = - 
I K T + - T -  
NR  
 
J ( 
) 
G 
G 
I ( 
) ((G) 
(G) J (G) 
T 
 
 
· the term resulting from the implicitation of the conditions limit of exchange (CHAR_THER_TEXT_F/R  
with Text=0 and U instead of T)  
L4 K 
, 
1 
 
3  
= - H K 
U 
3 
NR  
J ( 
G) 
G ( 
) ( 
) (G) J (G) 
In the event of exchange between walls this term is replaced by (CHAR_THER_PARO_F/R with U with  
place of T)  
L4 K 
, 
1 
 
3  
= - H K 
U 
3 
- U F  
NR  
J ( 
G) 
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G ( 
) ( 
) ((G) ((G)) J (G) 
 
· the term resulting from the implicitation of the condition of non-linear Neumann (new option  
CHAR_SENS_FLUNL)  
5 
I 
 
L 
K 
, 
 
4  
= 1- 
U NR  
J ( 
G) 
G ( 
) 
(G) (G) J (G) 
T 
 
 
· the term resulting from the implicitation of the condition of radiation (new option  
CHAR_SENS_RAYO_F)  
L6 K 
, 
4 
1 
273.15 
 
5  
= - 
- K 
T - 
5 
+ 
3 U NR  
J ( 
G) 
G ( 
) ( ) ( 
) ((G) 
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Note:  
 
· The elementary terms of the matrix of the “derived” problem are identical to those of  
stamp tangent initial problem. Indeed the problem in temperature can be written in  
revealing a vector residue R [R5.02.02] and a vectorial function test V  
T 
V. R (+ + 
T, T) = T 
V. L (- ± 
T, T)  
While deriving compared to a parameter from calculation from the residue (for example a characteristic  
material) noted this vectorial relation and by translating it in indicielle form, one has  
( +  
V R = 
V L± 
K 
K) 
(K K) 
 
 
 
 
R 
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+ T 
+ 
L 
± 
K 
J 
K 
V 
= V 
 
K 
K 
T 
 
 
 
 
 
{J 
Kkj 
T 
+ 
+ 
+ 
L 
+ 
K T 
= 
with V =  
ij ( 
) J 
I 
( 
K 
ki) 
4 4 
3 
2 
1 
 
 
 
 
With 
{ { 
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ij 
U + 
L 
J 
I 
One thus finds well the indicielle formulation of the derived linear system [éq 2.1.1-10].  
· Compared to the “derived” problem linear, the elementary matrix and the second member are  
supplemented by the terms incorporating non-linearities of the thermal conductivity and of  
limiting conditions. On the other hand, the new source is identical in both cases (one will be able  
thus mutualiser the option of calculation).  
· To take into account a more sophisticated modeling of voluminal heat  
C 
, 
X T 
I X, 
X T 
 
 
p ( 
) = I I () I () (I) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new term  
 
C 
source  
p = I in the definition of the field derived material  
I 
I  
 
ma_v.  
I 
 
As one already specified, all the elementary terms (except the second) of the matrix make  
the object of an option of calculation and will already have been evaluated for the calculation of ++ 
T. It thus remains with  
2 
to estimate the second member by re-using (with a different parameter setting) the options of calculation  
existing or by introducing news (CHAR_SENS_EVOLNI/FLUNL/RAYO_F). These last  
redirect towards the same routine of elementary calculation (TE.) that their associated options 
standards  
(CHAR_THER_EVOLNI/FLUNL/RAYO_F).  
The central character string (SENS instead of THER) joined to a detection of the nullity of the field  
derived material, makes it possible to parameterize these routines towards one or the other their 
orientations  
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possible: calculation of an elementary term derived (new source term) or of a term “spectator”  
had with the presence of a condition of exchange, radiation or a non-linear flow.  
 
In accordance with the principles of architecture set up in the code to treat calculations  
of sensitivity [bib6], the assembly and the resolution of [éq 2.1.1-11] are started by the analysis of  
table of correspondence associated with the significant variable. This feedback is carried out via  
even succession of orders that with [§2.1.2] in substituent THER_NL with THER in  
DEFI_MATERIAU and by replacing of course operator THER_LINEAIRE by THER_NON_LINE.  
 
We will unroll the same process for the various sensitivities, to start with that  
concerning the other characteristic material.  
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3.2  
Derived compared to thermal conductivity  
 
3.2.1 Elements  
theoretical  
 
By taking again the notations of [§2.2.1], one carries out derivation compared to the parameter, with  
I 
T 
 
U = 
sought sensitivity,  
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p 
 
T 
C 
 
 
 
p 
T 
U 
(C up) 
= 
U 
+ C 
= 
 
T 
 
T 
p 
 
T 
 
T 
 
I 
 
(T) 
(T)  
 
 
U 
 
T 
 
 
T 
 
 
 
= 
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T 
 
I 
The derivation of [éq 3-2] delivers to us a problem in extreme cases identical to [éq 3.1.1-1] but with 
one  
another voluminal source and of new conditions of Robin  
~ 
~ 
~ 
~ 
 
S = div (I T, 
= = = ~ = - 
 
éq  
3.2.1-1  
I 
) 
T 
G H 
I 
II N 
 
It is a homogeneous problem of Dirichlet-Cauchy and inhomogenous Robin. One can thus take back  
same remarks concerning the linear character of the derived problem and simplifications  
theoretical and numerical that that implies. Its semi-discretization in time results in seeking one  
continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6] of which the first relation  
N) 
V 
0nN 
0 
rewrites itself  
N 1 
+ 
N 
 
 
n+ 
 
1 
U 
- 
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one 
N 1 
 
T 
T 
+ 
 
 
- div 
N 1 
+ 
N 1 
+ 
N 1 
+ 
N 1 
+ 
 
 
U T 
+ U  
T 
T 
 
éq  
3.2.1-2  
N 
- ( 
 
 
1- ) 
N 
N 
N 
N 
~ 
div 
N 1 
U T + U = 
+ 
S + 
N  
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( - )~ 
1 
S 
0 N NR -1 
T 
 
with the new source term  
~sm = div (I T m 
 
éq  
3.2.1-3  
I 
) m {, nn+} 1 
and new limiting conditions  
1 
+ 
~ 
~ 1 
+1 
~ +1 
~ +1 
+ 
N 
N 
N 
N 
T N 
G 
= H 
= I 
=  
= - I 
 
éq  
3.2.1-4  
I 
N 
 
From where a variational problem identical to [éq 3.1.1-7] comprising the same bilinear form  
[éq 3.1.1-8] joined to the linear form [éq 3.1.1-9] whose only third integral is modified for  
to adapt to the new source  
± 
L (v) = L - I  
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1  
 
éq  
3.2.1-5  
I ( 
+ 
T + (-) - 
T) vdxL 
 
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HI-23/03/001/A  

Code_Aster ®  
Version  
6.0  
 
Titrate:  
Calculation of sensitivities in thermics  
 
 
Date:  
01/07/03  
Author (S):  
O. BOITEAU Key  
:  
R4.03.02-A Page  
: 38/66  
 
 
Note:  
 
· While posing in the new variational problem [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.2.1-5]  
± 
 
± 
= 
 
C, 
= 
± 
0, = and  
 
4 = 5 =  
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T 
p 
T 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] + [éq 2.2.1-5] of  
linear problem. In addition, by deriving the variational formulation [éq 4.2-1] from  
problem in temperature [R5.02.02] one finds well [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.2.1-5].  
The new source term is identical into linear and non-linear.  
· For the moment, operator DEFI_MATERIAU does not make it possible to model a conductivity  
orthotropic non-linear thermics. There are not thus the particular cases of the linear problem.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead to  
dualized linear system [éq 2.1.1-11].  
 
 
3.2.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified. The same one is taken  
L3 K, that for the linear case (cf [éq 2.2.2-1]). What is made in the new option of calculation  
J ( 
G) 
CHAR_SENS_EVOLNI with the fields derived and standard material.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
succession of orders that with [§2.1.2] in substituent THER_NL/LAMBDA with THER/RHO_CP in  
DEFI_MATERIAU and by replacing of course operator THER_LINEAIRE by THER_NON_LINE.  
 
Note:  
 
· To take into account a more sophisticated modeling of thermal conductivity  
( , 
X T) = I X, 
X T 
 
 
I 
I () 
I ( 
) (I) 
I 
 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new term  
 
 
source  
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= I in the definition of the field derived material  
I 
I 
 
ma_v.  
I 
 
 
3.3  
Derived compared to the source  
 
3.3.1 Elements  
theoretical  
 
By applying the formulas of the preceding paragraphs, the derivation of [éq 3-2] compared to  
parameter S (cf [§2.3.1]) delivers to us a problem in extreme cases identical to [éq 3.1.1-1] but with 
one  
I 
another voluminal source  
s~ = I  
éq  
3.3.1-1  
I  
One can thus renew the same remarks concerning the linear character of the derived problem and  
theoretical and numerical simplifications that that implies. Its semi-discretization in time  
conduit to seek a continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6]  
N) 
V 
0nN 
0 
T 
 
whose first relation is rewritten, by noting U = 
sought sensitivity,  
S 
I 
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HI-23/03/001/A  
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U T 
+ U  
T 
T 
 
éq 3.3.1-2  
N 
- ( 
 
 
1 -) div 
unT N + N 
one = II 0 N NR -1 
 
 
 
 
T 
 
 
The application of the theorem of Green to [éq 3.3.1-2] led to solve a variational problem  
identical to [éq 3.1.1-7] comprising the same bilinear form [éq 3.1.1-8] joined to the linear form  
[éq 3.1.1-9] whose only third integral is modified to adapt to the new source  
± 
L (v) = L + I vdx 
éq  
3.3.1-3  
I 
L 
 
 
Note:  
 
· While posing in the new variational problem [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.3.1-3]  
± 
 
± 
= 
 
C, 
= 
± 
0, = and  
 
4 = 5 =  
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T 
p 
T 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] + [éq 2.3.1-3] of  
linear problem. In addition, by deriving the variational formulation [éq 4.2-1] from  
problem in temperature [R5.02.02] one finds well [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.3.1-3].  
· The new source term is identical into linear and non-linear.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead to  
dualized linear system [éq 2.1.1-11].  
 
 
3.3.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified. The same one is taken  
L3 K, that for the linear case (cf [éq 2.3.2-1]) and the same option of calculation.  
J ( 
G) 
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
succession of orders that with [§2.3.2] by replacing operator THER_LINEAIRE by  
THER_NON_LINE.  
 
Note:  
 
The taking into account of more sophisticated modeling of the source term is carried out as in  
linear.  
 
 
3.4  
Derived compared to the imposed temperature  
 
3.4.1 Elements  
theoretical  
 
By applying the formulas of the preceding paragraphs, the derivation of [éq 3-2] compared to  
parameter F (cf [§2.4.1]) delivers to us a problem in extreme cases identical to [éq 3.1.1-1] but with 
one  
I 
null voluminal source and another condition of Dirichlet  
s~ = 
~ 
0 and 
F = I  
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It is an inhomogenous problem of Dirichlet-Robin and homogeneous Cauchy. One can thus take 
back  
same remarks concerning the linear character of the derived problem and simplifications  
theoretical and numerical that that implies. Its semi-discretization in time results in seeking one  
continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6] of which the first relation  
N) 
V 
0nN 
1 
T 
 
rewrites itself, by noting U = 
sought sensitivity,  
F 
I 
N 1  
+ 
N 
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- 
one 
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T 
T 
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- div 
N 1 
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N 1 
+ 
N 1 
+ 
N 1 
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U T 
+ U  
T 
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éq  
3.4.1-2  
N 
- ( 
 
 
1 -) div 
unT N + N 
a =0 0 N NR -1 
 
 
 
 
T 
 
with the new limiting condition  

file:///Z|/process/refer/refer/p950.htm (5 of 36)10/2/2006 2:52:51 PM



file:///Z|/process/refer/refer/p950.htm

~n 
F +1 = I  
éq  
3.4.1-3  
I 
The application of the theorem of Green to [éq 3.4.1-2], [éq 3.4.1-3] resulted in solving a problem  
variational identical to [éq 3.1.1-7] comprising the same bilinear form [éq 3.1.1-8] joined to the form  
linear [éq 3.1.1-9] whose only third integral is modified to adapt to the news  
source: here this integral is null.  
 
Note:  
 
· While posing in the new variational problem [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
“null source” + [éq 3.4.1-3]  
± 
 
± 
= 
 
C, 
= 
± 
0, = and  
 
4 = 5 =  
T 
p 
T 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] + [éq 2.4.1-2],  
[éq 2.4.1-3], [éq 2.4.1-4] of the linear problem. In addition, by deriving the formulation  
variational [éq 4.2-1] of the problem in temperature [R5.02.02] one finds [éq 3.1.1- well 
7], [éq 3.1.1-8], [éq 3.1.1-9] + “null source” + [éq 3.4.1-3].  
· The new source term is identical into linear and non-linear.  
· One finds the same linear system not dualized as for the derivative in enthalpy. Only  
taken into account of the condition of Dirichlet via of Lagranges will make the difference.  
 
The space discretization and the taking into account of the inhomogenous condition of Dirichlet lead 
to  
dualized linear system [éq 2.4.1-5]. Components of its second associate member with  
Lagranges are nonnull.  
 
 
3.4.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified. The same one is taken  
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3 
L K  
that for the linear case (cf [§2.4.2]) and the same option of calculation to assemble it  
J ( 
, G) = 0 
dualized linear system associated the “derived” conditions of Dirichlet.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
succession of orders that with [§2.4.2] by replacing operator THER_LINEAIRE by  
THER_NON_LINE.  
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Note:  
 
· Concerning various modelings of the imposed temperature and the conditions of  
Dirichlet generalized, there is no difference between the non-linear one and the linear one. For more  
information one can thus refer to [§2.4.2].  
· The taking into account of more sophisticated modeling of the imposed temperature is carried out  
as into linear.  
 
3.5  
Derived compared to linear imposed normal flow  
 
3.5.1 Elements  
theoretical  
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By applying the formulas of the preceding paragraphs, the derivation of [éq 3-2] compared to  
parameter G (cf [§2.5.1]) delivers to us a problem in extreme cases identical to [éq 3.1.1-1] but with 
one  
I 
null voluminal source and another condition of Robin on  
2 
s~ = 
and 
g~ 
0 
= I  
éq  
3.5.1-1  
I  
It is a homogeneous problem of Dirichlet-Cauchy and inhomogenous Robin. One can thus take back  
same remarks concerning the linear character of the derived problem and simplifications  
theoretical and numerical that that implies. Its semi-discretization in time results in seeking one  
continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6] of which the first relation  
N) 
V 
0nN 
0 
T 
 
rewrites itself, by noting U = 
sought sensitivity,  
G 
I 
N 1 
+ 
N 
 
 
n+ 
 
1 
U 
- 
one 
N 1 
 
T 
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T 
+ 
 
 
- div 
N 1 
+ 
N 1 
+ 
N 1 
+ 
N 1 
+ 
 
 
U T 
+ U  
T 
T 
 
éq  
3.5.1-2  
N 
- ( 
 
 
1 -) div 
unT N + N 
a =0 0 N NR -1 
 
 
 
 
T 
 
with the new limiting condition  
~n 
G +1 = I  
éq  
3.5.1-3  
I 
From where a variational problem identical to [éq 3.1.1-7] comprising the same bilinear form  
[éq 3.1.1-8] joined to the linear form [éq 3.1.1-9] whose only third integral is modified for  
to adapt to the new “surface” source  
± 
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L (v) = L + I vdx  
éq  
3.5.1-4  
I 
L 
2 
Note:  
 
· While posing in the new variational problem [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.5.1-4]  
± 
 
± 
= 
 
C, 
= 
± 
0, = and  
 
4 = 5 =  
T 
p 
T 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] + [éq 2.5.1-4] of  
linear problem. In addition, by deriving the variational formulation [éq 4.2-1] from  
problem in temperature [R5.02.02] one finds well [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.5.1-4].  
· The new source term is identical into linear and non-linear.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead 
to  
dualized linear system [éq 2.1.1-11].  
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3.5.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified. The same one is taken  
L3 K 
, 
that for the linear case (cf [§2.5.2]) and the same option of calculation.  
2  
J ( 
G) 
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
succession of orders that with [§2.5.2] by replacing operator THER_LINEAIRE by  
THER_NON_LINE.  
 
Note:  
 
· Concerning various modelings of this condition of linear Neumann it does not have there  
no difference between the linear and non-linear derived problem. For more information one  
can thus refer to [§2.5.2].  
· The taking into account of more sophisticated modeling of imposed normal flow is carried out  
as into linear.  
 
 
3.6  
Derived compared to non-linear imposed normal flow  
 
3.6.1 Elements  
theoretical  
 
T 
 
One poses I (X) = I I X 
I 
and U = 
required sensitivity. Portions of border  
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I 
I ()  
(I) 
 
I 
II 
I 
 
external being solidified, one has  
= I the indicating function of the ième portion. By applying them  
4 J 
I 
I 
4i 
I 
formulas of the preceding paragraphs, the derivation of [éq 3-2] compared to parameter I delivers to 
us  
I 
a problem in extreme cases identical to [éq 3.1.1-1] but with a null voluminal source and another  
condition of Robin on  
4 
s~ = 
~ 
0 and I = I  
éq  
3.6.1-1  
I 
It is a homogeneous problem of Dirichlet-Cauchy and inhomogenous Robin. One can thus take back  
same remarks concerning the linear character of the derived problem and simplifications  
theoretical and numerical that that implies. Its semi-discretization in time results in seeking one  
continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6] of which the first relation  
N) 
V 
0nN 
0 
rewrites itself  
N 1 
+ 
N 
 
 
n+ 
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- div 
N 1 
+ 
N 1 
+ 
N 1 
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N 1 
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U T 
+ U  
T 
T 
 
éq  
3.6.1-2  
N 
- ( 
 
 
1 -) div 
unT N + N 
a =0 0 N NR -1 
 
 
 
 
T 
 
with the new limiting condition  
~n 
I +1 = I  
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From where a variational problem identical to [éq 3.1.1-7] comprising the same bilinear form  
[éq 3.1.1-8] joined to the linear form [éq 3.1.1-9] whose only third integral is modified for  
to adapt to the new “surface” source  
± 
L (v) = L + I vdx  
éq  
3.6.1-4  
I 
L 
4 
 
Note:  
 
· While posing in the new variational problem [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.6.1-4]  
± 
 
± 
 
± 
± 
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= 
I 
G 
C, 
= 0, = , 
= 
± 
0, I =,  
and 
 
4 = 2 
5 =  
T 
p 
T 
T 
2 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] + [éq 2.5.1-4] of  
linear problem. In addition, by deriving the variational formulation [éq 4.2-1] from  
problem in temperature [R5.02.02] one finds well [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.6.1-4].  
· This new source term is identical, except for the borders, at the end source of the derivative  
compared to linear normal flow.  
· In stationary regime, it is of course unchanged.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead 
to  
dualized linear system [éq 2.1.1-11].  
 
3.6.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified. The same one is taken  
L3 K 
, 
that for the linear case by replacing the border by (cf [éq 2.5.2-1]). What  
4  
J ( 
G) 
2 
4 
is made in the new option of calculation CHAR_SENS_FLUNL with the field derived non-linear 
flow.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
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succession of orders that with [§2.5.2] in substituent FLUX_NL with FLUX_REP in  
AFFE_CHAR_THER_F and by replacing of course operator THER_LINEAIRE by THER_NON_LINE.  
 
Note:  
 
To take into account a truly non-linear modeling  
I (, 
X T) = I I X, 
X T 
I 
 
I 
I () 
I ( 
) (I) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new term  
I 
 
source  
= I in the definition of the derived loading  
I 
I 
 
chth_v.  
II 
 
3.7  
Derived compared to the coefficient from convectif exchange  
 
3.7.1 Elements  
theoretical  
 
By applying the formulas of the preceding paragraphs, the derivation of [éq 3-2] compared to  
parameter H (cf [§2.6.1]) delivers to us a problem in extreme cases identical to [éq 3.1.1-1] but with 
one  
I 
null voluminal source and another condition of Robin on  
3 
s~ = 
~ 
0 and H = I 
-  
éq  
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It is a homogeneous problem of Dirichlet-Cauchy and inhomogenous Robin. One can thus take back  
same remarks concerning the linear character of the derived problem and simplifications  
theoretical and numerical that that implies. Its semi-discretization in time results in seeking one  
continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6] of which the first relation  
N) 
V 
0nN 
0 
T 
 
rewrites itself, by noting U = 
sought sensitivity,  
H 
I 
N 1 
+ 
N 
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- div 
N 1 
+ 
N 1 
+ 
N 1 
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with the new limiting condition  
~n 1+ 
H 
= I T 
T 
 
éq  
3.7.1-3  
I (N 1 
+ 
N 1 
+ 
ext. 
- 
) 
From where a variational problem identical to [éq 3.1.1-7] comprising the same bilinear form  
[éq 3.1.1-8] joined to the linear form [éq 3.1.1-9] whose only third integral is modified for  
to adapt to the new source  
± 
L (v) = L + I  
 
éq  
3.7.1-4  
I {(+ 
+ 
Text - T) + (1 -) (- 
- 
Text - T)}vdx L 
3 
 
Note:  
 
· While posing in the new variational problem [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.7.1-4]  
± 
 
± 
= 
 
C, 
= 
± 
0, = and  
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4 = 5 =  
T 
p 
T 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] + [éq 2.6.1-4] of  
linear problem. In addition, by deriving the variational formulation [éq 4.2-1] from  
problem in temperature [R5.02.02] one finds well [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.7.1-4].  
· The new source term is identical into linear and non-linear.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead to  
dualized linear system [éq 2.1.1-11].  
 
 
3.7.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified. The same one is taken  
L3 K 
, 
that for the linear case (cf [éq 2.6.2-1]) and the same option of calculation.  
3  
J ( 
G) 
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
succession of orders that with [§2.6.2] by replacing operator THER_LINEAIRE by  
THER_NON_LINE.  
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R4.03.02-A Page  
: 45/66  
 
 
Note:  
 
· The taking into account of more sophisticated modeling of the coefficient of exchange is carried out  
as into linear.  
· The condition of imposed normal flow non-linear (cf [§3.6]) makes it possible to model an exchange  
convectif with a non-linear coefficient of exchange via an adequate DEFI_FONCTION  
I (, 
X T) = J (, 
X T) (T 
, 
X 
- 
, 
X 
 
ext. ( 
T) T (T) 
T 
 
Same manner, knowing U = 
one could have access “easily” to  
I 
I 
T 
 
W = 
. Indeed,  
J 
I 
 
 
 
 
T T I 
I T  
= 
 
+ 
 
J 
I J 
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T J 
{ 
{ 
 
T 
T  
 
- J 
 
ext. -  
 
from where  
U (T - T) 
W 
ext. 
= ( 
 
1+ ju) 
 
 
3.8  
Derived compared to the outside temperature  
 
3.8.1 Elements  
theoretical  
 
By applying the formulas of the preceding paragraphs, the derivation of [éq 3-2] compared to  
parameter I 
T (cf [§2.7.1]) delivers to us a problem in extreme cases identical to [éq 3.1.1-1] but with one  
ext. 
null voluminal source and another condition of Robin on  
3 
s~ = 
~ 
0 and H = hI  
éq  
3.8.1-1  
I 
It is a homogeneous problem of Dirichlet-Cauchy and inhomogenous Robin. One can thus take back  
same remarks concerning the linear character of the derived problem and simplifications  
theoretical and numerical that that implies. Its semi-discretization in time results in seeking one  
continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6] of which the first relation  
N) 
V 
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0nN 
0 
T 
 
rewrites itself, by noting U = 
sought sensitivity,  
I 
T 
ext. 
N 1 
+ 
N 
 
 
n+ 
 
1 
U 
- 
one 
N 1 
 
T 
T 
+ 
 
 
- div 
N 1 
+ 
N 1 
+ 
N 1 
+ 
N 1 
+ 
 
 
U T 
+ U  
T 
T 
 
éq  
3.8.1-2  

file:///Z|/process/refer/refer/p950.htm (23 of 36)10/2/2006 2:52:51 PM



file:///Z|/process/refer/refer/p950.htm

N 
- ( 
 
 
1 -) div 
unT N + N 
a =0 0 N NR -1 
 
 
 
 
T 
 
with the new limiting condition  
~n 1+ 
N 
H  
= H 1+I  
éq  
3.8.1-3  
I 
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From where a variational problem identical to [éq 3.1.1-7] comprising the same bilinear form  
[éq 3.1.1-8] joined to the linear form [éq 3.1.1-9] whose only third integral is modified for  
to adapt to the new “surface” source  
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± 
L (v) = L + I  
 
 
éq  
3.8.1-4  
I { 
+ 
H + (1 -) - 
H} vdx L 
3 
 
Note:  
 
· While posing in the new variational problem [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.8.1-4]  
± 
 
± 
= 
 
C, 
= 
± 
0, = and  
 
4 = 5 =  
T 
p 
T 
one finds well the formulation [éq 2.1.1-6], [éq 2.1.1-7], [éq 2.1.1-8] + [éq 2.6.1-4] of  
linear problem. In addition, by deriving the variational formulation [éq 4.2-1] from  
problem in temperature [R5.02.02] one finds well [éq 3.1.1-7], [éq 3.1.1-8], [éq 3.1.1-9] +  
[éq 3.8.1-4].  
· The new source term is identical into linear and non-linear.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead 
to  
dualized linear system [éq 2.1.1-11].  
 
 
3.8.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified. The same one is taken  
L3 K 
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, 
that for the linear case (cf [éq 2.7.2-1]) and the same option of calculation.  
3  
J ( 
G) 
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
succession of orders that with [§2.6.2] in substituent TEMP_EXT with COEF_H in  
AFFE_CHAR_THER_F and while replacing, of course, operator THER_LINEAIRE by 
THER_NON_LINE.  
 
Note:  
 
The taking into account of a more sophisticated modeling of the outside temperature  
be carried out as into linear.  
 
 
3.9  
Derived compared to emissivity/constant of Stefan-Boltzmann  
 
3.9.1 Elements  
theoretical  
 
One poses (X) = I X 
 
(resp. (X) = I X 
 
) the parameter and  
I 
I () 
(I) 
I 
I () 
(I) 
I 
I 
T 
 
T 
 
 
U = 
(resp. U = 
) required sensitivity. The portions being solidified, one has  
= I  
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5 J 
I 
 
I 
I 
I 
 
(resp.  
= I) the indicating function of the ième portion. By applying the formulas of  
I 
 
5i 
I 
preceding paragraphs, the derivation of [éq 3-2] delivers a problem in extreme cases identical to us to  
[éq 3.1.1-3] but with another voluminal source and another condition of Robin on (resp. in  
5 
inverting the role of and of)  
 
~ 
~ 
S = 0 and I = I  
 
éq  
3.9.1-1  
I 
({  
T + 273.15) 4 - (T + 273.15) 4} 
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One can thus renew the same remarks concerning the linear character of the derived problem and  
theoretical and numerical simplifications that that implies. Its semi-discretization in led time  
to seek a continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6] of which  
N) 
V 
0nN 
0 
first relation is rewritten  
N 1 
+ 
N 
 
 
n+ 
 
1 
U 
- 
one 
N 1 
 
T 
T 
+ 
 
 
- div 
N 1 
+ 
N 1 
+ 
N 1 
+ 
N 1 
+ 
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U T 
+ U  
T 
T 
 
éq  
3.9.1-2  
N 
- ( 
 
 
1 -) div 
unT N + N 
one = 0 0 N NR -1 
 
 
 
 
T 
 
with the new condition (resp limits. by inverting the role of and of)  
~ N 1 
+ 
N 1 
I 
= 
+ 
I  
T 
T 
 
éq  
3.9.1-3  
I 
({n+ 
N 
 
+ 
15 
. 
273 
) 4 
1 
- ( + + 
15 
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. 
273 
) 4 
1 
} 
From where a variational problem identical to [éq 3.1.1-7] comprising the same bilinear form  
[éq 3.1.1-8] joined to the linear form [éq 3.1.1-9] whose only third integral is modified for  
to adapt to the new “surface” source (resp. by inverting the role of and of)  
L ± (v) = L + I 
+ 
v 
4 
4 
+ 
 
+ 273.15 
- + + 273.15 - 
I 
({T 
) (T 
) } 
5 
 
éq 3.9.1-4  
I 
4 
4 
-1 - 
- 
 
+ 273.15 
- - + 273.15 
I ( 
) v ({T 
) (T 
)} dx 
 
Note:  
 
· Derivation compared to the constant of Stefan-Boltzmann has certainly only one interest  
practical minor. But its overcost of numerical establishment was moderate and it allows  
cross validations.  
· In stationary regime, this source term is reduced to (resp. by inverting the role of and of  
)  
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L (v) = L + I  
 
I 
({T + 
4 
15 
. 
273 
- T + 
4 
 
) ( 
15 
. 
273 
)} vdxL 
5 
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead 
to  
dualized linear system [éq 2.1.1-11].  
 
 
3.9.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified (resp. by inverting it  
role of and of)  
L3 K 
, 
= 
+  
+ 
 
+ 
15 
. 
273 
- + 
+ 
15 
. 
273 
+ 
5  

file:///Z|/process/refer/refer/p950.htm (31 of 36)10/2/2006 2:52:51 PM



file:///Z|/process/refer/refer/p950.htm

I  
K 
T 
K 
4 
T 
5 
5 
 
4 NR  
J ( 
G) 
G (I 
) ( 
) ({ ( 
) 
) ((G) 
)} J (G)  
(1 -) I - K 
 
T - K 
4 
 
+ 
15 
. 
273 
- T - 
+ 
15 
. 
273 
5 
5 
 
4 NR  
G (I 
) ( 
) ({ ( 
) 
) ((G) 
)} J (G) 
éq 3.9.2-1  
What is made in the new option of calculation CHAR_SENS_RAYO_F with the fields of  

file:///Z|/process/refer/refer/p950.htm (32 of 36)10/2/2006 2:52:51 PM



file:///Z|/process/refer/refer/p950.htm

standard and derived radiation.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via  
succession of orders.  
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v = DEFI_VALEUR_SENSI (VALE = < value of I >) (resp. I)  
chth = AFFE_CHAR_THER_F (RAYONNEMENT= _F (GROUP_MA = < definition of 5i >,  
SIGMA = v, EPSILON = W, TEMP_EXT = Z))  
...  
one = DEFI_CONSTANTE (VALE = 1. )  
zero = DEFI_CONSTANTE (VALE = 0. )  
MEMO_NON_SENSI (NAME =_F (NOM_SD = “chth”, PARA_SENSI = “v”,  
NOM_COMPOSE = “chth_v”))  
chth_v = AFFE_CHAR_THER_F (RADIATION = _F (GROUP_MA = < 5i >,  
SIGMA = one, EPSILON = zero, TEMP_EXT = zero))  
...  
resu = THER_NON_LINE (EXCIT = chth,  
 
SENSITIVITY  
=  
(  
v)  
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...)  
 
Note:  
 
· The essential data of this calculation, the field derived radiation  
 
 
 
= 
T 
 
I, 
(resp.  
= I), is provided by  
I 
= , 
0 
= 0 
 
 
 
I 
 
chth_v.  
I 
I 
I 
I 
· To take into account a more sophisticated modeling of emissivity (resp. constant  
of Stefan-Boltzmann)  
( , 
X T) = I X, 
X T 
 
 
I 
I () 
I ( 
) (I) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new term  
 
 
source  
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= I in the definition of the derived loading  
I 
I 
 
chth_v.  
I 
 
 
3.10 Derived compared to the temperature ad infinitum  
 
3.10.1 Theoretical elements  
 
T 
 
T X is posed 
I 
I 
= 
( ) = 
 
T I X 
T 
the parameter and U 
required sensitivity.  
I () 
( ) 
I 
 
I 
T 
T 
 
portions being solidified, one has  
= I the indicating function of the ième portion. By applying them  
5 J 
I 
I 
T 
5i 
 
formulas of the preceding paragraphs, the derivation of [éq 3-2] delivers a problem in extreme cases 
to us  
identical to [éq 3.1.1-3] but with another voluminal source and another condition of Robin on  
5 
~ 
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~ 
S = 0 and I = 4I  
 
éq  
3.10.1-1  
I 
(  
T + 
. 
273 
) 3 
15 
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One can thus renew the same remarks concerning the linear character of the derived problem and  
theoretical and numerical simplifications that that implies. Its semi-discretization in time  
conduit to seek a continuation (U 
checking a system similar to [éq 3.1.1-5], [éq 3.1.1-6]  
N) 
V 
0nN 
0 
whose first relation is rewritten  
N 1 
+ 
N 
 
 
n+ 
 
1 
U 
- 
one 
N 1 
 
T 
T 
+ 
 
 
- div 
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N 1 
+ 
N 1 
+ 
N 1 
+ 
N 1 
+ 
 
 
U T 
+ U  
T 
T 
 
éq  
3.10.1-2  
N 
- ( 
 
 
1 -) div 
unT N + N 
one = 0 0 N NR -1 
 
 
 
 
T 
 
with the new limiting condition  
~n 1 
+ 
I 
= 4I  
 
éq  
3.10.1-3  
I 
(  
T + 273.15) 3 
From where a variational problem identical to [éq 3.1.1-7] comprising the same bilinear form  
[éq 3.1.1-8] joined to the linear form [éq 3.1.1-9] whose only third integral is modified for  
to adapt to the new “surface” source  
± 
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L (v) = 
3 
3 
L + 4 I  
 
 
I {( 
)+ ( + 
T + 
15 
. 
273 
+ 1 - 
T + 
 
) ( )( )- ( - 
15 
. 
273 
)} vdxL 
5 
éq 3.10.1-4  
Note:  
 
In stationary regime, this source term is unchanged.  
 
The space discretization and the taking into account of the homogeneous condition of Dirichlet lead to  
dualized linear system [éq 2.1.1-11].  
 
3.10.2 Establishment in Code_Aster  
 
Compared to [§3.1.2], only the term due to the new source is to be modified  
L3 K 
, 
= 4 
+ 
+  
+ 
 
+ 
15 
. 
273 
+ 
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5  
I  
K 
T 
K 
3 NR 
5 
5 
 
J ( 
G) 
G 
(I 
)( 
)( ( 
) 
) J (G) éq 3.10.2-1  
 
4 
1 - I - - K 
T - K 
3 
 
+ 
15 
. 
273 
NR 
5 
5 
 
G ( 
) (I 
)( 
)( ( 
) 
) J (G) 
 
What is made in the new option of calculation CHAR_SENS_RAYO_F with the fields of  
standard and derived radiation.  
The assembly and the resolution of the linear system are started by the analysis of the table of  
correspondence associated with the significant variable. This feedback is carried out via the same one  
succession of orders that with [§3.9.2] in substituent TEMP_EXT with SIGMA.  
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Note:  
 
Ad infinitum to take into account a more sophisticated modeling of the temperature  
T 
, 
X T 
I 
I 
 
( 
)= 
 
T I X 
, 
X T 
T 
 
I () 
I ( 
) ( ) 
I 
in these calculations of sensitivity, it is enough to substitute for the indicating function the new term  
T 
 
source  
= I in the definition of the derived loading chth_v.  
I 
I 
I 
T 
 
We now will recapitulate all the linear systems “derived” to assemble according to  
desired sensitivities.  
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4  
Summary of the sensitivities of the temperature  
 
That one is in or not linear linear thermics, the sensitivity required to the moment running U+ is  
solution of a dualized system of the type (with the notations of [§2.1])  
 
With LT 
LT + 
U  
L 
~ ~ + 
~ 
 
 
 
WITH U = L  
B - Id 
Id 
= 
 
 
C  
B Id - Id C 
 
 
 
where  
WITH K, 
WITH K,  
ij ( 
G) = iij ( 
G) 
I 
L K, 
L K,  
J ( 
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G) = ij ( 
G) 
I 
One will draw up the nomenclature of the potential elementary terms of this system and of their  
option of calculation in Code_Aster. In order to be more synthetic, one agrees here on a classification  
different from those practised in the preceding paragraphs.  
 
For the matrix, there are the seven following possible terms:  
 
· MASS_THER (cf [§2.1.2])  
 
A1 K, = 
C K NR NR  
ij ( 
) G 
G 
p ( 
) J (G) I (G) 
T 
 
· RIGI_THER (cf [§2.1.2])  
A2 K, = K NR. NR  
 
ij ( 
G) 
G 
() J (G) I (G) 
· RIGI_THER_COEF_F/R or MTAN_THER_COEF_F/R (cf [§2.1.2], [§3.1.2])  
A3 K 
, 
= 
+  
 
3  
H 
K 
NR 
3 
NR  
ij ( 
G) 
G 
( 
) J (G) I (G) 
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In the event of exchange between walls this term is replaced by RIGI_THER_PARO_F/R or  
MTAN_THER_PARO_F/R (cf [§2.1.2], [§3.1.2])  
A3 K 
, 
 
3  
= h+ K 
NR 
3 
- NR 
NR  
ij ( 
G) 
G 
( 
) (J (G) F J (G) I (G) 
( ) 
· MTAN_RIGI_MASS (cf [§3.1.2])  
 
4 
 
 
WITH K, = 
T +  
NR NR + T +  
NR  
 
. NR  
ij ( 
) G 
G 
((G) J (G) I (G) G ((G) J (G) I (G) 
T 
T 
 
· Pas coded. (cf [§3.1.2])  
5 
 
 
WITH K, =  
T +  
T + NR. NR  
 
ij ( 
G) 
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G 
((G) 
(G) J (G) 
I (G) 
T 
 
· MTAN_THER_FLUXNL (cf [§3.1.2])  
6 
I 
 
With 
K 
, 
 
4  
= -  
T +  
NR NR  
ij ( 
G) 
G 
((G) J (G) I (G) 
T 
 
· MTAN_THER_RAYO_F/R (cf [§3.1.2])  
A7 K 
, 
= 4 
+  
+ 
+ 273.15 
 
5  
 
K 
T 
5 
 
3 NR NR  
ij ( 
G) 
G 
( ) ( 
) ((G) 
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) J (G) I (G) 
 
For the second member, there are sixteen possibilities:  
 
· CHAR_SENS_EVOL (cf [§2.1.2])  
 
L1 K, = 
C K U NR + -1 K U  
. NR  
 
J ( 
) G 
G 
p ( 
) (G) J (G) () G () (G) 
J (G) 
T 
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· CHAR_THER_TEXT_F/R (cf [§2.1.2])  
L2 K 
, 
1 
 
3  
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= - H K 
U 
3 
NR  
J ( 
G) 
G ( 
) ( 
) (G) J (G) 
In the event of exchange between walls this term is replaced by CHAR_THER_PARO_F/R (cf.  
[§2.1.2])  
L2 K 
, 
1 
 
3  
= - H K 
U 
3 
- U F  
NR  
J ( 
G) 
G ( 
) ( 
) ((G) ((G)) J (G) 
· CHAR_SENS_EVOL (cf [§2.1.2])  
L3 K, = - 
I K T + - T -  
NR  
 
J ( 
) 
G 
G 
I ( 
) ((G) 
(G) J (G) 
T 
 
· CHAR_SENS_EVOL (cf [§2.1.2])  
L4 K, =  
- I K T + + 1 - T -  
NR  
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J ( 
G) 
G I ( 
) ( 
(G) () (G) 
J (G) 
· CHAR_THER_SOUR_F/R (cf [§2.3.2], [§3.3.2])  
L5 K, = I K NR  
 
J ( 
G) 
G I ( 
) J (G) 
· CHAR_THER_FLUN_F/R (cf [§2.5.2], [§3.5.2])  
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The operator B allowing to check the condition of Dirichlet is written  
( + 
B U) = u+ with I J  
I 
I 
with its second associate member  
C = 0  
 
Note:  
 
· The possible taking into account of limiting conditions of Dirichlet generalized requires  
to rewrite this operator in the form  
+ 
B U = u+ with J J  
J 
J 
J 
· As one rigorously does not take into account nonlinear thermal conductivity,  
the terms A5 and L10 are not programmed yet.  
 
The eighteen dualized systems exhumed in the preceding paragraphs can then gather  
in the following table:  
 
Type of  
Variable  
Stamp  
Second  
Key word  
Characteristics  
sensitivity  
member  
Thermics  
Stamp  
 
THER_LINEAIRE Sensitivity compared to  
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linear  
identical to  
a constant parameter  
that of  
by zone  
problem  
(possibly derived  
direct  
composed cf [§6.4])  
Heat  
T 
 
A1+A2+A3 
L1+L2+L3  
THER/RHO_CP  
 
voluminal  
U = 
 
 
I 
Conductivity  
T 
 
Idem  
L1+L2+L4  
THER/LAMBDA  
Sensitivity compared to  
thermics  
U = 
 
 
 
a characteristic  
I 
orthotropic not  
accessible  
Source  
T 
 
Idem  
L1+L2+L5  
SOURCE  
Three types of  
U = 
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modeling  
S 
I  
Temperature  
T 
 
Idem  
L1+L2  
TEMP_IMPO  
F 
 
imposed  
U = 
 
J 
C = 
=  
F 
 
K 
ij 
I 
F 
I 
Three types of  
modeling.  
Sensitivity compared to  
a coefficient  
multiplier of one  
condition of Dirichlet  
generalized not  
accessible  
Normal flow  
T 
 
Idem  
L1+L2+L6  
FLUX_REP  
Three types of  
imposed  
U = 
 
modeling.  
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G 
I 
Sensitivity compared to  
a component of flow  
vectorial accessible.  
Exchange  
T 
 
Idem  
L1+L2+L7  
ECHANGE/COEF_H No ECHANGE_PAROI  
convectif  
U = 
 
or  
H 
 
in lumpé.  
I 
ECHANGE_PAROI  
Temperature  
T 
 
Idem  
L1+L2+L8  
EXCHANGE  
 
external  
U = 
 
TEMP_EXT  
I 
T 
ext. 
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Type of  
Variable  
Stamp  
Second  
Key word  
Characteristics  
sensitivity  
member  
Thermics  
Stamp the new THER_NON_LINE Sensibilité compared to  
nonlinear  
near to the sources terms  
a constant parameter  
stamp  
are similar  
by zone  
tangent of into linear and in  
(possibly derived  
problem  
nonlinear.  
composed cf [§6.4]).  
direct.  
No sensitivity by  
report/ratio with the enthalpy.  
Account is not held  
of a conductivity not 
linear  
A5 and L10 not taken in  
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count  
Heat  
T 
 
A3+A4+A5  
L2+L3+L9  
THER_NL/RHO_CP  
 
voluminal  
U = 
 
 
 
+A6+A7  
+L10+L11+L12  
I 
Conductivity  
T 
 
Idem  
L2+L4+L9  
Linear THER_NL/LAMBDA Idem case  
thermics  
U = 
 
 
 
+L10+L11+L12  
I 
Source  
T 
 
Idem  
L2+L5+L9  
SOURCE  
Idem linear case  
U = 
 
S 
 
+L10+L11+L12  
I 
Temperature  
T 
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Idem  
L2+ L9  
TEMP_IMPO  
Idem linear case  
imposed  
U = 
 
F 
 
+L10+L11+L12  
I 
Normal flow  
T 
 
Idem  
L2+L6+L9  
FLUX_REP  
Idem linear case.  
imposed  
U = 
 
+L10+L11+L12  
linear  
G 
I 
Normal flow  
T 
 
Idem  
L2+L13+L9  
FLUX_NL  
Allows to model  
imposed not  
U = 
 
+L10+L11+L12  
sensitivity compared to  
linear  
I 
I 
a convectif exchange  
nonlinear  
Exchange  
T 
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Idem  
L2+L7+L9  
ECHANGE/COEF_H No ECHANGE_PAROI  
convectif  
U = 
 
+L10+L11+L12  
or  
in lumpé.  
linear  
H 
I 
ECHANGE_PAROI  
Temperature  
T 
 
Idem  
L2+L8+L9  
EXCHANGE  
 
external  
U = 
 
TEMP_EXT  
I 
T 
 
+L10+L11+L12  
ext. 
Emissivity  
T 
 
Idem  
L2+L15+L9  
RADIATION  
 
U = 
 
 
EPSILON  
 
+L10+L11+L12  
I 
Constant of  
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T 
 
Idem  
L2+L14+L9  
RADIATION  
 
Stefan- 
U = 
 
+L10+L11+L12  
SIGMA  
Boltzmann  
 
I 
Temperature with 
T 
 
Idem  
L2+L16+L9  
RADIATION  
 
the infinite one  
U = 
 
TEMP_EXT  
I 
T 
 
+L10+L11+L12  
 
 
Table 4-1: Summary of the linear systems “derived”  
 
We will now close the theoretical part this document by calculating the sensitivities of one  
related size with the field of temperature: heat flow.  
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5  
Sensitivity of the heat flow  
 
After having carried out a thermal calculation, one has access to the heat flow (calculation is carried 
out either with  
nodes (field with the nodes by elements via OPTION=' FLUX_ELNO_TEMP'), is at the points of 
Gauss  
(field at the points of Gauss by elements via OPTION=' FLUX_ELGA_TEMP')) via the operators  
CALC_ELEM/CALC_NO. It is given starting from the field of temperature by using the Fourier 
analysis  
who is written in linear thermics with isotropic materials  
Q (X, T) = - (X) T (X, T)  
 
With anisotropic materials, thermal conductivity is modelled by a diagonal matrix  
(expressed in its reference mark of orthotropism). Into nonlinear (inevitably isotropic in Code_Aster) 
one  
has on the other hand  
Q (X, T) = - (X, T) T (X, T)  
 
By taking again the notations and the step developed in the preceding paragraphs, one  
synthesize the calculation of derived from the heat flow in the following table. The column entitled  
“formula” expresses the relation to be set up in operators CALC_ELEM/CALC_NO for  
to determine the sensitivity of the heat flow required. It depends on the field of temperature and  
of its sensitivity compared to the same parameter, all the two resulting one from a thermal calculation 
(via  
THER_LINEAIRE or THER_NON_LINE).  
 
Note:  
 
In practice, calculations of sensitivity of the heat flow do not take account of the possible one  
non-linearity of thermal conductivity. In non-linear thermics, the first term is not  
thus not programmed.  
 
Type of  
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Variables  
Sensitivity  
Formulate/  
sensitivity  
of exit of  
sought  
Options of calculation in Code_Aster  
the operator  
thermics  
Thermics  
 
 
 
linear  
Heat  
T 
 
 
v (X, T) = - (X) U (X, T)  
voluminal  
U = 
, T  
= Q 
v 
 
 
 
 
 
FLUX_ELGA/NO_TEMP  
I 
I 
Conductivity  
T 
 
 
v (, 
X T) = - I X  
, 
X - X  
, 
X 
 
I () T ( 
T) 
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() U (T) 
thermics  
U = 
, T  
= Q 
v 
 
 
 
 
 
FLUX_ELGA/NO_SENS  
I 
I 
Source  
T 
 
 
v (X, T) = - (X) U (X, T) 
U = 
, T 
 
 
= Q 
v 
 
S 
 
S 
 
FLUX_ELGA/NO_TEMP  
I 
I 
Temperature  
T 
 
 
Idem  
imposed  
U = 
, T  
= Q 
v 
 
F 
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F 
 
I 
I 
Normal flow  
T 
 
 
Idem  
imposed  
U = 
, T  
= Q 
v 
 
G 
 
G 
 
I 
I 
Exchange  
T 
 
 
Idem  
convectif  
U = 
, T  
= Q 
v 
 
H 
 
H 
 
I 
I 
Temperature  
T 
 
 
Idem  
external  
U = 
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, T  
= Q 
v 
 
T I 
 
I 
T 
 
ext. 
ext. 
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Type of  
Variables  
Sensitivity  
Formulate/  
sensitivity  
of exit of  
sought  
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Options of calculation in Code_Aster  
the operator  
thermics  
Thermics  
 
 
 
nonlinear 
Heat  
T 
 
 
 
voluminal  
U = 
, T  
= Q 
v 
 
v (X, T) = - 
(X, T) (U T) (X, T) - 
 
 
 
 
T 
 
 
I 
I 
(X, T) U (X, T) 
FLUX_ELGA/NO_TEMP  
Conductivity  
T 
 
 
 
 
thermics  
U = 
, T  
= Q 
v 
 
v (, 
X T) = - 
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(, xT) U (, xt) + I, X, X 
I ( 
T) T (T) 
 
 
 
 
 
 
 
I 
I 
T 
 
- ( , 
X T) U (, 
X T) 
FLUX_ELGA/NO_SENS  
Source  
T 
 
 
 
U = 
, T  
= Q 
v 
 
v (X, T) = - 
(X, T) (U T) (X, T) - 
S 
 
S 
 
T 
 
 
I 
I 
(X, T) U (X, T) 
FLUX_ELGA/NO_TEMP  
Temperature  
T 
 
 
Idem  
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imposed  
U = 
, T  
= Q 
v 
 
F 
 
F 
 
I 
I 
Normal flow  
T 
 
 
Idem  
imposed  
U = 
, T  
= Q 
v 
 
linear  
G 
 
G 
 
I 
I 
Normal flow  
T 
 
 
Idem  
imposed not  
U = 
, T  
= Q 
v 
 
linear  
I 
 
I 
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I 
I 
Exchange  
T 
 
 
Idem  
convectif  
U = 
, T  
= Q 
v 
 
linear  
H 
 
H 
 
I 
I 
Temperature  
T 
 
 
Idem  
external  
U = 
, T  
= Q 
v 
 
T I 
 
I 
T 
 
ext. 
ext. 
Emissivity  
T 
 
 
Idem  
U = 
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, T  
= Q 
v 
 
 
 
 
 
I 
I 
Constant  
T 
 
 
Idem  
of Stefan- 
U = 
, T  
= Q 
v 
 
Boltzmann  
 
 
 
 
I 
I 
Temperature  
T 
 
 
Idem  
ad infinitum  
U = 
, T  
= Q 
v 
 
T I 
 
I 
 
 
T 
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Table 5-1 Sensitivities of the heat flow  
 
Note:  
 
While posing in the formulas of nonlinear thermics  
 
(X, T) = 0 and (X, T) = (X)  
T 
one finds the formulations of linear thermics well.  
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6  
Implementation in Code_Aster  
 
6.1 Difficulties  
particular  
 
The principal difficulty of these calculations of sensitivity is to detect the presence of parameters  
sensitive in the standard loadings and materials, and, to associate the fields to them  
suitable derivatives. To be done, a whole architecture (cf [bib6] and [§6.2], [§6.4]) has being put in  
place in order to notify to the supervisor the affiliation of a derived field with such or such significant 
variable. Via  
the orders DEFI_PARA_SENSI and MEMO_NOM_SENSI and their utilities FORTRAN associated, 
one  
can thus make the joint within a thermal operator, between a significant parameter, the field where  
it intervenes and the associated derived field.  
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With a particular mention for the materials which are known only in one coded form. One  
detect the significant characteristic of the aforesaid material by testing the nullity of derived material 
(a problem  
related is posed for the characteristics of the radiation).  
 
Inter alia installations, it A was also necessary:  
· Insérer, within the thermal operators, a loop on the sensitivities requested,  
wedged between the temporal loops and those on the loadings.  
· Mettre in place the resolution of a linear system in the non-linear process of  
THER_NON_LINE.  
· Organiser and to manage the mutualisation of the matrices between the standard problem and it (or 
them)  
problem (S) derived (S).  
· Prendre in account, in robust and fast manner, the insertion of possible parameters  
insensitive (creation of a CHAM_NO of null components for the thermal operators and  
of a CHAM_ELEM of null components for postprocessings of calculation of flow).  
· Eviter an inopportune proliferation of option of calculations (and their TE000 FORTRAN  
associated) while mutualisant and “bluffant” existing it (one can visualize the exact advance of  
calculation (at the macroscopic level of the options) and easy ways deployed to re-use  
existing the cf [§6.2]).  
 
Beyond these fastidious developments, a large effort of validation “numérico-data processing”  
was deployed on all the meshs supports, all modelings, all the loadings, all them  
types of initialization of the thermal solveurs and for all the sensitivities. These hard tests on  
small cases model tests (TPLL01A/H for the PLANE 2D and 3D and TPNA01A for the 2D AXIS) are  
revealed profitable (including for standard thermal calculation in lumpé!) and essential.  
Because one seldom has theoretical values allowing to validate a thermal calculation  
complicated: “nothing resembles more one sensitivity… than another value of sensitivity! ”. In  
crossing with converged finished differences, one thus tried to release a maximum of  
confidence in all building blocs constituting the derived system.  
 
To be exhaustive on the aspect validation, let us note that several case-tests were delivered  
(SENST<00> [V1.01.15*]) including one analytical (SENST04 cf [§6.4]).  
 
 
6.2 Environments  
necessary/parameter settings  
 
 
 
C 
T 
 
C 
p=10  
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p=v=5  
 
 
 
 
2  
v 
 
 
1  
 
 
Appear 6.2-a Désignation of thermal conductivities for a Bi-material  
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To calculate the sensitivity of the thermal field compared to a constant parameter by zone (here one  
particular value of conductivity in one of the zones of a Bi-material during a stationary calculation),  
it is first of all necessary to notify this significant parameter in the command file via one  
DEFI_PARA_SENSI  
 
v = DEFI_PARA_SENSI (VALE = 5. )  
 
as well as the constant functions equal to zeros and the unit which will be used to define the essential 
one  
indicating function  
 
zero = DEFI_CONSTANTE (VALE = 0. )  
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one = DEFI_CONSTANTE (VALE = 1. )  
 
Then, as for a standard problem, one definite the fields material (or the conditions limit)  
associated. One does not have to modify the other standard loadings.  
 
ma1 = DEFI_MATERIAU (THER = _F (RHO_CP = v))  
ma2 = DEFI_MATERIAU (THER = _F (RHO_CP = 10. ))  
affe = AFFE_MATERIAU (AFFE = (_F (GROUP_MA = < 1 >, MATER = ma1),  
_F (GROUP_MA = < 2 >, MATER = ma2))  
....  
other insensitive data material and limiting conditions with respect to v  
 
It is then necessary to define the “derived” fields material (or the conditions limit “derived”) and  
only those concerned with this derivation. It is them which will provide information  
essential with the assembly of the derived problem: the indicating function of the derived field  
CP 1 on  
I = 
=  
1 .  
1 
v 
0 out of 2 
One notifies to the supervisor their affiliation with the initial field via order MEMO_NOM_SENSI (it 
is it  
who filled a structure of data suitable sensitivity allowing to make the joint, within  
thermal operators, between the significant parameter, the field where it intervenes and the derived 
field  
associated)  
 
MEMO_NON_SENSI (NAME =_F (NOM_SD = “my”,  
PARA_SENSI = “v”,  
NOM_COMPOSE = “ma_v”))  
ma_v = DEFI_MATERIAU (THER = _F (RHO_CP = one))  
mazero = DEFI_MATERIAU (THER = _F (RHO_CP = zero))  
MEMO_NON_SENSI (NAME = _F (NOM_SD = “affe”,  
PARA_SENSI = “v”,  
NOM_COMPOSE = “affe_v”))  
affe_v = AFFE_MATERIAU (AFFE = (_F (GROUP_MA = < 1 >, MATER = ma_v),  
_F (GROUP_MA = < 2 >, MATER = mazero))  
 
One concludes by requesting from the thermal operator the aforementioned calculation via the key 
word sensitivity and notifying to  
supervisor the presence of a field sensitivity in the EVOL_THER resu (accessible in the field  
symbolic system resu_v of the SD result)  
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MEMO_NON_SENSI (NAME =_F (NOM_SD = “resu”,  
PARA_SENSI = “v”,  
NOM_COMPOSE = “resu_v”))  
resu = THER_LINEAIRE (CHAM_MATER = affe,  
....  
SENSITIVITY = (v))  
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One can of course make same postprocessings on the derived field as on the standard field, it  
is enough to add with the suitable orders (CALC_ELEM for the calculation of the flow of this 
CHAM_ELEM with  
nodes, CALC_NO for its transformation into a CHAM_NO, POST_RELEVE for the statement of 
value,  
IMPR_RESU for the impression and TEST_RESU for the comparison of values) the key word  
SENSITIVITY and to inform it good value of parameter of derivation. The operator  
the good field sensitivity dividing will select then the same SD as the standard field. By  
example, one filled here the table rlresuv with certain components of derived from T compared to v  
 
rlresuv = POST_RELEVE_T (ACTION=_F (RESULTAT= resu,  
....  
SENSITIVITY = (v))  
 
By printing the table one can then visualize the components of the sensitivity specifically  
wished.  
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--------------------------------------------------------------------------  
ASTER 6.02.24 CONCEPT RLRESUV CALCULATES THE 27/03/2002 A 14:56: 43 OF TYPE  
TABL_POST_RELE  
ENTITLE NODE RESU NOM_CHAM PAR_SENS NUME_ORDRE INST COOR_X/Y/Z TEMP  
TEMPERAT NO1 RLRESUV TEMP v 0 0. 0. 1.1 -1.5 0. 1.69334E+01  
TEMPERAT NO2 RLRESUV TEMP v 0 0. 0. 1.1 -1.0 0. 1.88532E+01  
TEMPERAT NO3 RLRESUV TEMP v 0 0. 0. 1.1 -0.5 0. 1.19433E+01  
TEMPERAT NO4 RLRESUV TEMP v 0 0. 0. 1.1 -0.0 0. 2.15978E+01  
 
Example 6.2-1: Layout, via IMPR_TABLE, in the file result  
 
For further information, the reader will be able to consult [bib6], [U4.50.02] or the case-tests of  
type SENST<00> [V1.01.15*].  
 
Note:  
 
· By parameterizing advisedly the loadings and materials “derived” in the file from  
order, one can also have access to some derivatives made up. Cf the remark of  
[§6.3].  
· The syntax of the specific orders of sensitivity (DEFI_PARA_SENSI,  
MEMO_NOM_SENSI) can be brought to change according to the architectural choices which will be 
taken  
(automation of the process of detection and parameter setting of the fields derived by  
supervisor or not). Methodology will not be on the other hand modified and one will always be able  
to pass in “manual”. The user then remaining only judge of the relevance of these calculations  
“except limits”.  
· During the construction of the derived fields, in AFFE_MATERIAU or AFFE_CHAR_THER, one  
need does not have to specify the “nullity” of the insensitive fields. They are initialized by defect  
to zero.  
 
To be completely exhaustive on the parameter setting, let us conclude by a functionality which can  
to interest of future mainteneurs/developers or the “pointed” users. Unfolding  
exact of calculation (options calculated with their field IN and OUT, loadings and materials taken in  
count…) as well as the easy ways deployed to re-use existing it are traced in the file  
message if one notifies INFO=2 in the accused thermal solvor and in CALC_ELEM (for  
options FLUX_ELGA/NO_TEMP).  
 
*******************************************  
THERMAL CALCULATION OF SECOND MEMBER: NXACMV  
 
TYPESE/INST: 3 5.0000000000000  
LINEAR CALCULATION: F  
......  
--> COMPLEMENTARY CALCULATION IN SENSITIVITY  
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--> BLUFF OF THE OPTION: T EAST REPLACES BY (DT/DS) -  
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--> AND ADDITION Of a NEW SOURCE TERM  
--> OPTION: CHAR_SENS_EVOLNI  
LPAIN/LCHIN: PGEOMER EMAIL .COORDO  
LPAIN/LCHIN: PTEMPER &&OP0186VAR_____001  
......  
NO. LOADS: 6  
BUCKLE ON THE LOADS OF THE TYPE NEUMANN FLAX  
CHARGE: CH3  
EXICHA/NOMCHS: 1????????  
CHARGE: CH4  
EXICHA/NOMCHS: 1????????  
--> COMPLEMENTARY CALCULATION IN SENSITIVITY  
--> ECHANGE/NUMCHM: 2  
--> BLUFF OF THE OPTION: NULL CHART TEXT+/-  
--> K: 1  
--> OPTION: CHAR_THER_TEXT_F  
LPAIN/LCHIN: PT_EXTF &&VECHTH.T_EXTNUL  
LPAIN/LCHIN: PGEOMER EMAIL .COORDO  
 
Example 6.2-2: Layout of THER_LINAIRE or THER_NON_LINE,  
via INFO=2, in the file message.  
 
*******************************************  
CALCULATION OF HEAT FLUXES  
OPTION OF CALCULATION FLUX_ELGA_TEMP  
MODEL MOTH  
SD EVOL_THER GIVEN TH  
RESULT TH  
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MATERIAL TAKEN INTO ACCOUNT CMAT  
SEQUENCE NUMBER 1 NUMBERS  
A NUMBER OF SIGNIFICANT PARAMETERS 7  
*******************************************  
 
OP0058 **********  
INST/IAUX/IORDR 0. 1 0  
NRPASS/TYPESE/NOPASE 1 3 PS1  
CHTEMP/CHTESETH_PS1 .001.000000/TH .001.000000  
--> OPTION: FLUX_ELGA_TEMP  
LPAIN/LCHIN: PGEOMER EMAIL .COORDO  
LPAIN/LCHIN: PMATERC CMAT .MATE_CODE  
LPAIN/LCHIN: PTEMPER TH_PS1 .001.000000  
LPAIN/LCHIN: PTEMPSR &&MECHTI.CH_INST_R  
LPAIN/LCHIN: PTEREF  
LPAIN/LCHIN: PMATSEN CMAT_PS1.MATE_CODE  
LPAIN/LCHIN: PTEMSEN TH .001.000000  
 
Example 6.2-3: Layout of CALC_ELEM,  
via INFO=2, in the file message.  
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6.3 Perimeter  
of use  
 
The perimeter of use of thermal calculations of sensitivities can be formulated in some points:  
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1. Thermal calculations of sensitivity is pressed on operators THER_LINEAIRE and  
THER_NON_LINE. They deal with thermal, linear problems or not, isotropic or  
anisotropic, stationary or transitory.  
2. They were not still extended to the problems of drying and hydration which are too  
treaty by THER_NON_LINE (option THER_HYDR or SECH_* of COMP_THER_NL/RELATION).  
If this type of problems were retained for a calculation of sensitivity, calculation stops in  
ERREUR_FATALE after having meant the reason of it.  
3. In an exhaustive way, these calculations of sensitivities relate to all the meshs supports  
(TRIA3/6, QUAD4/8/9, TETRA4/10, PENTA6/13/15, PYRAM5/10 and HEXA8/20/27)  
and all modelings isoparametric (PLAN, PLAN_DIAG, AXIS, AXIS_DIAG, 3D  
and 3D_DIAG). If other modelings (only THER_LINEAIRE accepts other modelings  
that the usual isoparametric elements) are present in grid (COQUE_ or  
AXIS_FOURIER) calculation stops (option 1 front the line of the suitable options of the catalogue  
elements) in ERREUR-FATALE, after having meant the reason of it.  
4. While being pressed on the perimeter of use of the code, one did not envisage the calculation of 
sensitivity  
(of the temperature and its flow) in the presence of non-linear conductivity.  
5. One has access to the sensitivity of the field of temperature (and its flow cf [§5]) compared to  
all parameters of loadings and all the characteristics material. Those  
having to depend that variables on space.  
6. The only exceptions are the entropy (a constant entropy according to the temperature,  
that would not have any direction!), multiplying coefficients of the conditions of Dirichlet  
generalized (calculation of sensitivity not established because it has little direction with coefficients  
often discrete) and conductivities anisotropic (data-processing limitations, absence of  
modeling THER_ORTH_FO).  
7. One can, on the other hand, calculate the sensitivity compared to one of the components of a 
normal flow  
vectorial.  
8. Calculation provides, at the same time, the field of standard temperature and the sensitivities of this 
same  
field compared to the parameters provided to the key word SENSITIVITY of the thermal operator.  
On the other hand, for the calculation of flow (via CALC_ELEM and/or CALC_NO), one calculates 
only the part  
sensitivity. To also obtain that of the field of standard temperature, it is necessary to reiterate  
the operation without the key word SENSITIVITY.  
9. If the user, involuntarily or not, request a calculation of sensitivity compared to one  
parameter known as “insensitive”, i.e. nonconcerned by thermal calculation in progress, one  
message of alarm prevents it. No calculation is produced, the structure of data planned for  
the reception of this CHAMNO is initialized to zero, and calculation continues with the other 
sensitivities  
démandées.  
10. The request for one or more sensitivities does nothing but enrich the structure of data  
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thermics (EVOL_THER) and provides also the field of temperature of which they are the derivative  
(cf n°8). In term of performance, the calculation of an analytical sensitivity is much less  
expensive that a standard calculation since the same factorized matrix is re-used.  
11. During the calculation of the sensitivity of the heat flux via CALC_ELEM, it is necessary to 
specify not  
only the field material used (as for the standard problem) but also them  
loadings accused by the parameters of derivation.  
12. To avoid any confusion (at the supervisory level, but also on the level user!), it  
is not better to re-use several times a significant parameter in loadings or  
different materials.  
13. The calculation of the sensitivity of the heat flux was not developed, as for the problem  
standard, in COQUE_PLAN and COQUE_AXIS.  
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Note:  
 
By parameterizing advisedly the loadings and materials “derived” in the file from  
order, one can also have access to some derivatives made up. Thus if one  
loading or a characteristic depends, explicitly or implicitly, of the time or of  
space and that one is able to exhume this dependence, one can then calculate the derivative  
T (and of its flow) compared to this coefficient of dependence.  
The main thing being which it also does not depend on the calculated solution (the field of 
temperature).  
In which case, it will be necessary to develop a true made up calculation of sensitivity.  
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In short, the perimeter of use of this functionality gathers it or not thermal, linear,  
isotropic or anisotropic, stationary or transitory, being pressed on finite elements  
isoparametric lumpés or not. Within this framework there, it covers the same perimeter as that  
accused thermal operators.  
 
 
6.4 Example  
of use  
 
To familiarize oneself with the use of this new functionality, one can take as a starting point this  
expurgée version of the case test SENST04A [V1.01.154]. In this case analytical test, it is about  
to make sure of the validity of derived compared to the coefficient from exchange-wall and 
conductivity, in  
a calculation of transitory thermal response linear of two plates separated by a play in which  
a transfer of heat is carried out.  
The problem is two-dimensional, but the limiting conditions make that the field of temperature 
reached  
quickly the stationary state and depends analytically only on the X-coordinate and the data. One in  
then deduced easily the analytical expressions from the sensitivities of the field of temperature and 
sound  
flow compared to the thermal parameters which interest us.  
 
# 1. Definition/memorizing of the constant functions  
PS_UN=DEFI_CONSTANTE (VALE=1.0,);  
MEMO_NOM_SENSI (NOM_UN = PS_UN);  
PS_ZERO=DEFI_CONSTANTE (VALE=0.0,);  
MEMO_NOM_SENSI (NOM_ZERO = PS_ZERO);  
.........  
# 2. Definition of the significant parameters and other parameters  
PS1=DEFI_PARA_SENSI (VALE=80.0,);  
PS2=DEFI_PARA_SENSI (VALE=40.0,);  
.........  
# 3.1. Installation of the materials (std and sensitive)  
MAT=DEFI_MATERIAU (THER_FO=_F (LAMBDA=PS2, RHO_CP=A5))  
MEMO_NOM_SENSI (NOM=_F (NOM_SD=' MAT',  
PARA_SENSI=PS2,  
NOM_COMPOSE=' MAT_PS2'));  
MAT_PS2=DEFI_MATERIAU (THER_FO=_F (LAMBDA = PS_UN,  
RHO_CP = PS_ZERO))  
CMAT=AFFE_MATERIAU (MAILLAGE=MAIL, AFFE=_F (TOUT=' OUI', MATER=MAT))  
MEMO_NOM_SENSI (NOM=_F (NOM_SD=' CMAT',  
PARA_SENSI=PS2,  
NOM_COMPOSE=' CMAT_PS2'));  
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CMAT_PS2=AFFE_MATERIAU (MAILLAGE=MAIL, AFFE=_F (TOUT=' OUI', 
MATER=MAT_PS2))  
.........  
# 3.2.2 Loadings significant (echange_paroi)  
CH_1=AFFE_CHAR_THER_F (MODELE=MODTHER,  
ECHANGE_PAROI=_F (GROUP_MA_1=' INTERG',  
GROUP_MA_2=' INTERD', COEF_H=PS1));  
MEMO_NOM_SENSI (NOM=_F (NOM_SD=' CH_1',  
PARA_SENSI=PS1,  
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NOM_COMPOSE=' CH_1_PS1'));  
CH_1_PS1=AFFE_CHAR_THER_F (MODELE=MODTHER,  
ECHANGE_PAROI=_F (GROUP_MA_1=' INTERG',  
GROUP_MA_2=' INTERD', COEF_H=PS_UN));  
.........  
# 4.1 standard Calculation + 2 calculations of sensitivity  
MEMO_NOM_SENSI (NOM= (_F (NOM_SD=' RESU',  
PARA_SENSI=PS1,  
NOM_COMPOSE=' RESU_PS1'),  
_F (NOM_SD=' RESU',  
PARA_SENSI=PS2,  
NOM_COMPOSE=' RESU_PS2')));  
RESU=THER_LINEAIRE (MODELE=MODTHER, CHAM_MATER=CMAT,  
EXCIT= (_F (CHARGE=CH_0), _F (CHARGE=CH_1)),  
TEMP_INIT=_F (CHAM_NO=TEMPINIT),  
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SENSIBILITE= (PS1, PS2),  
INCREMENT=_F (LIST_INST=LINST))  
 
# 4.2 Calculation of flow to the nodes  
RESU=CALC_ELEM (reuse=RESU, MODELE=MODTHER, CHAM_MATER=CMAT,  
RESULTAT=RESU, OPTION=' FLUX_ELNO_TEMP',  
EXCIT= (_F (CHARGE=CH_0), _F (CHARGE=CH_1)),  
SENSIBILITE= (PS1, PS2))  
RESU=CALC_NO (reuse=RESU,  
RESULTAT=RESU, OPTION=' FLUX_NOEU_TEMP',  
SENSIBILITE= (PS1, PS2))  
Example 6.4-1: Installation of a calculation of sensitivity in linear thermics  
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7 Outline Conclusion/  
 
During digital simulations obtaining a rough result is not sufficient any more. The user is of  
more in petitioning of calculation of sensitivity compared to the data input of the problem. That  
he makes it possible to estimate the uncertainty which the field result according to the law of variation 
answers  
data. This derivative is also the basic substrate of problems opposite (retiming of  
parameters…) and of problems of optimization.  
This sensitivity can be obtained “manually”, but the experiment shows that these studies  
parametric are often expensive, little mutualisables and less reliable than an analytical calculation  
established in the computation software.  
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In this note, one places oneself in the perimeter of use of the thermal operators  
standards of Code_Aster and one is interested in this analytical sensitivity of the field of  
temperature and of its flow compared to the characteristics material and the loadings. One y  
described the process allowing to exhume the linear system which this derivative checks. In order to  
to minimize the overcost calculation, a particular effort was brought to bind its resolution to that of  
initial problem.  
One details theoretical, numerical work and data processing which governed the establishment  
of these calculations of sensitivity in the code. One specifies their properties and their limitations all 
in  
connecting these considerations to a precise parameter setting of the accused operators and to the 
choices of  
modeling of the code. One tried constantly to bind different the items approached while detailing,  
has minimum, the a little technical demonstrations.  
Required environment, the parameter setting and the perimeter of use of this news  
functionality are described. An example extracted from an official case-test is clarified.  
 
Thereafter, the prospects for this work are several orders:  
 
· From a functional point of view, one could extend truly the perimeter of use  
thermal calculations of sensitivity (and also that of the standard problem on which they  
lean) with non-linear and/or anisotropic conductivities and the conditions of exchange  
wall in lumpé. With few expenses, one could also deal with the problems of hydration, of  
drying and of convection-diffusion.  
 
· In addition, of the developments still remains to be established to be able to treat  
suitably a broad spectrum of derivative made up and, in particular, to carry out  
chainings thermomechanical (which are the genuine target of the current developments).  
One will be able to then obtain the mechanical sensitivities of variables (displacements, deformations  
and constraints) compared to loadings or characteristics material of the problem  
thermics.  
 
· From a theoretical point of view, it remains to carry out a study “numérico-functional calculus”  
similar to that of this document, to exhume the same thermal sensitivities in  
modeling HULL and FOURIER. That will open another field of investigation then:  
sensitivities compared to the geometrical characteristics of the structural elements.  
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Appendix 1 Concept of derived “within the meaning of the distributions”  
 
Let us place within the framework of a Bi-material and a derivation compared to the voluminal heat 
of one of these  
materials, in linear thermics. The same reasoning can be led into non-linear and compared to  
do not matter that it another characteristic material, loading or limiting condition.  
 
One considers the modeling of following total voluminal heat (I the indicating function of ième  
I 
part)  
I 
 
C 
 
éq  
A1.1  
p (X): =  
I X + I X 
,  
1 1 ( ) 
2 2 ( ) 
(1 
) 
2 
2 
 
 
 
1  
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2  
 
 
 
 
 
1  
2  
 
 
 
 
Appear A1-a: Designation of voluminal heats for a Bi-material  
 
That is to say the family of distributions parameterized by  
( 
* 
Of ×, 
0  
+ 
 
T) 
( ] [) 
 
 
 
 
 
éq A1.2  
 
 
T 
such as  
T is the solution of the problem in extreme cases  
( 
T 
 
I I 
 
T 
S 
 
1 (1 + 
) 1 + 2 2 ) 
- div () = 
× ] , 
0 [ 
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T 
T 
 
= F 
1 × ] , 
0 [ 
 
T 
(P 
 
)  
= G 
 
éq  
A1.3  
2 × ] , 
0 [ 
N 
T 
 
+ HT 
 
= hText 
3 × ] , 
0 [ 
N 
 
T (X) 
0 
, 
 
= 0 
T (X) 
 
 
One of course recognizes the solutions of as many slightly shifted problems of linear thermics (cf [éq 2 
T 
1] in order to be able to approximate gradually, when the small parameter tends towards zero,  
.  
 
1 
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By writing that T0 and T check, respectively, (P0) and (P), and by withdrawing members from members 
both  
EDP one obtains  
(T - T 
T 
0 ) 
 
 
- div ((T - T 
I 
 
 
 
0 ) = - 
1 
1 
× ] , 
0 [ 
 
T 
T 
T 
 
- T0 = 0 
1 × ] , 
0 [ 
 
(T - T0) 
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(P P0  
= 0 
 
 
éq  
A1.4  
2 × ] , 
0 [ 
)  
N 
(T - T0) 
 
+ H (T 
 
- T0) = 0 
3 × ] , 
0 [ 
(N 
 
T - T X 
0 )( 
) 
0 
, = 0 
 
It any more but does not remain to divide by  
1 this new EDP and to make tend towards zero the parameter. The problem  
in extreme cases then becomes a simple problem interfered similar homogeneous Cauchy-Dirichlet-
Neumann-Robin type  
with the initial problem and comprising however a different source term  
U 
T 
 
- div (U) = - 
0 
I 
 
1 
× ] , 
0 [ 
T 
T 
U = 0 
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1 × ] , 
0 [ 
1 
 
U 
lim 
(P - P = 0  
 
 
éq  
A1.5  
2 × ] , 
0 [ 
0 ) 
 
 
0  
 
1 
 
N 
U 
 
+ hu = 0 
 
 
3 × ] , 
0 [ 
N 
 
U (X) 
0 
, = 0 
 
1 
which one notes U: = lim 
(T - T the solution. This one exists and is single because it inherits all them  
0 ) 
 
 
0  
1 
good properties of the initial problem. By definition, one then indicates it under the term of “distribution  
 
derived compared to characteristic 1 from voluminal heat”: = T 
U 
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.  
 
1 
 
Taking into account the process of obtaining of this type of derived (translation, passage in extreme 
cases then definition  
of a distribution derived as soon as one is ensured of his existence and his unicity), it appears that that 
returns  
“formally” to directly derive the terms from the initial problem in extreme cases [éq A1-2], [éq A1-3].  
It is in this way that one proceeded for all the derivative exhumed in this document. Moreover, for  
each one of them, one checked that this “formal” derivation produced the same result as it  
process describes previously.  
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Calculation of sensitivity in mechanics  
 
 
 
Summary  
 
Classically, the digital simulations provide the response of a system to a request. It appears  
currently an important evolution aiming at providing in addition to this answer the tendency of the 
answer to  
a modification of parameters of entry of simulation (material, loading, geometry,…). These  
tendencies are obtained by calculating the derivative of the response compared to parameters given.  
 
The object of this note is thus the determination of the sensitivity of the results of a calculation of 
mechanics of  
solids with various data input by the method of direct differentiation. These data input are them  
data material and loadings. Moreover will be detailed the linear calculation cases (operator  
MECA_STATIQUE) and nonlinear (operators STAT_NON_LINE and DYNA_NON_LINE).  
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1 Introduction  
 
Classically, the digital simulations provide the response of a system to a request. It  
currently appears an important evolution aiming at providing in addition to this answer the tendency  
response to a modification of parameters of entry of simulation (material, loading,  
geometry,…). The possible applications are important:  
 
·  
probabilistic calculations related to the existence of an uncertainty on the value of a parameter,  
·  
problems opposite, retiming, optimization for which the knowledge of derived from one  
field can be capital in term of effectiveness,  
·  
reliability of the studies (which credit to bring to a simulation where the response of the system can  
to strongly vary following a small variation of a parameter?).  
 
These tendencies are generally obtained by calculating the derivative of the answer, which can be 
done  
various manners: finished differences, direct differentiation or method of the assistant state.  
finished differences are to be excluded from their weak precision and their important numerical cost.  
method of the associated state, though powerful and specifies, requires developments particular to  
each study and it will not be retained. We will thus concentrate here on the method of  
differentiation direct, powerful, specifies, general and very adapted to nonlinear calculations.  
 
The object of this note is thus the determination of the sensitivity of the results of a calculation of 
mechanics  
solids with various data input by the method of direct differentiation. These data  
of entry will be the data material and the loadings.  
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Moreover, the choice was made carry out our reasoning on the equations of the mechanical problem  
discretized. This choice seems important to us insofar as it ensures the coherence of derived 
calculation  
compared to direct calculation. We insist on the fact that this coherence is essential to  
precision of the results obtained.  
 
Lastly, we will treat two model cases within the framework of the calculation of sensitivity of linear 
problems  
and nonlinear: linear elasticity and the plasticity of Von Mises with linear isotropic work hardening. 
The goal  
of these examples is well to clarify the difference in nature of the problems derived in both  
preceding cases. In the linear case, the derived problem is very similar to the direct problem in  
measurement where only the second member of the equations is modified. In the nonlinear case, the 
problem  
derived is appreciably different from the direct problem: the second member but also the law of  
behavior are modified. Nevertheless, in these two cases, the derived problem preserves one  
extremely interesting property insofar as it consists of a succession of linear problems  
whose matrices already were calculated and factorized (in the case of the direct use of solveurs).  
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2  
Sensitivity to the data materials  
 
2.1  
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The direct problem  
 
We place ourselves in this part within the framework of the resolution of non-linear calculations. Us  
let us use the notations of [bib1] and return to the reading of this document for any precision on  
technique of resolution approached in the continuation.  
In Code_Aster, any non-linear static calculation is solved incrémentalement. It thus requires with  
each step of load I, 
1 
{I} the resolution of the non-linear system of equation:  
 
 
R U 
(,) + T 
B  
= L 
 
I Ti  
I 
I  
éq  
2.1-1  
 
 
Drunk 
= 
D 
I 
ui 
 
with  
(R (U, T)) = 
I 
I 
K 
(U): (W)  
D  
éq  
2.1-2  
 
I 
K 
 
·  
wk is related to form of the kth degree of freedom of the modelled structure,  
·  

file:///Z|/process/refer/refer/p980.htm (3 of 35)10/2/2006 2:52:54 PM



file:///Z|/process/refer/refer/p980.htm

(R (U,)) 
I Ti 
is the vector of the nodal forces.  
 
The resolution of this system is done by the method of Newton-Raphson:  
 
 
N 
K n+1 
U 
+ T 
B n+1 
 
= L - R (N 
U, T) + T N 
B  
I 
I 
I 
I 
I 
I 
I éq  
2.1-3  
 
n+ 
 
B 
1 
 
= 
0 
I 
 
R 
 
where  
N 
K I = 
is the tangent matrix with the step of load I and the iteration of Newton N.  
U 
(N 
U, T) 
I I 
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The solution is thus given by:  
 
NR 
U 
= U 
+ 
N 
I 
i-1 
U 
 
I 
 
n=0 
 
 
NR 
 
=  
+ 
N 
I 
i-1 
 
 
I 
 
n=0 
 
with NR, the iteration count of Newton which was necessary to reach convergence.  
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2.2  
Derived calculation  
 
2.2.1 Preliminaries  
 
Within the framework of the calculation of sensitivity, it is necessary to insist on the dependences of a 
size  
compared to the others. We thus will clarify that the results of preceding calculation depend  
of a given parameter (modulus elastic Young, limit, density,…) and that of  
following manner:  
 
U = 
() 
I 
ui 
, = 
() 
I 
I 
.  
 
But that is not sufficient. Also we within the framework of an incremental calculation with law place 
ourselves  
of elastoplastic nonlinear behaviour with linear isotropic work hardening [bib2]. If one considers  
the interdependences of the parameters on an algorithmic level, one can write [bib3]:  
 
R = R ( 
(), p 
(), U ()) 
I 1 
- 
I 1 
- 
 
 
=  
() + ( 
(), p (), U (),) 
I 

file:///Z|/process/refer/refer/p980.htm (6 of 35)10/2/2006 2:52:54 PM



file:///Z|/process/refer/refer/p980.htm

I 1 
- 
I 1 
- 
I 1 
- 
 
 
p = p () + p ( 
(), p (), U (),) 
I 
I 1 
- 
I 1 
- 
I 1 
- 
 
 
Where U 
is the increment of displacement to convergence with the step of load I.  
 
Let us specify the direction of the notations which we will use for the derivative:  
 
X 
 
·  
indicate the explicit derivative partial of X compared to Y,  
Y 
 
·  
X, Y indicates the total variation of X compared to Y.  
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2.2.2 Derivation of balance  
 
Taking into account the preceding remarks, let us express the total variation of [éq 2.1-1] compared 
to:  
 
R 
R 
R 
R 
 
+ 
U, + 
, + 
p, +Bt, 
= 0 
 
 
 
 
 
U 
 
i-1  
 
 
i-1  
I  
i-1 
p 
éq  
2.2.2-1  
I 
 
1 
 
Drunk, 
= 
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0 
 
R 
Let us notice that here  
= 0: R does not depend explicitly on but implicitly like us  
 
 
will see in detail in the continuation.  
 
That is to say:  
 
 
K NR U, +Bt, 
= - R, 
I 
 
I  
uu ()  
éq  
2.2.2-2  
 
 
Drunk, 
= 
 
0 
 
Where  
 
·  
NR 
K I is the last tangent matrix used to reach convergence in  
iterations of Newton,  
·  
R,  
is the total variation of R, without taking account of the dependence of U 
by  
uu () 
report/ratio with.  
 
The problem lies now in the calculation of R,  
.  
uu () 
 
Note:  
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R 
U 
(, T) 
In [éq 2.2.2-2], one used the fact that K NR = 
I 
I 
I 
whereas in [éq 2.1-3] one has it  
U 
 
 
R 
U 
(, T) 
defined by  
NR 
I 
I 
K I = 
. There is well equivalence of these two definitions in measurement  
NR 
U 
I 
where U = U 
+ U 
 
I 
i-1 
and that R depends indeed on U 
(and as well sure of I 1 
- and  
pi 1 
- ).  
 
Note:  
 
If one derives compared to directly [éq 2.1-3], one finds  
N 1 
+ 
N 
U 
T 
N 
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N 1 
K = 
+ B, = - R, 
+ 
/uu/- K, 
 
U 
. What is the same thing  
 
 
U 
with convergence and reveals that the error on  
depends on  
-1 
K K.  
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2.2.3 Calculation of derived from the law of behavior  
 
In the continuation, by preoccupation with a clearness, we will give up the indices I = 1.  
According to [éq 2.1-2], one can rewrite R,  
in the form:  
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uu () 
 
R, 
= 
, +, 
: (W 
 
D 
 
 
éq  
2.2.3-1  
uu () 
(  
uu ()) 
 
 
K) 
 
One must thus calculate,  
. With this intention, we will use the expressions which  
uu () 
intervene in the numerical integration of the law of behavior.  
 
2.2.3.1 Case of linear elasticity  
 
Within the framework of linear elasticity, the law of behavior is expressed by:  
 
~ = µ ~ 
2. (U) 
 
 
Tr () = 3K.Tr ((U)) 
 
or:  
 
= 2µ ~ 
. (U 
) + K.Tr  
((U 
 
Id 
)). éq  
2.2.3.1-1  
 
where Id is the tensor identity of order 2.  
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Then, by calculating the total variation of [éq 2.2.3.1 - 1] compared to, one obtains:  
 
 
, = 2µ, ~ 
. (U 
) + K. Tr  
((U 
 
Id 
)). + 2µ ~ 
. (U 
,) + K.Tr  
((U 
, 
Id 
)). 
 
 
 
 
 
éq  
2.2.3.1-2  
 
That is to say:  
 
, | 
= 2 , 
µ 
~ 
. (U 
) + K. Tr  
((U 
 
Id 
 
U 
U 
)). 
() 
 
 
 
 
2.2.3.2 Case of elastoplasticity with linear isotropic work hardening  
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The elastoplastic law of behaviour to linear isotropic work hardening is written:  
 
 
~ 
3 
+ ~ 
 
(U) - S: = 
p  
 
2 
(+) eq  
 
( + ) 
 
R'. (p + p) 
eq 
 
where S is the tensor of the elastic flexibilities and R' is the slope of work hardening defined by:  
 
E.ET 
R' = 
 
where  
 
E - AND 
 
T 
E 
 
 
 
 
E  
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In numerical terms, this law of behavior is integrated using an algorithm of return  
radial: one makes an elastic prediction (noted  
E 
) that one corrects if the threshold is violated. With  
notations of [bib4], one thus writes:  
 
 
E - y - R'. p 
~ 
= 
µ ~ 
2. (U) - µ 
3 eq 
~e 
 
 
(R + 
'µ). 
3 
E 
 
eq 
Tr () = 
3K.Tr ((U)) 
éq  
2.2.3.2-1  
 
E - y - R'. p 
p 
= 
eq 
 
R + 
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'µ 
 
3 
 
 
We will distinguish two cases.  
 
1st case: p = 0  
What comes down to saying that at the time of these step of load, the point of Gauss considered did 
not see  
of increase in its plasticization. One finds oneself then in the case of linear elasticity:  
 
 
, 
= 2µ, ~ 
. (U 
) + K. 
 
((U 
 
Id 
)). 
 
Tr 
 
U 
U () 
 
 
 
2nd case: p > 0  
Taking into account the dependences between variables in [éq 2.2.3.2 - 1], one can write:  
 
 
 
 
 
 
 
 
 
 
 
 
, 
= 
+ 
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, + 
p, + 
(U,) 
 
 
 
 
 
 
 
 
 
 
p 
( 
 
U) 
 
éq 2.2.3.2 - 2  
 
 
p 
 
p 
 
p 
 
 
 
p 
p, 
= 
+ 
, + 
p, + 
(U), 
 
 
 
 
 
 
 
 
 
p 
(U) 
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Moreover, in agreement with the algorithmic integration of the law, we will separate parts deviatoric  
and hydrostatic.  
 
 
 
~ 
1 Tr () 
, 
= 
+  
 
 
Id 
uu () 
 
 
 
3 
 
 
~ 
 
 
 
1 Tr ( 
+ 
 
 
, +  
) Id, 
 
 
 
 
3 
 
 
 
 
 
~ 
1 Tr () 
 
 
+ 
p, +  
Id  
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p, 
 
p 
3 
p 
 
 
p 
 
p 
 
p 
p, 
= 
+ 
, + 
 
 
 
p, 
 
uu () 
 
 
 
p 
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And thus, one calculates:  
 
 
 
 
 
 
eeq 
 
y 
R' 
E 
y 
~ 
- 
- 
 
 
 
µ 
2 
µ 
3 
- - 
p 
eq 
R'. p 
~ 
~ E 
 
 
 
 
 
 
= 
(U) - 
 
- µ 
3  
~e 
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(R + 
'µ) .e 
3 
(R + 
'µ) .e 
eq 
3 
eq 
E - y - R'. p  
eq 
R' µ 
3 
 
E  
 
E 
eq  
+ 
µ 
3  
 
+ 
+ (R + 
'µ) 
3  
~e 
 
2 
 
 
((R + 
'µ). 
3 
) 
 
 
 
eq 
E 
 
 
 
eq 
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E - y - '. 
~ 
eq 
R p E 
- 
µ 
3  
 
(R + 
'µ) .e 
3 
 
 
eq 
 
Tr (  
) 3 
= 
K Tr ((U 
))  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E 
y 
E 
E 
y 
 
~ 
 
- µ 
3 
- - R'. p  
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- - 
 
eq 
 
R'. p 
= 
1- 
 
eq ~e - µ 
3 eq 
J  
 
 
E 
 
E 
 
(R + 
'µ). 
3 
 
 
 
(R + 
'µ) .e 
eq  
eq 
 
3 
eq 
 
where J is the operator deviatoric defined by: J  
~ 
: 
=  
 
Tr () = 0  
 
 
 
p 
 
 
 
~ 
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3 R 
µ. ' 
~ E 
= 
 
E 
p 
 
(R' 3 
+ µ) .eq 
 
Tr () = 0  
p 
 
p,  
 
The fact is used that:  
y 
eq = R'. (p + p 
) +  
 
 
~ 
~ 
~ 
~ 
y  
1 3 (, +, ) : ( +  
 
 
) R' 
 
 
 
p, +p, = 
 
 
 
( 
) 
 
R'  
- 
p + p - 
2 
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eq 
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Note:  
 
In these calculations were or must be used the following results:  
 
µ 
2 
~ 
~ 
~ 
~ 
 
( 
(U)) : (+ µ. 
2 ( 
E 
2µ 
E 
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U 
~ 
 
 
)) 
= 
 
3 
(U 
) 
eq 
 
 
 
=  
 
 
 
 
 
E 
 
 
2 
eq 
Tensor of order 2  
Scalar  
 
E 
~e 
 
 
 
eq = 3  
~e 
E 
 
2  
= J  
eq 
 
 
Tensor of order 2  
Tensor of order 4  
 
 
2.2.3.3 Calculation of derived from displacement  

file:///Z|/process/refer/refer/p980.htm (26 of 35)10/2/2006 2:52:54 PM



file:///Z|/process/refer/refer/p980.htm

 
Once, 
R, 
 
calculated, one can constitute the second member  
while using  
uu () 
uu () 
[éq 2.2.3-1]. One solves then the system [éq 2.2.2-2] and one obtains the increment of derived 
displacement  
compared to.  
 
 
2.2.3.4 Calculation of derived from the other sizes  
 
Now that one has U, one must calculate the derivative of the other sizes. One separates  
still two cases:  
 
Linear elasticity  
According to [éq 2.2.3.2 - 1], one as follows calculates the derivative of the increment of constraint:  
 
 
, =  
, 
+ 2µ ~ 
. (U 
,) + K.Tr  
((U 
, 
Id 
)). 
 
 
 
U 
U 
() 
 
 
 
The increment of cumulated plastic deformation, as for him, does not see evolution:  
 
p, = 0  
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Elastoplasticity with linear isotropic work hardening  
If p = 0, one finds the preceding case.  
If not, one obtains according to [éq 2.2.3.2 - 2]:  
 
 
 
 
, = , 
+ 
: (U,) 
 
 
 
uu () 
(U) 
 
 
 
And for the cumulated plastic deformation:  
 
 
~ 
~ 
~ 
~ 
y  
1 3 (, +, ) : ( +  
 
 
) R' 
 
 
 
p, +p, = 
 
 
 
( 
) 
 
R'  
- 
p + p - 
2 
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eq 
 
 
 
Once all these calculations are finished, all the derived sizes are reactualized and one passes  
with the step of load according to.  
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2.2.3.5 Synthesis  
 
To summarize the preceding paragraphs, one represents the various stages of calculation by  
following diagram:  
 
 
 
Convergence of the step of  
Calculation of the terms  
Assembly of  
 
charge N of direct calculation  
, 
 
R, 
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uu () 
uu () 
 
 
 
 
 
 
Passage to the step  
Calculation of  
Resolution of the system  
 
[éq 2.2.2-2]  
of load N + 1  
, and p,  
 
U,  
 
 
 
 
2.3 Establishment  
data processing  
 
For each finite element of Code_Aster, it is necessary to create two new options of calculations  
to allow calculations above:  
 
·  
for the calculation of,  
,  
uu () 
·  
for the calculation of, and p.  
 
Derived calculation is controlled by a routine which launches elementary calculations of,  
,  
uu () 
carry out the assembly of these terms to create the second member, solves the linear system  
[éq 2.2.2-2], then lance the calculation of, and p. This routine is called by OP0070 after  
convergence was detected.  
 
Note:  
 
For the user, the sequence of various calculations will be transparent. The definition of  
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significant variables will be done according to the diagram [bib5]:  
...  
v = DEFI_PARA_SENSI (VALE = < value of the parameter >)  
= DEFI_MATERIAU subdue (VMIS_ISOT_LINE = _F (SY = v),…)  
chmat = AFFE_MATERIAU (AFFE = _F (GROUP_MA = < group (S) >,  
MATER  
=  
matt  
))  
...  
resu = STAT_NON_LINE (CHAM_MATER = chmat,  
SENSITIVITY  
=  
(  
v),  
 
 
 
 
 
 
...)  
...  
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3  
Sensitivity to the loading  
 
3.1  
The direct problem: expression of the loading  
 
Until now we expressed the direct problem in the form:  
 
 
R U 
(,) + T 
B  
= L 
 
I Ti 
I 
I  
éq  
3.1-1  
 
 
Drunk 
= 
D 
I 
ui 
 
The loadings are gathered with the second member and include/understand the imposed forces Li and 
them  
imposed displacements D 
ui.  
Let us suppose that the loading in imposed force Li depends on a scalar parameter on  
following manner:  
 
L () 
1 
2 
= L + L () 
I 
I 
I 
éq  
3.1-2  
Where  
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·  
1 
Li is a vector independent of,  
·  
2  
Li depends linearly on.  
 
One wishes to calculate the sensitivity of the results of direct calculation to a variation of the 
parameter.  
 
 
3.2  
The derived problem  
 
3.2.1 Derivation of balance  
 
As in the preceding chapter, by taking account of the dependences between the various fields,  
one derives balance [éq 3.1-1] by report/ratio:  
 
R 
R 
R 
R 
 
+ 
U, + 
, + 
p, + T 
B, 
= 
2 
L) 
1 
( 
 
 
 
 
 
U 
 
i-1  
 
 
i-1  
I  
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I 
p 
éq  
3.2.1-1  
i-1 
I 
 
1 
 
Drunk, 
= - Drunk 
 
I, 
1  
 
One used the fact that 2 
Li depends linearly on.  
 
That is to say:  
 
 
NR 
K U, + T 
B, 
= 
2 
L) 
1 
(- R, 
I 
 
I  
I 
uu ()  
 
 
Drunk, 
= 
- Drunk 
 
I, 
1  
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Where  
·  
NR 
K I is the last tangent matrix used to reach convergence in  
iterations of Newton,  
·  
R, 
 
 
is the total variation of R, without taking account of the dependence of U by  
uu () 
report/ratio with.  
 
The problem lies like previously in the calculation of R,  
.  
uu () 
 
Note:  
 
If one seeks to calculate the sensitivity compared to the loading of Dirichlet, the system with  
to solve becomes:  
 
 
NR 
K U, + T 
B, 
= 
- R, 
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I 
 
I  
uu ()  
 
D 
 
Drunk, 
= 
2 
U 
) 
1 
(- Drunk 
 
I 
I, 
1  
D 
Where 2 
U is the part of the loading of Dirichlet which depends linearly on.  
I 
 
 
3.2.2 Calculation of derived from the law of behavior  
 
According to [éq 2.1-2], one can rewrite R,  
in the form:  
uu () 
 
R, 
= 
, +, 
: (W 
 
D 
 
éq  
3.2.2-1  
uu () 
(  
uu ()) 
 
 
K) 
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With this intention, we will use the expressions which intervene in the numerical integration of  
law of behavior to calculate,  
.  
uu () 
 
 
3.2.2.1 Case of linear elasticity  
 
Within the framework of linear elasticity, the law of behavior is expressed by:  
 
 
= 2µ ~ 
. (U 
) + K.Tr  
((U 
 
Id 
)). éq  
3.2.2.1-1  
where Id is the tensor identity of order 2.  
 
Then, by calculating the total variation of [éq 3.2.2.1 - 1] compared to, one obtains:  
 
 
, = 2 , 
µ ~ 
. (U 
) + K. Tr  
((U 
 
Id 
)). + 2µ ~ 
. (U 
,) + K.Tr  
((U 
, 
Id 
)). 
 
 
 
 
 
éq 3.2.2.1 - 2  
= . 
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0 
+ . 
0 
+ 2µ ~ 
. (U 
,) + K.Tr  
((U 
, 
Id 
)). 
 
 
 
That is to say:  
, 
= 0. 
 
 
uu () 
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3.2.2.2 Case of elastoplasticity with linear isotropic work hardening  
 
As previously, we will distinguish two cases.  
 
1st case: p = 0  
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What comes down to saying that at the time of these step of load, the point of Gauss considered did not 
see  
of increase in its plasticization. One finds oneself then in the case of linear elasticity:  
 
, 
= 0. 
 
 
uu () 
 
2nd case: p > 0  
Taking into account the dependences between variables, one can write:  
 
 
 
 
 
 
 
 
 
 
 
 
, 
= 
+ 
, + 
p, + 
(U,) 
 
 
 
 
 
 
 
 
 
 
p 
( 
 
U) 
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p 
 
p 
 
p 
 
 
 
p 
p, 
= 
+ 
, + 
p, + 
(U), 
 
 
 
 
 
 
 
 
 
p 
(U) 
 
Moreover, in agreement with the algorithmic integration of the law, we will separate parts deviatoric  
and hydrostatic.  
 
 
 
~ 
1 Tr () 
, 
= 
+  
 
 
Id 
uu () 
 
 
 
3 
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~ 
 
 
 
1 Tr ( 
+ 
 
 
, +  
) Id, 
 
 
 
 
3 
 
 
 
 
 
~ 
1 Tr () 
 
 
+ 
p, +  
Id  
 
p, 
 
p 
3 
p 
 
 
p 
 
p 
 
p 
p, 
= 
+ 
, + 
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p, 
 
uu () 
 
 
 
p 
 
And thus, one calculates:  
 
 
 
 
 
 
Insofar as there is not explicit dependence from report/ratio with, one obtains:  
 
~ 
 
= 0.  
 
 
Tr () = .0  
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E 
y 
E 
E 
y 
 
~ 
 
- µ 
3 
- - R'. p  
 
- - 
 
eq 
 
R'. p 
= 
1- 
 
eq ~e - µ 
3 eq 
J  
 
 
(R + 
'3rd  
E 
 
µ). 
 
 
 
(R + 
'µ) .e 
eq  
eq 
 
3 
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eq 
 
where J is the operator deviatoric.  
 
Tr () = 0  
 
 
 
p 
 
 
 
~ 
3µ.R' 
~ E 
= 
 
E 
p 
 
(R' 3 
+ µ) .eq 
 
Tr () = 0  
p 
p,  
 
The fact is used that:  
y 
eq = R'. (p + p 
) +  
 
~ 
1 3 (, +~ 
~ 
, ) : ( + ~ 
) 
p, + p 
, = 
 
 
 
 
 
 
R' 2 
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eq 
 
 
3.2.2.3 Calculation of derived from displacement  
 
Once, 
R, 
 
calculated, one can constitute the second member  
. One solves  
uu () 
uu () 
then the system [éq 3.2.1-1] and one obtain the increment of derived displacement compared to.  
 
 
3.2.2.4 Calculation of derived from the other sizes  
 
Now that one has U, one must calculate the derivative of the other sizes. One separates  
still two cases:  
 
Linear elasticity  
According to [éq 3.2.2.1 - 1], one as follows calculates the derivative of the increment of constraint:  
 
 
, = . 
0 + 2µ ~ 
. (U 
,) + K.Tr  
((U 
, 
Id 
)). 
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The increment of cumulated plastic deformation, as for him, does not see evolution:  
 
p, = 0 
 
 
 
Elastoplasticity with linear isotropic work hardening  
If p = 0, one finds the preceding case.  
If not, one obtains:  
 
 
 
 
, = , 
+ 
: (U,) 
 
 
 
uu () 
(U) 
 
 
And for the cumulated plastic deformation:  
 
~ 
1 3 (, +~ 
~ 
, ) : ( + ~ 
) 
p, + p 
, = 
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R' 2 
eq 
 
Once all these calculations are finished, all the derived sizes are reactualized and one passes  
with the step of load according to.  
 
 
3.2.2.5 Synthesis  
 
To summarize the preceding paragraphs, one represents the various stages of calculation by  
following diagram:  
 
 
 
Convergence of the step of  
 
Calculation of the terms  
Assembly of  
charge N of direct calculation  
 
, 
R, 
 
 
 
uu () 
uu () 
 
 
 
 
 
 
 
Passage to the step  
Calculation of  
Resolution of the system  
 
[éq 3.2.1-1]  
of load N + 1  
 
 
 
, and p,  
U, 

file:///Z|/process/refer/refer/p990.htm (13 of 24)10/2/2006 2:52:55 PM



file:///Z|/process/refer/refer/p990.htm

 
 
 
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Calculation of sensitivity in mechanics  
 
 
Date:  
19/04/05  
Author (S):  
NR. TARDIEU Key  
:  
R4.03.03-B Page  
: 17/18  
 
 
3.3 Establishment  
data processing  
 
The data-processing establishment is in any point similar to the preceding one insofar as one adds  
two options:  
 
·  
for the calculation of,  
,  
uu () 
·  
for the calculation of, and p.  
 
Let us notice that the organization of the calculation of the loadings (where all the contributions are 
summoned  
in only one vector) obliges with the revaluation of the force compared to which one calculates them  
sensitivities.  
 
 
Note:  
 
The definition of the significant variables will be done like previously:  
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...  
v = DEFI_PARA_SENSI (VALE = < value of the parameter >)  
force = AFFE_CHAR_MECA (  
PRES_REP=_F (GROUP_MA=< groups (S) >,  
PRES=  
v),…)  
...  
resu = STAT_NON_LINE (EXCIT = force,  
SENSITIVITY  
=  
(  
v),  
 
 
 
 
 
...)  
...  
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4  
Availabilities within Code_Aster  
 
The following table recapitulates the derivative available in Code_Aster. It is updated at the fur and at  
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measure developments of the derivatives.  
 
 
Linear mechanics (operator  
Nonlinear mechanics  
MECA_STATIQUE)  
(operators STAT_NON_LINE  
and DYNA_NON_LINE)  
Sensitivity to the data  
materials in elasticity  
All the elements continuous mediums  
Not  
linear isotropic  
 
Sensitivity to the data  
materials in elasticity  
All the elements continuous mediums  
Not  
linear orthotropic  
 
Sensitivity to the data  
materials in elasticity  
All the elements continuous mediums  
Not  
linear isotropic transverse  
 
Sensitivity to  
·  
nodal forces  
loadings  
·  
force divided voluminal into 3D  
·  
force divided surface into 3D  
·  
force divided linear into 3D  
·  
force divided surface into 2D  
·  
force divided linear into 2D  
·  
force divided linear into 1D  
Not  
·  
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force distributed for the hulls  
“2D”  
·  
force distributed for the hulls  
“3D”  
·  
pressure distributed  
 
Without restriction of finite elements.  
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Calculation of sensitivity in dynamics  
 
 
 
Summary  
 
Obtaining the sensitivities is important in dynamics where small disturbances of the parameters can  
to have a great influence on the sizes of interest. The objective of the document is to clarify the 
calculation of  
sensitivities (i.e derived) of the principal sizes: modes and Eigen frequencies, dynamic responses in  
frequential and temporal, into linear and nonlinear). For each size, the “derived problem”,  
i.e. the problem whose derivative is solution, is written (in variational and/or matric form).  
numerical algorithms of calculation of these derivative are then detailed and discussed. All 
establishments  
corresponding data processing in Code_Aster were not carried out. A table thus gives the current state  
developments.  
Derivation compared to the parameters of the matrices of mass, stiffness, damping, the loading  
and also the particular case of derivation compared to a variation of field is presented.  
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calculations by the finite element method, which is specific to the derivative, are clarified on the level of  
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In a mechanical context of calculation on a model of structure, one understands by “sensitivities” 
them  
derived from a size result of the model compared to parameters of model entry of the aforesaid. In  
dynamics, of small disturbances of the parameters can have a great influence on  
dynamic and vibratory sizes [bib1]. The calculation of the sensitivities proves thus paramount, 
because it  
allows to carry out analyses of influences of the parameters, analyses probabilistic, of  
identification of parameters (or retiming), optimization…  
 
This documentation develops obtaining the sensitivities of the dynamic sizes compared to  
mechanical parameters, in the boundary conditions, with the loading, and a variation of field.  
The dynamic sizes treated are the dynamic responses in displacement, the frequencies  
clean and clean modes. Sensitivities of the other dynamic sizes (forced,  
efforts….) which is in general calculated by postprocessing can result some a posteriori by  
ad hoc calculations.  
 
The general method of calculation retained is a method of exact direct differentiation (by  
opposition to the methods of the associated state, the methods of finished differences or other methods  
semi-analytical (the calculation of derived by an semi-analytical method consists in calculating them  
derived from the elementary matrices by finished differences and then to calculate them analytically  
derived from the sizes results. This method is easier to establish than the analytical method  
complete and was retained in Nastran or Abaqus for example (cf [bib2]))).  
 
This method has as principal advantage of being exact. One avoids the problems thus of  
convergence of the algorithms of optimization based on the gradient or the problems of precise details 
of  
finished differences (when the results result from an iterative algorithm, the finished differences can  
to be particularly vague). It is also more general than the method of the assistant state where  
a functional calculus to be derived must be specified before calculation (it thus makes it possible for 
example to obtain  
directly fields derived).  
 
This method can be very economic in computing times if the algorithms of resolution of  
derived problems - i.e. the problems whose derivative are solutions - are well chosen and if  
the programming is neat. In the most favorable cases, the computing time of a derivative  
represent that a very small percentage of the computing time of the standard size.  
 
Its principal disadvantage is the extent of the data-processing developments necessary to sound  
establishment (more especially as the architecture of Code_Aster does not make it possible to use the 
differentiation  
automatic).  
 
The document attempts to present the various “derived problems”. They are written in form  
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variational and/or matric according to the need. These derived problems often have the very maid  
properties. For example, in linear dynamics, the first members of the systems to be solved are  
preserved. In nonlinear dynamics, the derived problem is a linear problem.  
 
The methods of resolution which meet a priori more the needs for the users of Code_Aster  
are presented. In order to minimize the computing time, the calculation algorithm of derived must 
exploit  
as much as possible intermediate results of the resolution of the standard problem. In addition,  
the effectiveness of certain algorithms depends on the properties of the matrices of the problems to 
solve, of  
a number of parameters per report/ratio for which it is necessary to derive, and of the required 
precision.  
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2  
Derived from dynamic responses  
 
2.1 Problem  
standard  
 
In the frequential field, equations of linearized dynamics and the dualisation of the conditions  
to the limits lead to the following matric equation (it is the discretization by the method of  
finite elements of the variational formulation which makes it possible to obtain this equation. During  
document, the variational formulations and with the method of the elements are clarified when  
necessary):  
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(- 2M () p+ iC () p+K () p) X (,) p = F (,) p  
éq  
2.1-1  
where:  
·  
X (, p) RN 
 
(N =n+2) is, for the pulsation, the vector made up of N ddl physical  
structures discretized and of the 2 multipliers of Lagrange [R3.03.01],  
·  
p is a scalar parameter of mechanical property, loading or of geometry which  
intervenes directly explicitly in the matrices of mass, stiffness or  
of damping, or in the loading. Let us notice that that can be a parameter  
of geometry for the elements of structure (for example a thickness of hull) but not  
a geometrical parameter of the grid for which the field of integration is modified and  
for which thus it is necessary to return to a variational formulation of the problem and to establish one  
paramètrage of the field (cf [§4]),  
·  
M (p), C (p) and K (p) are the real symmetrical matrices of mass, damping and  
of stiffness “generalized” (thus not necessarily definite positive),  
·  
F (, p) is the vector of the external forces.  
 
Code_Aster solves a more general equation for the systems fluid-structures [R5.05.03].  
The writing of the derived problem and its resolution are not basically modified by it. For more  
of clearness and concision, one thus limits oneself in the continuation of this Doc. to the equation [éq 
2.1-1].  
 
In Code_Aster, the resolution of [éq 2.1-1] is carried out by the direct methods multifrontale and  
“LDLT” [R6.02.02]. These two methods proceed in three stages:  
 
·  
renumerotation of the unknown factors,  
·  
factorization of the matrix,  
·  
gone up descent/(resolution of two triangular systems).  
 
If several linear systems, of the same matrix, are to be solved, only them  
gone up descents/are to be carried out several times. The same if several of the same matrices  
structure are to be factorized, the renumerotation of the unknown factors will not be to remake (this 
phase  
preliminary has a considerable cost, even if its relative weight in computing times decreases with  
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cut matrices to be factorized). These two properties are very important and will allow  
to calculate the derivative at numerical lower cost.  
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2.2  
Derived from a harmonic dynamic response  
 
2.2.1 Method  
direct  
 
The derivation of [éq 2.1-1] gives (after handling for exhiber a “good” second member):  
 
( 
X () 
F ()  
M 
C K  
- 2 + I +) 
= 
- - 2 
M 
C K 
+ I 
+ 
X () 
 
éq  
2.2.1-1  
p 
p 
 
p 
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p 
p  
X () 
The resolution of the linear system [éq 2.2.1-1] gives the size  
 
sought.  
p 
 
One can observe that the system [éq 2.2.1-1] has the same matrix coefficient as [éq 2.1-1], and  
a second different member but whom one can obtain without inversion starting from elementary 
calculations.  
This second member is called in the literature “pseudo-load” giving to the direct method it  
name also of “method of the pseudo-loads”.  
 
There are as many resolutions of [éq 2.2.1-1] that parameters by report/ratio to which one derives. For  
to carry out these resolutions by minimizing the computing time, one uses the properties of the methods  
direct multifrontale and “LDLT” recalled in [§2.1]. The renumerotation of the unknown factors and  
factorization of the matrix are thus carried out only once for all the resolutions.  
 
Also let us notice that the majority of the terms of the second member are null. Indeed, if p is one  
F () 
nodal force only remainder the term  
, if p is a density only remainder the term  
p 
2 M X (), etc… This remark subsequently remain valid of Doc., for all them  
p 
terms containing of the derivative.  
 
 
2.2.2 Simple modal method  
 
To accelerate the resolutions of [éq 2.1-1] frequency per frequency, it is usual to project  
the operator on a truncated modal basis [] = [,  
 
L 
1 
2 , 
, 
L L] where I is the i-ième vector  
clean (cf [§3.1]) and with L<n [R5.06.01]. The new system to be solved becomes:  
 
[(] T 
2 
T 
L (- M + iC + K) [] L) () = [] L F () éq  
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2.2.2-1  
with the projection of X () on the incomplete modal basis which is written X = [] 
L 
L ().  
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The derivation of [éq 2.2.2-1] gives:  
 
T 
[( 
2 
 
 
 
] T - 
M + 
C + K 
= 
F 
+ 
F 
L ( 
 
 
 
I 
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) []) () [] L 
L 
() [] T () 
p 
 
p 
L 
 
p 
 
 
- [ 
 
2 M 
C K  
 
] T - 
+ I 
 
 
+ 
L 
[] 
 
 
éq  
2.2.2-2  
 
p 
 
p 
 
p  
L  
 
 
 
[] T 
 
L 
+ 
(2 
T 
 
- M + iC + K) [] + 
- 2M + C + 
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L 
[] L (  
I 
K) [] L ( 
) 
p 
 
p 
 
 
() 
The resolution of [éq 2.2.2-2] provides  
 
. One obtains then the derivative of projection on the basis  
p 
XL 
modal of X (), i.e. by:  
p  
 
X 
[ 
] 
( 
L 
L 
) 
= 
() + [] 
 
 
L 
 
éq  
2.2.2-3  
p 
p 
p 
 
The remark made for the direct method is valid for the simple modal method: the pre ones 
treatments of the matrix coefficient in the linear system [éq 2.2.2-1] (factorization  
primarily) can advantageously be re-used for the resolution of [éq 2.2.2-2].  
 
In this method, only truncation carried out is that of the projection of X () on the basis  
modal incomplete. The calculation of the derivative is then carried out without another 
approximation. In  
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counterpart, the resolution of [éq 2.2.2-2] and the calculation of [éq 2.2.2-3] require calculation as a 
preliminary  
[ 
] 
of  
L, for example by one of the methods presented at the chapter [§3.3].  
p 
 
 
2.2.3 Double modal method  
 
X () 
In the same way that X () is projected on truncated modal basis,  
 
can be projected on  
p 
this same base. Applying this projection to [éq 2.2.1-1], one obtains:  
 
[(] T 
2 
µ 
L (- M + iC + K) [] L) () = 
éq  
2.2.3-1  
= [] T F 
() - 
2 
 
L 
[] T M 
 
- 
+ I C 
 
K 
 
+ 
X 
L 
() 
 
 
 
 
p 
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p 
p 
p  
 
X () 
with projection on the basis of modal  
µ  
 
who is written [] 
.  
p 
L () 
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Calculation of sensitivity in dynamics  
 
 
Date:  
02/05/05  
Author (S):  
H. ANDRIAMBOLOLONA, Key S. CAMBIER  
:  
R4.03.04-B Page  
: 7/26  
 
 
In practice, in [éq 2.2.3-1], X () is known only after the first modal projection. Method  
by double projection thus consists in carrying out two projections successively, and thus writing  
(substitution of X () by XL in [éq 2.2.3-1]):  
 
[(] T - 2 + 
+ 
 
^µ 
= 
L (M 
iC K) [] L) () 
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= [] T F 
() 
 
2 M 
 
C 
 
K 
 
-  
- 
+ 
+ 
L 
[] T  
I 
L 
X 
 
 
 
L () 
p 
 
 
p 
 
p 
 
p 
 
éq 2.2.3-2  
 
X () 
It should well be seen that the resolution of [éq 2.2.3-2] gives an approximation of  
 
after one  
p 
double truncation. The first truncation is usual truncation carried out to obtain  
X () 
projection of X (). The second truncation is of comparable nature but concerns  
 
.  
p 
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X () 
Techniques of acceleration of the convergence of the series giving  
 
were proposed in  
p 
literature with [bib3]. The user of Code_Aster will use the simple modal method preferentially  
to obtain more precision in the results.  
 
 
2.2.4 Establishment by the finite element method  
 
For the calculation of the second members of [éq 2.2.1-1], [éq 2.2.2-2] and [éq 2.2.3-2], several 
choices are  
possible according to whether the matric products are calculated on an elementary level or not.  
 
For reasons of performance, it was selected to carry out the matric products of the second member  
of [éq 2.2.1-1] on an elementary level. In Code_Aster, the second member of [éq 2.2.1-1] is thus  
calculated directly by the assembly of the following elementary matrices:  
 
F 
(G) 
2  
E 
T 
E 
E 
 
E 
T 
E 
E 
- G 
((G)) (G) (G) X + gi  
(Ca (G)) (G) (G) X 
p 
 
p 
p 
 
+ (E 
 
G (G))T 
E 
(H (G))(E 
E 
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(G) X) 
p 
éq 2.2.4-1  
where:  
 
·  
same diagrams of integration (same functions of forms, points of Gauss,…) who have  
allowed to obtain the standard linear system are used,  
·  
G are the parametric co-ordinates of the point of Gauss of weight G,  
·  
(G) is the matrix of the functions of form of the element E,  
·  
Be (G) is the matrix connecting the deformations to the nodal variables for the element E.  
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Thus, the assembled vector - 2 M 
C 
K 
+ I 
+ 
X () 
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is obtained without calculation and  
p 
p 
p  
MR. K 
C 
the assembly preconditions of the matrices,  
and  
. This procedure is thus economic in  
p 
p 
p 
assembly and storage of assembled matrices. It has on the other hand the disadvantage of  
to require the calculation of the elementary matrices derived at each frequency since the product by  
X () is carried out on an elementary level and thus prevents the storage of these matrices  
elementary derived (at least with the architecture of Code_Aster).  
 
The second members of [éq 2.2.2-2] and [éq 2.2.3-2] will result them from a shandy between 
operations  
elementary and matric operations.  
 
Once again, one can notice that many terms of [éq 2.2.4-1] are null. For example if  
p is Young the modulus of certain elements, only remainder the term  
E 
T  
( ( 
E 
E 
G)) 
(H ()) () X ( 
G 
) for these elements and [éq 2.2.4-1] is null everywhere  
 
G ( 
G 
G 
p 
) 
elsewhere.  
 
 
2.3  
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Derived from a temporal dynamic response into linear  
 
One limits oneself in this chapter and the following if one does not derive compared to  
parameters intervening under the initial conditions. This case raises theoretical difficulties and  
practical out of the field of this Doc.  
 
2.3.1 Method  
direct  
 
Let us leave the differential equation of dynamics in matric form:  
 
M (p) X 
& (T, p) + C (p) X& (T, p) + K (T, p) X (T, p) = F (T, p)  
éq  
2.3.1-1  
where:  
·  
X (T) RN 
(N = n+2) is, at the moment T, the vector made up of N ddl physical of  
structures discretized and of the 2 multipliers of Lagrange [R3.03.01],  
·  
F (T, p) is the vector of the external forces, with, to calculate the response in transient  
linear in Code_Aster [U4.53.02], the loading which must be written in the form  
F = (T F 
) (X 
I 
I 
) .  
I 
 
X 
The differential equation governing the derivative compared to p of the vector displacement X, Y =, is  
p 
obtained while deriving directly [éq 2.3.1-1] compared to p. After change about  
derivation compared to time and p (the sufficient regularity is supposed), and after rearrangement  
terms, one obtains:  
 
M (p) Y& (T, p) + ( 
C p) Y& (T, p) + K (p) Y (T, p) = 
F 
(T, p) 
M 
(p) 
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éq 2.3.1-2  
- 
X& ( 
C 
K 
T, p) 
(p) 
- 
X& (T, p) 
(p) 
- 
X (T, p) 
p 
 
p 
 
p 
 
p 
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The vector of displacements and its derivatives are obtained while solving successively [éq 2.3.1-1]  
then [éq 2.3.1-2]. For that, one uses a diagram of numerical integration (implicit or clarifies in  
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Code_Aster). On the same principle as that of the derivation of a harmonic answer, one exploits  
intermediate results of the resolution of the standard problem in order to minimize calculations 
related to  
resolution of the derived problems.  
 
Let us specify this in the case of an implicit scheme, the identical remaining principle in the case of 
one  
explicit diagram: For the standard problem, the vectors accelerations and speeds, with the step  
from integration tn+1, are obtained by the linear approximations of the following form:  
 
&X 
= L (X 
, X, 
n+1 
1 
n+1 
N & 
X, 
N &X) 
N  
éq  
2.3.1-3  
&X 
= L (X 
, X, 
n+1 
2 
n+1 
N & 
X, 
N &X) 
N éq  
2.3.1-4  
 
One solves the standard problem then, i.e one obtains Xn+1, by the substitution of [éq 2.3.1-3] and  
[éq 2.3.1-4] in [éq 2.3.1-1]. This gives a linear system to solve.  
 
The idea for the problems derived is to use the same diagram of integration:  
 
&Y 
= L (Y 
, Y, 
+1 
1 
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+ 
&Y, &Y) 
N 
N 1 
N 
N 
N  
éq  
2.3.1-5  
&Y 
= L (Y 
, Y, 
+1 
2 
+ 
&Y, &Y) 
N 
N 1 
N 
N 
N éq  
2.3.1-6  
 
Thus, factorization used to solve the system can be also used to obtain Yn+1.  
Indeed, since the matrices coefficient of [éq 2.3.1-1] and [éq 2.3.1-2] are identical, and if one uses  
the same diagram of integration for the calculation of Xn+1 and Yn+1, then the matrix coefficient is  
even in the two linear systems to solve after substitution of [éq 2.3.1-3] and [éq 2.3.1-4]  
in [éq 2.3.1-1] and of [éq 2.3.1-5] and [éq 2.3.1-6] in [éq 2.3.1-2].  
 
The computing time of derived can then be negligible compared to the computing time associated with  
standard problem. It should however be noted that, in the case of a resolution by explicit diagram,  
each calculation of derived can be as expensive as standard calculation. Indeed, in this case,  
the main part of time CPU for the standard problem is associated at the stage of calculation of the 
second member  
with each step of time; and it is also necessary to carry out this stage for the derivative (calculation of 
the second  
member of [éq 2.3.1-2]).  
 
2.3.2 Method  
modal  
 
Two modal methods simple and double for calculation of derived from a dynamic response  
frequential ([§2.2.2] and [§2.2.3]) are easily transposable with the calculation of the dynamic 
response in  
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temporal. One obtains a linear system of the same type as [éq 2.3.1-2] with second members  
different according to whether one uses the simple or double modal method. In the case, method  
modal double, one obtains:  
 
[] T 
^ 
^ 
^ 
 
& 
+  
& 
+  
 
= 
L M [] L (p) Y (T, p) 
[] T 
L 
( 
C p) [] L Y (T, p) [] L K (p) [] L Y (T, p) 
[ 
 
] T F 
(T, p) 
M 
 
C 
 
K 
 
-  
& 
-  
& 
-  
L 
[] T 
(p) 
L 
XL (T, p) [] T 
(p) 
L 
XL (T, p) [] T 
(p) 
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L 
XL (T, p) 
p 
 
p 
 
p 
 
p 
 
éq 2.3.2-1  
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The response in generalized co-ordinates is obtained by solving this system by a diagram  
of numerical integration of the same type as [éq 2.3.1-3] and [éq 2.3.1-4]. And in the same way, them  
factorizations used for the calculation of the answer can be used for the calculation of the derivative.  
 
 
2.3.3 Establishment by the finite element method  
 
In a way similar to the preceding cases [§2.2.4], the second member of [éq 2.3.1-2] can be calculated  
MR. K 
C 
after assembly of the matrices,  
and  
, or in a more powerful way directly to one  
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p 
p 
p 
elementary level.  
The temporal integration of X to the step tn+1 is carried out the temporal integration before of  
its derivative Y. With the step of integration tn+1 of Y, terms X (T 
, p) 
n+1 
, & 
X (T 
, p) 
n+1 
, and &X (T 
, p) 
n+1 
 
are thus known (the last two terms are calculable by [éq 2.3.1-3] and [éq 2.3.1-4] by  
example).  
M (p) 
C (p) 
K (p) 
With the step of integration tn+1 of Y,  
X 
& (T 
, p) + 
X 
n+1 
& (T 
, p) + 
X (T 
, p) 
p 
p 
n+1 
p 
n+1 
 
result thus from the assembly of the following elementary matrices (cf [§3.2.3] for the others  
notations):  
 
 
 
 
(()) E 
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NR () T NR () E 
X& (T 
) +  
(C ()) E 
NR () T NR () X& (, T 
) 
G 
G 
G 
G 
N 1 
+ 
G 
has 
G 
G 
G 
G 
N 1 
+ 
p 
p 
 
éq  
2.3.3-1  
+ 
E 
B () T 
(E 
H ()) E 
B () T E 
X& (T 
) 
G 
G 
G 
G  
N 1 
+ 
p 
 
 
2.4  
Derived from a temporal dynamic response into nonlinear  
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Let us consider the class of the problems of nonlinear dynamics of which the equation discretized of  
movement is form:  
 
M (p) X 
& (T, p) + C (p) X& (T, p) + [ 
G X (T, p), p] = F (T, p) éq  
2.4-1  
 
where  
[ 
G X (T, p), p] is a function (nonlinear) X (T,) 
p and of p. It represents the forces  
interns of the system and all the other forces which are dependent on X (T).  
 
[ 
G X (T, p), p] 
Noting the tangent matrix K (X (T, p), p) = 
 
, the equation of derived compared to p  
X 
vector displacement is obtained:  
 
M (p) Y& T 
(, p) + C (p) Y& T 
(, p) + K (X T 
(, p), p) Y T 
(, p) = 
F 
(T, p) 
M 
(p) 
p 
 
T, p, p 
- 
 
éq  
2.4-2  
X& (T, p) 
( 
C) 
- 
X& (T, p) 

file:///Z|/process/refer/refer/p1000.htm (20 of 32)10/2/2006 2:52:56 PM



file:///Z|/process/refer/refer/p1000.htm

G (X ( 
) ) 
- 
p 
 
p 
 
p 
 
p 
 
X fixed 
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G (p) 
With share the term  
, all the terms derived from [éq 2.4-2] are calculated in a traditional way  
p X fixed 
G (p) 
(i.e by assembly of the matrices or elementary vectors derived). The term  
can  
p X fixed 
to require a particular treatment. Indeed, in [éq 2.4-1], dependence between G and the value of  
X (T,) 
p is explicit at the moment T; however G also depends on the history in plasticity. This  
G (p) 
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dependence complicates calculations clearly of  
that we will not approach here.  
p X fixed 
 
What is remarkable, it is that the derived problems [éq 2.4-2] are linear problems then  
that the standard problem is nonlinear. This property allows a calculation of really derived  
very economic compared to the cost calculation of the standard problem. This is all the more true as,  
for the resolution of [éq 2.4-1] and [éq 2.4-2], factorizations of matrices used for the calculation of  
vector displacement can be re-used for the calculation of the derived vector; as it is the case  
in the case of a linear standard problem. Indeed, the resolution of [éq 2.4-1] by an algorithm of  
newton type requires the resolution of a linear system whose matrix coefficient is the same one as  
in [éq 2.4-2]. Once the algorithm of the Newton type converged to obtain X (T 
) 
n+1, the vector  
gradient Y (T 
) 
n+1 can thus be obtained directly not a simple resolution of two systems  
triangular without convergence of an iterative algorithm.  
 
 
3  
Derived from the frequencies and clean modes from vibration  
 
3.1 Problem  
standard  
 
The problem with the eigenvalues (problem known as quadratic) associated [éq 2.1-1] or [éq 2.3.1-1]  
is written:  
 
((p) 2M (p) + (p) C (p) +K (p))(p) = 0  
éq  
3.1-1  
 
where (p) and (p) are complex values and clean vectors.  
 
In the continuation, to gain in compactness of the equations, we will omit the dependence of the sizes  
compared to the parameter p and/or time T, except when the clarification of this  
dependence will be able to avoid ambiguities.  
 
The reduction of the quadratic problem [éq 3.1-1] in a problem generalized equivalent [R5.01.02]  
give the system of size NR × NR = (N 
2) × (N 
2) according to:  
 
- K O  
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C M  
 
 
=  
 
éq  
3.1-2  
O 
M 
MR. O  
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One can standardize the clean vectors so that they check:  
 
 
T 
- K 0  
J 
J  
 
 
 
=  
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éq  
3.1-3  
0 
M 
 
J 
 
 
J 
 
 
 
J  
 
T 
C M  
J 
J  
 
= 
 
 
 
 
1  
éq  
3.1-4  
M 
0 
 
 
 
J  
 
J  
 
3.2  
Derived from the Eigen frequencies  
 
The multiple eigenvalues are not differentiable with the direction running of derived (i.e within the 
meaning of  
Fréchet). We must thus distinguish the case from the simple eigenvalues of the case of the 
eigenvalues  
multiples for which some precautions must be taken.  
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3.2.1 The case of the simple eigenvalues  
 
The derivation of the equation [éq 3.1-1] written for the jième mode compared to a scalar parameter p  
give:  
 
( 
 
 
J 
J 
 
M 
C K  
2M +  
2 
J 
jC + K) 
= - (2 M + C) 
-  
+  
+ 
 
 
J 
J  
J 
 
 
J  
 
J éq 3.2.1-1  
p 
p 
p 
p 
p  
 
While multiplying on the left per T 
J two members of [éq 3.2.1-1] and while using [éq 3.1-1] and  
[éq 3.1-4], the derivative of the eigenvalue can be obtained from:  
 
J 
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T 
= - 2 M 
C 
K 
+  
+ 
 
 
J 
J 
 
 
J  
 
J  
éq  
3.2.1-2  
p 
p 
p 
p  
 
The equation [éq 3.2.1-2] above requires the calculation of the clean vector J associated with J. One 
cannot  
thus not to exempt calculation of the clean vectors for the calculation of derived from eigenvalues.  
 
 
3.2.2 The case of the multiple eigenvalues  
 
In a clean subspace whose associated eigenvalue is multiple of order m, any combination  
linear of vectors is clean vector. One cannot however apply the formula directly  
[éq 3.2.1-2] with any of these vectors, because the clean subspace can be divided into m  
distinct clean subspaces when a parameter p varies.  
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On the theoretical level, the multiple eigenvalues are not differentiable as a function with  
several variables, only of the derivative directional exist (this can pose problems of  
convergence with many algorithms of optimization which are based on the differentiability of  
function objectifies as a function with several variables). As example, let us consider the values  
clean of the following matrix:  
 
4 + 2y X 
 
2 
2 
1 = 4 + y + 
X + y 
With =  
,  
 
X 
4 
 
2 
2 
2 = 4 + y - 
X + y 
 
For (X, y) = (, 
0 ) 
0, the eigenvalue of A are multiple. And, one a:  
 
1 
 
 
 
= -1 
1 
= 1 
2 
= 1 
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2 
= -1 
 
,  
,  
,  
.  
X 
 
 
 
(0- ,0) 
X (0+ 0,) 
X (0 -, 0) 
X (0+, 0) 
 
It is possible “to connect”, 1 for X < 0 with 2 for X > 0, and “to connect” 2 for X < 0  
with 1 for X > 0 (let us take for example y = 0. Then, “the smallest eigenvalue of A” (2 - X)  
is not differentiable in 0, and “the largest either” (2 + X). On the other hand, “the eigenvalue of A  
corresponding to the clean vector (, 
1) T 
1 “(2 + X) and “the eigenvalue of A corresponding to  
clean vector (, 
1 -) T 
1 “(2 - X) is differentiable into 0). If one does not consider independently  
the two Eigen frequencies of A, one could thus write/X = ±1. (One can proceed of  
even with the derivative in y and to write/y = 0 or 2). However, eigenvalues of A  
are thus not differentiable as functions with two variables (i.e one cannot  
 
 
to write D = 
D X + 
D y 
 
), and have only derivative directional. For of  
X 
y 
to convince, it is enough to notice that:  
 
(cos, sin) 
(cos, sin) - (, 
0 ) 
0 
= lim 
= sin ± 1 
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= 
 
0 
0 
 
On the plan practises, for the calculation of these derivative directional, the choice of the clean vector 
J  
associated J in [éq 3.2.1-2] is ambiguous when the eigenvalue is multiple. This choice thus must  
to be specified.  
In the case of an eigenvalue m of order of multiplicity m, the problem with the eigenvalues  
[éq 3.1-1] can rewrite itself in the following matric form:  
 
[ 
M] 2 + [ 
C] + K [ 
m 
m 
m 
m 
m] = 0  
éq  
3.2.2-1  
 
with m = m Im and [] = [, 
 
m 
i+1 
i+2, 
, 
L i+m] where the i+k are the clean vectors  
associated Mr.  
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Note:  
 
In any rigour and in the case general, the matrices M and K not being definite positive (with  
cause dualisation of the boundary conditions), it does not exist inevitably m vectors  
clean generating a clean subspace of dimension equalizes with the multiplicity of the value  
clean. This point is never approached in the literature. By convenience, we will not approach  
either this pathological point which becomes delicate when it is about calculation of derivative.  
 
The conditions of orthogonality of the clean vectors are written with the matric notations  
above:  
 
[] T (2 m 
M +) 
C [ 
m 
m] = Im éq  
3.2.2-2  
 
Let us note [X] the m vectors clean of the same multiple subspace clean which become m  
clean vectors [X (p)] m subspaces two to two distinct when when a parameter p  
vary. When p tightens towards its face value Po, [X (p)] tends towards [X] and the m eigenvalues  
distinct tighten towards the eigenvalue multiple Mr. In the literature, such vectors clean are  
called clean vectors “adjacent”. It should be noted that these vectors depend on the parameter which 
varies  
i.e. parameter by report/ratio to which one derives. In other words, if parameter is changed, it  
is then necessary to change adjacent vectors.  
The adjacent vectors [X] can be connected to [m] by an orthogonal transformation T ([X]  
and [m] two bases of the same clean subspace constitute):  
 
[ ] 
X = [m] T  
éq  
3.2.2-3  
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with TTT = Im.  
m 
The procedure consists in finding the transformation T for then deducing some [X] and. It is it  
p 
that we develop below.  
 
The adjacent vectors check the problem with the eigenvalues [éq 3.2.2-1]:  
 
[ 
MR. X] 2 
m + [ 
C X] + K 
m 
[X] = 0  
éq  
3.2.2-4  
The derivation of [éq 3.2.2-4] compared to p gives:  
 
( 
X 
 
 
M 
C K  
2M +  
m 
2 
m 
mC + K) [] = - (2mM +) 
C [X] 
-  
+  
+ 
[X] 
 
 
m 
 
 
m 
 
 
p 
p 
p 
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p 
p  
éq 3.2.2-5  
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T 
While multiplying [éq 3.2.2-5] on the left by [m], using [éq 3.2.2-2] and substituent [] 
X = [m] T, one  
the new problem with the eigenvalues obtains:  
 
 
DT = T 
m 
 
 
éq  
3.2.2-6  
p 
T  
M 
C K  
with D = [] 2 
+  
+ 
 
m 
m 
[ 
m 
m] 
 
 
.  
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p 
p 
p  
 
m 
The resolution of the problem to the eigenvalue [éq 3.2.2-6] gives the derivative of the eigenvalues  
p 
and stamps it orthogonal transformation T.  
It should be stressed that there will be a subproblem with the eigenvalues of size m to be solved for each  
eigenvalue of multiplicity m to be derived and for each parameter.  
 
3.2.3 Establishment by the finite element method  
 
In a traditional way, several choices are possible for the calculation of the second member of [éq 3.2.1-
2] and  
matrix D of [éq 3.2.2-6] according to whether the matric products are calculated on an elementary 
level  
or not.  
The calculation of the second member of [éq 3.2.1-2] on an elementary level is a priori most powerful.  
 
 
 
 
T 2 M 
C 
K 
+  
+ 
 
 
 
can be written directly on an elementary level by the scalar:  
p 
p 
p  
 
 
T 
 
T 
2 
(( 
E 
G 
G))((G)) ((G)) +  
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(C ( 
G 
has 
G))((G)) ((G)) 
p 
p 
éq  
3.2.3-1  
T  
+  
E 
E 
E 
G (B () ( 
G 
G)) 
(H (G) () B () ( 
G 
G)) 
p 
In particular, a procedure not to start the calculation of each elementary term of  
 
 
 
[éq 3.2.3-1] that if quantities  
() 
E 
(H ()) 
(C ()) 
 
,  
and  
are nonnull allows  
p 
p 
G 
p has G 
to minimize time CPU.  
 
In a way similar to the case of the simple eigenvalues, the matrix D of the system [éq 3.2.3-1] can  
to be calculated directly on an elementary level or after effective assembly of the matrices  
MR. K 
C 
,  
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and  
.  
p 
p 
p 
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3.3  
Derived from the clean modes of vibration  
 
3.3.1 The case of the simple eigenvalues  
 
One cannot directly obtain the derivative of the clean vectors by solving the linear system  
[éq 3.2.1-1] because it is a noninvertible system since 2M +  
J 
J C + K 
 
 
 
 
is singular (by  
definition of J).  
Many methods were proposed in the literature to solve or circumvent this  
difficulty. Among them, two types of methods emergent: methods of projection on basis  
modal incomplete [bib4], [bib5] and algebraic methods [bib6], each one of them with theirs  
alternatives. These methods are presented in [bib1]. The algebraic methods are methods  
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exact which, moreover, does not require the other clean vectors to calculate the derivative of one  
clean vector given. One presents only one algebraic method here consisting in adding one  
equation with [éq 3.2.1-1] to obtain a regular and symmetrical system to solve [bib6].  
 
The rewriting of the condition of orthonormality [éq 3.1-4] gives:  
 
T (2 jM +) 
C  
J 
J = 1  
éq  
3.3.1-1  
 
The derivation of this equation compared to the parameter p leads to:  
 
 
1 
 
MR. C 
T ( 
J 
T 
J 
2 
 
 
jM +) 
C 
+  
2 
M +  
+ 
 
J 
J 
J 
J = 0 
 
éq  
3.3.1-2  
p 
2 
p 
p p  
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The equations [éq 3.2.1-1] and [éq 3.3.1-2] can be rewritten together:  
 
(2 
 
M + C + 
 
J 
J 
K) (  
2 M + 
J 
C) 
 
J  
 
J  
 
 
p 
 
T 
J (  
2 M + 
J 
C) 
 
= 
 
 
0 
 
 
 
0  
 
 
 
2 M 
C  
- (  
 
2 M + 
K 
J 
C) 
J 
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-  
+  
+ 
 
 
J 
 
J 
J 
 
J 
p 
 
p 
p 
p  
 
 
1 
 
 
 
T 
J 
MR. C  
- 2 
M +  
+ 
 
 
 
J  
J 
 
 
J 
2 
p 
p 
p 
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éq 3.3.1-3  
 
The resolution of the system [éq 3.3.1-3] is the key idea of the algebraic method. It can be shown that  
J 
this system is always regular. The derivative of the clean vectors can be obtained  
p 
directly by solving this system of dimensions (  
N +) 
1 × (  
N +) 
1 with a factorization LDLT  
for example.  
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The algebraic method preserves the structure in band and the symmetry of the matrices. Moreover, for  
to calculate the derivative of a clean vector, only the knowledge of this clean vector and value  
clean corresponding is necessary. Indeed, [éq 3.3.1-3] does not utilize the other vectors  
clean that that to derive.  
 
However, the algebraic method requires the resolution of a system of size (  
N +) 
1 × (  
N +) 
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1  
different for each vector suitable to derive and each parameter.  
 
3.3.2 The case of the multiple eigenvalues  
 
[ 
X] 
Taking again the notations of the paragraph [§3.2.2], the derivative of the clean vectors “adjacent”  
p 
[X] = [m] T are solutions of the equation [éq 3.2.2-5].  
 
The matrix (2M +  
m 
mC + K) being singular, one cannot solve [éq 3.2.2-5] directly.  
[ 
X] 
The idea, still, is to add an additional equation for.  
p 
 
The condition of standardization of [X] is written:  
 
T (2 jM +) 
C  
J 
J = 1  
éq  
3.3.2-1  
 
The derivative of [éq 3.3.2-1] gives the sought additional equation:  
 
[ 
X 
M 
 
1 
C 
X] T (2 M 
T 
T 
m 
T 
m  
+ ) [ ] 
C 

file:///Z|/process/refer/refer/p1010.htm (9 of 34)10/2/2006 2:52:56 PM



file:///Z|/process/refer/refer/p1010.htm

= [ 
- X] 
[X] - [X] 
[ 
MR. X] 
- [X] 
[X] 
m 
 
éq 3.3.2-2  
p 
p 
p 
2 
p 
 
[éq 3.2.2-5] and [éq 3.3.2-2] form the following system to solve:  
 
(2 
 
M + C + K 
m 
m 
) (2 M+C 
m 
) [X] [X] 
 
 
 
p 
 
[X] T (  
2 
M + C 
m 
) 
 
= 
0 
 
 
 
0  
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2  
 
 
 
 
- (  
2 
M + C 
m 
)[ ] 
 
m - 
M 
X 
 
+ 
C 
 
+ K 
m 
m 
[X] 
 
 
 
 
 
p 
 
p 
p 
p  
 
T M 
T 
m 1 T C 
- [X] 
[X] - 
m 
[X] M [X] 
- [X] 
[X]  
 
p 
p 
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2 
p 
 
éq 3.3.2-3  
 
The system [éq 3.3.2-3] to solve is of dimension (  
N +) 
m × (  
N +) 
Mr. to calculate the derivative of one  
clean vector, the knowledge of the clean vectors associated the eigenvalue is necessary.  
 
As for the case of the nonmultiple eigenvalues, the structure in band and the symmetry of  
matrices are preserved and it can be shown that the system to be solved is always regular. Of  
more, the system must be solved for each vector suitable to derive and each parameter.  
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3.3.3 Establishment by the finite element method  
 
In the equations [éq 3.3.1-3] and [éq 3.3.2-3], the second members can be calculated either in  
MR. K 
C 
assembling the matrices initially,  
and  
then by carrying out matric operations, that is to say  
p 
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p 
p 
by directly calculating the various terms on an elementary level.  
 
 
 
 
 
A direct calculation at the elementary level being more powerful, 2 M 
C 
K 
+  
+ 
 
 
 
, by  
p 
p 
p  
example, will be calculated on an elementary level by (cf [§3.2.3] for the notations):  
 
 
 
2 
(( 
E 
)) (T 
) ( ) +  
(C ( 
E 
)) (T 
) ( 
G 
) 
 
G 
G 
G 
G 
p 
 
has 
G 
G 
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G 
p 
éq  
3.3.3-1  
T  
+  
E 
E 
E 
G ((G)) 
(H (G) () () ( 
G 
G)) 
p 
 
 
 
4  
Derived compared to a variation from field  
 
The matric equation [éq 3.1-1] uses an explicit dependence of the matrices of mass,  
of damping, and stiffness compared to the variable parameter p. When it is a question of deriving by  
report/ratio with a variation of field, one cannot in the case general write this dependence  
directly. In this case, obtaining derived from the dynamic sizes requires a work  
precondition. It is necessary on the one hand to describe the variation of field in a mathematical form 
which one can  
to handle, and in addition to return to the variational formulation of the equations of dynamics that  
one derives directly.  
 
This chapter discusses these various items. One gives in particular the derivative of the various 
operators  
of mass, stiffness necessary to the calculations of derived from all the dynamic sizes. One  
limit then with the calculation of derived from the Eigen frequencies and clean vectors. One limits 
oneself to  
conservative problem and thus with the real clean modes.  
 
 
4.1  
Variational formulation of the standard problem  
 
One considers an elastic solid on a field, subjected to surface static loadings  
F and voluminal F. In variational form, the problem of balance is written:  
 
To find U 
V0  
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:  
that 
 
such 
éq  
4.1-1  
With (U): (v)  
D = f.v  
D + F.v  
D 
v  
 
 
 
V0 
F 
where A is the tensor of elasticity, (U) the linearized traditional tensor of the deformations and V0 
space  
3 
of Sobolev of (H1 ()) displacements kinematically acceptable.  
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The clean modes around this balance are obtained by the resolution of the following spectral 
problem:  
 
To find 
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real 
 
clean 
 
frequency 
 
 
 
> 0 
W 
 
mode 
 
 
 
and 
V 
:  
that 
 
such 
 
no one 
 
not 
éq  
4.1-2  
With (W): (v)  
D + W (U) 
2 
: v  
D -  
w.v 
 
 
D = 0 
v  
 
 
 
V0 
 
(notation: if A and B are two tensors of order 2, A B 
is the contracted product of A and B)  

file:///Z|/process/refer/refer/p1010.htm (16 of 34)10/2/2006 2:52:56 PM



file:///Z|/process/refer/refer/p1010.htm

 
where is a parameter of possible amplification of the solution of [éq 4.1-1] for the loadings  
statics above, is the tensor of the constraints given by (U) = 
 
With (U) and masses it  
voluminal of material considered.  
 
This problem can be rewritten by using the following traditional multilinear operators:  
 
·  
elastic operator of stiffness has (W, v) = 
With (W): (v) D 
 
 
·  
geometrical operator of stiffness B (U, W, v) = 
W 
(U): vd 
 
 
 
 
= 
(U) W  
 
 
ik 
L I, 
kl (v) D  
 
·  
operator of mass C (W, v) = 
W. vd 
 
 
 
 
in the form:  
 
To find 
 
 
reality 
 
 
 
> 0 and W V0 
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:  
that 
 
such 
 
no one 
 
not 
 
has (W, v) + B 
(U, W, v) - 2 
C (W v 
,) = 0 v V  
éq  
4.1-3  
 
0 
 
 
C (W W 
,) = 1 
 
4.2  
Description of the variation of field and form of derivation  
 
One considers now that the field is likely to change form, by a variation  
of its edge (not included/understood the edge where are applied imposed displacements). To describe 
this  
variation, one uses a bijective transformation making correspond the area of reference (that  
that one nets) with the field modified (representation known as Lagrangienne of variation of field,  
cf [R7.02.04]).  
 
The edge of the field ( 
) is controlled by the scalar (such as ( 
) 
0 =), according to the field of  
vectors.  
 
The derivative of a field of vector X compared to a variation of field can be now written  
like the Lagrangian derivative, which one will note with a point (cf [R4.03.01]):  
 
 
& 
X 
D 
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X 
X = 
= 
+ X  
éq  
4.2-1  
D 
 
=0 
=0 
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And, the derivative of the gradient of X is written:  
 
D () 
X 
dX 
=  
-  
X  
éq  
4.2-2  
D 
D 
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The derivation of the operators of mass and stiffnesses [§4.1] requires the derivation of sizes  
integrals whose field of integration depends on the scalar. These integral sizes are  
form:  
 
I (U () 
=  
(E ((U)) 
( ) 
D éq  
4.2-3  
 
where ( 
U) is the solution of the problem of balance [éq 4.1-1] on the field ( 
) .  
 
This integral for derived (theorem of Reynolds):  
 
 
 
dI 
 
( 
of (( 
U) 
) 
 
(U) = (E (U))div + 
D éq  
4.2-4  
D 
 
D 
=0 
 
 
 
=0 
The derivative intervening in the intégrande is expressed:  
 
( 
of (U () 
) E D (U () 
 
= 
. 
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D 
 
D 
with  
 
D (U () 
 
() 
 
T 
T 
=  
- U - U éq  
4.2-5  
D 
D  
 
Note:  
 
Implicitly, in the continuation the derivative will be taken in = 0.  
 
 
4.3  
Derivation of the variational formulation  
 
4.3.1 Derivation of the elastic operator of stiffness  
 
Using the symmetry of the tensor of elasticity, has (W, v) is also written:  
 
has (W, v) = 
With ( 
W): ( 
v) D 
 
éq  
4.3.1-1  
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The derivation of this expression and the use of [éq 4.2-4] give:  
 
D ( 
 
dA W 
D v  
has (W, v)) 
( ) 
( ) 
= A ( 
W): ( 
v) div + 
: ( 
v) + A ( 
W): 
D éq  
4.3.1-2  
D 
 
D 
D  
 
With ( 
W) 
( 
W) 
v 
By [éq 4.2-5], and knowing  
= A 
= 0 
 
and  
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, [éq 4.3.1-2] becomes:  
 
D ( 
W 
has (W, v)) 
 
= 
 
With (W): (v) 
D  
div +  
With 
: (v) -  
With (W): (v) 
 
 
 
 
 
D 
 
D  
éq  
4.3.1-3  
- A (W): (v  
) D 
 
that one can rewrite, by using amongst other things again the symmetry of the tensor of elasticity:  
 
D ( 
W 
has (W, v)) =  
D 
has ( 
, v) + a^ (W, v) 
D 
D 
éq  
4.3.1.-4  
with a^ (W, v) = 
(  
With (W): (v) div - (W)  
: v - (W): v  
) 
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D 
 
 
 
4.3.2 Derivation of the geometrical operator of stiffness  
 
In the same way, one obtains:  
 
D 
 
dw  
B U 
(, W, v) = (W U 
(): v) div 
U 
(): v 
W 
U 
(): v 
 
 
+  
 
-  
 
 
 
 
 
 
 
 
D 
 
D  
 
 
 
+ W  
With 
: v - W  
With U  
: v - W U 
(): v  
D 
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D  
 
éq 4.3.2-1  
 
that one can rewrite:  
 
D 
 
dw 
B (U, W, v) = B ( 
, W, v) + B (U, 
, v) + b$ (U, W, v) éq  
4.3.2-2  
D 
D 
D 
with:  
 
b^ U 
(, W, v) = 
(  
(W U 
(): v) div - W U 
(): v - W  
With U  
:  
 
v 
 
 
 
- W U 
(): v  
)  
D 
éq 4.3.2-3  
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In [éq 4.3.2-2], one sees that the calculation of derived from the geometrical operator of stiffness 
requires  
 
au préalable the derivative D of the solution of the problem of prestressed [éq 4.1-1].  
This problem of prestressing, which is thus to derive, is written:  
 
To find U V such as: has (, 
U v) = F. D 
v + F.D 
v = F (v) v  
 
V 
 
 
0 éq  
4.3.2-4  
F 
The derivation of this variational equation gives:  
 
 
D 
has 
, v = 
F (v) - a$ (, 
U v) 
 
éq  
4.3.2-5  
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D  
D 
with, by supposing that the forces F, F are independent of and:  
 
D F (v) = (f.v. (div) + (F.) .v) d+ 
F.v div - 
.n + F. .v 
 
 
 
((, N) ()) dS 
D 
F 
éq 4.3.2-6  
 
(The formula of derivation of the surface integral is given by proposal 4 of appendix 2 of  
[R4.03.01]).  
 
The resolution of the linear system associated [éq 4.3.2-5] giving D has the same matrix of  
rigidity that the problem of standard prestressing, only the second member changes. Code_Aster 
solves  
this problem in deformations plane and 2D-axisymmetric, cf [R4.03.01].  
 
 
4.3.3 Derivation of the operator of mass  
 
The derivation of the operator of mass gives:  
 
D ( 
 
dw 
C, 
v W) = 
v.w 
+ . ( 
v.w) +  
 
div 
v. 
D  
D 
 
D  
 
that one can rewrite:  
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D ( 
W 
C (W, v)) = D 
C ( 
, v) + c^ (W, v) 
D 
D  
éq  
4.3.3-1  
with c^ (, 
v W) = 
(v.w 
 
div +. (v.w) 
 
 
D 
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4.3.4 Derivation of the variational formulation of the problem of modal analysis  
 
Derivation in = 0 of the problem [éq 4.1-3] of calculation of the clean modes on ( 
), brought back on  
( 
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) 
0 =, the parameter of initial loading being fixed, gives now:  
 
To find 
 
reality 
 
 
 
& 
 
W 
 
and 
 
& V 
: 
 
that 
 
such 
 
has (w& v,) + ^a (W v,) + (B (&, uw v,) + B (U w& v,) + ^ 
, 
B (, 
U W v 
, )) 
 
éq  
4.3.4-1  
 
- 
(2 &c 
(W v 
,) + (C (w& v 
,) + ^c (W v 
,) = 0v V 
2c (w& W 
,) + ^c (W W 
, ) 
 
= 0 
 
4.3.5 Obtaining derived from the Eigen frequencies and the clean modes  
 
In a preoccupation with a simplification, we suppose here who the eigenvalue of the mode which one 
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drift is  
simple. The case of a multiple eigenvalue results from the adaptation of the developments from  
paragraphs [§3.2.2] and [§3.3.2].  
 
has 
 
( , 
W w&) + ( 
B U, 
W w&) - 2 ( 
C, 
W w&) = 0 
While using  
and while taking v = W in [éq 4.3.4-1], one  
 
 
(C, 
W W) = 1 
obtains the following expression of derived from the own pulsation:  
 
$a (, 
W W) + (( 
B &u, 
W W) + $b (U, 
W W) - 2 $c (, 
W W) 
& = 
éq  
4.3.5-1  
2 
 
Obtaining [éq 4.3.5-1] is to be brought closer that of [éq 3.2.1-2], except for standardization. In  
cases of eigenvalues multiple, the choice v = W condition the calculated directional derivative.  
[éq 4.3.4-1] gives the following linear system:  
 
has (&, 
W v) + ( 
B U, &, 
W v) - 2 ( 
C &, 
W v) = - a$ (, 
W v) - (( 
B &u, 
W v) + b$ (U, 
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W v) éq  
4.3.5-2  
+ (2 & ( 
C, 
W v) + c$ (, 
W v)) 
 
This system is same form as the system [éq 3.2.1-1]. It must be solved same manner,  
for example by using the addition of the equality ( 
C &, 
W W) = - 1 c$ (, 
W W).  
2 
 
4.3.6 Establishment by the finite element method  
 
In a way similar to the preceding chapters, terms of the second members [éq 4.3.5-1] and  
[éq 4.3.5-2] can be calculated, either directly on an elementary level, or after assembly  
matrices of mass, stiffness and damping.  
In addition, of new procedures of elementary calculations must be developed for  
calculations of $a (, 
W v) (this term A already was developed in deformations plane and 2D-axisymmetric,  
D 
cf [R4.03.01]), $ 
B (U, 
W v), $c (, 
W v), and  
F (v).  
D 
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5  
Effective establishment in Code_Aster  
 
The numerical calculation of derived from the clean modes or the dynamic responses proceeds in  
two principal stages:  
 
·  
stage 1: calculation of the elementary terms constituting the new terms (often in  
second member) associated the calculation of the derivative,  
·  
stage 2: resolution of the derived problem. The calculation of derived from the clean modes requires  
the use of specific algorithms different from those used to solve the problem  
standard. The calculation of derived from the other sizes, i.e. Eigen frequencies and  
the dynamic responses, re-uses the standard algorithm by modifying some terms (in  
general second members of the systems to be solved).  
 
Sensitivities of the other dynamic sizes (forced, efforts…) require a third  
stage which consists of the derivation of calculations of “postprocessing”. We do not treat these  
sizes in this document.  
 
The following table recapitulates the derivative available in Code_Aster. It is updated at the fur and at  
measure developments of the derivatives.  
 
Sizes and methods  
Operators, and operands private individuals (i.e. Established  
data necessary to the method of  
calculation)  
Derived from a dynamic response  
 
 
harmonic  
Direct method  
DYNA_LINE_HARM  
YES  
Simple modal method  
DYNA_LINE_HARM  
NOT  
clean vectors and derived clean vectors 
Double modal method  
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DYNA_LINE_HARM  
NOT  
clean vectors  
Derived from a dynamic response  
 
 
temporal into linear  
Direct method  
DYNA_LINE_TRAN  
YES  
Simple modal method  
DYNA_TRAN_MODAL  
NOT  
clean vectors and derived clean vectors 
Double modal method  
DYNA_TRAN_MODAL  
NOT  
clean vectors  
Derived from a dynamic response  
standard loading Dirichlet  
NOT  
temporal into nonlinear  
DYNA_NON_LINE  
for some laws of behavior  
YES  
Derived from an Eigen frequency  
simple modes  
YES  
MODE_ITER_SIMULT, MODE_ITER_INV  
multiple modes  
NOT  
Derived from a clean mode  
simple modes  
YES  
MODE_ITER_SIMULT, MODE_ITER_INV  
multiple modes  
NOT  
Derived compared to a variation  
* NOT  
of field  
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1 General information  
 
Uncertainties, even when they are reduced, can change the prediction significantly of  
vibratory behavior of the structure ([bib13], [bib16]). It is thus necessary to take them in  
hope in a quantifiable and explicit way to increase the realism and the robustness of  
forecasts. In this context, a probabilistic model of uncertainties contributes to the realism of  
step.  
 
The probabilistic approach traditional, known as parametric, makes it possible to incorporate in the 
mechanical analysis them  
uncertainties on the data, i.e parametric uncertainties on the geometry, conditions with  
limits or properties of materials. In this approach, each parameter identified like  
source of random uncertainties is modelled by a random variable. Parameters of entry of  
model being thus characterized, the probabilistic numerical methods seek to characterize  
probabilistic way the results quantities of the model. For complex structures, for  
which the vibratory behavior depends on a great number of parameters, this type of analysis  
probabilist is limited by the great quantity of information necessary to characterize them  
parameters of entry and difficulties of implementation of the propagation of variability.  
 
A new approach, known as nonparametric probabilistic approach of random uncertainties in  
dynamics of the structures was recently proposed by C. Soize ([bib20] with [bib24]). This approach  
allows to take into account uncertainties of model (uncertainties on the geometry for example) and  
uncertainties of modeling (uncertainties on the kinematics of beam or plate for example).  
It is based on the construction of random matrices of the linear dynamic systems, afterwards  
projection on modal basis.  
 
These two probabilistic approaches, one parametric and the other nonparametric, are  
complementary. Thus a mixed, parametric and nonparametric approach, can be is  
developed (original method having given place to publications ([bib6] and [bib11]). In particular,  
this mixed method is well adapted to the taking into account of uncertainties in the analysis of a 
system  
nonlinear dynamics composed of a structure linaire reduced on modal basis and of non-linearities  
located. Indeed, uncertainties on the level of the linear structure can be treated  
naturally by the nonparametric approach and uncertainties on non-linearities can be  
treated naturally by the parametric approach.  
 
The basic digital model of the nonlinear dynamic system is a model finite elements which  
will be called “model fine elements means”. That it is about the parametric approach or not  
parametric, the laws of probability must be defined in an adequate way and most objectively  
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possible starting from this average model. A Gaussian model of the matrices random is not adapted to  
dynamics in low frequency (negative Eigen frequencies). In order to build the law of  
corresponding probability, one uses the principle of the maximum of entropy of Jayne ([bib14], 
[bib15],  
[bib17]) as well as information available (model fine elements means, algebraic properties of  
matrices, etc)  
 
In this document, we present the nonparametric approach for transient resolutions or  
harmonic of the dynamic system. The parametric approach is more particularly presented  
if it combined with the non-parametric method.  
 
The readers seeking the fundamental results of stochastic dynamics will be able to refer to  
[18] and readers seeking the theoretical details of the probabilistic approach presented in it  
document will be able to refer to [bib19]. Examples of uses of the approach are given in  
[bib5], and [bib7]. In [bib10], experimental tests made it possible to show the predictive character of  
approach.  
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2  
Modelings of the dynamic system  
 
2.1  
Average model finite elements  
 
2.1.1 Transitory resolution in absolute co-ordinates  
 
In the absolute reference mark, the mechanical system is modelled by the method with the finite 
elements. It  
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basic model (in general that which would have been used in the deterministic study) is indicated under  
name of “average model finite elements”. All the sizes relating to the average models are  
underlined.  
 
That is to say T 
y (T) 
has 
the transitory response in the absolute reference mark of the “model finite elements average” definite  
on the interval of study [0, T] and at value in K 
R where K is the number of d.d.l. Matrices of mass,  
of damping and rigidity are respectively noted [M], [D] and [K].  
The transitory answer y (T) of the “average model finite elements” checks the differential equation not  
linear discretized following:  
 
[M] y&& (T) + [D] y& (T) + [K] y (T) + F (T, y (T), y& (T); W) = F (T), T [0, T], éq  
2.1.1-1  
C 
 
with the initial conditions,  
y (0) = y& (0) = 0, éq  
2.1.1-2  
 
1) F (T) m 
R represents the discretization by finite elements of the external forces.  
2) F (T, y (T), y (T), W) 
C 
& 
m 
R corresponds to nonthe localised linearities (for example due to  
butted elastic of shock). The elements W, 
, W of the vector W  
R represent a play  
1 L 
 
parameters defining these nonlinearities (for example play, stiffness of shock,  
damping of shock, etc).  
 
2.1.2 Transitory resolution in relative co-ordinates (seism)  
 
As in the transitory case in absolute co-ordinates, the mechanical system is modelled by one  
basic model, the “average model finite elements”.  
T is noted 
(T) 
Z has 

file:///Z|/process/refer/refer/p1020.htm (9 of 18)10/2/2006 2:52:57 PM



file:///Z|/process/refer/refer/p1020.htm

the transitory response in absolute co-ordinates of this model on the interval  
of study [0, T] with value in K 
R (attention: notice the change of notation compared to  
preceding paragraph.).  
 
Transitory answer Z (T) = (Z (T), Z (T)) “average model finite elements” checks the equation  
S 
following discretized nonlinear differential:  
 
[M] 
[M] Z ( 
&& T) [D] 
[D] z& (T) [K] [K] Z (T)  
ls 
ls 
ls 
 
 
+  
 
+ 
[M] T 
[M] z&& (T) [ 
D] T [D] z& (T) 
[ 
 
K] T [K]  
Z (T) 
 
ls 
S 
S 
ls 
S 
S 
ls 
S 
S 
 
F (T, Z (T), z& (T); W) G (T)  
C 
+  
=  
, T [0, T], éq  
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2.1.2-1  
0 
G (T) 
 
D 
 
 
S 
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with the initial conditions,  
Z (0) = z& (0), Z (0) = z& (0),  
 
 
 
 
éq 2.1.2-2  
S 
S 
1) G (T) m 
R represents the discretization by finite elements of the external forces and  
G (T) D 
R corresponds to the discretization of the forces of reaction due to D conditions of  
S 
Dirichlet Z (T).  
S 
2) F (T, Z (T), z& (T); W) m  
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R corresponds to nonthe linearities located with like  
C 
previously W  
R representing a set of parameters defining these nonlinearities.  
 
After static raising, matric equations [éq 2.1.2-1] and [éq 2.1.2-2] in the absolute reference mark  
are rewritten in “relative” co-ordinates:  
[M] y&& (T) + [D] y& (T) + [K] y (T) + F (T, y (T), y& (T); W) = F (T), T [0, T], éq  
2.1.2-3  
C 
y (0) = y& (0) = 0,  
éq  
2.1.2-4  
1) y (T) m 
R is the vector of the free d.d.l in the “relative” frame of reference such as  
Z (T) = y (T) + [R] Z (T) with  
1 
[R] 
[ ]- 
= - K [K].  
S 
 
ls 
2)  
function T 
F (T) 
has 
defined on [0, T] and in value in m 
R and the nonlinear application  
(X, y) F 
has 
m 
R × m 
R in m 
R are such as  
C (T, X, y; W) 
F (T) = G (T) - ([M] [R] + [M]) Z ( 
&& T) - ([D] [R] + [D]) z& (T), éq  
2.1.2-5  
ls 
ls 
F 
= F 
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+ 
+ 
 
éq  
2.1.2-6  
C (T, X, y; W) 
C (T, X 
[R] zs (T), y [R] z&s (T); W). 
 
Note:  
 
1) In the continuation, according to whether or not a static raising were carried out, y (T) corresponds  
 
either with the transitory response in absolute co-ordinates defined by [§ 2.1.1], or  
transitory response in “relative” co-ordinates defined by [§ 2.1.2].  
2) It is supposed that if D conditions of Dirichlet were homogeneous no movement  
rigid body could not occur. Consequently, [K] is symmetrical defined  
positive and its reverse [K] - 1 is defined, which makes it possible to introduce the real matrix  
1 
[R] 
[ ]- 
= - K [K] of dimension (m× D).  
ls 
3) In Code_Aster the term of damping in [éq 2.1.2-5] is neglected.  
 
 
2.1.3 Resolution  
harmonic  
 
As in the transitory case, the mechanical system is modelled by a basic model, it  
“average model finite elements”. On a frequential tape [, the harmonic answer Q ()  
1 
2 ] 
linear “model finite elements average” checks the following equation:  
(- 2 
[M] + I [D] + [K]) Q () = F (), [, éq  
2.1.3-1  
1 
2 ] 
with F () representing the discretization by finite elements of the external forces.  
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2.2  
Average reduced matric model  
 
It is supposed that the energy of vibration of the dynamic response is mainly localised in  
field of the low frequencies. One can thus build the average matric model reduced in  
projecting y (T) or y () on under clean space generated by N first modes of the system  
dynamics linear (infinite plays) conservative homogeneous (blocked supports) associated which is 
written,  
 
[K] = [M]. éq  
2.2-1  
 
The matrices [M] and [K] being definite positive (for [K] cf notices 2 [§ 2.1.2]), values  
clean,  
L are real and positive,  
1 
N 
0 < L. éq  
2.2-2  
1 
2 
N 
The clean modes of vibration associated {, L} check the properties of orthogonality,  
1 
2 
< [M], > = µ, éq  
2.2-3  
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< [K], > =  
2 
µ,  
éq  
2.2-4  
 
 
 
 
with  
=  
 
.  
 
 
 
 
 
 
 
 
 
éq 2.2-5  
 
One respectively notes the matrix of generalized mass, the matrix of generalized stiffness and  
stamp damping generalized by:  
 
[M] 
 
[M] [], éq  
2.2-6  
N = [ 
] T 
N 
N 
[K] 
 
[K] [], éq  
2.2-7  
N = [ 
] T 
N 
N 
[D] 
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[D] [],  
éq  
2.2-8  
N = [ 
] T 
N 
N 
 
2.2.1 Resolution in transient  
 
Projection N 
y (T) of y (T) on under space generated by N first modes of the system  
 
homogeneous dynamics linear conservative associated is written:  
N 
N 
y (T) = [] N 
Q (T) 
N 
= Q (T),  
éq  
2.2.1-1  
N 
 
 
1 
= 
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Generalized displacements N 
Q (T) are solutions of the average reduced matric model (system  
 
dynamics not linaire),  
[M] N 
Q 
&& (T) + [D] N 
q& (T) + [K] N 
Q (T) + N 
F (T, N 
Q (T), N 
q& (T); W) = N 
F (T), éq 2.2.1-2  
N 
N 
N 
C 
N 
q& (0) 
N 
= Q (0) = 0,  
éq  
2.2.1-3  
with  
N 
F (T) = [] T F (T),  
éq  
2.2.1-4  
N 
Fn 
= [] T F (T, [] Q, [] p; W). éq  
2.2.1-5  
C (T, Q, p; W) 
N 
C 
N 
N 
 
2.2.2 Resolution in harmonic  
 
Projection N 
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y () of y () on under space generated by N first modes of the system  
 
homogeneous dynamics linear conservative associated is written  
 
N 
Q () = [] T F (),  
éq  
2.2.2-1  
N 
Generalized displacements N 
Q () are solutions of the model matric average tiny room  
 
(- 2 
[M] + I [D] [K) N 
Q () = N 
F () éq 2.2.2-2  
N 
N +  
] 
N 
with  
N 
F () = [] T F (), éq  
2.2.2-3  
N 
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3 Model  
probabilist  
 
 
3.1  
Introduction of the probabilistic model into the dynamic problem  
 
In order to take into account uncertainties of modeling and uncertainties on the data, one  
parametric nonparametric mixed formulation probabilistic is used. For that, the vector of N  
d.d.l generalized N 
Q (T) (resp. N 
Q ()) is replaced by a random variable N 
Q (T)  
(resp.  
N 
Q ()).  
 
In transient, the stochastic process  
N 
T 
Q (T) 
has 
indexed by [0, T] and with value in N 
R is  
solution of the nonlinear dynamic system,  
[M] N 
Q& 
+ D Q& 
+ K Q 
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+ F 
Q 
Q& 
W = F 
 
éq  
3.1-1  
N 
(T) [] N 
N 
(T) [] N 
N 
(T) nc (T, N (T), N (T); ) N (T), 
N 
Q (0) 
N 
= Q& (0) = 0,  
 
 
 
 
 
 
 
 
éq 3.1-2  
and in harmonic, the stochastic process T 
N 
Q ( 
has 
) indexed on [, and with value in N 
R  
1 
2 ] 
is solution of the system:  
(- 2 
[M + I [D + [K) N 
Q () = N 
F (),  
éq  
3.1-3  
N] 
N] 
N] 
where, in the two transitory and harmonic cases, [M], [D] and [K] are real matrices  
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N 
N 
N 
symmetrical definite positive full random and where W is a random variable with value in  
R.  
The introduction of random matrices into the equations [éq 3.1-1] and [éq 3.1-3] makes it possible to 
model  
the random uncertainties associated the linear part of the dynamic system. The random variable  
W with vectorial value introduced into the equation [éq 3.1-1] makes it possible to model uncertainties  
random concerning the parameters of nonthe linearities of shock.  
 
The parametric probabilistic approach and the nonparametric probabilistic approach introduce  
random matrices ([M], [D] and [K]) and a random variable W of which laws of probability  
N 
N 
N 
are a priori nonknown. The choice of a probabilistic model rather than another must rest  
only on information available (algebraic properties of the generalized matrices, values  
averages of the parameters and the generalized matrices, etc). In order to build the laws objectively  
of probability of the probabilistic model of uncertainties, ([bib20] with [bib24]), the principle of the 
maximum  
of entropy ([bib14], [bib15], [bib17]) is used with a system of constraints defined by this  
information available. Information available and the probabilistic model which results from this are 
presented  
in the next paragraph.  
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3.2 Probabilistic model for the matrices of the dynamic system  
(nonparametric uncertainties)  
 
3.2.1 Information available on the matrices of the dynamic system  
 
The nonparametric probabilistic model is built in substituent the matrices [M], [K] and  
N 
N 
[D] by respectively noted random matrices [M], [K] and [D]. So that the system  
N 
N 
N 
N 
probabilistic dynamics thus built either mechanically and statistically correct, construction  
random matrices [M], [K] and [D] must be such as:  
N 
N 
N 
 
 
1) [M], [K] and [D] is of the random variables of the second order with values in  
N 
N 
N 
the whole of the positive definite real matrices symmetrical and dimension (N × N).  
 
[M], [K] and [D]  
+ 
M P.S. (almost surely),  
éq  
3.2.1-1  
N 
N 
N 
N 
 
where  
+ 
M is the whole of the positive definite symmetrical matrices real of dimension  
N 
(N × N).  
This algebraic property is absolutely required to have a random model of equation which  
corresponds to that of a dynamic system of the second deadened order.  
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2) Average values of the random matrices [M], [K] and [D] are respectively  
N 
N 
N 
[M], [K] and [D]:  
N 
N 
N 
E [ 
{M = M, E [{K = K and E [{D = D, éq 3.2.1-2  
N]} 
[N] 
N]} 
[N] 
N]} 
[N] 
where E indicates the expectation.  
 
3) So that the solution of the probabilistic dynamic system is also a variable of the second  
order, one imposes on the moments of the second order standards of Frobenius of the matrices  
opposite  
1 
[M] -,  
1 
[K] - and  
1 
[D] - to be finished:  
N 
N 
N 
 
E {|| [M] - 1 || 2} < +, E {|| [K] -1 || 2} < +, E {|| [D] - 1 || 2} < +, éq 3.2.1-3  
N 
F 
N 
F 
N 
F 
1/ 
with [] 
With 
= (tr [{] 
WITH [] T 
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With 
.  
F 
}) 2 
 
Note:  
 
The only property of positivity of the matrices is not enough and only their opposite should be secured  
are of the second order, from where (3 (a random variable of the second order almost surely  
invertible in the case general a random variable does not have reverses of the second order). For  
details to see more [bib19].  
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3.2.2 Construction of the probabilistic model by the principle of the maximum of entropy  
 
The entropy “measures” the level of uncertainty of a law of probability. Thus, if p 
is related to  
[A] 
density of probability corresponding to a random matrix [A] (representing the matrices [M],  
N 
[K] or [D]) of law given, then the entropy (or probabilistic uncertainty) S (p) of p is defined  
N 
N 
[A] 
[A] 
by:  
~ 
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S (p) 
,  
éq  
3.2.2-1  
With 
= - 
p ([A]) ln (p ([A])) dA 
[ ] 
M+ [A]  
[A] 
N 
The principle of the maximum of entropy of Jayne consists in building the function of density of 
probability  
who maximizes the probabilistic entropy S (p 
) while checking a system of constraints. In the case  
[A] 
present, the system of constraints is defined by information available corresponding to the equations  
[éq 3.2.1-1] with [éq 3.2.1-3]. For the random matrix [A], this system of constraints is written  
+ 
[A] M P.S., E {[A} 
] = [ ] 
WITH, E {|| [A] - 1 || 2} < +.  
éq 3.2.2-2  
N 
F 
It is shown whereas the random matrix [A] is such as (see [bib20] with [bib24])  
[A] = [L] T [G] [L],  
éq  
3.2.2-3  
With 
With 
With 
where [L] 
A is the lower triangular matrix resulting from the factorization of Cholesky of the matrix  
average [] 
With and where the function of density of probability of the random matrix [G] is defined on  
With 
~ 
the unit  
+ 
M compared to dG measurement such as:  
N 
~ 
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N (N 
dG 
- 
= 
) 
1/4 
2 
 
dG,  
éq  
3.2.2-4  
 
1 I jn 
ij 
1 
( 
2 
-) (2 2 
) 1 
- (n+) 
1 
- (n+) ( 
1 2 2 
) 1 
- tr [G] 
With 
With 
With 
p 
([G]) = 1 
, éq  
3.2.2-5  
G 
× 
× 
× 
+ ([G]) 
C 
(det [G]) 
E 
[ 
] 
G 
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With 
M 
With 
N 
with  
2 
1 
N (n+) ( 
1 2 )- 
With 
 
- 
- 
+  
N (N) 
1/4 
N 1 
(2 ) 
 
 
2 
2 
 
 
With 
C 
 
= 
,  
éq  
3.2.2-6  
GA 
N + 
- J 
N 
=  
J 1 
(1 1 
+ 
) 
2 2 
 
2 
With 
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where  
(Z) = + z-1 - T 
T 
E dt,  
éq  
3.2.2-7  
0 
and where 1 
M 
 
+ is the indicating function of  
+, and where the parameter  
controlling the dispersion of  
M 
N 
With 
N 
random matrix [A] is defined by:  
 
{[G 
G 
With] - [ 
To] 2 
E 
F} 1 2 
 
 
 
, éq  
3.2.2-8  
With =  
 
 
[GA] 
 
2 
 
F 
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The theoretical construction of the model provides an acceptable terminal for the level of uncertainty 
introduced.  
A must be selected so that  
N 
1 
0 
0  
+ 
< 
< 
,  
éq  
3.2.2-9  
With 
N + 5 
0 
where N NR is a constant of the probabilistic model selected so that N < N.  
0 
0 
 
One shows moreover than, under the only constraints of the equations [éq 3.2.1-1] with [éq 3.2.1-3], it  
principle of the maximum of entropy leads so that random matrices [M], [K] or [D] are  
N 
N 
N  
statistically independent as a whole.  
 
This probabilistic model for the positive definite symmetrical matrices random real differs from  
more traditional models of the random matrices based on the Gaussian Sets and them  
circular sets (references in [bib19]). The orthogonal Gaussian unit used in addition  
for fields high frequencies would lead in the field low frequencies (in which one  
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places itself) at negative eigenvalues, which one cannot admit for the systems  
considered. Moreover, one matrix of the orthogonal Gaussian unit does not have in the case  
general an opposite matrix of the second order, which would lead to a solution of the dynamic system  
of infinite variance, which one cannot admit either.  
 
3.3 Probabilistic model for the real variables (uncertainties  
parametric)  
 
3.3.1 Information  
available on the real variables  
 
In the mixed probabilistic approach, parametric probabilistic modeling consists in substituting it  
parameter W of non-linearities in the nonlinear dynamic systems given by [éq 2.1.1-1]  
or [éq 2.1.2-3] by a noted random variable W = (W, 
1 K 
 
W 
, 
). In an approach purely  
parametric (i.e without making random the matrices of the system dynamic), modeling  
parametric probabilist consists in substituting certain parameters W of the matrices [M N (W)],  
[K 
Dn (W) 
N (W)] and [ 
] of the average dynamic system reduced by a random variable W. These  
parameters can be for example parameters of material.  
 
It is supposed that the components of W are independent real random variables enters  
they and independent of the random matrices of the dynamic system. In the continuation, to reduce  
the writing, one notes W an unspecified co-ordinate W J. The construction of the probabilistic model  
require to define the information available, which constitutes a system of constraint under which  
the entropy of the density of probability of the random variable W is maximized.  
 
Information available is as follows:  
 
 
1) The support of the random variable W is an interval D of  
R  
W D. 
p. 
S.  
éq  
3.3.1-1  
 
2) The average value of the random variable W is W:  
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E {W} = W.  
éq  
3.3.1-2  
 
3) Possibly, according to information indeed available, the moment of the second order of  
1 
- 
the random variable W 
is finished:  
E {2 
- 
W 
}<+.  
éq  
3.3.1-3  
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3.3.2 Construction of the probabilistic model by the principle of the maximum of entropy  
 
If p is related to density of probability corresponding to the random variable W then the entropy  
W 
(probabilistic uncertainty) S (p) of p is defined by:  
W 
W 
S (p) = - 
p (W) ln (p (W))dw,  
éq  
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3.3.2-1  
W 
+ W 
W 
- 
By using the principle of the maximum of entropy, one obtains three densities of probability 
according to nature  
support D and according to whether the constraint corresponding to the equation [éq 3.2.2-6] is 
considered or not.  
 
3.3.3 Closed support limited without information on the reverse  
 
If there are two real has and B such as D = [has, B] and Si information available is given by  
equations [éq 3.3.1-1] and [éq 3.2.2-5], then the random variable W follows a truncated exponential 
law  
whose function of density of probability is:  
 
K 
p () 
W = 1 
( ) 
W 
exp (-) 
kw  
 
 
 
 
 
éq 3.3.3-1  
W 
[has, +] 
(K) 
 
where 1 
is the indicating function of [has, B] 
 
and K are such as  
[has, B] 
and where (K) 
(K 
W -) 
1 (K) - K (K) = 0, éq  
3.3.3-2  
with  
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- ak 
- B K 
(K) = E - E,  
éq  
3.3.3-3  
and  
- ak 
- B K 
(K) = E - Be has. éq  
3.3.3-4  
 
3.3.4 Closed semi support not limited without information on the reverse  
 
If there is real A such as D = [has, + [ 
and if information available is given by the equations  
[éq 3.3.1-1] and [éq 3.3.1-2] then the random variable W follows an exponential law of which the 
function of  
density of probability is:  
1 
W - has 
p () 
W = 1 
( ) 
W 
exp (- 
), éq  
3.3.4-1  
W 
[has, +] 
W - has 
W - has 
where 1 
is the indicating function of [has, + [ 
.  
[0,+[  
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HT-66/03/005/A  

Code_Aster ®  
Version  
6.4  
 
Titrate:  

file:///Z|/process/refer/refer/p1030.htm (15 of 31)10/2/2006 2:52:58 PM



file:///Z|/process/refer/refer/p1030.htm

Parametric and not-parametric probabilistic models in dynamics Dates  
:  
06/05/03  
Author (S):  
S. CAMBIER, C. DESCELIERS Key  
:  
R4.03.05-A Page  
: 14/24  
 
 
3.3.5 Closed semi support not limited with information on the reverse  
 
If there is real A such as D = [has, + [ 
and if information available is given by the equations.  
[éq 3.3.1-1], [éq 3.3.1-2] and [éq 3.3.1-3], then the random variable W follows a law gamma of which  
function of density of probability is,  
2 
(  
W 
- 
2 -1/ 
has) 
2 
 
2 
2 
 
- 
(1 )/ 
W - has  
p () 
W 
1 
,  
éq 3.3.5-1  
W 
= 
( ) 
W 
(W has) 
exp - 
[has, +] 
- 
2 
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2  
1 
( / ) 
(W - has)  
where is a parameter controlling the level of uncertainty of the random variable which is written W (  
way similar to the nonparametric case [éq 3.2.2-8]):  
 
({W - W) 2 
E 
} 1/2 
 
=  
, éq  
3.3.5-2  
2 
 
W 
 
 
 
3.4 Construction of the stochastic answer and the statistics  
associated  
 
3.4.1 Case  
transient  
 
Stochastic 3.4.1.1 transitory Answer  
 
The excitations of the dynamic system are supposed to be deterministic, but in the paragraph [§3.1], 
of  
matrices and of the random parameters were introduced into the reduced matric model. Therefore,  
transitory answer  
N 
T 
Q (T) 
has 
is a nonstationary stochastic process indexed by [0, T] with  
value in  
N 
R (by using some additional assumptions of existence, unicity and of  
regularity of the deterministic solution, cf [bib19]).  
 
Consequently, with the vector of the m d.d.l free N 
y (T) corresponds the stochastic process  
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N 
Y (T) indexed by [0, T] and with value in m 
R such as  
N 
Y (T) = [] N 
N Q (T),  
éq  
3.4.1.1-1  
In the case of the passage in relative co-ordinates, with the stochastic process  
N 
T 
Y (T) 
has 
indexed by  
[0, T] and with value in m 
R defined by the equation [éq 3.4.1.1 - 1] corresponds the stochastic process  
N 
T 
Z (T) 
has 
free d.d.l of the structure in absolute co-ordinates indexed by [0, T] and with value  
in m 
R such as  
N 
Z (T) 
N 
= Y (T) + [R] Z (T).  
éq  
3.4.1.1-2  
S 
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3.4.1.2 elastic Spectrum of answer  
 
N is noted 
Z (T) the component jème of vector N 
Z (T) correspondent with a random realization of  
J 
stochastic response of the free jème d.d.l of the structure. N 
Z (T) perhaps characterized by its spectrum  
J 
of elastic answer (also called spectrum of oscillator in Doc. of Code_Aster) that one  
note S (,) where and  
J 
 
are respectively the associated rate of depreciation and the pulsation.  
With reasonable assumptions, in particular on the regularity of the nonlinear application  
(T, Q, p; W) Fn 
has 
N 
C (T, Q, p; W), one can show that Z (T) is a process of the second order of which  
the trajectories are almost surely continuous. Consequently, for very fixed in an interval  
J 
has  
given,  
S (,) is a stochastic process indexed on the tape of analysis J 
 
J 
with value  
in + 
R. It is admitted that this process is of the second order, i.e.:  
2 
{ 
E S (,)} < +,  
J. éq  
3.4.1.2-1  
J 
 
 
3.4.2 Case  
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harmonic  
 
In the paragraph [§3.1], random matrices and parameters were introduced into the model  
matric tiny room. The harmonic answer T 
N 
Q ( 
has 
) is thus a stochastic process indexed on  
[, with value in N 
R.  
1 
2 ] 
 
Consequently, with the vector of the m d.d.l free N 
y () corresponds the process  
stochastic  
N 
Y () 
 
indexed on [ 
, and with value in m 
R such as  
1 
2 ] 
N 
Y () = [] N 
N Q ()  
éq  
3.4.2-1  
N 
Y ( 
the component jème of the vector  
N 
Y () is a random variable which one will admit of the second  
J 
) 
order.  
 
 
3.4.3 Construction of the stochastic response by the Monte Carlo method  
 
3.4.3.1 Choice and implementation of the Monte Carlo method  
 
The answers and the spectra of answer correspond to strongly nonlinear transformations  
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random matrices and random parameters which result from probabilistic modeling from  
uncertainties. Moreover, one can of course build only numerical approximations as of these  
answers and of these spectra of answer. The statistics (first moments statistical, probability  
of going beyond of a threshold,…) are written formally like multiple integrals of very large  
dimension because the number of random variables of the probabilistic model is by construction high.  
Lastly, the number of sizes observed is very large (several ddl for several frequencies).  
For all these reasons, method the most adapted to calculate the probabilistic solution (answer  
stochastic and associated statistics) is the method of digital simulation of Monte Carlo.  
 
The method of simulation of Monte Carlo has the advantage of giving results which one can  
to control the precision (checking of convergence, cf [§ 4.1]), contrary to the majority of  
methods based on approximations. It can be expensive in computing times, but  
the use of the techniques of reduction of the variance can make it possible to reduce the number of  
simulations necessary (cf [bib8] or [bib9]).  
Handbook of Reference  
R4.03 booklet: Analyze sensitivity  
HT-66/03/005/A  

Code_Aster ®  
Version  
6.4  
 
Titrate:  
Parametric and not-parametric probabilistic models in dynamics Dates  
:  
06/05/03  
Author (S):  
S. CAMBIER, C. DESCELIERS Key  
:  
R4.03.05-A Page  
: 16/24  
 
 
The implementation of the Monte Carlo method consists for the problem which concerns us with  
to generate NS achievements of the random matrices [M], [K] and [D] of the dynamic system and/or  
N 
N 
N 
NS achievements of the vectorial random variable W. Resolutions of the dynamic system  
determinist for each NS achievements of ([M], [K], [D], W) produce N achievements  
N 
N 
N 
S 

file:///Z|/process/refer/refer/p1030.htm (21 of 31)10/2/2006 2:52:58 PM



file:///Z|/process/refer/refer/p1030.htm

stochastic process solution  
N 
T 
Q (T) 
has 
(resp. T 
N 
Q ( 
has 
)) and in consequence of  
N 
T 
Y (T) 
has 
, of  
N 
T 
Z (T) 
has 
has  
 
N 
and of  
S (,) (resp.  
Y ( 
has 
). The generation of the random matrices is  
J 
) 
J 
treated in the following paragraph; the generation of the random variable W is more traditional and 
is not  
not recalled.  
 
3.4.3.2 Generation of the pseudo-random matrices  
 
In order to generate the achievements of the random matrix [G A], the algebraic representation is 
used  
following of the random matrix [G A] of which the law of probability is defined by the equations  
[éq 3.2.1-2], [éq 3.2.2-1]:  
[G] [L] T 
With = 
[L], éq 3.4.3.2 - 1  
the triangular random matrix [L] being such as:  
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1) The random variables {[L] ij, I J} are independent.  
2) For  
I < J, the real random variables [L] ij are written [L] ij = N Uij where N = A (n+1) - 1/2 and  
where Uij is a Gaussian real random variable of average 0 and variance 1.  
3) For  
I = J, the real random variables [L] jj are written [L] jj = N (2 Vj) 1/2 where N is defined  
previously and where Vj is variable real positive random of law gamma of which the function of  
density of probability p (v) compared to measurement FD is written:  
v J 
1 
(v 
[0,+ 
) 
[ 
(n+) 
1/(2 2 
)+ - 
1 
( 
J)/2 - v 
With 
p (v) = 
v 
E,  
 
éq 3.4.3.2 - 2  
v J 
((N +) 
1/(2 2 
) + 1 
(- J)/) 
2 
With 
where 1 
is the indicating function of [,  
0 
[ 
+ .  
[0,+[ 
 
 
3.4.4 Statistics on the spectra  
 
In this chapter, one presents the definition of the statistics of the spectra of elastic answer  

file:///Z|/process/refer/refer/p1030.htm (23 of 31)10/2/2006 2:52:58 PM



file:///Z|/process/refer/refer/p1030.htm

S ( 
, in the case of a transitory resolution. In the harmonic case, the statistics on  
J,) 
random variables N 
Y ( 
are defined in the same way and are thus not presented.  
J 
) 
 
3.4.4.1 Estimate of the quantiles  
 
For all  
(,) J 
S 
is a random variable with value in + 
R. One seeks with  
J  
× J,  
( , ) 
to consider the quantile associated with the probability noted S ( 
and defined by:  
J,) 
, 
S ( 
 
éq  
3.4.4.1-1  
J,) 
1 
= - 
F 
1 
( 
 
-) 
, 
, 
where  
S 
.  
J  
 
F is related to unknown distribution of  
( , ) 
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That is to say (S ( 
,…, S (; ),…, S (; )) the sample made up of N achievements of  
J; ) 
1 
J 
R 
J 
S 
S 
N 
S ( 
and (S ( 
,…, S (; ),…, S (; 
)) the associated ordered sample.  
J; 
) 
J,) 
) 
1 
( 
J 
(R) 
J 
( 
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) 
S 
N 
 
R 
A natural estimator of the quantile S 
( 
for = 
, 1 R N is:  
J,) 
, 
N 
S 
S 
 
R 
S J, (,) = S (; ) éq  
3.4.4.1-2  
J 
(R) 
NS 
 
To obtain a more robust estimator of the quantile, one can “realise” the estimator on several  
series of NS achievements. If the desired probability is such as < 1 N, or Si one wishes to reduce  
S 
the number of simulations, it is possible to use more sophisticated estimators, for example in  
supposing that the function of distribution  
F belongs to a field of attraction given (theory of  
, 
extreme values) or for example by using a method of regularization bayésienne (cf [bib12]).  
 
Extreme 3.4.4.2 Values of sample  
 
For a sample of NS achievements of S ( 
noted S ( 
,…, S (; ), one defines  
J; ) 
J,) 
1 
J 
NS 
extreme values of sample by:  
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dB 
( 
has 
; N) 
S  
 
éq  
3.4.4.2-1  
J, min 
S 
= log 
min 
( , ; ) 
10 
J 
R  
 
 
r=,…, 
1 
NS 
 
 
 
dB 
( 
has 
; N) 
S  
 
éq  
3.4.4.2-2  
J, max 
S 
= log 
max 
( , ; ) 
10 
J 
R  
 
 
r=,…, 
1 
NS 
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3.4.4.3 “Field of confidence” established starting from the inequality of Tchebychev  
 
For a sample of NS achievements of the process  
S ( 
has 
,) noted  
S ( 
has 
, ...,  
J; ) 
J 
1 
 
S ( 
has  
; ), one can build the “field of confidence” of the random variable  
J 
NS 
dB (,) = log (S (,)) for all (,) J × J, by using the inequality of Tchebychev  
J 
10 
J 
 
 
 
associated a level of probability P:  
C 
Proba {dB (,) < dB (,) < dB+ (,) P,  
éq  
3.4.4.3 - 1  
J 
J 
J 
} C 
where the lower envelope  
dB ( 
has 
,) and the higher envelope  
dB+ ( 
has 
,) are defined  
J 
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J 
by:  
 
(,)  
+ 
dB (,) log  
J 
m (,) 
,  
 
 
 
éq 3.4.4.3 - 2  
J 
= 
10 1 J 
+ 
 
 
1 - PC  
- 
dB ( 
m 
dB 
. éq  
3.4.4.3-3  
J,) = 2 log 
J  
+ 
- 
J  
10 ( 
( , ) 
1 
) 
( , ) 
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with m (,) the average and (,) the standard deviation of dB ( 
:  
J,) 
1 J 
J 
 
m (,) = { 
E S (,)} , éq  
3.4.4.3-4  
1 J 
J 
 
= 
S 
- m 
.  
éq  
3.4.4.3 - 5  
J (,) 
E ({J (,) 
J (,) 2 
1 
} 1/2 
 
The “field of confidence” thus built proved to be a good approximation of the values  
extremes of sample for the case treated in [bib21]. However, this “field of confidence” does not utilize  
that the first two moments whose consistent estimators more quickly with respect to the number  
NS of simulations that extreme values of sample. It can thus be interesting to use this  
construction of the “field of confidence” rather than a construction based on the estimate of the 
quantiles  
more expensive in a number of simulations.  
Note:  
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The term “field of confidence”, can be considered by certain an abuse  
language. One should rather use the less intuitive terminology “inter-quantiles field”. In  
effect, in the statistical literature, a confidence interval is theoretically the interval  
in which the true value of a parameter of a random variable is (for example its  
average) with a given probability. This terminology is employed within the framework very  
precis of the theory of the ensemblist estimate. The confidence interval is not one  
characterization of the variability of a random variable, contrary to a standard deviation or to  
quantiles. One nevertheless uses " field of confidence " with parsimony in the continuation,  
because it is certainly a little more speaking for the non-specialists of the statistics.  
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4  
Implementation in Code_Aster  
 
4.1  
Study of the stochastic convergence of the digital model  
 
4.1.1 Case  
transient  
 
The convergence of the stochastic solution must be studied compared to number N of modes and with  
N numbers 
N 
S of simulations of Monte Carlo. As stochastic solution Z (T) is a process of  
second order (by assumption, cf [§ 3.4.1.2]), its convergence can be analyzed by studying them  
applications N 
||| N 
Z&& ||| 
has 
such as:  
J 
2 
T 
Z N 
& 
= 
2 
E & () 
,  
éq  
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4.1.1-1  
J 
{Z N T 
J 
} dt 
0 
where  
N 
T 
Z&& (T) 
has 
is a stochastic process of the second order indexed by [0, T] 
J 
and with value in R  
representing the acceleration of the jème d.d.l of the structure.  
In the framework of simulations of Monte Carlo, this standard ||| N 
Z&& ||| is estimated for N fixed to leave  
J 
of a whole of N 
N 
N 
S random achievements Z 
&& (T; ), Z&& (T; 
L 
) by the approximation  
J 
1 
J 
S 
N 
||| N 
Z&& ||| conv (, 
N N) with  
J 
J 
S 
2 
T 
NS 
1 
 
conv (N, N2 
) = 
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Z N 
& (T; ) dt éq  
4.1.1-2  
J 
S 
 
 
 
0 
N 
J 
I 
S I 1= 
 
The stochastic convergence of the model is thus analyzed according to the dimension of the small-scale 
model  
(i.e. the number of mode N of under clean space of the average model finite elements on which  
the stochastic nonlinear dynamic system was projected in the paragraph [§ 2.2]) and numbers it NS  
simulations of Monte Carlo by studying function N 
conv (, 
N N) 
S.A. 
.  
J 
S 
 
4.1.2 Case  
harmonic  
 
Convergence in the case of a transitory resolution can be transposed directly in the case  
of a harmonic resolution, with the standard:  
2 
 
Z N 
= 
2 
2 
E 
( ) 
,  
éq  
4.1.2-1  
J 
{Z nj} D 
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4.2  
Choice of the parameters of dispersion  
 
To use the method, the parameters of dispersion must be fixed. Two approaches can  
to be used a priori to fix the value of these parameters.  
 
The first approach consists in identifying the value of the parameters for a given structure or  
for a class of structure using suitable methods. For that, one can use results  
experimental of the dynamic responses of the structure. One can also use simulations  
numerical built by using a parametric approach of uncertainties. In this last case,  
it should be noted that only the errors on the data of the model are taken into account, since them  
errors of modeling cannot be taken into account by the parametric approach.  
 
The second approach consists in not fixing a priori a fixed value of the parameters but at  
to vary in a beach given (only 3 scalars to vary for the matrices of mass,  
of stiffness and damping on the not-parametric part in comparison with the very large one  
a number of parameters to vary simultaneously in a traditional parametric study). This  
approach makes it possible to carry out a total analysis of sensitivity to uncertainties. In the case of 
absence  
of objective information on the parameters dispersion to be chosen, it is preferable to use such  
approach. The non-parametric method suggested seems a robust approach then and  
simple of analysis of sensitivity to uncertainties.  
 
4.3 Principal  
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stages  
 
The implementation in Code_Aster is made up of three principal stages: the construction of  
average reduced matric model, the generation of the achievements of the answer seen like a process  
stochastic, and finally the statistical postprocessing of these achievements. Two last stages  
constitute in fact the method of digital simulation of direct Monte Carlo.  
 
Stage 1: construction of the average reduced matric model  
The average reduced matric model is built using a traditional sequence operators  
depending on the precise analysis carried out whose principal ones can be: ASSE_MATRICE,  
MODE_ITER_SIMULT, MODE_STATIQUE, CALC_CHAR_SEISME, MACRO_PROJ_BASE…  
 
Stage 2: generation of the achievements of the transitory answer  
The NS achievements of the stochastic transitory answer are calculated in a loop in language  
Python made up of:  
 
1) Generation  
 
pième achievements of the random generalized matrices of mass, stiffness  
and of damping by GENE_MATR_ALEA (Doc. [U4.36.06]). These matrices are not  
diagonals and thus require a full storage.  
2) Generation  
 
pième achievements of the random variables of the parameters of non-linearities  
by GENE_VARI_ALEA (Doc. [U4.36.07]).  
3) Calculation of the pième realization  
N 
Q (T; p) or N 
Q (; p) solution of the matric system  
stochastic S. This realization is the solution of the traditional matric system of which them  
matrices and the second members are the achievements previously generated. Calculation is  
thus carried out by DYNA_TRAN_MODAL or DYNA_LINE_HARM (with matr_asse_GENE_R  
and vect_asse_GENE in entry).  
4) 1-  
Extraction of the temporal observations of the preset physical d.d.l (by  
example &Z N (T; p) or Y N (; p), but also possibly fields of displacement,  
I 
J 
speed, constraints, etc) via RECU_FONCTION (after a REST_BASE_PHYS for Y N (; p)).  
J 
2-  
Calculation of the spectra corresponding (by CALC_FONCTION (SPEC_OSCI) for  
S has  
(; p) and  
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Y N (; p).  
J 
CALC_FONCTION (MODULE) for  
) 
J 
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5) Evaluation, via CALC_FONCTION key words COMB or POWER or ENVELOPE, of  
contributions to the estimators of the averages, the moments of order two, the values  
max. extremes and min. of sample for the standardized spectra:  
$m (; p) = S (; p) + 
p -,  
2 
p = 
p + 
p - 1,  
J 
J 
$m (; 
) 
1 
1  
1 J 
$m (; ) S (; ) 
J 
J 
$m (; 
) 
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2 
2 J 
$S 
(; p) = My 
p 
p - 1, $S 
(; p) = Semi 
p 
p - 1.  
J, min 
{NS (; ), $S (; 
J 
J, min 
}) 
J 
{xS (; ), $S (; 
J 
J 
}) 
, max 
, max 
 
Stage 3: statistical postprocessings  
Averages, standard deviations, max. extreme values and min. of sample for the spectra  
standardized can be evaluated via CALC_FONCTION (COMB):  
1 
1 
m (,) = 
N, m (,) = 
N.  
J 
$m (; ) 
1 
1 J 
S 
N 
J 
$m (; ) 
2 
2 J 
S 
N 
S 
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S 
The confidence intervals can then be traced starting from the extreme values of sample or  
terminals obtained by Tchebychev cf [§ 3.4.4].  
 
 
In the transitory case, an example is given by a case test of a flexbeam with not  
linearities of shock, cf Doc. [V5.06.001] [bib1]. Other details are given in Doc. [U2.08.05]  
[bib2].  
 
 
4.4  
Numerical effectiveness of the nonparametric approach  
 
The nonparametric approach is more economic in computing times than an approach purely  
parametric in which the parameters of geometry, materials, etc are random variables.  
In the purely parametric approach, the model finite elements depends on the dubious parameters.  
For each simulation of Monte Carlo, the model finite elements is different. It is thus necessary, for  
each simulation, to calculate the elementary matrices, to carry out the assemblies, to pass in  
relative co-ordinates, to solve the problem with the eigenvalues, to project on modal basis, to solve  
the reduced system and to return in physical base then in relative co-ordinates.  
 
In the nonparametric approach, only the reduced system is different with each simulation. It is thus  
simply necessary, with each simulation, to solve the reduced system and to return in base  
physics then in relative co-ordinates. In particular, the resolution of the problem to the eigenvalues  
model average finite elements is carried out once and for all, before simulations of  
Monte Carlo.  
 
The saving of time of calculation which results from it is variable, but it can be important. In first  
approximation, this saving of time calculation depends on the ratio between time CPU necessary to the 
resolution  
at the eigenvalues and time CPU necessary to the resolution of the reduced system. More this ratio is  
large, more the nonparametric approach is advantageous compared to the approach purely  
parametric. In particular, the saving of time of calculation can be very important for structures  
with a very great number of degrees of freedom and a low-size modal base.  
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Summary:  
 
In this document the algorithm of retiming of MACR_RECAL is presented. It is about an algorithm 
of  
Levenberg-Marquardt with terminals.  
One initially describes the general method before specifying certain elements of them. Are detailed it  
calculation of the functional calculus, the Jacobienne matrix, determination of the initial parameter 
of regularization thus  
that its evolution, the management of the terminals and the criterion of convergence.  
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1 Introduction  
 
Before approaching the problems of retiming strictly speaking, it is useful to recall some  
elements on the identification of parameters. Let us suppose that one wishes to identify N parameters 
to be left  
of a given mechanical test. Within the framework of this identification, one defines the sizes:  
 
·  
C, the vector of N parameters to be identified, pertaining to O, convex closed N 
R.  
·  
D, the vector of the sizes calculated during a simulation of the test by using them  
parameters C, in opposition to exp 
D, the vector of the sizes measured during a test  
experimental. Both belong to space L of the observable sizes.  
simulation of the experimental test, parameterized by the vector C, can be carried out by  
various methods: finished differences, finite elements, elements of border,…. It is it  
that we will call the direct problem.  
 
The goal of the identification is to determine the set of parameters C reducing the difference enters  
sizes measured and experimental (by strongly hoping that the reduction of this variation is  
sufficient to obtain the set of parameters wished…). A cost functional calculus is thus introduced  
noted J dependent on C and measuring the distance between D and exp 
D.  
 
J (c) 
exp 
= D - D 
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éq 1-1  
 
where ||. || indicates a standard on L.  
 
The identification is thus expressed in the form of the problem of minimization according to:  
 
To determine C 
* O such as J (c) 
* = Min J (c)  
C O 
 
 
Lastly, one defines retiming as the minimization of a particular type of said functional calculuses  
“least squares” which are expressed in the form:  
 
NR 
J (c) = j2 éq 1-2  
N (c) 
n=1 
 
It is commonly allowed that the most effective algorithm of the minimization for this type of  
functional calculuses is the algorithm of Levenberg-Marquardt. It is the latter which is established in  
order MACR_RECAL of Code_Aster and that we present in the continuation.  
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2  
Algorithm of Levenberg-Marquardt  
 
2.1  
Position of the problem  
 
There are several families of algorithms of minimization [bib1]. For the problems relatively  
regular, the most used are the methods of descent. Their principle is to generate in manner  
iterative a continuation (ck) 
defined by:  
K NR 
 
 
(kc+1) K K K 
= C + G  
 
 
 
 
 
 
 
éq 2.1-1  
 
such as, for F (X) = J (K 
C + X K 
G) 
* 
, X R +  
 
·  
F (X) is decreasing in the vicinity of + 
0  
·  
F (K 
) = Min F (X)  
x>0 
 
K 
G is the direction of descent to the step K. It is the method of determination of K 
G which conditions  
nature thus effectiveness of the algorithm used, knowing that these techniques are mainly based  
on approximations of J to order 1 or order 2. For the algorithm of Levenberg-Marquardt, one  
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handle an approximation with order 2 of the functional calculus.  
 
 
2.2 Resolution  
 
Within the framework of retiming, one handles square least cost functional calculuses of the type:  
 
NR 
J (c) = j2 éq 2.2-1  
N (c) 
n=1 
 
where for example J C = F 
C - F 
, with obvious notations.  
N () 
(calc 
N 
( ) 
exp 
N 
) 
 
 
The characteristic of these cost functional calculuses lies in the fact that one knows the form of theirs  
derived first and seconds:  
 
( 
NR 
J 
éq  
2.2-2  
C (c)) 
J 
2 
J C 
I 
( )  
= 
N 
N 
n=1 
Ci 
 
(H (c)) 
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NR 
2 
= 
J 
J 
J 
2 
. 
J C 
 
éq  
2.2-3  
ij 
 
N 
N + N ()  
 
N  
 
 
n=1 C C 
C C 
I 
J 
I 
J  
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Then, by supposing that the second term of the preceding equation is negligible in front of the first  
(what is true when the J are linear out of C: this term is null), one can rewrite:  
K 
 
(H (c)) 
NR 
 
J 
J 
2 
. 
 
éq  
2.2-4  
ij 
 
N 
N 
n=1 C 
C 
I 
J 
 
It is interesting on this level to introduce the matrix of sensitivity or Jacobienne matrix defined by:  
 
J 
J 
J 
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1 
1 
1  
 
... 
 
C 
C 
C 
1 
2 
N  
J 
J 
2 
2 
 
 
... 
... 
C 
C 
 
To = 1 
2 
éq  
2.2-5  
... 
... 
... 
...  
... 
... 
... 
...  
J 
J 
 
NR 
NR 
jN  
 
... 
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C 
C 
C 
1 
2 
N  
 
 
One can thus express the gradient and Hessien by:  
 
J K 
T 
= 2 
 
 
 
 
 
 
 
 
 
éq 2.2-6  
C (c) 
With J 
 
H (ck) 2AT A  
 
 
 
 
 
 
 
 
éq 2.2-7  
 
with J = [J,…, J 
.  
1 
] T 
NR 
 
 
Then let us write the development limited to order 2 of J:  
 
1 
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J (c) J (K 
c)+ (C - C) T 
K 
 
. J 
+ 
- 
. - 
 
éq 2.2-8  
C (K 
c) 
(C C) T 
K 
H (K 
c) ( 
K 
C c) 
2 
 
That is to say K 
K 
G = C - C, the step of descent at the point K 
C, it must check the condition of stationnarity of  
the quadratic approximation:  
 
J 
 
 
éq  
2.2-9  
C (K 
c)+ H (K 
c) K 
G = 0 
 
According to the expression of the gradient and Hessien of J, one can write:  
 
(ATA) gk = - AT J  
éq  
2.2-10  
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The solution of this equation leads to an algorithm known under the name of Gauss-Newton, very  
effective but which presents nevertheless some disadvantages:  
 
·  
(ATA) can be almost singular and cause the non-existence of solution.  
·  
There is no control on K 
G, which can be too large and thus leave the parameters  
acceptable space.  
 
To mitigate these disadvantages, one prefers to use the algorithm of Levenberg-Marquardt which 
proposes  
a regularization of the algorithm of Gauss-Newton:  
 
(ATA + I) gk = - AT J éq  
2.2-11  
 
where is a scalar and I the matrix identity.  
 
It is noticed that if = 0, one finds the direction given by Gauss-Newton and if +, one  
find the direction given by the opposite one of the gradient of J i.e the greatest slope.  
 
The algorithm of Levenberg-Marquardt thus consists, on the basis of a value of “raised enough”,  
to decrease it by a factor 10 for example, with each decrease of J. One passes thus  
gradually of an algorithm of greater slope to the algorithm of Gauss-Newton. One thus can  
to present this procedure in the form:  
 
·  
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Choice of a starting point 0 
C and of an initial value of  
·  
With the iteration K, to solve  
(T 
With A + I) K 
T 
G = - A J  
K +1 
K 
K 
C 
= C + G 
·  
If J (K 
C +1) < J (K 
c), then = /10 if not = *10  
·  
Test of convergence  
 
Note:  
 
We considered above the algorithm of Levenberg-Marquardt under the angle of  
regularization of the algorithm of Gauss-Newton. It is possible to give a lighting  
different with this algorithm by regarding it as an algorithm from area of confidence  
[bib2]. Indeed, one can show easily that the system [éq 2.2-11] is the condition of  
stationnarity of the problem of minimization:  
1 
K 
K T T 
K T 
T 
K  
To determine K 
G such as G = ArgMing 
With 
. 
J + G A A G subjected to K 
K 
G D  
 
2 
 
1 
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- 
Where  
K 
D = - (AT A + I) AT J and 0.  
 
It is a very simple establishment of the algorithm of Levenberg-Marquardt within which  
various questions are not tackled:  
 
·  
How to define the functional calculus J when one has several tests?  
·  
How to choose the initial value of?  
·  
How to make evolve/move in a finer way?  
·  
How to define the field of evolutions of each parameters?  
 
We will clarify these various points in the continuation.  
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3  
Implementation practical  
 
3.1  
Definition of the functional calculus  
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At the time of a retiming, the user often has several different measurements; it is about  
discrete physical sizes, possibly of different nature, measured during one or  
several tests. They are related to a given parameter noted T (time, X-coordinate,…) that one  
can thus represent by:  
 
 
exp 
T 
F 
(T)  
 
exp 
T 
F 
(T)  
 
exp 
T 
F 
(T)  
L 
exp 
1 
1 
1  
exp 
1 
2 
1 
 
exp 
1 
1  
F 
= 
F 
= 
F 
= 
éq 3.1-1  
1 
M 
M 
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2 
M 
M 
 
L 
M 
M 
 
 
exp 
T 
F 
(T) 
 
exp 
T 
F 
(T) 
 
exp 
T 
F 
(T) 
NR 
1 
NR  
M 
2 
M  
P 
L 
P  
 
Each one of these experimental measurements has sound during  
 
~ 
calc 
K ~ 
T 
F 
(C, T) 
~ 
calc 
K ~ 
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T 
F 
(C, T)  
~ 
calc 
K ~ 
T 
F 
(C, T)  
calc 
K 
1 
1 
1 calc K 
1 
2  
1 calc K 
1 
L 
1  
F 
(c) = 
F 
(c) = 
F 
(c) = 
 
1 
M 
M 
2 
M 
M 
L 
M 
M 
 
~ 
calc 
K ~ 
T 
F 
(C, T) 
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~ 
calc 
K ~ 
T 
F 
(C, T) 
~ 
calc 
K ~ 
T 
F 
(C, T) 
I 
1 
I  
J 
2 
J  
K 
L 
K  
éq 3.1-2  
 
calculated for a play of parameter K 
C given. Let us notice that the calculated sizes are not  
inevitably in same number as the measured sizes nor evaluated for the same value of  
parameter T. One can then define the functional calculus least squares to be minimized by:  
 
2 
2 
2 
NR 
exp 
F 
(T) - F calc (ck, T) 
M 
exp 
 
F 
(T) - F calc (ck, T) 
P 
exp 
 
F 
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(T) - F calc (ck, T)  
1 
I 
1 
I 
2 
I 
2 
 
+ 
I 
L 
I 
L 
I 
 
 
 
 
 
+ ... + 
 
 
 
 
 
exp 
 
 
 
 
I 1 
= 
F 
(T) 
exp 
F 
T 
F 
T 
K 
 
1 
I 
 
I 1 

file:///Z|/process/refer/refer/p1050.htm (12 of 31)10/2/2006 2:52:59 PM



file:///Z|/process/refer/refer/p1050.htm

= 
( ) 
exp 
 
2 
I 
 
I 1 
= 
( ) 
J (c) 
 
L 
I 
 
= 
J (0 
c) 
éq  
3.1-3  
 
It is important to notice that:  
 
·  
if a calculated measurement calc 
F 
is not defined in one moment T, then one interpolates linearly  
J 
I 
its value  
·  
if an experimental measurement exp 
F 
is null, one does not divide the quantity  
J 
exp 
F 
(T) 
F calc 
- 
(K 
C, T) and it are present just as it is in the expression of the functional calculus  
J 
I 
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J 
I 
·  
the functional calculus J is standardized so as to be worth 1. at the beginning of the iterations of 
retiming  
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3.2  
Form of the Jacobienne matrix  
 
For the calculation of the Jacobienne matrix, one defines the vector J of the errors by:  
 
exp 
F 
(T) - F calc (K 
C, T)  
1 
1 
1 
1 
exp 
 
 
F 
(T) 
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1 
1 
 
 
M 
 
exp 
F 
(T) - F calc (K 
C, T) 
1 
NR 
1 
NR 
 
 
exp 
 
 
F 
(T) 
1 
NR 
 
J = exp 
F 
(T) - F calc (K 
C, T) 
2 
1 
2 
1 
éq  
3.2-1  
 
exp 
 
 
F 
(T) 
2 
1 
 
 
M 
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M 
exp  
F 
(T) - F calc (K 
C, T)  
P 
L 
P 
L 
 
 
 
exp 
F 
(T) 
P 
L 
 
 
 
That is to say:  
 
exp 
F 
(T) 
F calc 
- 
(K 
C, T) 
K 
K 
I 
K 
I 
J = 
 
éq  
3.2-2  
I 
exp 
F 
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(T) 
K 
I 
 
One finds the form of the Jacobienne matrix then of [éq 2.2-5]:  
 
j1 
j1 
j1  
1 
1 
L 
1  
C 
C 
C 
1 
2 
N  
L 
L L L  
j1 
j1 
j1 
NR 
NR 
NR  
 
L 
 
C 
C 
C 
1 
2 
N  
= j2 
j2 
 
éq  
3.2-3  
1 
1 
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L L 
C 
 
 
C 
1 
2 
 
L 
L L L  
 
 
L 
L L L 
jP J P 
J P  
L 
L 
L 
L 
 
C 
C 
C 
1 
2 
N  
 
 
Where the terms are calculated by direct finished differences:  
 
j1 
 
j1 (C,…, C + C,…, c) _ j1 (C,…, C,…, c) 
1 
1 
1 
I 
I 
N 
1 
1 
I 
N 
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(C,…, C,…, c)  
éq  
3.2-4  
1 
I 
N 
C 
 
C 
I 
I 
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3.3  
Regularization of the linear system  
 
We tackle here the problem of the determination and the evolution of the parameter of regularization  
. One defines with this intention:  
 
·  
 
= max (Eigenvalues of AT A),  
= Min (Eigenvalues of AT A),  
max 
min 
cond =  
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/  
if  
0  
max 
min 
min 
T 
1 
T 
·  
Q (c) = J (K 
c)+ ( 
K 
C - c) 
T 
With 
. 
J + ( 
K 
C - c) (T 
. WITH A + I) ( 
K 
. C - c)  
2 
 
3.3.1 Initial value of  
 
Knowing the sizes above, the following algorithm is defined:  
 
·  
If  
= 0, then =1.E-3  
 
min 
max 
·  
If not  
- If cond < 1.E5, then = 1.E-16  
 
max 
- If not = ABS (1.E5  
-  
)/10001  
min 
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max 
 
Note:  
 
In the last case, the value allotted to A for effect to bring back the conditioning of  
AT A with 1.E5  
 
3.3.2 Evolution of the value of  
 
J (K 
c) - J (K 1 
+ 
c) 
To make evolve/move, the ratio K is defined 
R =  
, which makes it possible to evaluate the validity of  
Q (K  
c) - Q (K 1 
+ 
c) 
the quadratic approximation of J: the closer it is to 1, plus this approximation is valid. One in  
deduced the following algorithm [bib2]:  
 
·  
If K 
R < 0.25, then = *10  
·  
If K 
R > 0.75, then = /15  
 
3.4  
Limitations of the field of evolution of the parameters  
 
For various reasons such as guaranteeing the physical validity of the parameters (module  
of strictly positive Young, Poisson's ratio ranging between 0 and 0.5,…), it is necessary of  
to limit their field of evolution. One thus imposes that C remains in an acceptable field O,  
convex closed  
N 
R. This thus imposes constraints on the parameters:  
 
C 
> ck + gk > C  
sup 
inf 
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After dualisation of these conditions by introduction of the multipliers of Lagrange µ 
and µ 
, one  
inf 
sup 
solves the system:  
 
To find K 
G µµ such as  
inf 
sup 
(T 
With A + I) K 
G + µ + µ 
= - T 
With J 
inf 
sup 
K 
C + K 
G > C 
 
inf 
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µ > 0 
 
inf 
 
(K 
C + K 
G - c) (µ) = 0 I =, 
1 
[N] 
inf I 
inf I 
K 
C + K 
G < csup 
 
 
µ < 0 
sup 
 
K 
K 
(C + G - c) (µ) = 0 I =, 
1 
[N] 
sup I 
sup I 
 
This resolution is carried out using an algorithm of active constraints. For any precision on this  
algorithm, to refer to [bib3] or [bib4].  
 
 
3.5 Adimensionnement  
 
One is often brought to identify parameters of various physical nature. Orders of  
size of these parameters can be extremely different. This can generate the very strong ones  
differences in the orders of magnitude of the components of the gradient and Hessien of  
functional calculus cost and to compromise the resolution.  
To mitigate this difficulty, it is imperative of adimensionner the unknown factors before beginning  
resolution. Here a simple and effective procedure.  
 
T 
That is to say 0 
C = [0 0 
0 
C, C,…, C, the initial vector of the sizes to be rebuilt. The matrix is defined  
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1 
2 
N] 
adimensionnement D:  
c0 
 
1 
0 
 
 
c2 
 
D =  
 
éq  
3.5-1  
 
 
 
c0n-1 
 
 
 
c0n 
 
Then, if 0 
C all are nonnull, one can define the adimensional unknown factors by:  
I 
 
~0 
1 
- 
0 
C = D.C éq  
3.5-2  
 
In the same way, an adimensional cost functional calculus is introduced:  
 
~ ~ 
~ 
J (c) = J (. 
D c) = J (c) éq  
3.5-3  
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Like its gradient:  
 
~ ~ 
~ 
~ 
J (c) J (. 
D c) 
J (c) 
~ 
C 
~J (c) = 
= 
= 
. 
= . 
D J (c) 
C 
~ 
~ 
~ 
 
éq  
3.5-4  
C 
C 
C C 
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C 
 
And its Jacobienne matrix:  
 
~ 
0 
WITH = A *C  
éq  
3.5-5  
ij 
ij 
J 
 
From an algorithmic point of view, the calculation of the Jacobienne matrix is done classically with  
functional calculus J, then it is adimensionnée as well as the current parameters C, before being  
transmitted to the algorithm of minimization. At the exit of this last, the parameters C 
~ is  
redimensionnés to allow the calculation of the functional calculus J.  
 
 
3.6  
Criterion of convergence  
 
The criterion of convergence used in MACR_RECAL consists in testing the decrease of the gradient of  
the functional calculus. It is pointed out that the use of this criterion is naturally justified by the fact that  
the objective of the algorithm of retiming is to cancel this gradient.  
 
|| J (K 
c) || 
C 
<  
Prec.  
éq  
3.6-1  
|| J (0 
c) || 
C 
 
Where Prec is by defect taken equal to 1.E-3.  
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4 Algorithm  
total  
 
So as to clarify the sequence of the various operations described above, one presents  
formally the algorithm of retiming:  
 
·  
Initializations  
- K = 0  
- calculation of A, adimensionnement of A  
- Calculation of initial  
- Total Iterations  
- Adimensionnement of K 
C  
- Resolution of the equation of Levenberg-Marquardt  
- Imposition of the respect of the terminals  
- Redimensioning of K 1 
+ 
C  
- Calculation of J (K 1+ 
C 
)  
- Actualization of  
- Calculation of A, adimensionnalisation of A  
- Test of convergence  
- K = K + 1  
·  
End  
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Postprocessing of sensitivity  
 
 
 
 
Summary:  
 
Classically, the digital simulations provide the response of a structure to a request. One  
seek here to determine in addition to this answer the tendency of the response to a modification of 
parameters  
of entry of simulation (material, loading…). This tendency is obtained by calculating the derivative of  
response compared to a parameter p given.  
In this document, one places oneself in the case of linear elasticity and one supposes that the basic 
variable of  
calculation (displacement U) was calculated thus that its derivative U 
/p 
. After having given some indications  
on this calculation of U and U 
/p 
(for more detail to see [R4.03.03]), one will be interested in derived from  
variables which result from this (strains and stresses) like with derived from the rate of refund from 
energy G.  
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1  
Recall of the calculation of sensitivity for the basic variable  
(displacement)  
 
One is interested in this paragraph in the sensitivity of displacement U compared to a parameter p  
given: loading (imposed displacement or forces imposed) or characteristic material (module  
of Young, Poisson's ratio, or characteristics anisotropic).  
 
 
1.1 Problem  
direct  
 
In the case of elasticity, the direct problem is written in a simplified way (cf [bib1]):  
 
R U 
() = L  
 
with:  
[R U ()] = 
 
 
K 
With U (): (W)  
D  
 
K 
where:  
 
A is the matrix of elasticity  
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K 
W is related to form of the kth degree of freedom of the modelled structure  
 
That is written in matric form:  
KU = L  
 
 
 
1.2 Problem  
derived  
 
The derivation of the matric writing above gives:  
 
(K 
/p 
) U + K (U 
/p 
) = L 
/p 
 
 
From where:  
 
K (U 
/p 
) = L 
/p 
- (K 
/p 
) U  
 
If p is of loading type, one a: K/p = 0 and the second member is reduced to L 
/p 
.  
If p is of material type, there is L/p = 0 and the second member is worth: - (K 
/p 
) U. One has  
in particular in a more precise way:  
 
 
K 
 
 
 
- 
With 
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U 
= - 
U 
(): (W) D 
 
 
 
 
 
p 
 
 
p 
K 
 
K 
 
Term A 
/p 
is calculated in routine DMATMC.  
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2  
Calculation of derived from the strains and the stresses  
 
One considers in this paragraph derivation compared to a parameter p given, p which can be  
a loading or a characteristic of material. It is also supposed that the field of  
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displacement U and its derivative U 
/p 
, all the two resulting one from a mechanical calculation (via  
MECA_STATIQUE), are known.  
 
2.1  
Derived from the deformations  
 
In this case, the step is always the same one, whatever the nature of p. Indeed, in  
the assumption of the small disturbances, one a:  
 
= (U + C)/2 = Drunk  
 
From where while deriving compared to p:  
 
 
1  
U 
 
U 
T  
U 
 
= 
 
+  
( 
) 
= B 
 
p 
 
 
 
2  
p 
 
p 
 
 
 
 
p 
 
 
It is thus enough in the routine to operator CALC_ELEM to provide in entry to the subroutine  
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calculating the deformations the field U 
/p 
in the place of the field U.  
 
2.2  
Derived from the constraints if p does not depend on material  
 
By noting A the tensor of elasticity, one a:  
 
= ABu  
 
Knowing that A and B do not depend on p, one a:  
 
/p 
= AB (U 
/p 
)  
 
As to the preceding paragraph, in operator CALC_ELEM, one provides in entry to  
subroutine calculating the constraints the field U 
/p  
in the place of the field U.  
 
2.3  
Derived from the constraints if p depends on material  
 
B not depending on p, one a:  
 
/p 
= (A 
/p 
) Drunk + AB (U 
/p 
)  
 
Term AB (U 
/p 
) is in the same way calculated that in the paragraph [§2.2].  
For the other term, it is necessary to calculate A 
/p 
, i.e. to re-use the routine DMATMC which had been  
developed for the calculation of U 
/p 
if p depends on the material (cf [§1.2]).  
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3  
Calculation of derived from G  
 
3.1  
Recall of the formulation of G  
 
One considers a fissured elastic solid occupying the field of space 2 or 3. That is to say:  
 
·  
U the field of displacement,  
·  
T the field of temperature,  
·  
F the field of voluminal forces applied to,  
·  
G the field of surface forces applied to a part S of  
,  
·  
U the field of displacements imposed on a Sd part of  
.  
 
 
F 
S 
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G 
Sd 
 
Appear 3.1-a: Fissured elastic solid  
 
To simplify, one places oneself in linear elasticity and small deformations, but this approach  
generalize without sorrow with plasticity, the great deformations….  
One indicates by:  
 
·  
the tensor of the deformations,  
·  
0 
the tensor of the initial deformations,  
·  
HT 
the tensor of the deformations of thermal origin,  
·  
the tensor of the constraints,  
·  
0 
the tensor of the initial constraints,  
·  
(, 0 
, 0 
, T) density of free energy.  
 
Then the rate of refund of energy associated with a virtual field of propagation with the crack  
is written:  
 
G () 
 
=  
1 
1 
( 
U  
- )  
D 
- 
T D + 
 
[( 
- 0 0 
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) 
-  
( 
- HT 
- 0 0 
) 
]  
ij I, p p, J 
K, K 
 
, K 
K 
 
D 
T 
ij 
ij 
ij, K 
K 
ij 
ij 
ij 
ij, K 
K 
2 
2 
 
 
 
 
 
 
 
+ (F U + F U)  
D 
+ [G U + G U  
- 
N]  
D 
- N U  
I I K, K I, K K I 
I, K K I I I K, K 
K  
 
D 
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N 
ij 
J 
I, K 
K 
 
S 
 
K 
 
Sd 
 
The last term associated with a boundary condition with Dirichlet is not established in  
Code_Aster. One will thus not take it into account.  
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3.2  
Derived from G  
 
3.2.1 Derived from G compared to the Young modulus  
 
One supposes known the derivative of displacements, the strains and the stresses by report/ratio  
with E (see [§1] and [§2]).  
G is in fact the sum of 5 terms: G () = CLA 
T 
+ THER 
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T  
+ TEPSINI + TFVOL + TFSUR  
5 terms being given in the order of [§3.1].  
 
dG 
dT 
dT 
dT 
dT 
dT 
CLA 
THER 
EPSINI 
FVOL 
FSUR 
= 
+ 
+ 
+ 
+ 
 
of 
of 
of 
of 
of 
of 
 
 
3.2.1.1 Derived from the traditional term  
 
dT 
D 
 
CLA 
ij 
I, p 
D 
T 
= (U  
- )  
CLA  
D 
ij I, p p, J 
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K, K 
 
= ( 
U  
+  
 
- 
)  
 
D  
of 
of I, p p, J 
ij 
of 
p, J 
K, K 
 
 
 
 
with in 3D and axi:  
 
( ( 
 
9 
U), T) = 
2 
2 
kk + µijij - HT 
with HT = 3K (T - réf 
T 
) kk - K (T - réf 
T 
)  
2 
2 
 
E 
E 
E 
where 3K 
= 
; = 
; 2 
= 
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1-  
2 
(1+ )(1- 2 ) 
µ 
 
1+ 
 
 
it comes:  
 
D 
 
D 
µ 
D 
(T - T) 
2 
kk 
ij 
ref. 
D kk 
3 
= 
+  
+ + 2µ 
- 
( 
+ E 
- (T - T))  
of 
2 
kk 
kk 
ij ij 
ij 
E 
of 
E 
of 
1 - 2 
kk 
 
of 
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2 
ref. 
 
 
in plane deformations:  
 
(, ) 
(1 -) E 
2 
2 
 
T = 
( 
E 
E 
+ + 
+ 
2 -  
xx 
yy) 
( 
2 1+ )(1-  
2 ) 
(1+ )(1-  
2) xx yy 
(1+) xy 
HT 
 
 
that is to say:  
 
D 
1 
(-) E 
D 
D 
E 
D 
 
 
xx 
yy 
1 
D 
= 
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( 
+  
+ 
(2 
2 
+ )) + 
( 
yy 
xx 
xx yy 
 
+  
+ 
) 
of 
1 
(+ 1 
)( - 2 ) 
xx 
yy 
of 
of 
2 
xx 
yy 
E 
1 
(+ 1 
)( - 2 ) 
xx 
yy 
of 
of 
E 
2nd 
D xy 
1 
(T - T) 
2 
ref. 
D kk 
3 
+ 
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+ 
- 
( 
+ E 
- (T - T)) 
1 
xy 
+ 
of 
1 
xy 
+ 
1 - 2 
kk 
 
of 
2 
ref. 
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in plane constraints:  
 
(, ) 
E 
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2 
2 
 
T = 
( 
E 
E 
+ + 
+ 
2 -  
2 
xx 
yy) 
( 
2 1- ) 
(1 -) 2 xx yy (1+) xy 
HT 
 
D 
E 
D 
D 
E 
D 
 
 
xx 
yy 
1 
D 
: 
 
that is to say 
= 
( 
+  
+ 
(2  
2 
+ )) + 
( 
yy 
xx 
xx yy 

file:///Z|/process/refer/refer/p1060.htm (16 of 53)10/2/2006 2:53:01 PM



file:///Z|/process/refer/refer/p1060.htm

 
+  
+ 
) 
xx 
yy 
xx 
yy 
xx 
yy 
of 
1 
(-) 2 
of 
of 
2nd 
1 
(-) 2 
of 
of 
E 
2nd 
D xy 
1 
(T - T) 
2 
ref. 
D kk 
3 
+ 
 
+ 
- 
( 
+ E 
- (T - T)) 
1 
xy 
+ 
of 
1 
xy 
+ 
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1 - 2 
kk 
 
of 
2 
ref. 
 
 
3.2.1.2 Derived from the thermal term  
 
 
T 
=- 
T  
THER 
 
D  
T, K K 
 
 
 
(( 
1 
 
 
 
U), T) 
dK (T) 
=  
( 
D T 
-  
3 T - T 
- 3K T 
(  
) + 
T - T 
-  
3 T - T 
 
kk 
( 
réf) 
() (réf) (kk (réf) 
T 
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2 dT 
 
dT 
 
 
dTTHER 
 
=- 
D ( 
T 
) 
 
 
D  
of 
of 
T 
, K K 
 
 
 
 
in 3D and axi:  
 
D  
1 
(+ 2 2 
) 
2 
D  
D 
 
+  
 
kk 
kk 
of 
E 1 
( 
2 2 ) 
D 
( 
)= 
+  
( 
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+ 
)  
T 
1 
(+) 2 1 
(- 2) 2 dT 2 
kk 
of 
1 
(+ 1 
) (- 2) dT 
1 
(+) 2 1 
(- 2) 2 dT 
 
D 
1 
dij 1 
of 
E D 
-  
+ 
( 
- 
)  
ij ij dT 1 
( 
2 +) 2 
ij of 1+ dT 1+ dT 
 
1 
D 
D 
(T - T) 
 
 
 
kk 
ref. 
2 
D 
of 
2nd D 
D 
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- 
( + 
(T - T))(+ E 
) - 
( 
+ ( 
+ 
) 
kk) 
1 - 2 
dT 
ref. 
kk 
of 
1 - 2 
1 - 2 dT kk 
dT 
1 - 2 dT of 
 
3 
D 
 
D 
+ 
(T - T) (+ (T - T) 
+ 
(T - T) 
)  
1 - 2 
ref. 
ref. 
 
dT 
1 - 2 
ref. 
 
dT 
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in plane deformations:  
 
D  
(2 - ) 
D 
D 
D 
- 
of 
- E 
D 
2 
2 
1 
2 (2 
) 
( 
)= 
( 
+ ) + ( 
XX 
YY 
 
+  
)( 
+ 
)  
T 
1 
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(+) 2 1 
(- 2) 2 dT 
XX 
YY 
XX 
of 
YY 
of 
1 
(+ 1 
) (- 2) dT 
1 
(+) 2 1 
(- 2) 2 dT 
 
1 + 2 2 
 
D 
D 
D 
 
+  
 
YY 
XX 
of 
1 
( 
2 2) E 
D 
+ ( 
+  
)( 
+ 
) 
1 
(+) 2 1 
(- 2) 2 dT XX YY 
XX 
of 
YY 
of  
1 
(+ 1 
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) (- 2) dT 
1 
(+) 2 1 
(- 2) 2 dT  
1 
D 
D 
 
XY 
of 
E 
D 
2 
1 
- 
 
+ 2 
( 
- 
)  
1 
(+) 2 dT XY 
XY 
of 
1 
(+) dT 
1 
(+) 2 dT 
 
1 
D 
D 
(T - T) 
 
 
 
kk 
ref. 
2 
D 
of 
2nd D 
D 
- 
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( + 
(T - T))(+ E 
) - 
( 
+ ( 
+ 
) 
kk)  
1 - 2 
dT 
ref. 
kk 
of 
1 - 2 
1 - 2 dT kk 
dT 
1 - 2 dT of 
3 
D 
 
D 
+ 
(T - T) (+ (T - T) 
+ 
(T - T) 
)  
1 - 2 
ref. 
ref. 
 
dT 
1 - 2 
ref. 
 
dT 
 
in plane constraints:  
 
D  
 
D 
D 
D 
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XX 
YY 
of 
E 
D 
2 
2 
1 
2 
( 
)= 
( 
+ ) + ( 
+  
)( 
+ 
)  
T 
1 
( 
2 
-) 2 dT 
XX 
YY 
XX 
of 
YY 
of 
1 
( 
2 
-) dT 
1 
( 
2 
-) 2 dT 
 
1 
2 
+ 
D 
D 
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D 
 
+ 
 
YY 
XX 
of 
1 
( 
2) E D 
+ ( 
+  
)( 
+ 
)  
1 
( 
2 
-) 2 dT XX YY 
XX 
of 
YY 
of 
1 
( 
2 
-) dT 
1 
( 
2 
-) 2 dT 
 
1 
D 
D 
 
XY 
of 
E 
D 
2 
1 
- 
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+ 2 
( 
- 
)  
1 
(+) 2 dT XY 
XY 
of 
1 
(+) dT 
1 
(+) 2 dT 
 
1 
D 
D 
(T - T) 
 
 
 
kk 
ref. 
2 
D 
of 
2nd D 
D 
- 
( + 
(T - T))(+ E 
) - 
( 
+ ( 
+ 
) 
kk)  
1 - 2 
dT 
ref. 
kk 
of 
1 - 2 
1 - 2 dT kk 
dT 
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1 - 2 dT of 
3 
D 
 
D 
+ 
(T - T) (+ (T - T) 
+ 
(T - T) 
)  
1 - 2 
ref. 
ref. 
 
dT 
1 - 2 
ref. 
 
dT 
 
 
3.2.1.3 Derived from the deformations term and initial constraints  
 
1 0 0 
1 
T 
= [(-) - (- HT 
- 
0 
) 0 
)]  
EPSINI 
 
D 
ij 
ij 
ij, K K 
ij 
ij 
ij 
ij, K K 
 
2 
2 
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dT 
D 
D 
EPSINI = 
ij 
( 
0 - 
ij 0  
) 
 
 
D 
of 
of ij, K 
of 
ij, K 
K 
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3.2.1.4 Dérivée from the term forces voluminal  
 
T 
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= (F U + F U)  
FVOL 
 
D 
I 
I 
K, K 
I, K 
K 
I 
 
dT 
 
 
FVOL = (F 
I + F 
I 
 
)  
 
D  
of 
I of K, K 
I, K 
K of 
 
 
 
3.2.1.5 Dérivée from the term forces surface  
 
 
 
 
T 
= [G U + G U  
- 
N]  
FSUR 
I, K K I I I K, K 
K D 
 
S 
 
nk 
 
dT 
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FSUR = [G 
I 
 
+ G 
I 
- 
N]  
 
 
I, K 
K 
I 
 
K, K 
K D 
of 
of 
of 
 
S 
 
nk 
 
 
 
3.2.1.6 Notices  
 
 
From the formula of Irwin G = 
(2 2 
K I + KII)  
E 
 
with = 1 
2 
- 
déformatio 
 
in 
plane 
 
NS 
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=1 
constraint 
 
in 
plane 
 
S 
 
where K I and KII are the coefficients of intensity of constraints and by taking account of the fact that  
G 
 
 
2 
2 
G 
K I and KII do not depend on material, it comes  
= - 
(K + K 
I 
II) = - 
.  
E 
 
E 2 
E 
 
This formula is interesting as checking; nevertheless it was not retained in  
programming because it requires the calculation of G which a priori is uncoupled from the 
calculation of sensitivity.  
 
 
3.2.2 Derived from G compared to the loading  
 
The significant parameter can be one (or several) component of forces F voluminal, surface or  
I 
nodal, and (or) one (or several) pressure on an edge, which returns to a surface force.  
 
In all the cases one can write:  
 
 
G 
ncha N 
 
dim 
G 
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F icha 
 
 
I 
=  
additivity coming owing to the fact that contributions from the loadings from  
PS 
icha 
 
=1 =1  
 
icha 
I 
F 
PS 
I 
G cumulate  
 
F icha 
 
with  
I 
= 1  
if the significant parameter intervenes in component I of  
PS 
loading icha  
 
F icha 
 
I 
= 0  
if not  
PS 
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Example:  
 
The user defines a significant parameter being worth 1. This significant parameter is used to define a 
force  
voluminal F, a surface force of components (F, F) and a pressure p.  
Z 
X 
Y 
 
G 
 
G 
 
G 
 
G 
 
G 
 
then  
= 
+ 
+ 
+ 
 
PS 
 
F 
 
F 
 
F 
 
p 
 
Z 
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X 
Y 
 
In the same way that for the derivative of G compared to E, one derives term in the long term.  
The derivative of the terms traditional and thermal includes/understands less terms because the 
coefficients of Lamé  
and K do not depend on the loading (whereas they depend on E).  
On the other hand the voluminal terms surface forces and forces comprise a term moreover if it  
significant parameter intervenes in the corresponding loading.  
To simplify, one will note F the component of the loading by report/ratio to which one derives.  
 
3.2.2.1 Derived from the traditional term  
 
dT 
D 
 
 
CLA 
ij 
I, p 
D 
T 
= (U  
-) D  
= ( 
U  
+  
 
- 
) D  
CLA 
ij I, p p, J 
K, K 
 
df 
df 
I, p 
p, J 
ij 
df 
p, J 
df K, K 
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with in 3D and axi:  
 
( ( 
 
U), T) 
2 
=  
+ µ - 3K T - T + K T - T 
kk 
ij ij 
( 
réf) 
9 
2 
kk 
( 
réf) 2 
2 
2 
 
E 
E 
E 
where 3K 
= 
; = 
; 2µ = 
 
 
1-  
2 
(1+ )(1-  
2 ) 
1+ 
 
D 
D 
D 
kk 
ij 
D 
it comes:  
=  
+ 2µ 
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- 3K 
kk 
ij 
(T - Tréf) kk  
df 
df 
df 
df 
 
in plane deformations:  
 
(, ) 
(1 -) E 
2 
2 
 
T = 
( 
E 
E 
+ + 
+ 
2 -  
xx 
yy) 
( 
2 1+ )(1-  
2 ) 
(1+ )(1-  
2) xx yy 
(1+) xy 
HT 
 
D 
1 
(-) E 
D 
D 
 
 
xx 
yy 
E 
D yy 
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D xx 
that is to say 
= 
 
( 
+  
) + 
 
( 
+  
) 
df 
xx 
1 
(+ 1 
)( -  
2 ) 
df 
yy 
df 
xx 
1 
(+ 1 
)( -  
2 ) 
df 
yy 
df 
 
2nd 
D 
T 
(- T 
xy 
ref.) 
D 
+ 
 
- 
E 
kk 
xy 
1 + 
df 
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1 -  
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in plane constraints:  
 
(, ) 
E 
2 
2 
 
T = 
( 
E 
E 
+ + 
+ 
2 -  
2 
xx 
yy) 
( 
2 1- ) 
(1 -) 2 xx yy (1+) xy 

file:///Z|/process/refer/refer/p1060.htm (40 of 53)10/2/2006 2:53:01 PM



file:///Z|/process/refer/refer/p1060.htm

HT 
 
D 
E 
D 
D 
 
 
xx 
yy 
E 
D yy 
D xx 
that is to say 
= 
 
( 
+  
) + 
 
( 
+  
) 
df 
xx 
1 
(-) 2 
df 
yy 
df 
xx 
1 
(-) 2 
df 
yy 
df 
 
2nd 
D 
T 
(- T 
xy 
ref.) 
D 
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+ 
 
- 
E 
kk 
xy 
1 + 
df 
1 -  
2 
df 
 
 
3.2.2.2 Derived from the thermal term  
 
 
T 
=- 
T  
THER 
 
D  
T, K K 
 
 
 
( 
1 dK T 
 
D T 
 
(U), T) 
( ) 
=  
(- 3 (T - T) 
( ) 
- 3K + 
(T - T) 
- 3 
- 
 
2 
 
 
 
( 
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(T T 
kk 
réf 
réf 
kk 
réf) 
T 
dT 
dT 
 
 
 
dT 
 
THER = - D ( 
T 
) D 
 
df 
df T, K K 
 
 
 
in 3D and axi:  
 
D  
D 
 
+  
 
kk 
of 
E 1 
( 
2 2 ) 
D 
( 
)=  
( 
+ 
) 
df T 
kk 
df 
1 
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(+ 1 
) (- 2) dT 
1 
(+) 2 1 
(- 2) 2 dT  
 
dij 1 
of 
E D 
+ 
( 
- 
) 
ij df 1+ dT 1+ dT 
 
 
1 
D 
D 
(T - T) 
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1 - 2 
1 - 2 dT kk 
dT 
1 - 2 dT 
df 
 
3 
D 
 
D 
+ 
(T - T) (+ (T - T) 
+ 
(T - T) 
) 
1 - 2 
ref. 
ref. 
 
dT 
1 - 2 
ref. 
 
dT  
 
in plane deformations:  
 
D  
D 
D 
1- 
of 
2 (2 -) E 
D 
( 
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XX 
YY 
 
+  
)( 
+ 
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df T 
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2nd D 
D 
- 
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df 
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3.2.2.3 Derived from the deformations term and initial constraints  
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3.2.2.4 Dérivée from the term forces voluminal  
 
T 
= (F U + F U)  
FVOL 
 
D 
I 
I 
K, K 
I, K 
K 
I 
 
 
if F = fl 
 
is a voluminal component of force:  
 
dT 
 
 
FVOL = ((F 
I + U) + F 
I 
 
)  
 
D 
df 
I df 
L 
K, K 
I, K 
K df 
L 
 
L 
L 
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if not:  
 
dT 
 
 
FVOL = (F 
I + F 
I 
 
)  
 
D 
df 
I df K, K 
I, K 
K df 
 
 
 
3.2.2.5 Dérivée from the term forces surface  
 
 
 
 
 
T 
= [G U + G U  
- 
N]  
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if F = gl 
 
is a surface component of force:  
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This document presents the models of metallurgical behavior at the heating and cooling 
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1 Introduction  
Operations of assembly and thermomechanical treatment which the components undergo 
metal of the power stations REFERENCE MARK, can generate, in the materials which constitute 
them, of the fields 
constraints, known as residual, which exist before any loading of service. Transformations 
metallurgical and mainly structure transformations are an important cause of these 
stress fields because they modify the behavior (by modifying the characteristics 
physics) and generates thermomechanical requests within the materials which undergo them 
(latent heats, deformations due to the differences in density of the various phases 
metallurgical). 
These structure transformations are due essentially to the succession of a heating (often with 
beyond 800 °C) and of a more or less fast cooling of the parts during their manufacture. These 
thermal “cycles” can desired (case of the heat treatments) or “be undergone” (case of welding). 
In all the cases, they are very variable of a point to another of the part. 
This document relates to the modeling of these structure transformations to the heating and with 
cooling for low alloy steels and this, on a scale which, while remaining “reasonable” 
for the metallurgist, that is to say easily usable by the mechanic. 
This type of modeling is realizable within Code_Aster for the whole of the elements (PLANE, 
AXIS, 3D) of the “THERMAL” PHENOMENON by the use of operator CALC_META in “post- 
treatment” of a thermal calculation of evolution. The relation of behavior dedicated to steel, by 

file:///Z|/process/refer/refer/p1070.htm (6 of 16)10/2/2006 2:53:01 PM



file:///Z|/process/refer/refer/p1070.htm

difference with that dedicated to the zircaloys, to use under key word COMP_INCR of the operator is 
relation “STEEL”. For the definition of the metallurgical behavior of steel the information of 
order DEFI_TRC and key word factor META_ACIER under order DEFI_MATERIAU is 
necessary. Lastly, the definition of the initial metallurgical state is realizable using the order 
CREA_CHAMP, under the key word factor ETAT_INIT of operator CALC_META. The metallurgy 
calculation 
is necessary to the realization of mechanical calculations which take account of the consequences 
mechanics of these metallurgical phenomena [R4.04.02] 
The models presented (with the heating and cooling) are formulated within the framework of the 
relations 
of behavior with internal variables (or mémoratrices), and authorize a simple identification and 
rapid based on the experimental diagrams (diagrams TRC of Transformations into 
Continuous cooling). The choice of the variables and the forms of the laws of evolution selected are 
given and the description of the implementation of the models (method of identification) is also 
presented. 
Lastly, one presents the model of calculation of hardness which can if necessary come to supplement 
calculations 
metallurgical. 
Bene foot-note: 
· Basic metallurgical notions necessary to comprehension of the problem general 
and of the adopted step are gathered in [bib1] and [bib2] where one will find 
also a bibliographical study of the problem. 
· This document is extracted from [bib3] and [bib4] where one makes a more detailed presentation of 
models and of some elements of validation. More complete elements of validation 
can also be found in [bib5] for the model of cooling and in [bib14] 
for the model of hardness. 
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Metallurgical model of behavior to cooling 
2.1 Introduction 
On the basis of test of dilatometry [Figure 2.1-a], only knowledge, at a given moment,  
temperature of an undergoing steel of structure transformations does not make it possible to know its 
state 
of deformation. On the other hand, the behavior of such a steel seems to be able to be described 
within the framework 
models of behavior to variables mémoratrices or interns [bib6]. Indeed, if one introduces: 
·  
Z = {Z I = 
} p 
I; 
, 
1 
the p-uplet of the proportions of the possible metallurgical components 
present in a point M and at one moment T given (here, Z1, Z2, Z3, Z4 will be the proportions 
of ferrite, pearlite, bainite and martensite and the proportion of austenite in M will be equal to: 
1 - Z 
( 
) 
1 + Z2 + Z3 + Z4); 
·  
HT 
 
HT 
 
 
(T) = (T - T) and (T) = (T - T) + (T) thermal deformations 
austenite and phases ferritic, perlitic, bainitic and martensitic; while noting: 
-  
the thermal dilation coefficient average of austenite; 
-  
T the temperature of reference to which one considers HT 
null; 
-  
the thermal dilation coefficient average presumedly identical for ferrite, 
pearlite, the bainite and martensite; 
 
-  
deformation, at the temperature T, of the phases ferritic, perlitic, bainitic and 
martensitic compared to austenite (by taking the latter like the phase of 
reference); 
· if it is considered, moreover, that the deformation of a multiphase mixture can be obtained with 
to leave the deformations of each phase by a linear law of mixture, one can then describe 
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evolution of the state of deformation during a dilatometric test by: 
I = 4 
I 
 
 
= 4  
HT (Z, T) 
HT 
HT 
= 1 - Z  
 
 
I 
(T) Zi (T) 
 
 
 
+  
 
I = 1 
 
I = 1  
éq 2.1-1 
I = 4 
I 
 
 
= 4  
= 1 - Z  
 
 
I 
 
[ 
 
 
 
(T - T)] + Zi 
 
[(T - T) +]. 
 
I = 1 
 
I =1  
The problem lies then in the determination of Z or, more precisely and within the framework of 
simple materials with variables mémoratrices, in the determination of the function of evolution F such 

file:///Z|/process/refer/refer/p1070.htm (9 of 16)10/2/2006 2:53:01 PM



file:///Z|/process/refer/refer/p1070.htm

that: ! 
Z = F (T, Z,) 
... . 
To give an account of an effect the speed of cooling on the evolution of the transformations 
structural, we propose, within the framework of simple materials with variables mémoratrices, one 
modeling of the metallurgical behavior of steels to the cooling which includes, a priori! 
T among 
its variables of state. 
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Austenitization 
 
 
1 
 
2 
 
3 
T 
 
 
 
1: speed of cooling = 1 °C/min  
 
2: speed of cooling = 10 °C/s  
3: speed of cooling = 100 °C/s 
Appear 2.1-Error! Argument of unknown switch. : Diagrammatic curves of dilatometry 
2.2 Assumptions 
H1: 
A steel likely to undergo structure transformations is a simple material with 
variables mémoratrices among which one can choose characterizing quadruplet Z 
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metallurgical structure in a given point and at one moment. 
One thus models structure transformations on a scale where the material point can 
to be multiphase. This scale of modeling which can appear métallurgiquement 
coarse is in conformity with the concept of material point used in mechanics of the mediums  
continuous and the test-tube of dilatometry, presumedly homogeneous, is representative. 
H2: 
Supplemented diagrams TRC of the martensitic kinetics of transformation of 
Koistinen-Marburger [bib7] completely characterize the metallurgical behavior of one 
steel austenitized during a continuous cooling. 
This assumption results directly from the metallurgical practice and specifies the first of 
objectives to be fixed at the model: to be compatible with the whole of the experimental data 
relating to the metallurgical behavior which accompanies cooling by steels 
austenitized. In addition, this assumption also generates a “natural” choice and 
restrictions as for the variables to be introduced into the model. 
H3: 
The transformations ferritic, perlitic and (especially) bainitic are impossible in on this side 
martensitic initial temperature of transformation ms. 
This assumption, in conformity with the representation of diagrams TRC, makes it possible to 
uncouple 
transformations by diffusion of the martensitic transformation. 
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2.3  
Choice of the variables of state 
Pilot variables of state 
Into thermomechanical of the continuous mediums, the variables of state control are generally 
temperature and the state of constraints or deformations. However, because of the assumption H2, 
temperature is only the variable pilot retained. Indeed, the influence of the state of stresses on 
structure transformations does not appear in diagrams TRC. Moreover, there does not exist (except 
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an effect of the type Châtelier) of ideal model even if experimental data relative to 
this influence in isothermal conditions were obtained for certain steels [bib8]. 
Variables of state mémoratrices 
The first variable mémoratrice to be introduced is quadruplet Z characterizing the structure 
metallurgical and to which knowledge is enough, a priori, to describe from a mechanical point of 
view a test 
dilatometric [§2.2]. 
In addition to the temperature T, its derivative! 
T and the state of stresses, austenitic size of grain D and 
percentage of carbon C of austenite changing also influence the behavior 
metallurgical of steels to cooling. However, always because of the assumption H2, one 
chooses not to introduce C like variable mémoratrice. Indeed, diffusion of carbon 
does not appear explicitly on diagrams TRC, although it is implicitly taken into account, 
at least partially, in the concept even of component metallurgical. In addition Giusti showed 
that if the taking into account of C were theoretically possible, it led to equations 
of evolution coupled between C and Z whose experimental identification “seems very difficult, for not 
to say impossible " [bib9]. Nevertheless, an effect of the percentage of carbon on the decomposition of 
austenite 
with cooling appears indirectly on diagrams TRC. It is the phenomenon of 
stabilization of the austenite which results in a decrease of the temperature of transformation 
martensitic ms [Figure 2.3-a]. 
Contrary to the percentage of carbon, the austenitic size of grain D appears on the diagrams 
TRC which relate to conditions of austenitization to which correspond a value of D. 
We thus choose to introduce D like variable mémoratrice. However, size of grain 
austenitic, which results from the thermal history undergone with the heating does not evolve/move 
more with cooling and 
D intervenes only as a parameter in the model of behavior to cooling.  
In addition, the martensitic temperature of transformation ms, which depends on the thermo history 
metallurgical undergone, intervenes in the law of Koistinen-Marburger adopted on the assumption 
H2 for 
to describe the martensitic transformation. One thus chooses to introduce ms like variable 
mémoratrice. 
The character memorator of the variables mémoratrices introduced here in addition to Z appears 
clearly: 
D characterizes the thermal history undergone at the time of the passage in austenitic phase and ms 
connects 
decomposition of austenite in the conditions of its transformation into martensite. 
The relation “STEEL” of operator CALC_META thus comprises 7 internal variables: 
V1: Z1, proportion of ferrite, 
V2: Z2, proportion of the pearlite, 
V3: Z3, proportion of bainite, 
V4: Z4, proportion of martensite, 
V5: D, austenitic size of grain, 

file:///Z|/process/refer/refer/p1070.htm (12 of 16)10/2/2006 2:53:01 PM



file:///Z|/process/refer/refer/p1070.htm

V6: Ms martensitic temperature of transformation, 
V7: temperature at the points of Gauss. 
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Appear 2.3-Error! Argument of unknown switch. : Example of diagram TRC 
It is also necessary to model the whole of the phenomena brought into play at the time of one 
operation of welding to introduce other variables mémoratrices such as the tensors of 
anelastic deformations which can correspond to the plastic deformations, of plasticity of 
transformation or of viscosity. But, in accordance with the assumption H2, one considers that these 
variables 
do not intervene in the functions of evolutions of Z and ms. 
Lastly, the following assumptions make it possible to simplify and specify more the general form of 
model. 
H4: 
T intervenes only in the relation of behavior expressing the current vector of 
. 
heat Q; its temporal derivative first T is not a variable of state and the relation of 
behavior expressing the current vector of heat is the Fourier analysis: 
Q = - (T, Z, D) T. 
H5: 
I = 3 
A diagram TRC makes it possible to identify an empirical relation between ms, D and Zi: 
I = 1 
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= 
+ 
( 
I 
3 
 
 
Ms Z, Z, Z; D 
 
 
1 
2 
3 
) = Ms0 (D) + AM (D) Z - Zs (D 
I 
) . 
éq 2.3-1 
I = 1 
 
 
 
The H5 assumption means that the martensitic initial temperature of transformation is 
constant (for a size of grain given) and equal to Ms0 as long as the proportion of austenite 
transform is lower than a threshold Z S and than its variation is a linear function of 
quantity of transformed austenite. This assumption seems checked relatively well 
in experiments [2.3 - has]. It makes it possible to exclude ms from all the relations of 
behavior other than that expressing Z and Z4. 
With Z = {Z, Z, Z which one will distinguish well from Z = {Z I 
I; 
= , 
1 } 
p defined in the § 2.1. 
1 
2 
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3 } 
Finally, and taking into account the assumptions H2 and H3 the relations defining the model are 
written  
thus: 
+ 
. 
T - Ms 
 
!( 
Z T) = F (T! T, Z ms; D) 
[ 
] 
= F T, T, Z; D 
with Z = {Z, Z, Z 
éq 2.3-2 
1 
2 
3 } 
 
 
 
 
T - Ms 
I = 3 
 
 
+ 
Z 
 
 
 
4 (T, 
Z ms; D) = 1 - 
Z 
- 
 
- 
éq 2.3-3 
 
{1 ex ( 
p (D) [ms T 
I 
] )} 
I = 1 
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and 
+ 
I 
= 3 
 
( 
Ms T) = Ms0 (D) + A (D). 
Z 
- Zs (D  
M 
I 
) éq  
2.3-4 
 
 
I 
= 1 
 
where: is a characteristic of the material (°C-1) (possibly function of D); 
and [X] + the positive part of X indicates. 
Lastly, as it seems difficult to propose a simple form of dependence of the model with respect to 
these variables, one chose not to impose of form particular to the functions of evolution fi [bib2]. 
The step to calculate speeds of evolution of the metallurgical variables uses then 
techniques of interpolation and rests on the fact that any thermometallurgic history 
in experiments known (dilatometric test for example) is a particular solution of 
the differential equation of evolution [éq 2.3-2]. 
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3  
Identification and implementation of the model with 
cooling 
3.1 Principle 
Identification of the model and the use of the experimental data which the diagrams constitute 
TRC to determine the value taken by the function F in a thermo-metallurgical state (T, T, Z; D) 
given are founded on the following observation and the assumption: 
· the thermo-metallurgical stories being reproduced on a diagram TRC are all of the solutions 
particular of the differential equation [éq 2.3-2]. They thus make it possible to calculate in each 
thermodynamic state met in experiments and present in a diagram TRC 
value taken by the function F. 
·  
function  
F is regular; i.e. if two points E and E 
K 
J are close 
(Ek = {T (tK), T! (tK), (ztK); D (tK)}), their speeds of evolution in Z are also 
neighbors is: 
T - Ms + 
T - Ms + 
E 
E F (E) [ 
] =! (zE) F (E) [ 
] =! (zE 
K 
J 
K 
K 
J 
J). 
T - Ms 
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T - Ms 
One determines then speeds of structure transformations of an unspecified state by 
interpolation among all the “couples” (E, F (E 
K 
K) defined by diagrams TRC. 
3.2  
Integration of the experimental data to the model 
3.2.1 Principle 
In general, a diagram TRC defines in a reference mark [( 
ln T) - T] structure transformations 
associated a series of thermal stories traced on this diagram [Figure 2.3-a]. The integration of 
experimental data then consists in recording for each history of these diagrams the values 
successive of T, T! , Z so that for any temperature T the model knows 
values taken by the function F in (T, T! (T), ( 
Z T)). In order to be able, starting from a reduced number of 
numerical data, to reconstitute the thermometallurgic evolutions continuously, one formulates 
some assumptions on the thermal evolutions and the metallurgical behavior of steels. 
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3.2.2 Rules of interpretation of diagrams TRC 
Thermal evolutions 
To define the thermo-metallurgical stories present in a diagram TRC it is necessary to characterize 
their thermal evolutions. One can notice that, in a reference mark [1 ( 
N T) - T] and for 
temperatures lower than 820 °C, the thermal stories of diagrams TRC can, with one 
enough good approximation, to result from/to each other by a horizontal adjustment 
[Figure 2.3-a]. It is thus possible to define a thermal history T I (T) starting from the data of one 
curve controls Tp T 
() and of the moment (in second) for which this history crosses the isotherm 820 °C 
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by: 
T I (T) 
{ 
exp L [ 
N ( 
tp T)] L [ 
N T I 
= 
+ 
( 
) 
820] - L [ 
N ( 
tp 
) 
820 ]} 
éq 3.2.2-1  
where: T I (T) and tp (T) indicate the reciprocal functions of T I T 
() and Tp T (). 
In fact, one has more easily information relating to speeds of cooling of 
thermo-metallurgical stories of diagrams TRC that at moments of crossing of 
the isotherm 820 °C. It is in particular the case of steels of welding, whose diagrams TRC are 
layouts in a reference mark “speed of cooling with 700 °C-temperature”. Taking into account [éq 3.2.2-
1], 
one can then express the moment of crossing of the isotherm 820 °C according to Tp T 
() and of 
! Ti (700) and one obtain like Ti T characterization (): 
T I (T) 
[ 
exp F (T) 
F ( 
) 
700 
L ( 
N T I 
= 
- 
- 
! ( 
) 
700 F ( 
) 
700 )] 
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éq 3.2.2-2 
1 
With F (T) = 1 [ 
N T ( 
p T)] and, in particular! Ti (T (T)) = F (T) Ti (T) 
Concretely, one interpolates the function F (T) by a polynomial of degree 5. A thermal evolution 
experimental thus is completely defined by the data of the coefficients of the characterizing polynomial 
its pilot curve and by its speed of cooling with 700 °C. Validation of this method of 
parameterization of the thermal stories “read” on diagrams TRC is presented in [bib2]. In 
the unit, and taking into account the relative inaccuracies of the layout of diagrams TRC, the reading of 
T I T 
() and of the determination of! Ti () 
700, the agreement between the thermal stories read and recomputed 
seem very sufficient. 
If one has the recordings of the thermal evolutions of diagrams TRC, one can define 
each experimental thermal evolution by considering that it is its clean curved pilot. By 
elsewhere, if dilatometric tests defining diagram TRC used for 
the identification of the model are carried out with constant speeds of cooling, one characterizes 
these kinetics of cooling only by their speeds of cooling to 700 °C and one 
identically null function F. 
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Initial temperatures and end of transformation 
A diagram TRC provides, for a series of known thermal stories, the proportions of 
various metallurgical components which were formed during cooling as well as 
temperatures for which one observes on a swelling behaviour a significant variation of 
total coefficient of dilation of the test-tube [Figure 2.1-a]. These temperatures are then considered 
like and the end initial temperatures of the transformations. More precisely: 
· initial temperatures of transformation indicated on diagrams TRC 
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correspond to 1% of component already formed; 
· the temperatures of end of transformation correspond to the final proportion of the component 
in the course of formation minus 1%. 
Kinetics of the ferritic, perlitic and bainitic transformations 
The observation of a swelling behaviour shows that, except in the vicinity of initial temperatures and 
of end of transformation, the evolution of the deformation according to the temperature is almost 
linear. Taking into account the equation [éq 2.1-1] evolution of the quantity of phase transformed into 
function of the temperature is then not very distant from a function refines and one thus supposes only: 
· for the ferritic, perlitic and bainitic transformations, the speed of transformation is, 
between the experimental temperatures of beginning and end of transformation, a function 
linear of the temperature;  
· speeds of these transformations are twice slower at the beginning (from 0 to 1% of 
component transformed) and into end of transformation (of Z 
- 1% with Z 
final 
final) that enters them 
experimental temperatures of beginning and end of transformation. 
Martensitic transformations 
It is supposed that the martensitic transformations are described by the law of Koistinen-Marburger 
[éq 2.3-3] and the phenomenologic equation [éq 2.3-4] expressing ms. One uses then each 
diagram TRC to determine the coefficients, A and Zs as well as the Ms0 temperature. Lastly, 
to prevent that the model systematically transforms into martensite remaining austenite when one 
reached temperature ms, one introduces an additional parameter, called TPLM, characterizing (by 
its slowest speed of cooling with 700 °C) of the kinetics of cooling which generates 
a martensitic transformation. More precisely [Figure 3.2.2-a]: 
·  
Ms0 is regarded as the martensitic initial temperature of transformation when 
this one is total; 
· is supposed to be constant and calculated in order to check, in the case of a transformation 
martensitic total: 
Z (MF 
4 
) = 0 9,9 
where MF is the experimental temperature of end of transformation; 
· finally, A and Zs are determined by linear regression starting from the stories 
thermo-metallurgical experimental leading to a martensitic transformation 
partial. 
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Mso = 415°C; Mso - MF = 185°C 
Mso - ms according to (Zf+Zp+Zb) 
from where a value of (supposed 
Mso - ms 
constant for a size of grain 
20 
Linear (Mso - ms) 
data) of -0.0249 
y = 30,086x - 11,437 
15 
R2 = 0,8648 
With = -30,086 
10 
Zs = 0,38 
Mso - ms (°C) 
5 
and TPLM = -9°C/s 
0 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1 
Zf+Zp+Zb 
Appear 3.2.2-a: Evolution of (Ms0 - ms) according to (Z1 + Z2 + Z3); 
for steel 16MND5 austenitized 5 minutes with 900 °C. 
3.2.3 Effect of the austenitic size of grain on the kinetics of the transformations with 
cooling. 
The transformations of phase proceed by germination and growth. The stage of germination is done 
primarily on the grain boundaries. The size of grain of austenite thus plays an important part on 
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transformations with cooling. For this reason diagrams TRC are established for 
conditions of austenitization given and should not in any rigour be used only for 
similar conditions of austenitization. The experimental results tend to show that the size of 
austenitic grain modifies more the kinetics of transformation than the end and initial temperature 
transformations, which results relatively well in a translation of diagram TRC according to 
the axis of times. With each point M of a diagram TRC corresponds the tuple (T, T! ,) 
Z. To relocate it 
TRC according to the axis of times amounts multiplying! 
T by a coefficient different from the unit (the axis of times 
is given in logarithmic scale) [bib15]. One thus defines a speed of cooling “effective” 
! Teff: 
! Teff =! T exp (has (D - D)) 
ref. 
with 
dref: cut austenitic of reference of diagram TRC, homogeneous grain with a longor.  
a: homogeneous coefficient material contrary a length. 
The law of evolution retained is thus written: 
+ 
. 
 
T - Ms 
!( 
Z T) = F (T! T, Z ms) 
[ 
] 
= F T, T, Z 
with Z = {Z, Z, Z 
EFF 
EFF 
1 
2 
3} 
 
 
 
 
. 
T - Ms 
This writing has the advantage of limiting the interpolation to only one diagram TRC, of reference. 
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Note: 
Assumption: the germination and the growth of martensite are regarded as 
instantaneous and the density of the sites of nucleation has little influence on this transformation. 
The effect of the size of grain thus does not relate to the evolution of the martensitic phase and carries 
here only on the evolution of the phases ferritic, perlitic and bainitic. 
3.2.4 Seizure of diagrams TRC 
Taking into account the preceding assumptions, experimental acquisition data contained in 
diagrams TRC thus includes/understands: 
· for diagram TRC: 
-  
the value of the austenitic size of grain dref of the diagram and which will be the size of grain 
of reference, 
-  
the coefficient of translation has for the taking into account of the effect of the size of grain 
austenitic, 
-  
the initial temperature of total martensitic transformation Ms0, 
-  
the value of the coefficient of the law of Koistinen-Marburger, 
-  
the value of coefficients A and Z S intervening in the equation [éq 2.3-4], 
- values of the six coefficients of the polynomial of degree five interpolating the function 
[ 
ln ( 
tp T)] (if the thermal stories explicitly are known, each one of them is 
regarded as being its clean curved pilot and the definition of his six coefficients is 
to renew for each history); 
· for each thermal history of a diagram TRC: 
-  
the speed of cooling with 700 °C, 
-  
final proportions of ferrite, pearlite and bainite (Zff, Zfp, Zfb), 
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Tdf 
(, Tdp, Tdb) 
-  
initial temperatures of each transformation  
, 
Tff 
(, Tfp, Tfb) 
-  
and temperatures of end of each transformation  
. 
The seizure of a diagram TRC is realizable by a software of seizure (available on workstation). 
It is a simple and fast operation (approximately an hour for the seizure of about fifty stories). 
The result of this procedure of seizure of diagrams TRC (cf [§An1]) is directly insertable 
in a command file of Code_Aster as an order DEFI_TRC, order which 
thus contains the data identifying the metallurgical behavior of steel. 
The complete definition of the models of metallurgical behavior (values of the Ar3 parameters 
“quasi static” temperature of ferritic transformation, Ms0, and the complete definition of the model 
with the heating and of austenitic growth of grain) is realized within the order 
DEFI_MATERIAU under the key word factor META_ACIER. 
An example of the procedure of seizure is presented in appendix [§An1]. 
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3.3 Evaluation of the function of evolution starting from the data  
experimental 
3.3.1 Evaluation of the function of evolution for the experimental stories 
Taking into account the assumptions concerning the evolution of the structure transformations associated 
thermo-metallurgical stories Hi of a diagram TRC, one thus has a whole of solutions 
particular parameterized by dref of the differential equation (for T ms): 
!( 
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Z T) = F (T! T, Z; dref) 
who allow for any thermo-metallurgical state Ek = {T, T! , Z; dref} of an experimental history 
Hi to calculate: 
! 
Z (E (T)) = F (E 
K 
K) 
Indeed: 
Z 
D 
! 
Z (E (T)) = 
(E)! T (E 
K 
K 
K) 
dT 
however, taking into account the assumptions of linearity on the evolutions of Zi T 
() between two consecutive states 
I 
I + 1 
E and E 
of the same discretized history: 
 
K 
 
K 
dz ( 
I 
I 
Z 
+1 
E K - Z E K 
E K) 
( ) ( 
) 
= 
dT 
T (I 
I + 1 
E K) - T (E K 
) 
where T (Ek) can be estimated by derivation of the analytical expression selected to represent Ti T (). 
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Thus, one can, for any temperature T, to know the values taken by the function F in the states 
thermo-metallurgical I.E.(internal excitation) = {T, iT! (T), zi (T); dref} where index I refers to the 
stories 
known in experiments. 
3.3.2 Calculation of the advance of the transformations for an unspecified state 
It acts, knowing T, T! , 
Z ms and D at one moment T given, to determine the values of the variables 
metallurgical at the moment (T + T) according to. More precisely: 
· If  
T (T) Ar3 or if! T > 0, 
the metallurgical model of transformation to cooling is inactive [§4.4]. 
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· If  
Ar 
T (T) 
( 
Ms T 
3 > 
 
) , 
!( 
Z T) = F (T! T, Z; D) = F (T! T, Z; D 
EFF 
Z T + T 
= Z T + Z! T T 
ref.) and ( 
) 
( ) ( ) 
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then: 
I = 
+ 
3 
( 
 
 
Ms T 
T) 
Ms 
With  
Z 
0 
(T + T) - Zs 
+ 
= 
+ 
 
I 
 
 
I 
= 1 
 
and, if T (T + T) M ( 
S T + T): Z (T + T) = Z 
4 
4 (T) 
or, if not: 
I = 3 
 
 
+  
Z 
 
 
 
 
 
 
4 (T + 
T) = 1 - 
Z (T + T) 1 
- exp [M (St + T) - T (T + T 
I 
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)]  
 
 
 
 
 
 
I = 1 
 
 
· If  
T (T) < M ( 
S T) 
(zt + T) = (zt); M (St + T) = M (St) 
and 
I = 3 
 
 
+ 
Z (T + T) = 1 
- Z (T + T) 1 
 
- 
 
 
exp (cd. 
4 
) [M (St + T) - T (T + T 
I  
)] . 
 
 
 
 
 
I = 1 
 
 
 
If Ar 
T (T) 
( 
Ms T 
3 > 
 
), one determines (thanks to the assumption of regularity of F) the value 
catch by F in (T, T! , Z; D) starting from knowledge for any temperature T of the values taken 
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by F in thermo-metallurgical states I.E.(internal excitation) {T, iT! (T), zi (T); dref (T)} known stories 
. 
in experiments, where T (T 
I 
) is the speed of cooling for the Hi history at the temperature T 
(obtained by interpolation). More precisely, one will determine a linear approximation of F with 
vicinity of (T, T! , Z; D). F is related to 5 (because the dependence compared to the parameter D 
is included in the possible modification the current speed of cooling [§ 3.2.3]) in, 
to determine a linear approximation of F in the vicinity of (T, T! , Z; D) amounts determining 
the equation of a hyperplane in 6 and thus to have the value taken by F in six points 
{E, F (E) “close” to (T, T! , Z; D). 
I 
I} 
Concretely, stages of this interpolation of the values of F in (T, T! , Z; D) are them 
following: 
· one calculates an “effective” temperature! 
Teff allowing to take account of the effect of the size 
of austenitic grain if it is different from that of the diagram, and the value then is sought 
catch by F in (T, T! , Z; D 
EFF 
ref.) 
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· one calculates for all the experimental stories Hi known the values taken by 
function F in the following thermo-metallurgical states (in order to know a whole of 
values of F in a vicinity of (T, T! , Z; D 
EFF 
ref.) rather dense in temperature): 
1 
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E 
T 
= 
T, T! T, Z T; D 
T 
I () 
{I () I () ref. ()} 
2 
E 
T 
= 
T + 5 °C, T! T + 5 °C, Z T + 5 °C; D 
T + 5 °C; 
I () 
{ 
I ( 
) I ( 
) ref. ( 
)} 
3 
E 
T 
= 
T - 5 °C, T! T - 5 °C, Z T - 5 °C; D 
T - 5 °C; 
I () 
{ 
I ( 
) I ( 
) ref. ( 
)} 
· one determines the six closer neighbors of E (T) = {T (T), T! (T), (zt); D (T 
EFF 
ref. 
)} among all 
J 
I.E.(internal excitation) (T) (J = 1) 
3 
, defining the metallurgical behavior of material in the vicinity of 
J 
the temperature T (T) by minimizing the distance from E (T) to each one of I.E.(internal excitation) (T); 
· one calculates the barycentric co-ordinates of E (T) compared to its closer neighbors 
v 
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E (T) (v = 1) 
6 
. For that, one solves the linear system associated with this calculation within the meaning of 
least squares and by choosing the solution of minimal standard if sound 
determinant is null (it is the case when the closest neighbors belong to a variety  
refine of size lower than six - [R6.03.01]); 
· one retains only the neighbors W 
E (T) (W) 
6 such as all the barycentric co-ordinates 
W of E (T) are positive (so that E (T) is located inside the convex polyhedron 
being based on these points); 
· one calculates then: 
! 
Z ( 
W 
E (T)) = F (E) =. F [E 
K 
K 
W 
(T)] /W 
; 
W 
· finally, one calculates Z with the step of time following Z 
(T (+ T)) according to the diagram clarifies according to: 
(zt + T) = (zt) +! (zt) T. 
Note: 
The definition of a distance used in the criterion of proximity is not obvious, account 
held of the nonadimensional character of the space of the {T, T! , Z; D}. Currently, 
seek closer neighbors is carried out by adimensionnalisant each one simply of 
variables but one could plan to introduce weighting coefficients into each 
“direction” (T, T! , or) 
Z in order to return account of a dominating part played by such or such 
variable. 
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4  
Metallurgical model of behavior to the heating 
4.1 Assumptions 
During the heating, the only transformation likely to occur is the transformation into 
austenite, which one supposes speed independent the heating rate. In addition, one 
also suppose that the whole of the phases ferritic, perlitic, bainitic and martensitic 
transform in an identical way into austenite. These assumptions are generally common to 
the whole of the models of austenitization [bib9], [bib10] and [bib11]. Consequently the model selected 
is 
form: 
! 
Z 
= F (T, Z 
 
) . 
It is pointed out that the metallurgical model of transformation proposed by Leblond and Devaux and 
established 
in the code Sysweld [bib11] is form (for the transformations with the heating and with 
cooling): 
Z 
T - Z 
! 
eq 
Z (T, Z) 
( ) 
=  
(T) 
where, for the austenitic transformation, the parameter is taken constant. 
Comparative data to the experiment presented in [bib11], [bib12] and [bib13] show that, 
with the help of the identification of functions Z (T 
eq 
) and (T) starting from tests at various speeds of 
heating, this model allows a completely satisfactory description of the austenitic transformation 
steels. Nevertheless, it seems that the identification of the function (T) remains difficult [bib4]. 
In Code_Aster, the austenitic model of transformation is form: 
Z 
T - Z 
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eq 
 
! 
Z (T, Z) 
( ) 
= 
(T) 
but with a simple form for the function T 
(), in order to keep a whole of models 
metallurgical of easy and fast identification. 
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4.2  
Form model selected  
In its continuous form, the model selected is such as: 
Z 
T - Z 
eq 
 
! 
Z (T, Z) 
( ) 
= 
( 
éq 4.2-1 
T) 
where: 
·  
Z indicates the proportion of austenite; 
·  
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Z (T  
eq 
) is the function (with Ac1et Ac3 positive constants): 
 
0 
if T ac 
 
1 
T - Ac 
Z 
=  
1 
if 
éq 4.2-2 
1  
 
eq (T) 
Ac 
T 
Ac 
Ac 
3 
3 - Ac 
 
1 
 
1 
if T 
 
Ac3 
·  
T 
() is the function (avec1et 3 positive constants): 
 
 
if T 
1 
Ac 
 
1 
 
T - Ac 
(T) = 
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1 
1 + 
(3 - 1) if Ac1 T ac 
Ac 
3 
éq 4.2-3 
3 - Ac 
 
1 
 
 
if T 
 
3 
Ac3 
Notice 1: definition of the function Zeq T 
( ) 
The definition of the function Zeq T 
() is identical to that given by Leblond and Devaux in 
[bib11] and [bib12]. It corresponds to the evolution of the austenite rate transformed for 
very low heating rates. Indeed, in T fixed, Zeq T 
() is the asymptotic solution 
towards which the solution of the differential equation [éq 4.2-1] tends with the time-constant 
T 
(). For low heating rates, the asymptotic solution can be considered 
like attack at every moment and Zeq T 
() thus corresponds to the evolution of the austenite rate 
transform during “quasi-static” evolutions. The function Zeq T 
() is thus entirely 
defined by the data of Ac1 and Ac3 which is done under single-ended spanner words AC1 and AC3 under 
the key word factor META_ACIER of order DEFI_MATERIAU. 
Notice 2: form function T 
( ) 
In the model suggested by Leblond and Devaux, the form of the function T 
() is not 
specified and this function is identified in order to obtain a satisfactory agreement between 
initial temperatures and end of transformation experimental and calculated. In order to obtain 
a model of identification simple and rapid we chose a simple form for the function 
T 
(). More precisely, to be able to integrate the equation of evolution [éq 4.2-1] there is all 
initially considered the case where the function T 
() is constant. In this case, one can then 
to propose two possibilities of simple identification of this constant function. The first 
possibility consists in identifying a value 1 of making it possible to describe it correctly 
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beginning of the transformations whereas the second consists in identifying a value 3 of  
allowing to describe the end of the transformations correctly. The model was then tested 
obtained with a function T 
() refines definite from values 1 and 3 above definite. 
Results obtained being completely satisfactory and comparable with those obtained with 
model available in Sysweld, one chose to introduce into Code_Aster a model where 
function T 
() is closely connected and is defined by 1 and 3 which is indicated with AC1 and AC3. 
Handbook of Reference 
R4.04 booklet: Metallurgical behavior 
HI-75/01/001/A  

file:///Z|/process/refer/refer/p1080.htm (21 of 21)10/2/2006 2:53:02 PM



file:///Z|/process/refer/refer/p1090.htm

Code_Aster ® 
Version 
5.0 
Titrate:  
Models of metallurgical behavior of steels 
Date:  
29/03/01 
Author (S): 
F. WAECKEL, A. RAZAKANAIVO 
Key: 
R4.04.01-C Page: 
19/28 
4.3  
Integration of the equation of evolution 
In Code_Aster, one chose to integrate the equation of evolution [éq 4.2-1] exactly in Z and 
. 
explicitly in T and on each step of time (i.e while considering! 
T and constants on the step and 
equal to their values at the beginning of step of time). One obtains then: 
- T T! T 
T T! T 
 
T  
Z (T + T) 
( ) ( ) 
= 
+ Zeq (T + T) 
( ) ( ) 
- - 
+ Zeq (T) - Z 
 
(T) exp- 
. 
Ac3 - ac 
Ac 
1 
3 - Ac 
 
1 
 
 
 
(T) 
The consequent evolution of the proportions of all the other metallurgical components is then defined 
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by: 
 
Z T 
 
+ T 
- Z T  
 
Z 
 
 
I (T + T 
) 
( 
) 
( ) 
= Zi (T). 1 - 
 
. 
1 - Z (T) 
 
 
 
 
In other words, each phase present is transformed into austenite to the amount of its 
proportion at the beginning of step of time. 
4.4  
Evolution of the austenitic size of grain to the heating 
Once austenized, steel sees its size grain to increase more or less quickly according to 
temperature, but this growth always takes place since austenite appears with a size of grain 
null. The austenitic growth of grain is a thermically activated process. The model of 
growth selected is that of Grey and Higgins, adapted to treat material in the course of 
transformation [bib15]: 
Model of growth: 
D 
1 1 
1  
(D) = - 
 
dt 
D dlim  
Growth in the course of transformation, austenite appearing with a null size of grain: 
D 
1 1 
1  
dz/dt 
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(D) = - 
- 
D 
dt 
D D  
Z 
lim 
with 
 
Qapp 
= 0  
 
exp ( 
) 
RT 
 
 
Wapp 
dlim = d10 exp (- 
) 
 
 
RT 
with 
Z: proportion of the austenitic phase 
D: diameter of austenitic grain homogeneous to a length 
dlim: cut limiting grain, dependent on D homogeneous parameter material to a length 
10 
Q and W: homogeneous parameters materials with energies of activation (J.mol-1) 
app 
app 
R: constant of perfect gases (8.314 J.K-1.mol-1) 
D: homogeneous parameter material at seconds per unit of length 
10 
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Note: 
The parameters materials are to be informed under key word META_ACIER of 
DEFI_MATERIAU. 
4.4.1 Treatment  
numerical 
The calculation of the size of grain is carried out after the calculation of proportion of phase and the 
integration of 
the equation of evolution is made according to an implicit scheme in D. From where: 
1 1 
1  
Z 
D = - 
T - 
D 
D dlim  
Z + 
1 1 
1  
Z 
 
D = D - + D 
= D - + - 
T 
- 
D 
D Dlim  
Z +  
A quadratic equation in D. is solved. 
4.5  
Feel metallurgical evolution 
In a structural analysis, certain zones can undergo a heating while others 
cool. Moreover, under certain conditions, an austenitic transformation initiated at the time of 
heating can continue at the beginning of cooling. There thus does not exist, strictly speaking, one 
austenitic model of transformation and a model of transformation to cooling but only one 
model of metallurgical transformations which according to the temperature considered and signs it speed 
of thermal evolution is described either by the model of decomposition of austenite, or by the model 
of formation of austenite. 
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With regard to the model introduces into Code_Aster, the direction of the metallurgical evolution 
(i.e. formation or decomposition of austenite) is given as follows: 
T T 
(+ T) < Ac1 
[Ac 
] 
> Ar 
1; Ar3 
3 
. 
T T 
() > 0 
AUST 
. 
T T 
() = 0 
REFR 
if Z Zeq REFR if Z < Zeq AUST 
AUST 
. 
T T 
() < 0 
REFR 
AUST 
where REFR means that the metallurgical evolution is determined by the model of decomposition of 
the austenite and where AUST means that the metallurgical evolution is determined by the model of 
formation 
austenite. 
Note: 
AR3 is also a characteristic of the metallurgical behavior to cooling 
already defined by the model of transformation in cooling. 
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5  
Identification of the model to the heating 
5.1  
Determination of the function Zeq (T) 
Zeq T 
() can be regarded as the quasi static solution of the differential equation [éq 4.2-1] and 
one chooses to define it (as in [bib11]) by the relation [éq 4.2-2]. 
In this expression, temperatures AC1 and AC3 are the quasi static temperatures “theoretical” 
of beginning and austenitic end of transformation which correspond toan austenite rate still formed 
equal to zero or already equal to one. 
In fact, these temperatures are difficult to determine in experiments and one generally considers 
that quasi static temperatures of beginning and given end of austenitic transformation 
in experiments correspond, respectively, to 5 and 95% of formed austenite. In other words, if 
one notes Ac'1 and Ac' 3 these temperatures, they check: 
Z (Ac') =, 
0 05 and Z (ac 
eq 
eq 
' ) = , 
1 
3 
0 95 
éq 5.1-1 
To determine Ac'1 and Ac' 3 one can use tests of dilatometry at low heating rate 
or to apply formulas of the literature connecting the quasi static temperatures of beginning and end of 
austenitic transformation with the composition of steels. In general these temperatures are also 
indicated on diagrams TRC used for the identification of the model of transformation to 
cooling or can be considered using formulas knowing the composition of steel 
[bib4]. 
Lastly, knowing Ac'1 and Ac' 3, one can then determine the temperatures Ac1 and defining Ac3 
function Zeq T 
() starting from the two equations [éq 5.1-1] above. A complete example of identification 
austenitic model of transformation is presented in [bib4]. 
5.2  
Determination of the function RATE (T)  
In a general way, it is not easy to release means of a simple and fast identification of 
function T 
(). This is why one proposes to adopt for this function the simplified form 
below [éq 5.2-1] if ac T ac: 
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1 
3 
T - Ac 
(T) =  
1 
1 + 
(3 - 1) 
éq 5.2-1 
Ac3 - Ac1 
where 1 and 3 is positive constants. 
For the phase of identification, one considers the particular case initially where is constant enters 
Ac and ac. One proposes two types of identification then allowing to determine is a value  
1 
3 
1 
of coherent with the experimental temperatures of beginning of transformation, that is to say a value 3 
of coherent with the experimental temperatures of end of transformation. 
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One presents in [bib4] the results obtained by these two identifications and one shows (without another 
form 
of theoretical justification) that the function T 
() refines definite with values 1 and 3 previously 
determined allows to obtain an agreement with the experiment completely comparable with that 
obtained with 
model of Leblond. 
5.2.1 Identification of TAUX_3 starting from AC'3 
For! 
T and constants and initial condition Z (Ac1) = 0, the solution of the equation 
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of evolution [éq 4.2-1] is (as long as Z (T 
eq 
) is constant, i.e. as long as T Ac3): 
 
Ac1 - T  
Z (T) = Z 
. 
. !. 1 exp 
 
eq (T) - 
Zeq (T) 
 
 
T 
- 
 
 
 
. T!  
In particular, one thus has, for T 
= A  
C 3: 
 
Ac - Ac  
0 95 = Zeq (ac) -. Z eq (T). ! T. 1 
1 
3 
, 
 
3 
- exp 
 
. ! 
 
 
T 
 
A test of dilatometry at heating rate constant (and not very low) allows then 
to determine value 3 of allowing to reach the agreement between the experimental values and 
calculated of Ac3. One presents in [bib4] comparisons between experiment and calculation obtained in 
thus identifying the function considered as constant. 
5.2.2 Identification of TAUX_1 starting from AC'1 
In the same way that previously, one can also write, for T = ac: 
1 
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Ac - Ac  
0 05 = Zeq (ac) -. Zeq (T). ! T. 1 
1 
1 
, 
 
1 
- exp 
 
 
éq 5.2.2-1 
. ! 
 
 
T 
 
There still, having a test at constant heating rate, the equation [éq 5.2.2-1] allows 
to determine a value 1 of allowing to obtain a good agreement on the Ac1 temperatures 
calculated and experimental. 
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6  
Model of calculation of hardness 
Metallurgical calculations can be supplemented by a calculation of hardness of “hardening” associated 
with 
metallurgical structure. 
The selected model uses the assumption according to which the hardness of a polyphase material point is 
well  
represented by a linear law of mixture of the microhardnesses of the components (here phases austenite, 
ferrite, pearlite, bainite and martensite). The microhardnesses are taken as being constants of 
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material and of the phase considered. 
The model is written then: HV = Z HV 
K 
K 
K 
HV: hardness (here Vickers for example) of the polyphase point, 
zk: proportion of the phase K, 
HVk: hardness of the phase K. 
Although enough simple, this model gives very correct results [bib14]. 
In Code_Aster the calculation of hardness is done via the operator of postprocessing 
CALC_ELEM; option “DURT_ELGA_META” for calculations of hardness at the points of Gauss and 
option 
“DURT_ELNO_META” for calculations with the nodes by elements. 
Hardnesses of the various metallurgical phases are data materials provided by the user 
under the key word factor DURT_META of operator DEFI_MATERIAU. 
DURT_META 
( 
F1_DURT: HVf 
F2_DURT: HVp 
F3_DURT: HVf 
F4_DURT: HVf 
C_DURT: HV 
) 
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Appendix 1  
One presents below an example of the procedure of seizure of a thermo-metallurgical history 
experimental (at nonconstant speed of cooling). Provided information is first of all shown 
by the user with the software of seizure: speed of cooling with 700 °C, composition with the ambient 
one, 
experimental temperatures of beginning and end of transformation,…. This information is registered in 
heavy and Italic type; the temperatures are indicated in °C and speeds of cooling in °C/s. 
The whole of the thermo-metallurgical states defining this experimental history and their storage 
data processing are then presented and the figure [Annexe1-a] represents, always for this history and in 
function of the temperature, supposed metallurgical evolution solution of the differential equation [éq 
2.3-2] thus 
that the recall of the data provided during the seizure. 
SEIZURE OF THE TRC 
SEIZURE OF THE STORIES THERMOMETALLURGIQUES OF WHICH ONE A 
THE EXPERIMENTAL KNOWLEDGE FOR A STEEL GIVES 

file:///Z|/process/refer/refer/p1090.htm (12 of 19)10/2/2006 2:53:03 PM



file:///Z|/process/refer/refer/p1090.htm

Enter the name of steel (8 alphabetical characters maximum) 
trcacier 
Enter the value of the Ar3 temperature 
836 
To enter the value of the temperature in lower part of which all them 
transformations are finished 
200 
THE TRC EAST CHARACTERIZES BY: 
1 - The number of stories which composes it; 
2 - The coefficients A, B, C, D, E, F of the polynomial: WITH + BT + CT2 + DT3 + ET4 + FT5 
defining the curve cooling F (T) controls such as: 
T (T) = exp {F (T) - F (700) - ln [Tp (700) F' (700) 1} 
where: Tp is the derivative of T (T) and F' that of F; 
3 - The value of the austenitic size of grain dref of the diagram; 
CAUTION! THE FIRST SEIZED HISTORY MUST BE SLOWEST; 
I.E. NEAREST TO THERMODYNAMIC BALANCE 
Enter the number of sets which you want to seize? 
1 
CAUTION! you will seize 1 
together (S) of thermo-metallurgical stories 
(OK = 0; Not = 1) 
0 
Enter the number of stories of unit 1 
1 
Enter the value of coefficients A, B, C, D, E, F and D 
8.563 -0.0276 1.22D-4 -2.955D-7 3.492D-10 -1.517D-13 11D-6 
CAUTION! the significant minimal proportion for a component with the ambient one 
is 0.03 
History number 1 
Enter the value of Tpoint 700 
-0.00542 
Enter the final proportions of ferrite, pearlite and bainite (Zff, Zfp and Zfb) 
for history 1 
0.764 0.199 0.037 
Entry of and the end initial temperatures of transformation for history 1 
Enter and the ferritic end initial temperatures of transformation Tdf and Tff 
792 657.5 
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Enter and the perlitic end initial temperatures of transformation Tdp and Tfp 
657.5 615  
Enter and the bainitic end initial temperatures of transformation Tdb and Tfb 
490 420 
VALIDATE you the HISTORY NUMBER? (YES = 1 NOT = 0) 1 
TPOINT A 700 DEGREES 
-5.420D-03 
Zff 
Tdf 
Tff 
7.640D-1 
7.920D+2 
6.575D+2 
Zfp 
Tdp 
Tfp 
1.990D-01 
6.575D+2 
6.150D+2 
Zfb 
Tdb 
Tfb 
3.700D-02 
4.900D+2 
4.200D+2 
1 
DEFINITION of the coefficient of translation used to calculate! 
Teff, modelling 
the influence of the size of grain on the kinetics of transforamtion: 
! Teff =! T exp (has (D - D)) 
ref. 
The value of A. is thus defined. 
Enter the value of the coefficient of translation has for the effect cuts grain: 
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11200. 
DEFINITION OF the VARIATION OF ms According to Zf + Zp + Zb 
It is considered that the martensitic transformation is described by the law of 
Koistinen-Marburger: 
I = 3 
 
 
Z 
 
 
+ 
4 (T) 
= 
1 - 
Z 
I - exp  
- 
 
{1 
([Ms T])} 
I = 1 
 
 
in which the martensitic initial temperature of transformation ms is, with 
beyond certain threshold, function of Zf + Zp + Zb: 
+ 
I 
= 3 
 
( 
Ms T) 
Ms 
With  
Z 
0 
- Zs 
= 
+ 
 
I 
. 
 
 
I 
= 1 
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One thus defines the values of Ms0 and, as well as the values of Zs and A. 
Enter the number of laws of variation of ms according to Zf + Zp + Zb that you 
please seize 
1 
Enter the value of the Zs threshold and A for law 1 
as well as the value, TPLM, speed of cooling with 700 °C of 
the slowest history leading to a martensitic transformation 
partial and of  
0.47 -32.76 -3,497 14.06 
You validate the law such as (YES = 1 NOT = 0): Zs = 0.47 
AM = - 32.76 
TPLM = - 3,497 
= 14.06 
1 
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Example of procedure of seizure of diagrams TRC 
tracier = DEFI_TRC 
(- 5.420D-03 
1.100D+01 
8.563D+00 
-2.760D-02 
(HIST_EXP: 
VALE: 
1.220D-04 
-2.955D-07 
3.492D-10 
-1.517D-13 
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0.000D+00 
0.000D+00 
0.000D+00 
8.360D+02 
0.000D+00 
0.000D+00 
0.000D+00 
7.956D+02 
1.000D-02 
0.000D+00 
0.000D+00 
7.920D+02 
7.277D-01 
0.000D+00 
0.000D+00 
6.622D+02 
7.540D-01 
1.000D-02 
0.000D+00 
6.575D+02 
7.640D-01 
2.523D-02 
0.000D+00 
6.539D+02 
7.640D-01 
1.890D-01 
0.000D+00 
6.150D+02 
7.640D-01 
1.990D-01 
0.000D+00 
6.103D+02 
7.640D-01 
1.990D-01 
0.000D+00 
5.665D+02 
7.640D-01 
1.990D-01 
1.000D-02 
4.900D+02 
7.640D-01 
1.990D-01 
2.700D-02 
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4.250D+02 
7.640D-01 
1.990D-01 
3.700D-02 
3.485D+02) 
TEMP_MS: (P: 1.100D+01 
THRESHOLD: 4.700D-01 
AKM: -3.276D+01 
BKM .....: 1.406D+01 
TPLM: -3.497D+00)  
GRAIN_AUST: (DREF: 11.D-6 
A: 11200.) 
; 
Result of the operation of seizure above providing in language 
order Aster the definition of a metallurgical behavior with 
cooling. 
Visualization of the points seized and calculated for a history  
of a TRC 
80 
70 
Zf (T) built 
60 
Zp (T) built 
50 
Zb (T) built 
40 
30 
pts Zf-T seized 
20 
pts Zp-T seized 
10 
pts Zb-T seized 
0 
200 
300 
400 
500 
600 
700 
800 
900 
Temperature (°C) 
Appear Annexe1-a: Example of thermo-metallurgical history resulting from a TRC 
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and integrated into the model 
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Modeling élasto- (visco) plastic fascinating  
in account of the metallurgical transformations  
 
 
 
 
 
Summary:  
 
This document presents the modeling installation in Code_Aster for the mechanical analysis  
operations generating of the metallurgical transformations. The various mechanical effects are 
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presented  
resulting from structure transformations to take into account and their modelings.  
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1 Introduction  
 
Certain materials undergo structure transformations when they are subjected to evolutions  
thermics particular [bib1], [bib2], [bib3]. It is for example the case of the low alloy steels with  
run of operations of the welding type and heat treatment or the alloys of zircaloy of  
fuel sheaths for certain cases of accidental situation (APRP).  
These transformations have a more or less strong influence on the thermal evolutions and  
mechanics.  
 
From a thermal point of view, structure transformations are accompanied by a modification by  
thermal characteristics (voluminal heat-storage capacity, thermal conductivity) of the material which  
the sudden one, as well as production or of an energy absorption (latent heats of  
transformation) [bib2]. However, the latent heats of transformation in a solid state are  
relatively weak compared with the latent heats of change of state liquid-solid and one can  
therefore, at first approximation, to regard the thermal and structural evolutions as  
uncoupled. C `is currently the case of the established options of thermal and metallurgical calculations  
in Code_Aster. [bib16]  
 
From a mechanical point of view, the consequences of structure transformations (at the solid state) are  
of four types [bib2]:  
 
·  
the mechanical characteristics of the material which undergoes them are modified. More precisely,  
the elastic characteristics (YOUNG modulus and Poisson's ratio) are little  
affected whereas plastic characteristics (elastic limit in particular) and it  
thermal dilation coefficient are it strongly,  
·  
the expansion or the voluminal contraction which accompanies structure transformations  
translated by a deformation (spherical) “of transformation” which is superimposed on the deformation  
of purely thermal origin. This effect is highlighted on a test of dilatometry and,  
in general, one gathers it with that due to the modification of the one and dilation coefficient  
speak overall about the influence of the transformations on the thermal deformation,  
·  
a transformation proceeding under constraints can give rise to a deformation  
irreversible and this, even for levels of constraints much lower than the elastic limit  
material (at the temperature and in the structural state considered). One calls “plasticity of  
transformation " this phenomenon,  

file:///Z|/process/refer/refer/p1100.htm (4 of 21)10/2/2006 2:53:03 PM



file:///Z|/process/refer/refer/p1100.htm

·  
one can have at the time of the metallurgical transformation a phenomenon of restoration  
of work hardening. The work hardening of the mother phase is not transmitted to the phases lately  
created. Those can then be born with a virgin state of work hardening or only inherit  
of a part, possibly of totality, work hardening of the mother phase.  
 
In addition, the mechanical state also influences the metallurgical behavior. The state of  
constraints can in particular accelerate or slow down the kinetics of the transformations and modify 
them  
temperatures to which they occur. However, the experimental characterization of this  
influence, in particular in the case of complex situations (three-dimensional, under temperature and  
state of variable stresses) remains very delicate and it is very frequent to consider the evolution  
structural like independent of the mechanical state. C `is the case of the model of transformations  
structural established in Code_Aster.  
 
If one neglects the various couplings of mechanical origin, the determination of the mechanical 
evolution  
associated a process bringing into play structure transformations thus requires two calculations  
successive and uncoupled:  
 
·  
a thermo-metallurgical calculation (uncoupled) allowing the determination of the evolutions  
thermics then structural,  
·  
a mechanical calculation (élasto-viscoplastic) taking account of the effects due to the evolutions  
thermics and structural.  
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This document presents the mechanical modeling established in Code_Aster. Modeling is  
available for two materials:  
 
·  
the steel which undergoes around 850° a austénito-ferritic transformation (passage of  
cold phases of cubic structure face centered (CFC) with a hot phase of  
centered cubic structure (DC)). Steel presents 4 possible ferritic phases; ferrite,  
pearlite, the bainite and martensite,  
·  
the alloys of Zircaloy which undergo around 800°C a transformation of phase with  
cold of hexagonal structure compacts with a hot phase of structure DC.  
 
The models are identical for two materials, only the number of phase changes.  
 
The model thus comprises 5 phases for steel and 3 phases for the zircaloy. The modeling of  
behavior of the zircaloy indeed requires to consider 2 cold phases of behavior  
mechanics different; a phase considered as pure and a phase mixed with  
[bib16], [bib17]. The various characteristics relating to the various phases are noted:  
 
Zircaloy steels  
Ferrite: F1_ ***  
Alpha pure: F1_ ***  
Pearlite: F2_ ***  
Mixed alpha: F2_ ***  
Bainite: F3_ ***  
Beta: C_ ***  
Martensite: F4_ ***  
Austenite: C_ ***  
 
 
Bene foot-note:  
 
Metallurgical concepts of bases necessary to the comprehension of the problem general  
are gathered in [bib1].  
 
The elastoplastic algorithm of resolution, without taking into account of the effects due to  
structure transformations is clarified into [bib4].  
 
This document to some extent is extracted from [bib5] and [bib14] where one makes a presentation 
more  
detailed model and of some elements of validation.  
 
The presentation of the models which one makes in this document is mainly illustrated with the case  
steel.  
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2 Influence of structure transformations on  
thermal deformation  
 
A test of dilatometry consists in measuring the deformation (homogeneous) of a test-tube of small  
dimension according to the temperature (or of time) at the time of an imposed thermal cycle (supposed  
identical in all the points of the test-tube). One presents [Figure 2-a] a test of dilatometry of one  
steel. The thermal cycle comprises a heating beyond the temperature of austenitization (either  
850°C approximately), then a maintenance at this temperature and, finally, a cooling controlled until  
ambient temperature. One then obtains an evolution of the deformation (variable according to the 
kinetics of  
cooling imposed) as represented on the figure.  
 
 
D 
B 
C 
F 
E 
G 
With 
H 
T0 
T 
Tref 
F 
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Appear 2-a: Diagrammatic statement of dilatometry  
 
2.1  
Zones of thermal deformation  
 
The various zones highlighted on the figure [Figure 2-a] can be interpreted as follows:  
 
A-B:  
thermal dilation of metal in its initial metallurgical structure (of type  
ferrito-perlitic (F + P), bainitic (B) and/or martensitic (M)) until  
initial temperature of austenitization T (B),  
B-C:  
austenitization and contraction of the test-tube (volume specific of the phase  
austenitic () smaller),  
CD:  
thermal dilation of austenite (with a dilation coefficient different from that  
phases known as ““(F), (P), (B), (M)),  
OF:  
thermal contraction of austenite,  
E-F:  
first transformation (partial) of the austenite (for example F + P) which  
be accompanied by a voluminal expansion,  
F-G:  
zone without transformation with thermal contraction of remaining the austenite mixture - 
formed phase (with a certain thermal dilation coefficient apparent),  
G-H:  
second transformation of the remaining austenite (for example M) which  
be accompanied by a voluminal expansion,  
Ha:  
thermal contraction of the final structure (with the same dilation coefficient  
that with the heating).  
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2.2  
Assumptions and notations  
 
·  
The structures ferritic, perlitic, bainitic and martensitic have a coefficient of  
identical thermal dilation (noted F) different from that of austenite (noted).  
 
One defines a state of reference for which one considers that the thermal deformation is null: one  
for that a metallurgical phase of reference (phase austenitic or ferritic phase) and one choose  
temperature of Tref reference.  
 
·  
That is to say HT 
HT 
thermal deformation of the austenitic phase, and F thermal deformation  
phases ferritic, perlitic, bainitic and martensitic, we will take:  
 
HT 
R 
Tref 
= (T) (T - Tref) - (1 - Z)  
F  
HT =  
T 
(T) 
R 
ref. 
F 
F 
(T - Tref) +Z F 
 
where:  
 
 
T ref.:  
Temperature of reference,  
(T): average dilation coefficient of the austenitic phase at the current temperature  
T, compared to the temperature of reference.  
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F (T): dilation coefficient average of the phases ferritic, perlitic, bainitic and  
martensitic at the current temperature T, compared to the temperature of  
reference.  
 
Z R:  
 
characterize the metallurgical phase of reference;  
Z R 
= 1 when the phase of reference is the austenitic phase,  
Z R 
= 0 when the phase of reference is the ferritic phase.  
 
Tref 
HT 
 
= T 
HT 
- T 
F 
F (ref.) 
(ref.) translated the difference in compactness between the structures  
crystallographic cubic with centered faces (austenite) and cubic centered (ferrite) with  
temperature of Tref reference.  
 
That is to say Z (M, T) = {Z, Z, Z, Z 
1 
2 
3 
4} respective proportions of ferrite, pearlite, bainite and  
martensite present in a material point M at the moment T. With the help of the assumption of a law  
of mixture to define the thermal deformation of a multiphase mixture (characterized by  
Z) one a:  
 
 
I = 4 
 
I = 4  
HT ( 
T 
T 
Z, T) 1 
Z. 
R 
ref.  
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R 
ref. 
= 
- 
 
I 
 
 
(T - Tref) - (1 - Z)  
 
Z  
F 
I 
F 
 
 
(T - Tref) +Z  
 
F 
 
 
 
 
 
+ 
 
 
 
 
I = 1 
 
I = 1  
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For the calculation of the thermal deformation it is thus necessary to be given:  
 
·  
the dilation coefficient of the cold phases,  
·  
the dilation coefficient of the hot phase,  
·  
a metallurgical phase of reference and a temperature of reference,  
·  
the difference in compactness between the hot and cold phase at the temperature of reference.  
 
These data are provided by the user in operator DEFI_MATERIAU [U4.23.01] under the word  
key ELAS_META_FO except the temperature of reference which one defines in AFFE_MATERIAU.  
 
Depend on the temperature and are calculated for the temperature of the point of current Gauss.  
 
 
3  
Plasticity of transformation  
 
In experiments, it is noted that the dilatometric statement of a test-tube in the course of  
structure transformation is strongly influenced by the state of stresses and that the application of one  
constraint even lower than the elastic limit of material can nevertheless cause one  
unrecoverable deformation (cf [Figure 3-a]).  
 
Transformation  
bainitic  
 
= 0 MPa 
T 
Pt 
= - 42 MPa 
= - 85 MPa 
Pt 
Application of  
the constraint 
 
Appear 3-a: Swelling behaviours under uniaxial constraints  
of compression for a steel 16 MND5  
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One calls plasticity of transformation this phenomenon and one notes Pt the unrecoverable 
deformation  
corresponding.  
 
The model of plasticity of transformation most frequently used is, at the origin, generalization  
three-dimensional of the unidimensional phenomenologic model established by DESALOS [bib12]. If, 
with  
to start from a dilatometric test, one traces the difference between the lengthening obtained for a 
constraint  
applied different from zero and that obtained for a null constraint according to the advance of  
the transformation, one notes that:  
 
Pt (, b) = (, b) - (, 
0 b) = K F (b)  
 
where:  
K is a homogeneous constant contrary to a constraint,  
F is a standardized function (F () 
0 = 0 and F () 
1 = 1),  
and  
B is the proportion of the transformed phase.  
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A three-dimensional and temporal generalization of the preceding experimental model, for only one  
transformation, was proposed by LEBLOND [bib8], [bib9], [bib10], [bib11], in the form:  
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3 
&pt 
~ 
 
= 
K  
F' (b) & 
I J 
I J 
B  
2 
 
On the basis of experimental tests and for transformation of a bainitic type of a steel 16MND5  
for example: K is taken equalizes at 10-4 
-1 
MPa and F (b) = B (2 - b).  
 
It is based on the following heuristic considerations:  
 
·  
the relation must be “incremental”, i.e. to connect the rate of plastic deformation to the rate  
of transformation,  
 
·  
the speed of plastic deformation of transformation must be, as for plasticity  
traditional, proportional to the deviatoric part ~ 
tensor forced  
~ 
1 
 
= - 
T R  
 
 
I D, (the plasticity of transformation occurs without change of  
3 
 
 
volume, from where a dependence compared to the diverter of the constraints rather than to the field of  
constraints itself),  
 
·  
the rate of plastic deformation of transformation must be null apart from the beaches of  
transformations,  
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·  
the integration of this relation in the uniaxial case with constant constraint must give again  
experimental relation.  
 
The phenomenon of plasticity of transformation can exist at the time of structure transformations under  
constraints of type the ferritic, perlitic, bainitic and martensitic, which possibly can  
to appear simultaneously. On the other hand, it is considered that this phenomenon does not exist at the 
time of  
austenitic transformation. The model general established in Code_Aster is thus:  
 
I = 4 
I = 4 
I = 4  
3 
& Pt (, Z) = & Pt 
 
 
I (, Z) 
~ 
= 
K F ' 
I 
I 
Zi 
&Zi 
 
< 
>  
2 
I = 1 
I = 1 
I = 1  
 
where: < X > indicates the positive part of a size.  
 
The Ki data and  
F  
I are provided by the user in DEFI_MATERIAU under key word META_PT.  
 
In Code_Aster it is possible not to take into account the phenomenon of plasticity of  
transformation. If this phenomenon is taken into account, it appears as soon as there is  
transformation and that even if the structure plasticizes. The model is more particularly dedicated to  
steel.  
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4 Restoration  
of work hardening  
 
In a usual way the state of work hardening of a phase I is characterized by its plastic history. Thus by  
example in the case of plasticity with linear isotropic work hardening, one generally takes  
like variable of work hardening noted cumulated plastic deformation p. the term of work hardening  
is written then: R = R p 
I 
I 
0 
where R i0 is the linear coefficient of work hardening of phase I.  
 
At the time of the metallurgical transformations, there exists within material of displacements of atoms  
more or less important. These displacements of atoms can destroy dislocations which are with  
the origin of work hardening. In these cases, the work hardening of the mother phase is not transmitted 
to the phase  
produced, it is the restoration of work hardening. The new phase can then be born with a plastic state  
virgin or to inherit only one part, possibly totality, the work hardening of the mother phase.  
The cumulated plastic deformation p is not characteristic any more of the state of work hardening and it 
is necessary to define  
other variables of work hardening for each phase, noted laughed which take account of the restoration  
of work hardening.  
 
The term of work hardening of phase I is written R then = R R 
I 
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I 
0 I.  
 
4.1  
Model with 2 phases with a direction of transformation  
 
To define the variables laughed, one chooses the model suggested by LEBLOND [bib11].  
One considers an element of two-phase volume V which undergoes a metallurgical transformation and 
one  
plastic deformation.  
 
F 
voluminal raction V1, 
 
Phase 1 is the mother phase characterized by Pr 
oportion of phase (1 - Z), 
variable décrouissage  
 
1 
R 
 
F 
voluminal raction V2, 
 
Phase 2 is the phase produced characterized by Pr 
oportion of phase Z, 
variable décrouissage  
 
2 
R 
 
The equations of evolution of laughed obtained by derivation compared to time are written:  
 
 
&r1 = &p 
 
 
 
éq  
4.1-1  
 
&z 
&z 
&r2 = &p - R + R 
 
Z 2 
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Z 
1 
 
characterize the proportion of work hardening transmitted of the mother phase to the produced phase.  
&p is the rate of equivalent plastic deformation.  
 
Note:  
 
p here is not any more one variable internal of the problem as such. The only significance of &p is  
here to be the plastic multiplier and it is equal to the rate of equivalent plastic deformation.  
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SJÖSTRÖM obtains the same equations by using a phenomenologic reasoning as one  
defer here to clarify the model [bib13].  
That is to say an increment of time T, such as between T and t+t:  
 
·  
a V2 fraction of the mother phase is transformed into phase 2 and thus comes to be added with  
V2 volume of this phase produced,  
·  
the element of volume V undergoes a plastic deformation p.  
 
1 
1 
2 
2 
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T 
 
V 
, R (T) + p 
 
V 
, R (T 
2 2 
2 2 
) 
 
 
 
p 
 
V 
, R (T) + p 
 
V, R (T 
2 
1 
1 1 ) 
V 
 
V 
, R (T) + p 
 
2 
1 1 
 
 
It is supposed that at the time of the metallurgical transformation, the transformed fraction V2 inherits 
only one  
r1 part of the work hardening of the mother phase (0 1).  
 
Then the variables of work hardening laughed at the moment t+t are such as:  
 
R (T + T) = R (T) + p 
1 
1 
 
 
 
 
V (R (T) + p 
) + V (R (T) + p) 
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R 
(T + T 
2 
2 
2 
1 
2 
) = 
 
V + V 
 
2 
2 
 
Maybe, by considering that R (T + T 
) = R (T) + R 
 
I 
I 
I  
 
 
R = p 
1 
 
 
 
 
éq  
4.1-2  
 
V 
V 
R = p 
2 
+ 
R 
2 
- 
R 
 
2 
 
V + V 
1 
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V + V 2 
 
2 
2 
2 
2 
 
One obtains the equations [éq 4.1-1] while passing in extreme cases.  
 
For the discretization of the laws of evolutions of laughed, one chooses a diagram of integration 
clarifies in  
using directly the equations [éq 4.1-2].  
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4.2  
Generalization of the model with N phases with transformations with double  
feel  
 
In the case of steel the existing phases are: Ferrite, Pearlite, Bainite, Martensite and Austenite, of  
K =4 
respective proportions Z, Z, Z, Z 
and 1 - Z 
1 
2 
3 
4 
K.  
K 1 
= 
 
·  
In the case of a cooling, the metallurgical transformations to consider are them  
transformations of () in (F), (P) 
, (B) 
or (M).  
·  
In the case of a heating one considers the transformations in the other direction: (F), (P) 
,  
(B), (M) in ().  
 
One can thus write in a case general (where X indicates the positive part of X.  
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4 
4 
 
< - Z 
 
> R - - < - Z 
 
> R - 
K 
K K 
K 
 
 
=1 
= 
If Z > 0 
R 
= p K 
K 1 
 
 
+ 
 
4 
 
1 - Zk 
 
K =1 
if not 
 
R - = 0 
and 
R - 
 
= 0 
 
 
 
éq  
4.2-1  
 
< Z 
 
> R - - < Z 
 
> R - 
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K 
K 
 
K 
K 
If Z > 0 
R 
= p 
 
K 
K 
+ 
Zk 
 
if not 
 
R - = 0 
and 
R - 
K 
K = 0 
 
 
 
 
 
K: proportion of restoration of work hardening at the time of the transformation into K  
K: proportion of restoration of work hardening at the time of the transformation K into  
 
For transformations with diffusion (ex: out of F, P, B) implying of important displacements  
atoms one will be able to take = 0; dislocations at the origin of plastic work hardening are  
completely destroyed by the transformation. For transformations without diffusion  
(ex: martensitic transformation), one will be able to take = 1, work hardening being completely 
transmitted.  
 
Are provided by the user in operator DEFI_MATERIAU under key word META_RE.  
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5  
Models of deformation (visco) plastic  
 
The principal characteristic of the thermal evolutions concerned in this type of analysis is  
that they sweep a broad temperature range, which has an important effect on the behavior  
mechanics of the material which undergoes the thermal evolution. One is in particular in fields of  
temperature where the phenomena of viscosity can not be negligible more. It can thus be  
necessary to use a élasto-viscoplastic model of behavior especially when one remains in  
these fields for one important length of time; for example during the treatments of detensioning  
associated welding.  
 
A viscoplastic model is thus chosen whose characteristics are such as it makes it possible to describe  
with the same formalism, therefore without changing model:  
 
·  
a traditional plastic behavior; to model the cases at low temperature when  
the viscous effects are still negligible or to model the processes at speed  
raised (welding),  
·  
a hammer-hardenable viscoplastic behavior at high temperature, to model the effects  
of creep and relieving associated for example with the treatment with detensioning or with  
multirun weldings,  
·  
a behavior of the fluid type viscous for the temperatures higher than the temperature  
of fusion, in order to have a reasonable description of the molten zone.  
 
The selected viscoplastic model degenerates indeed for certain borderline cases in model of plasticity  
independent of time, or in model of viscous fluid.  
 
One places oneself here within the framework of the plasticity of von Mises with additive isotropic work 
hardening.  
The use of a kinematic work hardening being also possible (version 6.1.6).  
 

file:///Z|/process/refer/refer/p1110.htm (4 of 31)10/2/2006 2:53:04 PM



file:///Z|/process/refer/refer/p1110.htm

Function threshold:  
F =  
- R (R; T, Z) - (T, Z 
eq 
C 
)  
 
 
3 
1/2  
 
 
 
~ ~ 
eq  
equivalent constraint of von Mises,  
:  
 
 
E Q =  
 
2 
 
 
 
 
 
 
R (R; T, Z):  
isotropic term of work hardening,  
(T, Z) 
initial critical stress; corresponds to the minimal constraint  
:  
C 
initial to apply to have a viscoplastic flow.  
 
Plastic rate of flow:  
F 
~ 
3 
 
&vp = & 
= 
& 
 
p 
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2 eq 
 
The cumulated plastic deformation &p is viscous and is written:  
 
< - R (R; T, Z) - (T; Z) 
N 
eq 
C 
> 
&p =  
 
 
 
 
éq  
5-1  
 
 
, N: coefficients materials of viscosity.  
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Note:  
 
1 
One can rewrite the equation [éq 5-1] in the form:  
- R (R; T, Z) - (T, Z) - 
N 
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p& = 0 
eq 
C 
,  
i.e. in this model, the constraint can be interpreted as the sum of a constraint  
limit of flow (which breaks up it even into an initial ultimate stress and a term  
of work hardening) and a constraint “viscous” depending on the speed of deformation and null with  
null speed.  
 
Viscous restoration of work hardening  
 
One also introduces into modeling the phenomenon of viscous restoration of work hardening  
who leads to a évanescence partial of work hardening. Under the action of thermal agitation, it  
product a slow restoration of the crystalline structure of metal by annihilation of dislocations and  
internal stress relaxation. The model used to describe this phenomenon is as follows:  
 
 
R = R R 
 
0 
 
 
r& = p& - 
m 
C 
(R) 
 
The term of evolution of the variable of work hardening R thus comprises a term of work hardening due 
to  
plastic deformation and a term of restoration.  
The model thus makes it possible to describe the primary education phenomenon of creep (work 
hardening) and creep  
secondary (stabilization of work hardening).  
 
Case of linear kinematic work hardening:  
 
In a way equivalent to the case with isotropic work hardening the equations are written;  
 
function threshold:  
F = ~ 
(- X) -  
eq 
C 
 
law of flow  
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Writing of the rate of deformation (visco) plastic  
3 
( ~ 
~ 
- X) 
< F N 
> 
&vp = &p 
with = 
 
2 
(- X) 
&p 
eq 
 
2 
X = H  
0 
3 
 
, ~: tensor of constraint and its diverter  
: variable tensor of kinematic work hardening,  
X: tensor of work hardening associated with the variable tensor with work hardening,  
H: kinematic coefficient of work hardening  
0 
 
model of evolution of the tensor of work hardening of a material with N phases  
 
(< z& >) - (z&) 
K 
K 
K 
< > 
 
K 
 
3 
 
& = vp 
& + K 
K 
+ 
m 
C 
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( ) 
 
 
eq 
Z 
2 
 
 
 
eq 
 
 
z& - z&  
3 
 
& = vp 
& + K K K 
K 
K + 
m 
C 
( ) 
K 
eq 
 
Z 
2 
 
K 
eq 
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By preoccupation with simplification and a same manner that into isotropic, one takes for the term of  
viscous restoration:  
 
= Z  
I 
I 
 
 
I 
C = Z C 
I 
I 
 
I 
m = Z m 
 
 
I 
I 
I 
 
 
 
ij: coefficients of metallurgical restoration at the time of transformation I 
J  
C m 
, 
: coefficients of viscous restoration of phase I.  
I 
I 
 
 
5.1  
Borderline case: Plastic model independent of time  
 
One wants to describe an instantaneous elastoplastic behavior and to cancel the viscous effects. For that  
the viscous parameters and C will be taken equal to zero. To be been free from the numerical problems  
what can pose the taking into account in and C null, and a way similar to the treatment carried out for  
the viscoplastic model of Taheri [bib15], one rewrites the equation [éq 5-1] in the form:  
1 
F 
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p N 
- & 0 éq 5.1-1  
F < 0 
the strict inequality being obtained in the case  
(elastic mode).  
p& = 
 
0 
In the purely plastic field of behavior (0) the inequality [éq 5.1-1] is then reduced  
with: F =  
- R - (T 
eq 
C 
) 0 and &p can be given more only by the equation of consistency  
&f = 0.  
One thus finds oneself well within the framework of instantaneous plasticity independent of time, with 
one  
digital processing identical to that classically used for the treatment of this one.  
 
Note:  
 
It will be noted that C corresponds then to the traditional definition of the yield stress.  
y 
The elastic limit will be noted C in viscoplasticity and plasticity independent of time  
y 
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5.2  
Borderline case: Model of behavior of viscous fluid  
 
R 0 
At very high temperature one a:  
 
C 0 
3  
 
if one takes N 1, then: &vp 
eq 
= 
maybe into unidimensional: &vp = 
. A model thus is obtained  
2  
 
of behavior of the fluid type viscous Newtonian, viscosity.  
 
Note:  
 
In Code_Aster, the relations of behavior available are is models  
completely plastic independent of time, that is to say models with viscous effect. (cf [§6]).  
 
5.3 Plasticity  
multiphase  
 
The metallurgical transformations involve modifications of the mechanical characteristics of  
material.  
 
The elastic characteristics (YOUNG modulus and Poisson's ratio) are affected little by  
metallurgical changes of structures. Only their dependence compared to the temperature  
is thus taken into account.  
 
On the other hand, the plastic characteristics (elastic limit in particular) strongly depend on  
metallurgical structure. It is thus necessary to take into account the differences in characteristics plastic  
for each possible phase. In modeling the strain and the stress are defined in  
the scale of the material point (macroscopic) which can be multiphase. One seeks to define it  
plastic behavior are equivalent of material when it has a multiphase structure, with  
in particular a single criterion of plasticity. The definition of the behavior of material are equivalent  
fact using a law of the mixtures on the characteristics of the phases. More precisely the definition  
this material equivalent would correspond in 1D to a rheological model of I bars in parallel such  
that:  
 
&vp = &vp 
I 
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= 
 
= + 
 
R + vp 
zi I 
I 
Ci 
I 
&i 
 
 
with 
 
I 
 
More precisely, in the case of the plasticity of von Mises with isotropic work hardening;  
 
·  
the function threshold is expressed by:  
 
F (, R; T, Z) = 
- R 
eq 
(T, Z, R) - C (T, Z)  
 
 
where:  
R (T, Z, R) = Zi I 
R (T, ir)  
I 
is the work hardening of multiphase material, IH being that of phase I.  
 
 
where  
C (T, Z) = Zici  
I 
is the elastic limit of multiphase material, that of phase I.  
Ci 
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~ 
·  
and the rate of plastic deformation checks the condition of consistency F = 0 data by this law  
of mixture. I.e. when one is in load, &p is such as:  
 
~f = - R (; rT, Z) - (T, Z) 
1 
- 
I 
N 
Z p 
 
eq 
C 
 
& = 0 
I I 
I 
 
One also gives the possibility of using a nonlinear law of the mixtures [bib9] such as one has in  
1D: = (1 - F (Z)) + F (Z) 
H 
 
H 
. One has then:  
 
 
 
R = 1 
(- F (Z))R + F (Z) R 
H 
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H 
 
·  
 
 
 
= 1 
(- F (Z  
)) 
+ F (Z  
) 
C 
H 
 
C 
H 
 
C 
 
y is the elastic limit of the austenitic phase,  
4 
Z = Zk is the total proportion of the phases “” '' (F, P 
, B 
, M 
)  
K =1 
4Z kck 
K 
 
= 
= 1 
is the equivalent elastic limit of the cold phases “” ''  
C 
Z  
4 
Z R 
K K 
R 
K 1 
= = 
is the average work hardening of the cold phases.  
Z 
~ 
1 
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1 
Z 
·  
and &p of it checks F = - R charges (; 
R T, Z) - (T, Z) - 1 
(- F (Z)) 
N 
p 
& - 
K 
N 
p 
.  
eq 
C 
H 
K & = 0 
K 
K 
Z 
 
F (Z) 
H 
is a function defined by the user under operand SY_MELANGE of the key word factor  
ELAS_META_FO.  
 
Parameters I, I 
N, I 
C and I 
m are defined in DEFI_MATERIAU under the key word factor  
META_VISC. The limit elastic parameters are defined under the key word factor ELAS_META_FO;  
key word *_SY for the plastic models independent of time and key word *_S_VP for  
viscoplastic models.  
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6  
Relations of behavior  
 
6.1  
Partition of the deformation:  
 
The deformation is written as the sum of four components:  
 
= E + T H + vp + Pt  
 
 
 
where: E T H vp 
, 
, 
and p T are respectively the elastic strain, thermics,  
viscoplastic and of plasticity of transformation,  
 
6.2  
Laws of behavior  
 
6.2.1 Case with isotropic work hardening  
 
= E 
+ HT 
+ vp 
+ Pt 
 
 
=A (T) E 
 
 
4 
Pt 
& = 3 ~ 
K 'F 
I 
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I (1 - Z) 
 
< &Z > 
I 
 
2 i=1 
 
4 
 
HT 
(Z, T) 
 
=Z. 
(T - 
ref. 
ref. 
ref. 
T 
) 
T 
R 
 
 
- 1 
(- Z) 
 
 
+ 
Z 
T T 
Z 
 
 
 
F 
I 
F (- ref.) 
T 
R 
 
+ 
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F  
 
i=1  
 
~ 
vp 
3 
 
& = p& 
 
2 eq 
 
5 
F = - R (T, Z, R) - (T, Z) with R (T, Z, R) = 
eq 
C 
Z R (T, R) 
 
I I 
I 
 
i=1 
 
 
p& = 0si F < 0 
 
- 
- ~ 
1 
p& 0 if F = 0 and checks F = - R (T, Z, R) - (T, Z) - 
I 
N 
eq 
C 
Z p& 
= 0 
I I 
 
I 
 
 
 
4 
4 
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< - Z& > R - 
K 
K K 
< - Z& > 
K 
R 
 
k=1 
k= 
r& = p 
 
& + 
1 
- (C moy 
R 
) m 
 
if Z >, 
0 R 
 
& = 0si Z = 0 
4 
 
 
 
1 - Z 
 
K 
k= 
 
1 
 
 
 
& 
 
& 
 
< Z > 
R - < Z > R  
r& = p& + 
K 
K 
K 
K - 
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K 
(C moy 
R 
) m if Z >, 0r& = 0siZ = 0 
 
K 
K 
K 
Z 
 
K 
 
5 
with R 
= 
moy 
Ir Zi 
i=1 
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F  
the function threshold,  
 
R, Z R 
variables intern work hardening and their forces  
I 
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I I  
thermodynamic associated,  
 
 
WITH = (A 
the tensor of elastic rigidity, depend on the temperature,  
I J K L)  
 
T (T) and Z (T)  
the temperature and the metallurgical structure.  
 
6.2.2 Case with kinematic work hardening  
 
= E 
+ HT 
+ vp 
+ Pt 
 
 
=A (T) E 
 
 
4 
Pt 
& = 3 ~ 
K 'F 
I 
I (1 - Z) 
 
< &Z > 
I 
 
2 i=1 
 
4 
 
HT 
(Z, T) 
 
=Z. 
(T - 
ref. 
ref. 
ref. 
T 
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) 
T 
R 
 
 
- 1 
(- Z) 
 
 
+ 
Z 
T T 
Z 
 
 
 
F 
I 
F (- ref.) 
T 
R 
 
+ 
 
 
 
 
 
 
 
F  
 
i=1  
 
 
~ 
vp 
3 
( - ~ 
X) 
& = p& 
 
2 (- X) eq 
 
5 
F = (- X) - (T, Z) with X (T, Z,) = 
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eq 
C 
Z X (T,) 
 
I 
I 
I 
 
i=1 
 
 
p& = 0 if F < 0 
 
- 
- ~ 
1 
p& 0 if F = 0 and checks F = - R (T, Z, R) - (T, Z) - 
I 
N 
eq 
C 
Z p& 
= 0 
I I 
 
 
I 
 
 
 
(< z&k >kk) - (< z&k >) 
 
 
3 
 
vp 
K 
K 
m 
& = 
 
& + 
+ 
C 
(eq) 
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if 
Z > 
 
0 & = 0 if not 
 
 
Z 
2 
 
 
eq 
 
 
z& - z&  
3 
 
vp 
K 
K K 
K K 
m 
&k = & + 
+ 
C 
(eq) 
if 
Zk > 0 &k = 0 if not 
 
Z 
 
K 
2 
eq 
 
 
with  
=  
 
eq 
Zi I 
 
 
I 
eq 
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F  
the function threshold,  
 
R, Z R 
variables intern work hardening and their forces  
I 
I I  
thermodynamic associated,  
 
 
WITH = (A 
the tensor of elastic rigidity, depend on the temperature,  
I J K L)  
 
T (T) and Z (T)  
the temperature and the metallurgical structure.  
In term of relations of behavior of STAT_NON_LINE available, the modeling put in  
place offers several possibility:  
 
·  
choice of the type of behavior for the plastic deformation; plastic independent of  
time or with taking into account of the viscous effects,  
·  
choice of a work hardening isotropic linear, isotropic nonlinear or kinematic,  
·  
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taking into account or not of the plasticity of transformation,  
·  
taking into account or not of the metallurgical restoration of work hardening.  
 
The choice of the material (steel or zircaloy) and thus of the number of phase is done by informing 
the key word  
KIT of STAT_NON_LINE. “STEEL” for steel with 5 phases and “ZIRC” for the zircaloy with 3  
phases.  
 
6.3 Various relations of elastoplastic behavior  
META_P_ ***  
 
There are 12 relations of elastoplastic behavior independent of time META_P*.  
 
·  
8 relations with isotropic work hardening according to whether a linear isotropic work hardening is 
considered  
or not linear, that one takes into account or not the plasticity of transformations, that one  
takes into account or not the metallurgical restoration of work hardening.  
·  
4 relations with linear kinematic work hardening according to whether one takes into account or not  
plasticity of transformations and/or metallurgical restoration of work hardening.  
 
For these 12 relations of behavior one informs under key word ELAS_META_FO or ELAS_META  
elastic parameters E and Naked, dilation coefficients, as well as the elastic limits.  
 
/ELAS_META_FO  
: (E: E  
 
 
 
 
 
 
 
NAKED:  
F_ALPHA:  
F  
C_ALPHA:  
C  
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PHASE_REFE:  
“HOT”  
“COLD”  
Tref 
 
 
 
 
 
 
 
EPSF_EPSC_TREF:  
F C  
 
F1_SY  
:  
yf1  
F2_SY  
:  
yf2  
 
 
 
 
 
 
 
F3_SY: yf3  
 
 
 
 
 
 
 
F4_SY: yf4  
 
 
 
 
 
 
 
A_SY:  
yc  
SY_MELANGE  
:  
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F)  
 
with for steel:  
F: F  
 
C:  
 
Tref 
Tref 
F C: F  
 
yfi: elastic limit of phase I  
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6.3.1 Relation  
META_P_IL  
 
This relation makes it possible to treat the relation of behavior in the case of the plasticity of Von 
Mises  
with linear isotropic work hardening, applied to a material which undergoes phase shifts  
metallurgical. The phenomena of plasticity of transformation and restoration of work hardening are  
neglected. The coefficients of work hardening are provided under key word META_ECRO_LINE of 
the operator  
DEFI_MATERIAU.  
 
/META_ECRO_LINE:  
F1_D_SIGM_EPSI  
:  
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H0f1  
F2_D_SIGM_EPSI  
:  
H0f2  
F3_D_SIGM_EPSI  
:  
H0f3  
F4_D_SIGM_EPSI  
:  
H0f4  
C_D_SIGM_EPSI  
:  
H0c  
 
with for steel:  
 
H0fi: Linear coefficient of work hardening of phase I.  
F: function of Z defining the law of mixture for the plastic behavior.  
 
6.3.2 Relation  
META_P_INL  
 
This relation makes it possible to treat the relation of behavior in the case of the plasticity of von 
Mises  
with nonlinear isotropic work hardening, applied to a material which undergoes phase shifts  
metallurgical. In DEFI_MATERAU in addition to ELAS_META_FO one returns under the key word  
META_TRACTION the curves R (R).  
 
META_TRACTION:  
F1_SIGM: R (R) 
1 
 
F2_SIGM: R (R) 
2 
 
F3_SIGM: R (R) 
3 
 
F4_SIGM: R (R) 
4 
 
C_SIGM: R (R) 
C 
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6.3.3 Relation  
META_P_CL  
 
This relation makes it possible to treat the relation of behavior in the case of the plasticity of Von 
Mises  
with linear kinematic work hardening, applied to a material which undergoes phase shifts  
metallurgical. The phenomena of plasticity of transformation and restoration of work hardening are  
neglected. The coefficients of work hardening are provided under key word META_ECRO_LINE of 
the operator  
DEFI_MATERIAU.  
 
/META_ECRO_LINE:  
F1_D_SIGM_EPSI  
:  
H0f1  
F2_D_SIGM_EPSI  
:  
H0f2  
F3_D_SIGM_EPSI  
:  
H0f3  
F4_D_SIGM_EPSI  
:  
H0f4  
C_D_SIGM_EPSI  
:  
H0c  
 
with for steel:  
 
H0fi: Coefficient of kinematic work hardening linear of phase I.  
F: function of Z defining the law of mixture for the plastic behavior.  
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6.3.4 Relation  
META_P_IL_PT, META_P_INL_PT, META_P_CL_PT  
 
Compared to META_P_IL, META_P_INL or META_P_CL one holds account in addition to plasticity of  
transformation but one always neglects the restoration of work hardening. In addition to the data of the 
key word  
factor ELAS_META_FO and of the key word relating to the data of work hardening, one must inform 
too  
those relating to the plasticity of transformation which are provided under the key word factor 
META_PT.  
 
/META_PT  
:  
(  
F1_D_F_META:  
F'1 F1_K  
:  
f1  
F2_D_F_META:  
F'2 F2_K  
 
 
: f2  
F3_D_F_META:  
F'3 F3_K  
 
 
: f3  
F4_D_F_META:  
F'4 F4_K  
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: f4)  
 
 
with for steel:  
 
F' f1 = F F  
f1 = K F  
F' f2 = F p  
f2 = K p  
F' f3 = F  
B  
f3 = KB  
F' f4 = F  
m  
f4 = km  
 
6.3.5 Relation  
META_P_IL_RE, META_P_INL_RE and META_P_CL_RE  
 
One takes account of the restoration of work hardening but the plasticity of transformation is neglected.  
data relating to the restoration of work hardening are provided under the key word factor META_RE of  
operator DEFI_MATERIAU.  
 
 
 
 
/META_RE  
: (  
C_F1_THETA  
: cf 1  
 
F1_C_THETA  
: cf 2  
 
 
 
 
C_F2_THETA  
: cf 2  
F2_C_THETA  
: cf 2  
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C_F2_THETA  
: cf 2  
F3_C_THETA  
: cf 3  
 
 
 
 
C_F2_THETA  
: cf 2  
F4_C_THETA  
: cf 4)  
 
with for steel:  
CF1 = F  
F1C = F  
CF2 = P  
F2C = P  
CF3 = B  
F3C = B  
CF4 = M  
F4C = M  
 
6.3.6 Relation  
META_P_IL_PT_RE, META_P_INL_PT_RE and META_P_CL_PT_RE  
 
One holds account at the same time phenomena of plasticity of transformation and restoration  
of work hardening. The data of the key words factors ELAS_META_FO, META_PT and META_RE must  
to be well informed.  
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6.4 Various relations of élasto-viscoplastic behavior  
META_V_ ***  
 
One has in the same way that in traditional plasticity, 12 relations of behavior which are available  
according to the type of work hardening and according to whether one holds account or not phenomena 
of plasticity of  
transformation and/or of metallurgical restoration of work hardening. One uses the same terminology 
as  
in the case of traditional plasticity to differentiate the 12 élasto-viscoplastic relations. For  
each relation one must inform in ELAS_META or ELAS_META_FO the yield stresses  
of flow viscous, in the place of the traditional apparent elastic limits.  
 
F1_SC: cf 1  
F2_SC: cf 2  
F3_SC: cf 3  
F4_SC: cf 4  
C_SC: DC  
 
SC_MELANGE: function for the law of the mixtures  
 
instead of the *_SY for the plastic case.  
 
6.4.1 Relation  
META_V_IL and META_V_INL  
 
Élasto-viscoplastic relation of behavior applied to a material which undergoes transformations  
metallurgical with or not linear linear work hardening. One does not take account of the phenomena of  
plasticity of transformation and metallurgical restoration of work hardening.  
 
6.4.2 Relation  
META_V_CL  
 
Élasto-viscoplastic relation of behavior applied to a material which undergoes transformations  
metallurgical with linear kinematic work hardening. One does not take account of the phenomena of  
plasticity of transformation and metallurgical restoration of work hardening.  
 
6.4.3 Relation  
META_V_IL_PT, META_V_INL_PT and META_V_CL_PT  
 
Idem that META_P_IL_PT, META_P_INL_PT and META_V_CL_PT but in viscoplasticity.  
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6.4.4 Relation  
META_V_IL_RE, META_V_INL_RE and META_V_CL_RE  
 
Idem that META_P_IL_RE, META_P_INL_RE and META_V_CL_RE  
but in viscoplasticity  
 
6.4.5 Relation  
META_V_IL_PT_RE, META_V_INL_PT_RE and META_V_CL_PT_RE  
 
Idem that META_P_IL_PT_RE, META_P_INL_PT_RE and META_V_CL_PT_RE but in viscoplasticity  
 
Note:  
 
·  
For the whole of relations META_ **, the internal variables produced in  
Code_Aster are:  
 
laughed: variables of effective work hardening for I phases,  
D: indicator of plasticity (0 if the last calculated increment is elastic; 1 if not),  
R: the term of work hardening of the function threshold  
 
·  
In addition, these modelings can be carried out with the functionality of  
geometrical reactualization PETIT_REAC.  
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7 Formulation  
numerical  
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One will treat the viscoplastic law of behaviour with isotropic work hardening.  
 
7.1 Discretization  
 
Knowing the fields, U and p at the moment T, one chooses an implicit scheme to discretize in  
time equations of the continuous problem, except for the parameters of work hardening where they are 
used  
equations [éq 4.2-1].  
 
It is noticed that with an implicit discretization, only two points differentiate the two types from  
viscoplastic behavior and plastic independent of time:  
 
·  
the form of the function of load, for which one has a complementary term in the case of  
viscosity,  
·  
the presence of the term of restoration of work hardening in the evolution of the variable  
of work hardening for the viscoplastic case.  
 
Moreover, incremental traditional plasticity seems the borderline case (without numerical difficulty  
 
0 
 
associated) of incremental viscoplasticity when C 0 
.  
 
 
 
C 
y 
 
This type of treatment was already carried out by LORENTZ [bib15].  
 
1 
~ 
p 
 
N 
 
If one poses F = F -  
 
T 
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= E + HT + p + Pt 
= A 
 
(T) E 
 
4 
 
HT (Z, T) = 
 
Z 
. 
 
 
 
 
(T - T) - (1 - R 
Tref  
 
 
R 
Z) 
 
 
 
 
 
F 
Z 
T - T 
+ 
 
 
 
 
+  
I [F ( 
) Z F] 
I = 1  
 
 
3 
4 
Pt 
 
= 
~ 
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iK F' I (1 - Z) < Z 
 
> 
I 
2 
 
I = 1 
 
 
 
~ 
3 
 
p 
 
= 
p 
 
 
2 
eq 
 
 
~ 
elastic mode: 
F < 0 and 
p 
= 0 
 
~ 
D 
gime (visco) plastic F = 0 and 
p 
> 0 
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4 
4 
 
< - Z > R - < - Z > R 
K 
K K 
K 
 
m 
R = p k=1 
K =1 
- 
 
+ 
- 
 
if 
0, 
0 if 
0 
4 
(Crmoy) 
Z > 
R = 
Z 
 
 
= 
 
1 - Zk 
 
K = 
 
1 
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< Z > R - - < Z > R - 
 
m 
if Z > 0, R = 0 if Z = 0 
 
K 
K 
K 
K 
 
K 
K 
R = p 
- 
K 
+ 
- (Crmoy) 
Z 
 
K 
with: 
X = X (T + T) 
X - = X (T) 
X = X (T + T) - X (T) 
 
7.2  
Algorithm of resolution of the quasi-static problem  
 
The incremental problem posed on the structure is a non-linear problem. Its formulation  
variational, in the case of the small deformations, is form:  
 
To find U such as:  
 
 
 
((U + U), T) (v) D  
 
= L (T) v kinematically acceptable  
and T 
 
 
B U = ud (T) 
 
 
 
where:  
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U indicates the field of displacement  
 
B U = ud T 
() corresponds to the boundary conditions in displacement (connections kinematics)  
 
and  
( 
L T) = 
F v D + 
g.v D 
. 
is the virtual work of the mechanical loadings at the moment  
 
 
 
 
T.  
 
In Code_Aster, this non-linear problem is solved by a method of NEWTON [bib6],  
[bib7]. The algorithm of resolution comprises:  
 
·  
a phase of prediction at the beginning of each step of time,  
·  
iterations of Newton inside a step of time.  
 
We do not detail here the algorithm implemented (one will refer for that to the documents of  
reference [R5.03.01] and [R5.03.02]), but we endeavour to highlight them  
modifications made to the diagram of integration by the taking into account of the metallurgical 
evolution  
Z (T) and of the plasticity of transformation.  
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7.2.1 Integration of relations META__ ***  
 
One gives the expression of according to;  
 
·  
(or U) unknown of the problem,  
·  
known terms such variables calculated with the preceding step (-, variables intern…),  
the characteristics materials, HT…  
 
= ( 
WITH T) E 
E = early - HT - vp - Pt 
One poses: = early - HT 
 
 
µ 
~ = 2µ~e = 
- + 2µ ~ 
~vp 
~ Pt 
 
 
 
 
- 
( - - ) 
 
µ 
 
 
3K 
tr = 3K tr (E) = 
- 
tr 
+ 3K tr  
 
 
 
- 
3K 
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µ 
 
~ 
~ 
- 
3 
3 
 
= 
+ 2µ ~ 
- ~ 
 
 
- 
 
F (Z, Z) - 
p 
 
µ 
 
2 
2 
eq  
 
from where  
 
 
~  
~ 
1 
µ 
 
~ - 
~ 
 
= 
+ 2µ  
- µ 
3 
p 
 
 
1 + µ 
3 F (Z, Z 
) µ- 
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eq  
with:  
 
~ 
 
·  
expression of  
eq  
 
~ = ~e + ~ Pt + ~ 
 
 
 
vp  
 
~ 
~-  
~ 
 
 
3 
3 
 
~ 
~ 
=  
- 
+ F (Z, Z) + p 
 
µ 
µ- 
2 
2 
2 
2 
eq 
 
µ 
~ 
2µ  
~ + 
~- = 
- 
(1 (+3ΜF (Z, Z)) +3µ 
eq 
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p)  
µ 
eq 
 
µ 
one poses: 2µ  
~ 
~- ~ 
+ 
= E  
µ- 
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one a: E = (1 + µ 
3 F (Z, Z 
)) + µ 
eq 
eq 
3 
p 
 
 
and  
 
~e 
~ 
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= 
 
E 
 
eq 
eq 
 
·  
expression of p  
E 
eq 
That is to say the function of load: F = 
- R (R -; T, Z) - (T, Z) 
1 + µ 
3 F (Z, Z 
C 
 
 
) 
R (R -; T, Z) is the term of work hardening R (R; T Z) calculated for p = 0.  
 
-  
If F < 0 then one is in elastic mode and p = 0  
 
-  
If not one is in load and p checks;  
1 
p 
E 
N 
 
- 3µ p 
 
eq 
 
= 
- R (R -; T, Z) - R p 
- (T, Z)  
T 
 
1+ 3µ F (Z, Z 
) 
0 
C 
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E 
1n 
~ 
- 3µ p 
 
eq 
- 
p 
 
That is to say the function F = 
- R (R T 
; , Z) - R p 
- T 
(, Z) - 
, p is thus  
1+ 3µ F (Z, Z 
0 
C 
) 
T 
 
~ 
solution of the scalar equation nonlinear F = 0.  
 
The resolution is made in Code_Aster by a method of the secants with interval of research  
[bib15].  
 
Note:  
 
Whenever the plasticity of transformation is not taken into account, expressions  
obtained are the same ones by taking F Z 
(, Z) = 0.  
 
Whenever it is the restoration of work hardening which is neglected then one also has them  
same expressions but by taking all the equal ones to 1.  
 
H is the slope of work hardening of the traction diagram. In the case of isotropic work hardening not  
0 
linear where the traction diagram is linear per piece, H is defined for the segment to which  
0 
p belongs. Stamp tangent  
 
7.2.2.1 Phase of prediction - Option RIGI_MECA_TANG  
 
One linearizes the continuous problem compared to time, and one determines u0 as solution of  
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problem of speed:  
 
& 
u0 T 
v D 
= L T 
v kinematically acceptable  
 
((),) () & () 
where & ( 
L T) = 
&f.v D + 
 
 
 
&g.v D 
 
.  
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The problem from of speed is obtained by deriving compared to time the equations from the problem  
continuous:  
 
~& 
= 2µ (~& - &vp - &pt)  
 
3 
&PT = F (Z, Z 
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) ~& 
 
2 
 
In the case of the élasto-viscoplastic models, one uses, for the phase of prediction, the matrix  
“elastic” in the direction where one will not take account of the &vp term. As for the plastic case one 
a:  
 
~ 
3 
 
&p 
if eq - R (T, Z, R) - y (T, Z) = 0 
&vp = 2 
 
 
eq 
 
0 
if eq - R (T, Z, R) - y (T, Z)  
 
0 
 
Derivation compared to the time of the equation  
- R (T, Z, R) -  
, Z = 
E Q 
y (T 
) 0 give  
the expression of &p (relation of consistency).  
 
D 
~ 
~vp 
~ Pt 
 
: 
~ 
With & - & 
- & 
eq 
D R 
D y 
3 
( 
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) D R Dy 
- 
- 
= 
- 
- 
 
D T 
D T 
D T 
2 
 
D T 
D T 
eq 
 
Note:  
 
The derivation of A was neglected in this phase of prediction  
 
i=5 
i=5 
i=5 
R& T 
(, Z 
EFF 
,) = Z& R R + 
0 
Z R& R + 
0 
Z R R 
I 
I 
I 
I I 
I 
I I 
I 
0i I 
& 
i=1 
i=1 
i=1 
i=5 
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i=5 
i=5 
= Z& R R + 
0 
Z R& R + 
0 
Z R p 
I 
I I 
I 
I I 
I 
0i & 
i=1 
i=1 
i=1 
K =4 
K =4 
+ < Z& > R R + 
0 
 
< - Z& > R R 
K 
K 
K 
K 
0 
K K 
K =1 
K =1 
i=5 
- < Z& > R R 
 
I 
0i I 
i=1 
= R p 
0 & + B 
 
 
y 
& 
= 
T 
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y 
& + 
Z& = C 
y 
T 
Z 
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from where:  
 
 
~ ~ 
I = 4 
D 
 
& 
eq 
D R D 
 
y 
: 
- 
- 
= 3µ 
-3Μ K 'F - 
<Z& > 
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- µ + 
& - - = 
I 
I (1 
Z) 
I 
eq 
(3 R p B C 0 
0 ) 
dt 
dt 
dt 
eq 
I =1 
 
~ ~ 
I = 4 
: & 
<3µ 
-3Μ K 'F - 
<Z& > - - > 
I 
I (1 
Z) 
B C 
I 
eq  
eq 
I =1 
p&= 
3µ + R0 
From where, finally the expression of & vp:  
 
~ ~ 
& 
 
vp 
3 
: 
I = 4 
& = 
3 
< µ 
3 
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- µK 'F 
&  
I 
I (1 - Z) 
~ 
<Z > 
- B C> 
2 (3µ+H 
I 
eq 
 
 
0 ) 
eq 
I =1 
eq 
 
if - R 
 
 
 
eq 
(T, Z, effi) - y (T, Z) =0 
vp 
& =0  
if - R 
 
 
eq 
(T, Z, effi) - y (T, Z) 0 
 
Taking into account the variations of H and  
0i 
y according to the temperature and of the structure  
metallurgical, one chooses by convenience to neglect the term (B+C) and one thus leads to one  
expression of ~& 
form:  
 
 
~ 
I = 4 
~ 
~ 
& 
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& = 
3 
: 
~ 
µ~ 
2 & - 
<3µ 
-3Μ K 'F 
Z 
Z& 
 
I 
I (1 - 
)< 
> 
> 
 
2 (3µ + 
I 
eq 
R 
 
 
0 ) 
 
eq 
I =1 
eq  
I = 4 
-3 K 'F 
Z 
Z&  
I 
I (- 
) 
 
< > ~ 
1 
I 
 
2 i=1 
 
 
The expression of ~& 
depends on the sign of the term (criterion of load-discharge)  
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~ 
I = 4 
: ~& 
3µ 
- 3µ K F' 
I 
I (Zi) < & 
Z >  
 
I 
eq.  
eq 
I = 1 
 
~& is approximated 
by:  
 
 
~ 
I = 4 
 
~ 
9 µ 
3 
 
3µ 
 
& 
~ 
< 
> 
= 2 µ & 
: ~& 
~ 
 
 
- 
K 
1 Z 
Z 
1 
D 
 
2 
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with D = 1 if one plasticizes and if one is in load at the moment T and D = 0 in the contrary case.  
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It is noticed that ~& 
is a function closely connected of ~&. The plasticity of transformation, like  
thermal deformation, generate in the problem of speed a second member.  
 
That introduced by the plasticity of transformation is form:  
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To determine U 0, it is necessary to solve after discretization spaces the following linear system of it:  
 
K 
BT u0  
L 
0  
Lth Lpt 
 
 
0 
 
 
 
 
+  
+  
+  
 
B 
 
0 
0  
= 
 
0 
 
 
 
ud  
 
0  
 
0  
 
On simple cases tests for which there is an analytical solution, one noted that the fact of  
to neglect the second member LP T  
() could lead, to converge, with a significant number  
iterations. This is why this term is taken into account for the phase of prediction.  
 
7.2.2.2 Iterations of Newton - Option FULL_MECA  
 
In the method of NEWTON, knowing one, one determines one as well as possible +1 checking:  
 
F ((un+1) =  
((un+1), T) (v) D - L (T) 0 
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((un+1) - (one) = 0 
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From where:  
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With each iteration one solves the linear system:  
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0  
 
During iterations of a step of time given, the method of NEWTON thus uses the calculation of  
the tangent operator K N, which is given by the derivation of the implicit problem according to  
the increment of deformation. The tangent operator K N can be recomputed or not with each  
iteration.  
Handbook of Reference  
R4.04 booklet: Metallurgical behavior  
HI-75/01/001/A  

Code_Aster ®  
Version  
6.3  
 
Titrate:  
Modeling élasto- (visco) plastic with metallurgical transformations  
Date:  
29/04/02  
Author (S):  
A. RAZAKANAIVO, A.M. DONORE, F. WAECKEL Key  
:  
R4.04.02-E Page  
: 30/36  
 
 
 
One gives the expression of for the constitution of the consistent tangent matrix of the method  
iterative of Newton.  
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eq 
eq 
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(p) 
~ 
The expression of ~ is obtained by deriving F = 0 compared to, which gives:  
 
(p 
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3µ 
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(1 3µF (Z,)) eq 
Z 
 
N T 
T 
 
 
 
Handbook of Reference  
R4.04 booklet: Metallurgical behavior  

file:///Z|/process/refer/refer/p1120.htm (34 of 35)10/2/2006 2:53:05 PM



file:///Z|/process/refer/refer/p1120.htm

HI-75/01/001/A  

file:///Z|/process/refer/refer/p1120.htm (35 of 35)10/2/2006 2:53:05 PM



file:///Z|/process/refer/refer/p1130.htm

Code_Aster ®  
Version  
6.3  
 
Titrate:  
Modeling élasto- (visco) plastic with metallurgical transformations  
Date:  
29/04/02  
Author (S):  
A. RAZAKANAIVO, A.M. DONORE, F. WAECKEL Key  
:  
R4.04.02-E Page  
: 31/36  
 
 
from where:  
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7.2.2.3 Operator  
tangent  
 
 
 
 
 
 
 
 
That is to say = (, 
, , 
 
2 
, 
 
2 
, 
 
2 
) 
11 
22 
33 
12 
23 
the 13 virtual increase in constraint and  
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that is to say = (, 
, , 2 , 2 , 2 ) 
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the 13 virtual increase in deformation,  
the operator who binds to is given by the following expression:  
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where “I” components of the Kii vector correspond to “I” terms of the higher part of  
ième column of the symmetrical matrix K  
 
It is noticed that the K0 operator and operator kN are different. The plasticity of transformation  
does not intervene in the same way in the calculation of the two operators.  
 
Note:  
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These various terms were obtained by developing the case with isotropic work hardening but  
one obtains the same thing in the case of kinematic work hardening, R is then replaced  
0 
by the kinematic coefficient of work hardening H.  
0 
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Law of behavior élasto (visco) plastic  
in great deformations with transformations  
metallurgical  
 
 
 
Summary  
 
This document presents a model of behavior thermo-élasto- (visco) plastic at isotropic work hardening  
with effects of the metallurgical transformations writes in great deformations. This model can be used 
for  
three-dimensional, axisymmetric modelings and in plane deformations.  
 
One presents the writing of this model and his digital processing.  
 
To include/understand this document, it is practically essential to read the two notes [R5.03.21] and 
[R4.04.02]  
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devoted to the written models of behavior, respectively, in great deformations without effects  
metallurgical and in small deformations with metallurgical effects.  
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1 Introduction  
 
This document presents a law of behavior thermo-élasto- (visco) plastic at isotropic work hardening  
in great deformations which takes into account the effects of the metallurgical transformations. It  
model can be used for three-dimensional, axisymmetric problems and in plane deformations.  
 
This law represents a “assembly” of two models established in Code_Aster, namely one  
thermoelastoplastic model with isotropic work hardening written in great deformations (key word  
factor DEFORMATION: “SIMO_MIEHE”, cf [R5.03.21]) and a model small deformations  
thermo-élasto- (visco) plastic with effects of the metallurgical transformations (key word factor  
“META_P_ ** _ **” or “META_V_ ** _ **” of COMP_INCR of operator STAT_NON_LINE). The 
first  
model of great deformations was thus wide to take account of the consequences of  
metallurgical transformations on mechanics.  
 
To include/understand this document, it is practically essential to read the reference documents  
[R5.03.21] and [R4.04.02] which concerns, respectively, the model great deformations without effects  
metallurgical and the model small deformations with metallurgical effects. Nevertheless, to facilitate  
the reading of this note, we make some recalls on these two models.  
 
To justify the extension of the model written in great deformations to the model great deformations  
with metallurgical effects, we take again some theoretical aspects extracted from [bib1] related to  
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the writing of the model great deformations.  
 
One presents then the relations of behavior of the complete model, his numerical integration and  
forms of the tangent matrix (options FULL_MECA and RIGI_MECA_TANG).  
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2 Notations  
 
One will note by:  
 
Id  
stamp identity  
tr A  
trace tensor A  
AT  
transposed of tensor A  
det A  
determinant of A  
X  
positive part of X  
~ 
~ 
1 
With  
deviatoric part of tensor A defined by A = A - (tr A) Id  
3 
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T 
:  
doubly contracted product: With: B = A B 
ij ij = tr (AB)  
I, J 
 
tensorial product: (A B) ijkl = ij 
With kl 
B  
 
3 
With 
~ ~ 
eq  
equivalent value of von Mises defined by Aeq = 
: 
WITH A  
2 
 
With 
TESTSTEMXÀ  
gradient: TESTSTEMXÀ =  
X 
 
ij 
With 
divx A  
divergence: (div 
) 
X Ad interim =  
X 
J 
J 
, µ  
 
E 
E 
coefficients of Lamé: = 
, µ = 
 
(1 +) (1 -  
2 ) 
2(1 + ) 
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Young modulus  
 
Poisson's ratio  
 
E 
modulate rigidity with compression: 3K = 3 + 2µ = 
 
(1 - 2) 
T  
temperature  
Tref  
temperature of reference  
Z  
proportion of austenite  
Zi  
proportion of the four phases: ferrite, pearlite, bainite and martensite  
 
 
In addition, within the framework of a discretization in time, all the quantities evaluated at the moment  
precedent are subscripted by -, the quantities evaluated at the moment T + T 
are not subscripted and them  
increments are indicated par. One has as follows:  
 
Q = Q - Q  
Handbook of Reference  
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3  
Recalls of the metallurgical model and the model large  
deformations  
 
3.1  
Model with metallurgical transformations  
 
We present only here the consequences of the metallurgical transformations on  
mechanical behavior.  
 
Determination of the mechanical evolution associated a process bringing into play  
metallurgical transformations requires a thermo-metallurgical calculation as a preliminary. This 
calculation  
thermo-metallurgical is uncoupled and allows the determination of the thermal evolutions then  
metallurgical. For the metallurgical models of behavior of steels, one will be able to consult  
note [R4.04.01].  
 
For the study of the metallurgical transformations of steel, there are five metallurgical phases:  
ferrite, pearlite, the bainite, martensite (phases) and austenite (phase).  
 
The effects of the metallurgical transformations (at the solid state) are of four types:  
 
· the mechanical characteristics of the material which undergoes the transformations are modified.  
Précisemment, elastic characteristics (YOUNG modulus E and coefficient of  
Poisson) are not very affected whereas the plastic characteristics, such as the limit  
of elasticity, are it strongly,  
· the expansion or the voluminal contraction which accompanies the metallurgical transformations  
results in a deformation (spherical) of “transformation” which is superimposed on  
purely thermal deformation of origin. In general, one gathers this effect with that due to  
modification of the thermal dilation coefficient,  
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· a transformation being held under constraints can give rise to a deformation  
irreversible and this, even for levels of constraints much lower than the elastic limit  
material. One calls “plasticity of transformation” this phenomenon. Total deflection  
is written then:  
 
= E + HT + p + Pt  
 
where E, HT, p and Pt are, respectively the elastic strain, thermal,  
plastics and of plasticity of transformation,  
· one can have at the time of the metallurgical transformation a phenomenon of restoration  
of work hardening. The work hardening of the mother phase is not completely transmitted to the phases  
lately created. Those can then be born with a virgin state of work hardening or  
to inherit only one part, even totality, the work hardening of the mother phase.  
cumulated plastic deformation p is not then any more characteristic of the state of work hardening and it  
is necessary to define other variables of work hardening for each phase, noted rk which hold  
count restoration. The laws of evolution of these work hardenings differ from the laws  
usual so as to allow a “return towards zero” total, or partial, of these parameters  
at the time of the transformations.  
 
One will be able to find in the document [R4.04.02] the expressions of the various relations of  
behavior.  
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3.2  
Model written in great deformations  
 
3.2.1 Presentation  
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general  
 
This model is a thermoelastoplastic law of behavior eulérienne written into large  
deformations which was proposed by Simo and Miehe ([bib2]) which tends under the assumption of 
small  
deformations towards the model with isotropic work hardening and criterion of von Mises describes in 
[R5.03.02].  
It makes it possible to treat not only the great deformations, but also, in an exact way, them  
great rotations.  
 
The essential characteristics of this law are as follows:  
 
· just like in small deformations, one supposes the existence of a slackened configuration,  
i.e. locally free of constraint, which makes it possible to break up the total deflection into  
a thermoelastic part and a plastic part,  
· the decomposition of this deformation in parts thermoelastic and plastic is not any more  
additive as in small deformations (or for the models great deformations written in  
rate of deformation with for example a derivative of Jaumann) but multiplicative,  
· as in small deformations, the constraints depend only on the deformations  
thermoelastic,  
· to write the law of behavior, one uses the tensor of the constraints of Kirchhoff, which is  
connected to the tensor of Cauchy by the relation J = where J represents the variation of volume  
between the configurations initial and current,  
· the plastic deformations are done with constant volume. The variation of volume is then  
only due to the thermoelastic deformations,  
· this model led during its numerical integration to a model incrémentalement objective  
what makes it possible to obtain the exact solution in the presence of great rotations.  
 
 
3.2.2 Kinematics  
 
We make here some basic recalls of mechanics in great deformations and on the model of  
behavior.  
 
Let us consider a solid subjected to great deformations. That is to say the 0 field occupied by the solid  
before deformation and (T) the field occupied at the moment T by the deformed solid. In the 
configuration  
initial 0, the position of any particle of the solid are indicated by X (Lagrangian description).  
After deformation, the position at the moment T of the particle which occupied position X before 
deformation  
is given by variable X (description eulérienne).  
 
The total movement of the solid is defined, with U displacement, by:  
 
X = x$ (X, T) = X + U  
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To define the change of metric in the vicinity of a point, one introduces the tensor gradient of  
transformation F:  
 
x$ 
F = 
= Id + U 
 
 
X 
X 
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The transformations of the element of volume and the density are worth:  
 
 
D = Jdo with J 
O 
= det F =  
 
where O and are respectively the density in the configurations initial and current.  
 
To now write the model great deformations, the existence of a configuration is supposed  
slackened R, i.e. locally free of constraint, which then makes it possible to break up  
total deflection in parts thermoelastic and plastic, this decomposition being  
multiplicative.  
 
One will note by F the tensor gradient which makes pass from the initial configuration 0 to the 
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configuration  
current (T), by F p the tensor gradient which makes pass from configuration 0 to the configuration  
slackened R, and Fe of the configuration R with (T). The index p refers to the plastic part, the index  
E with the thermoelastic part.  
 
Initial configuration 
Current configuration 
F 
 
(T) 
0 
F p 
F E 
T = Tref 
R 
= 0 
Slackened configuration 
 
Appear 3.2.2-a: Decomposition of the tensor gradient F in an elastic part Fe and plastic F p  
 
By composition of the movements, one obtains the following multiplicative decomposition:  
 
F = FeF p  
 
The thermoelastic deformations are measured in the current configuration with the tensor  
eulérien of left Cauchy-Green Be and plastic deformations in the initial configuration by  
the tensor G p (Lagrangian description). These two tensors are defined by:  
 
Be 
FeFeT 
= 
, G p 
F pTF p 
= 
- 
( 
) 1 from where Be 
FG pFT 
= 
 
 
The model presented is written in such manner to distinguish the isochoric terms from the terms of  
change of volume. One introduces for that the two following tensors:  
 
F = - 
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J 1 F 
3 and Be = -2/B 
3rd 
J 
with J = det F  
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By definition, one a: det F = 1 and det Be = 1.  
 
In this model, the plastic deformations are done with constant volume so that:  
 
J p 
p 
= det F = 1 from where J I 
E 
= 
= det F  
 
One will find in the reference document ([R5.03.21]) the expressions of the relations of  
behavior.  
 
 
4  
Extension of the model great deformations  
 
The objective of this paragraph is to justify the extension of the model written in great deformations 
for  
to take account of the metallurgical transformations. In particular, to take account of the plasticity of  
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transformation, we cannot add as in small deformations a term  
additional of deformation related to the plasticity of transformation. In fact, on the aspect 
decomposition  
kinematics, the taking into account of the plasticity of transformation does not change anything. One 
always has  
decomposition F = FeF p where F p thus contains all information on the “anelastic” deformation (  
including that related to the plasticity of transformation). It is only on the level behavior that  
fact, in particular, treatment of the plasticity of transformation.  
 
Initially, we point out some theoretical elements which make it possible to write it  
model without metallurgical effects then we show the modifications to be made to hold account  
metallurgical effects and plasticity of transformation in particular.  
 
4.1 Aspect  
thermodynamics  
 
The writing of the law of behavior great deformations is from the thermodynamic framework with  
internal variables. The thermodynamic formalism rests on two assumptions. First is that  
the free energy depends only on the elastic strain Be and of the variables intern related to  
the work hardening of the material (here cumulated plastic deformation associated the variable of 
work hardening  
isotropic R). This allows, thanks to the inequality of Clausius-Duhem, to obtain the laws of state. The 
second  
assumption is the principle of maximum dissipation, which corresponds to the data of a potential of  
dissipation, which then makes it possible to determine the laws of evolution of the internal variables.  
 
The free energy is given by:  
 
= (Be,) = E (Be) + p 
p 
(p)  
 
One obtains by the first assumption, the laws of state, that is to say:  
 
E 
p 
 
= 
 
2 
E 
0 
B and R =  
 
E 
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B 
0 p 
 
It remains for dissipation:  
 
1 
:(- 
& p T e-1 
FG F B 
) - & 
RP 0  
2 
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With the help of the introduction of a function threshold such as F (, R) 0, the principle of dissipation  
maximum (or in an equivalent way the data of a pseudopotential of dissipation [bib3]) allows  
to deduce some, by the property of normality, the laws of evolution, is:  
 
F 
- 1 
p T e-1 
F 
FG 
& F B 
= & and &p = - & 
2 
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R 
 
It is here about a model of associated plasticity.  
 
4.2 Extension  
 
For the restoration of work hardening, there are no particular difficulties been dependent on large  
deformations. It is enough that the free energy depends, either to the cumulated plastic deformation, 
but  
variables intern work hardening rk associated with the variables with work hardenings Z. R 
K 
K of each one  
metallurgical phases.  
 
To take maintaining account of the deformations due to the plasticity of transformation, one proposes  
to add an additional term in the law with flow of the plastic deformation G p which  
derives from a potential of dissipation.  
 
One obtains thus for the laws of state:  
 
E 
p 
 
= 
 
2 
E 
0 
B and Z. R =  
 
E 
B 
K 
K 
0 rk 
 
and for the laws of evolution:  
 
Pt 
- 1 
p T e-1 
F 
 
FG 
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& F B 
= & + 
 
2 
 
 
123 
plasticity of transformation 
R 
 
& 
R = - & 
F 
K 
 
 
- 
 
(Z. R) 
(Z. R) 
K 
K 
K 
K 
1 2 
4 
3 
4 
restoration D work hardening 
metallurgical and viscous 
= Pt + R 
( ) 
 
 
One chooses the potentials Pt and R, respectively related to the plasticity of transformation and on  
restoration of work hardening, such manner to find, under the assumption of the small deformations, 
them  
same laws of evolution as those of the model with metallurgical effects writes in small deformations.  
 
4.3  
Relations of behavior  
 
A linear isotropic work hardening in the case of is placed.  
 
The partition of the deformations implies:  
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Be 
FG pFT 
= 
with F = - 
J 1 F 
3, J = det F and Be = -2/B 
3rd 
J 
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The relations of behavior are given by:  
 
· Thermoelastic Relation stress-strain:  
 
~ 
~ 
= µbe  
3K 
2 
9K HT 
1 
tr = 
(J -) 
1 - 
(J +)  
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2 
2 
J 
4 
HT 
R 
Tref 
R 
Tref 
=  
Z [(T - Re 
T F) - (1 -  
Z)  
F] + (iZ [) F (T - rTef) + Z  
F]  
i=1  
 
where: Z R characterizes the metallurgical phase of reference  
Zr = 1 when the phase of reference is the austenitic phase,  
Zr = 0 when the phase of reference is the ferritic phase.  
Tref 
HT 
HT 
F 
= F (Re 
T F) - (Re 
T F) translated the difference in compactness between the ferritic phases  
and austenitic at the temperature of Tref reference,  
F is the dilation coefficient of the four ferritic phases and that of the phase  
austenitic.  
 
· Seuil of plasticity:  
 
F = - R 
eq 
- y  
 
R is the variable of work hardening of the multiphase material, which is written:  
F (Z) 4 
4 
R = (1 - F (Z))R + 
Z. R, Z = Z  
Z 
I 
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I 
I 
i=1 
i=1 
 
where Rk is the variable of work hardening of the phase K which can be linear or not linear by  
report/ratio with rk and F (Z) a function depending on Z such as F (Z) [ 
0, ] 
1 .  
In the linear case, there are R = R R 
K 
0k K where R0k is the slope of work hardening of the phase K.  
(I) 
(I) 
(I) 
(I) 
In the nonlinear case, one writes: R = R 
+ R (R - R 
K 
K 
K 
K 
) 
0 
where significances of Rk,  
R (I) 
(I) 
0k and rk 
are represented on the figure below.  
Rk 
( 3 ) 
Rk (2) 
( 2 ) 
Rk 
R0 K 
( 1 ) 
( 1 ) 
R 
R 
0 K 
K 
( 0 ) 
R0k 
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( 0 ) 
rk 
Rk (0) (1) 
( 2 ) 
( 3 ) 
R 
R 
K 
rk 
K 
rk 
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The elastic limit is worth there:  
4 
I 
Z  
y I 
If Z 0 
= 
,  
I 1 
y = (1 - F (Z)  
) y + F (Z  
) y,  
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y 
= 
 
Z 
If Z = 0, y = y  
 
where yi is the four limit elastic of the ferritic phases,  
y that of the phase  
autenitic.  
 
· Laws of evolution:  
 
3 
4 
FG 
& pFT = - &p 
B 
~ E - 3 B 
~ E K F (1 - Z) 
I I 
&i 
Z 
 
 
 
eq 
i=1 
4 
- &Z (R - R) 
I 
I I 
 
&r 
=1 
= &p 
I 
+ 
- (Cr) m 
Z 
if  
> 0  
Z 
moy 
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1 2 
4 
3 
4 
only in viscosity 
&Z (R 
- R) 
I 
I 
I 
&r = &p + 
- (Cr) m 
Z 
I 
if > 0  
Z 
moy  
I 
I 
1 2 
4 
3 
4 
only in viscosity 
5 
5 
5 
R 
= Z R 
moy 
K K, C = ZkCk, m = Zk K 
m  
K =1 
k=1 
k=1 
 
where Ki, Fi, I 
C and I 
m are data of material associated with phase I, I it  
coefficient of restoration of work hardening at the time of the transformation into I (I [ 
0 ] 
1 
,) and I  
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the coefficient of restoration of work hardening at the time of transformation I into (I [ 
0 ] 
1 
, ).  
 
All the data material are indicated in operator DEFI_MATERIAU ([U4.43.01]) under  
various key words factors ELAS_META (_F0) and META_ **.  
 
For a model of plasticity, the plastic multiplier is obtained by writing the condition of  
coherence &f = 0 and one a:  
 
&p, 
0 F 0 and &pf = 0  
In the viscous case, &p is written:  
N 
F  
&p =  
 
 
 
 
 
 
 
or in an equivalent way:  
1/  
4 
F = 
F 
1 
(- F (Z)) 
N 
1 I 
N 
p& 
+ Zii p& 
 
Z i=1 
where in and I 
are the viscosity coefficients of material associated with phase I which depend  
possibly of the temperature.  
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The calculation of FG 
& pFT gives:  
~ 
~~ 
1 
 
 
FG 
& pFT = - ( 
E 
eq 
3 Aeq + &p) (tr B 
+ 
)  
3 
2 
eq 
µ eq 
4 
where one posed A = K F & 
Z 
I I 
I.  
i=1 
Since ~ 
/  
2 
eq 1 and ~~ 
/eq 1, the second term of the expression above can be neglected  
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(in front of 1) for metallic materials insofar as:  
 
eq R +y 
-3 
E 
µ = 
µ 
10 << 1 tr B  
tr Be 1 bus the tensor Be is symmetrical, definite positive and det Be = 1.  
It is this simplification of the law of evolution of Gp which makes it possible to integrate the law easily 
of  
behavior i.e. to bring back it to the solution of a nonlinear scalar equation. One  
will thus take thereafter:  
tr Be 
FG 
& pFT - (&p +eq A) 
~ 
 
 
éq  
4.3-1  
eq 
 
4.4  
Various relations  
 
In operator STAT_NON_LINE, one reaches these various models by using the key words factors  
following:  
 
| COMP_INCR: (  
RELATION  
:  
 
/  
“META_P_IL”  
/  
“META_P_INL”  
/  
“META_P_IL_PT”  
/  
“META_P_INL_PT”  
/  
“META_P_IL_RE”  
/  
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“META_P_INL_RE”  
/  
“META_P_IL_PT_RE”  
/  
“META_P_INL_PT_RE”  
/  
“META_V_IL”  
/  
“META_V_INL”  
/  
“META_V_IL_PT”  
/  
“META_V_INL_PT”  
/  
“META_V_IL_RE”  
/  
“META_V_INL_RE”  
/  
“META_V_IL_PT_RE”  
/  
“META_V_INL_PT_RE”  
 
DEFORMATION  
:  
/“SIMO_MIEHE”  
 
 
 
 
 
)  
 
We point out only here the significance of the letters for behaviors META:  
 
· P_IL: plasticity with linear isotropic work hardening,  
· P_INL: plasticity with nonlinear isotropic work hardening,  
· V_IL: viscoplasticity with linear isotropic work hardening,  
· V_INL: viscoplasticity with nonlinear isotropic work hardening,  
· Pt: plasticity of transformation,  
· RE: restoration of metallurgical work hardening of origin.  
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Example: “META_V_INL_RE” = elastoviscoplastic law with nonlinear isotropic work hardening 
with  
restoration of work hardening but without taking into account of the plasticity of transformation  
 
The various characteristics of material are given in operator DEFI_MATERIAU. One  
return the reader to the note [R5.04.02] for the significance of the key words factors of this operator.  
 
Caution:  
 
If isotropic work hardening is linear, one informs under key word META_ECR0_LINE of  
DEFI_MATERIAU, the module of work hardening i.e. the slope in the plan forced  
deformation.  
On the other hand, if isotropic work hardening is nonlinear, one gives directly under the key word  
META_TRACTION of DEFI_MATERIAU, the isotropic curve work hardening R (R = - y) in  
 
function of the cumulated plastic deformation p (p = - 
).  
E 
 
Note:  
 
The user must make sure well that the “experimental” traction diagram used for in  
to deduce the slope from work hardening is well given in the plan forced rational = F/S  
- deformation logarithmic curve ln (1+ L/L) 
0 where l0 is the initial length of the useful part of  
the test-tube, L variation length after deformation, F the force applied and S  
F L 1 
F L 
current surface. It will be noticed that = F/S = 
from where = J = 
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. In  
S L J 
0 0 
S L 
0 0 
F L 
general, it is well the quantity  
who is measured by the experimenters and this gives  
S L 
0 0 
directly the constraint of Kirchhoff used in the model of Simo and Miehe.  
 
 
4.5  
Internal constraints and variables  
 
The constraints of exit are the stresses of Cauchy, therefore measured on the configuration  
current.  
For the whole of relations META_ **, the internal variables produced in Code_Aster are:  
 
· V1: r1 variable of work hardening for ferrite,  
· V2: r2 variable of work hardening for the pearlite,  
· V3: r3 variable of work hardening for bainite,  
· V4: r4 variable of work hardening for martensite,  
· V5: r5 variable of work hardening for austenite,  
· V6: indicator of plasticity (0 if the last calculated increment is elastic; 1 if not),  
· V7: R the isotropic term of work hardening of the function threshold,  
1 
· V8: the trace divided by three of the tensor of elastic strain E 
B is  
E 
trb.  
3 
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5 Formulation  
numerical  
 
For the variational formulation, it is about same as that given in the note [R5.03.21] and which  
refers to the law of behavior great deformations. We point out only that it acts  
of a eulérienne formulation, with reactualization of the geometry to each increment and with each  
iteration, and which one takes account of the rigidity of behavior and geometrical rigidity.  
We now present the numerical integration of the law of behavior and give  
the form of the tangent matrix (options FULL_MECA and RIGI_MECA_TANG).  
 
5.1  
Integration of the various relations of behavior  
 
In the case of an incremental behavior, key word factor COMP_INCR, knowing the tensor of  
constraints -, the variables intern R - 
K, the trace divided by three of the tensor of deformations  
1 
rubber bands  
E 
trb, displacements U and U, the temperatures T - and T, and proportions of  
3 
1 
various metallurgical phases Z 
E 
K, Zk, one seeks to determine (, 
R, 
b) 
K 
tr 
.  
3 
Displacements being known, gradients of the transformation of 0 with -, noted F, and of -  
with (T), noted F, are known.  
One will pose thereafter:  
4 

file:///Z|/process/refer/refer/p1140.htm (23 of 26)10/2/2006 2:53:06 PM



file:///Z|/process/refer/refer/p1140.htm

- Z (R - R) 
4 
I 
I I 
 
Z R 
- R 
( 
) 
WITH = K F Z 
i=1 
I 
I 
I 
I I 
I, G = 
and Gi = 
(I = 1, 4)  
i=1 
Z 
Zi 
 
The implicit discretization of the law gives:  
 
F = FF 
 
 
J = det F  
F = - 
J 1 F 
3  
Be = -2/B 
3rd 
J 
 
J =  
~ 
~ 
= µbe  
3K 
9K 
1 
tr = 
(2 
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J -) 
1 - 
HT 
(J +)  
2 
2 
J 
4 
HT 
R 
Tref 
R 
Tref 
=  
Z [(T - Re 
T F) - (1 -  
Z)  
F] + (iZ [) F (T - rTef) + Z  
F]  
i=1 
F 4 
F = - (1 - F) R - 
Z R 
eq 
-  
Z 
I I 
y 
i=1 
tr Be 
Be = FG pFT = FG p-FT -  
~ - tr Be 
p 
With  
~ 
 
 
 
eq 
If Z 
- 
m 
- 
> 0 then R = p + G - 
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T (Crmoy) 
, if not R = 0 and R 
1 2 
4 
3 
4 
 
= 0  
only in viscosity 
If Z 
- 
m 
- 
I > 0, R = p + G - 
T (Cr 
I 
I 
moy) 
, if not R = 0 and R 
1 2 
4 
3 
4 
I 
I = 0  
only in viscosity 
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In the resolution of this system, only the deviatoric constraint ~ 
is unknown because the trace of is  
function only of J (known).  
One introduces Tr, the tensor of Kirchhoff which results from an elastic prediction (Tr: trial, in English  
test):  
 
~ 
~ 
Tr 
eTr 
= µb 
 
 
where  
 
beTr 
FG p-FT 
Fbe- 
 
FT 
= 
= 
, F  
= (J) - 1 3F and J = det  
( 
) 
F  
 
One obtains Be starting from the constraints - by the thermoelastic relation stress-strain and  
starting from the trace of the tensor of the elastic strain.  
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~- 
E 
 
1 
E 
B 
= 
+ trb 
- 
 
µ 
3 
 
One obtains for the tensor of Kirchhoff:  
 
eTr 
~ 
~ 
tr B 
eTr 
~ 
= µb 
- µ p 
 
- µ A 
tr eTr~ 
 
 
B 
 
 
 
eq 
 
If F < 0, one has p then = 0 and:  
~Tr 
~ 
 
= 
 
1+ µ tr eTr 
With B 
 
if not one obtains:  
 

file:///Z|/process/refer/refer/p1150.htm (2 of 25)10/2/2006 2:53:07 PM



file:///Z|/process/refer/refer/p1150.htm

tr Be 
tr beTr 
= 
 
 
 
eTr 
 
~ 
tr B 
1 
+ µp 
+ A tr eTr 
~ 
 
B 
= Tr  
 
 
 
µ 
eq 
 
 
 
By calculating the equivalent constraint, one obtains the scalar equation out of p following:  
 
 
eTr 
eTr 
Tr 
eq + µ p 
tr B 
+ µ  
With eq tr B 
= eq  
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Expression of eq:  
 
In plasticity:  
- 
eq = y + R p 
+ D (R; T, Z)  
with  
F 4 
R = (1 - F) R0 + 
Z R  
Z 
I 0i 
i=1 
4 
F 
and D (R -; T, Z) = [1 - F] R (R - 
+ G) 
+ 
Z R (R + G)  
Z 
I I I 
I 
i=1 
 
4 
1 N 
F 
In viscosity:  
- 
 
eq = y + R  
p + D (R; T, Z) + 1 
(- F (Z)) 
1 I 
N 
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(p/t) 
+ Zii  
(p/t) 
 
Z i=1 
with  
D (R; T, Z) = [1 - F] R (R 
+ G - T (Cr) m) 
moy 
4 
F 
 
+ 
Z R (R + G - T (Cr) m) 
moy 
Z 
I I I 
I 
i=1 
 
p checks:  
 
Tr 
eTr 
4 
1 N 
F 
- µ p 
tr B 
1 
(- F (Z  
)) 
(p 
/T 
 
 
1/ 
 
) 
+ Z (p 
/T N 
eq 
I 
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) 
= 
- D (R; T, Z) - - R p 
 
 
Z 
I I 
y 
i=1  
1+ µ A 
eTr 
'tr B 
 
 
The resolution is made in Code_Aster by a method of the secants with interval of research  
[bib4].  
 
Note:  
 
In the case of a nonlinear isotropic work hardening, slopes of R0k work hardening and them  
work hardenings R 
- 
K in the expressions of R and D (R; T, Z) correspond to the variables  
R 
- 
- 
m 
K taken at the moment T, i.e. R = R + G + p - T (Cr 
K 
K 
K 
moy). However, like one  
does not know a priori the value of these variables rk, one solves the equation out of p by taking them  
slopes R 
- 
- 
m 
0k and Rk work hardenings for the quantities R + G 
 
- T (Cr 
K 
K 
moy). Once  
solved the equation out of p, one checks, for each phase, which one is well in the good  
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interval during the calculation of work hardening and the slope. In the contrary case, for  
phases concerned, the following interval is taken and the equation in p. again is solved.  
One continues this process until finding the good interval for all the phases.  
 
One finds then for the diverter of the constraints:  
 
 
eTr  
~ 
1 
p tr B 
~ 
= 
1 - µ 
Tr  
1+ µA tr eTr 
Tr 
B 
 
 
eq 
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Once calculated cumulated plastic deformation, the tensor of the constraints and the tangent matrix,  
one carries out a correction on the trace of the tensor of the elastic strain E 
B to hold account  
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plastic incompressibility, which is not preserved with the simplification made on the law  
of flow [éq 4.3.1]. This correction is carried out by using a relation between the invariants of E 
B  
~ 
and E 
B and by exploiting the plastic condition of incompressibility p 
J = 1 (or in an equivalent way  
det E 
B = 1). This relation is written:  
 
x3- J ex- (1 - J E) = 0 
2 
3 
 
2 
1 ~ 
( ) 
~ 
~ 
E 
E 2 
eq 
E 
E 
 
1 
with J2 = (B) eq = 
, J = det 
3 
B = det and  
E 
X = trb  
2 
2 
( 
2 µ) 
µ 
3 
The solution of this cubic equation makes it possible to obtain  
E 
trb and consequently  
thermoelastic deformation Be with the step of next time. If this equation admits  
several solutions, one takes the solution nearest to the solution of the step of previous time. It is  
1 
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moreover why one stores in an internal variable  
E 
trb.  
3 
 
 
Note:  
 
If the plasticity of transformation is not taken into account, expressions  
obtained while taking A = 0 are the same ones.  
If it is the restoration of work hardening which is neglected then one also has them  
same expressions but by taking all the equal ones to 1.  
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5.2  
Form of the tangent matrix  
 
We give only here the forms of the tangent matrix (option FULL_MECA to the course  
iterations of Newton, option RIGI_MECA_TANG for the first iteration). For the assumptions  
concerning the metallurgical part, they are the same ones as those of the document [R4.04.02]. For  
part great deformations, one will find in appendix of [bib1], the detail of the linearization of the law of  
behavior.  
 
One poses:  
J = det F, J - 
- 
= det F and J = det F  
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· For option FULL_MECA, one a:  
 
- 
 
( ) / 
J 1 3 
1 
J - 
With = 
= 
H - 
(HF) B - 
B 
F 
 
J 
3  
J J 
J 2 
 
J -  
3 
HT 
-2  
+ 
KJ - 
 
K 
(1 - J) Id B 
J  
2 
 
 
 
where B is worth:  
B = F 
 
F 
 
- F 
 
F 
11 
22 
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33 
23 32 
B = F 
 
F 
 
- F 
 
F 
22 
11 
33 
13 31 
B = F 
 
F 
 
- F 
 
F 
33 
11 
22 
12 21 
B = F 
 
F 
 
- F 
 
F 
12 
31 
23 
33 21 
B = F 
 
F 
 
- F 
 
F 
21 
13 
32 
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33 12  
B = F 
 
F 
 
- F 
 
F 
13 
21 
32 
22 31 
B = F 
 
F 
 
- F 
 
F 
31 
12 
23 
22 13 
B = F 
 
F 
 
- F 
 
F 
23 
31 
12 
11 32 
B = F 
 
F 
 
- F 
 
F 
32 
13 
21 
11 23 
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and where H and HF are given by:  
 
 
 
In the elastic case (F < 0):  
 
µ 
2 
H 
(B E-F 
 
+ F 
B E - F 
B E - 2 A 
~ F 
B E 
= 
- ) 
ijkl 
 
(1+ µ A 
eTr 
ik LP 
jp 
IP pl 
jk 
tr b) 
3 ij 
kp LP 
ij 
kp pl 
 
and  
2µ 
~ 
HF = 
(beTr - A tr beTr~)  
(1+  
µ A tr beTr) 
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if not in plastic or viscoplastic load, one a:  
 
µ 
H 
= (B E-F 
 
+ F 
B E) 
ijkl 
ik LP has 
jp 
IP pl 
jk 
 
R ( 
 
With 
+ p 
)~ 
 
 
ij 
eq 
ij 
- 2µ 
+ 
F 
B E  
has 
3 

file:///Z|/process/refer/refer/p1150.htm (14 of 25)10/2/2006 2:53:07 PM



file:///Z|/process/refer/refer/p1150.htm

(R 
eTr 
+ µ tr B (1+ R A  
)) 
kp LP 
 
eq 
 
 
2 
eTr 
µ 
3 
tr B 
(R p 
- ) 
 
eq 
+ 
~ ~ F 
B E 
3 (R have 
eTr 
+ µ tr B (1+ R A 
)) ij kq qp LP 
eq 
 
and  
 
2µ 
Id 
R  
( 
With + p  
)~ 
 
HF = 
beTr - 2µ tr beTr 
eq 
 
+ 
 
has 
3a (R 
eTr 
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eq 
+ µ tr B 
1 
(+ R  
With))  
3 2 
µ tr beTr (R  
p - eq) 
+ 
(~: beTr) ~ 
 
 
3 
(R has 
eTr 
eq 
+ µ tr B 
1 
(+ R  
With)) 
 
with  
 
4 
F 
1 
(- N)/N 
F 
 
 
1 
( - ) / 
R = 1 
(- F) 
I 
N 
I 
N 
0 
R + 
Zi 0 
R + 1 
(- F (Z)) (p 
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/T 
) 
/N T 
+ 
Z (p 
/T 
) 
/N T 
 
Z 
I 
I I 
I 
i=, 
1 4 
Z 
1 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
2 
I 1 
= 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
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4 
4 
4 
3 
you 
in viscosi 
 
only 
 
Tr 
 
has 
eq 
=  
eq 
 
· For option RIGI_MECA_TANG  
 
for the plastic model: they are the same expressions as those given for  
FULL_MECA but with p = 0 and A = 0, all variables and coefficients of material  
being taken at the moment T -. In particular, there will be F = Id.  
 
for the viscous model: one takes only the expressions of FULL_MECA in the case  
rubber band with A = 0, all variables being taken at the moment T -.  
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Models of metallurgical behavior  
zircaloy in Code_Aster  
 
 
 
 
 
Summary:  
 
This document presents the models of metallurgical behavior describing structure transformations,  
with the heating and the cooling, which the zircaloy (sheath of fuel pencil) between approximately 
800°C undergoes  
and 1000°C.  
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1 Introduction  
 
The fuel sheaths of the nuclear engines with pressurized water consist of alloy of  
zirconium. These alloys undergo metallurgical transformations between 800°C and 1000°C, where 
they  
pass from a phase of compact hexagonal structure to a phase of cubic structure. In  
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certain cases of analysis such scenarios of accident of heart per primary education loss of cooling 
agent (APRP),  
the sheath reaches temperatures of the order 1000°C and undergoes metallurgical transformations 
then.  
To analyze the mechanical behavior of the sheath in these situations, it is necessary of  
to take into account the influence of the metallurgy on mechanics: modification of the characteristics  
mechanics, change of volume at the time of the transformations, more possibly of others  
phenomena like the plasticity of transformation.  
This document relates to the modeling of structure transformations of Zircaloy with  
heating and with cooling and this, a scale which, while remaining “reasonable” for  
metallurgist, is easily usable by the mechanic.  
 
Metallurgy calculations in Code_Aster are done with the operator dedicated CALC_META, in  
“postprocessing” of a thermal calculation of evolution. With the model dedicated to the 
transformations  
austenito-ferritic of steel, one has today two models of metallurgical evolution.  
choice of the model is done with the key word RELATION; “ZIRC” or “STEEL”. This type of 
modeling is  
realizable within Code_Aster for the whole of the elements (PLANE, AXIS, 3D) of the 
PHENOMENON  
“THERMAL”. For the definition of the metallurgical behavior of Zircaloy the information of the 
word  
key factor META_ZIRC under order DEFI_MATERIAU [U4.43.01] is necessary. Lastly,  
definition of the initial metallurgical state is realizable using order CREA_CHAMP, under  
key word factor ETAT_INIT of operator CALC_META.  
 
The models presented (with the heating and cooling) are formulated within the framework of the 
relations  
of behavior with internal variables (or mémoratrices). When one carries out a sequence of  
calculation thermo-metal-worker-mechanics of the zircaloy, one uses the same relations of behavior  
mechanics taking of account effects of the metallurgy, developed for steel:  
(elasto) viscoplastic or elastoplastic, isotropic work hardening (linear or not linear) or  
kinematics, taken into account or not of the phenomena of plasticity of transformation and of  
restoration of metallurgical work hardening of origin.  
 
Models established in Code_Aster to model the metallurgical transformations of  
Zircaloy are models developed by the ECA. These models were identified on the basis of test  
of dilatometry and calorimetry for alloys of sheaths (standard and new) within the framework of  
collaborations EDFCEA on the behavior of the sheath in accident by loss of réfrigèrent primary  
(program EDGAR).  
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2  
Proportion with balance.  
 
Zircaloy has a compact hexagonal structure called phase, stable until temperatures  
about 800°C. Beyond approximately 800°C starts an allotropic transformation towards a phase  
cubic, and which is complete around 975°C.  
 
That is to say T eq 
eq 
D the initial temperature of transformation to balance and Tf 
the temperature of end  
of transformation. The proportion of phase Z eq 
to balance is given by the equation, of type  
Johnson-Mehl-Avrami, following:  
 
eq 
Z 
= 0 
for 
T < eq 
T 
 
D 
eq 
 
N 
eq 
 

file:///Z|/process/refer/refer/p1150.htm (23 of 25)10/2/2006 2:53:07 PM



file:///Z|/process/refer/refer/p1150.htm

Z 
= 1 - exp 
 
- [KC T 
(- T) 
for 
T 
T 
T 
D 
]  
eq < < eq 
D 
F 
 
 
éq  
2-1  
 
 
 
eq 
eq 
Z 
= 1 
for 
T < T 
 
F 
 
with:  
T: temperature  
K 
N 
C, 
: parameters materials.  
 
 
 
3  
Equation of evolution to the heating  
 
The transformation with the heating is the transformation:  
The model of evolution of phase Z eq  
to the heating is given by the differential equation (model of  

file:///Z|/process/refer/refer/p1150.htm (24 of 25)10/2/2006 2:53:07 PM



file:///Z|/process/refer/refer/p1150.htm

Holt) following:  
For  
chauff 
T > Td 
:  
dZ  
 
E  
= Aexp- 
(T - T ())m 
eq Z 
 
 
 
 
 
 
éq 3-1  
dt 
RT  
 
with:  
T (Z) 
eq 
: T with balance corresponding to proportion Z  
E 
With, 
, m: parameters materials  
R 
Handbook of Reference  
R4.04 booklet: Metallurgical behavior  
HT-66/02/004/A  

file:///Z|/process/refer/refer/p1150.htm (25 of 25)10/2/2006 2:53:07 PM



file:///Z|/process/refer/refer/p1160.htm

Code_Aster ®  
Version  
5.0  
 
Titrate:  
Models of metallurgical behavior of Zircaloy  
 
 
Date:  
20/08/02  
Author (S):  
A. Key RAZAKANAIVO  
:  
R4.04.04-A Page  
: 5/8  
 
 
4  
Equation of evolution to cooling  
 
The transformation with cooling is the transformation  
The model of evolution of the phase eq 
Z with cooling is given by the differential equation  
following:  
 
for  
refr 
T < Td:  
dZ = K Z 1 (- Z) 
R 
 
 
 
 
 
 
 
 
éq 4-1  
dt 
with  
K = - T - T (Z) exp 
R 
eq 
(Ar+BrT - T (Z) 
eq 
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)  
 
 
NB:  
 
The model comprises equations giving the initial temperatures of transformation of  
phase according to the cooling and heating rates which today are not  
operational.  
 
 
 
5 Formulation  
numerical  
 
The integration of the differential equations is done with the explicit method of Runge-Kutta.  
 
Note:  
 
The discretization comprises in more one automatic cutting of the step of time when  
T 
> 5 C 
° .  
 
 
5.1  
Feel metallurgical evolution  
 
One adopts the same principle as the models dedicated to steel. One considers that in a calculation of  
structure, certain zones can undergo a heating while others cool. One  
thus consider that there is one model of metallurgical transformations for Zircaloy which  
according to the temperature considered and signs it speed of evolution thermal is described either by  
model, is by the model.  
 
T (T + T 
) < eq 
T  
[eq eq 
T T 
; 
 
eq 
T 
> 
 
D 
F 
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] 
D 
F 
T& (T) > 0  
 
T& (T) = 0 if Z Z 
 
 
 
 
if Z <Z 
 
 
 
eq  
eq  
 
 
T& (T) < 0  
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5.2  
Proportion of phase and variables internal  
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The programme of study of the sheath in situation of APRP (EDGAR) comprises a mechanical part. In  
the mechanical model one considers that Zircaloy comprises 3 phases distinct from characteristics  
different mechanics; , -. The proportion of the three “mechanical” phases depends on  
initial proportion/given by the equations [éq 2-1], [éq 3-1] and [éq 4-1]. Characteristics  
mechanics of a multiphase point is obtained using a law of the mixtures on the characteristics of  
(pseudo) phases present. This requires from the metallurgical point of view to carry out a complement  
of development allowing the metallurgical exit it calculation to be able to recover 3 phases: one  
phase and a phase which met is in the form 1 (1: is the phase pure alpha having  
characteristic of) is in form 2. (2: alpha in mixture and which will have the characteristics  
mechanics of the phase -).  
 
The models presented previously gives the proportion of the phase and such as z=1-z.  
cold phase is then distributed in 2 forms with the proportions z1 and z2 such as:  
z=z1+z2.  
 
1>z>0.9 0.9>z>0  
(Z -. 
0 9) 
z1=0  
z1= 
Z  
. 
01 
z2=z  
z2=z-z1  
distribution of the proportion of phase  
according to the proportion alpha 
1 
0,8  
zalpha1 
0,6 
Z 
zalpha2 
0,4 
zbeta 
0,2 
0 
0.0,1.0,2 0,3.0,4.0,5 0,6.0,7.0,8 0,9 1 
zalpha 
 
 
5.2.1 Internal variables  
 
The internal variables of the relation of behavior “ZIRC” are:  

file:///Z|/process/refer/refer/p1160.htm (4 of 17)10/2/2006 2:53:08 PM



file:///Z|/process/refer/refer/p1160.htm

V1: z1 proportion of the phase alpha1  
V2: Z 2 proportion of the phase alpha2  
V3: TPG, temperature at the points of Gauss  
 
The use of the metallurgy model dedicated to Zircaloy requires to inform the parameters of  
model under the key word factor META_ZIRC of DEFI_MATERIAU.  
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Seismic response by transitory analysis 
Summary 
The methods most frequently used for the seismic analysis of the structures are the methods 
spectral and transitory methods. 
The transitory methods (direct linear or not, by modal synthesis) make it possible to calculate the 
answer of 
structures under the effect of imposed seisms: single excitation (identical of each point of anchoring 
of 
structure) or multiple and to take into account their possible nonlinear behavior. 
With regard to the spectral methods, one calculates the maximum answer, for each mode of vibration, 
of each point of anchoring. The maximum response of the whole of the structure is then determined 
by 
combination of the maximum answers of the modes. This type of analysis is clarified in the 
documentation of 
reference [R4.05.03]. 
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1  
Seismic behavior of a structure 
1.1 Definitions 
The analysis of the seismic behavior of a structure consists in studying its response to a movement 
imposed: an acceleration, in its various supports. Imposed acceleration is a temporal signal 
(T) called accélérogramme (cf [Figure 1.1-a]). 
Appear 1.1-a: Accélérogramme LBNS 
The seismic movement considered in calculation is is a real accélérogramme known and read by 
operator LIRE_FONCTION [U4.21.08] is a synthetic accélérogramme calculated directly in  
the code, for example with the procedure FORMULATES [U4.21.11]. 
2  
Seismic response of a system to a degree of freedom 
That is to say a simple oscillator made up of a mass m connected to a fixed point by a spring K and 
one 
shock absorber C which can move in only one direction X (cf [Figure 2-a]). This oscillator with one 
degree of freedom is subjected to a accélérogramme (T) horizontal in its support (not A). 
locate galiléen 
support 
K 
m 
Xe 
With 
C 
xr 
teststemxà 
Appear 2-a: simple oscillator subjected to a seismic request 
Handbook of Reference 
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Displacements of the oscillator are measured or calculated, that is to say in a relative reference mark 
related to point a: 
relative displacement xr, is in an absolute reference mark (Ra): absolute displacement teststemxà. 
Displacement 
absolute teststemxà breaks up into a uniform displacement of drive in translation Xe and one 
relative displacement xr: 
X = X + X 
has 
R 
E 
éq 2-1 
One deduces from it by derivation the relation between accelerations: 
! 
X = 
+  
with (T) = X 
has 
! 
X 
(T) 
R 
! E! 
éq 2-2 
The mass is subjected to a horizontal force of recall which is proportional to relative displacement: 
F = - K. X 
R 
R and with a horizontal force of damping presumedly proportional to the relative speed: 
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F = - C.X 
v 
! r. 
The equation of the movement of the mass is written then: - K. X - C.X! = m.x 
R 
R 
! has 
! . 
Maybe, taking into account the equations [éq 2-1] and [éq 2-2]: 
Mr. X! + c.x! + k.x = - m. (T) = p (T 
R 
R 
R 
) 
éq 2-3 
Note: 
The study of the seismic response of an oscillator to a degree of freedom in the relative reference 
mark consists 
thus in the study of the response of an oscillator to a force ( 
p T) of an unspecified form. The solution 
equation of motion [éq 2-3] is then provided by the integral of Duhamel: 
1 
T 
X = 
p () .e-. (T) .sin  
.  
. 
 
[D (T -)]D 
R 
m D 0 
with: 
p (T) = - m. (T) 
K 
C 
= 
, = 
=. 1 - 2 
and 
m 
. 
2 m 
D 
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3  
Seismic response of a system to several degrees of 
freedom 
3.1  
Equations of the movement in the absolute reference mark 
The balance of a mechanical system consists in writing, some is the moment of calculation 
considered, that 
summon internal forces, inertias and of damping is equal to the imposed external forces 
on this known as system: F  
+ F 
+ F 
= F 
iner 
amo 
int 
ext. 
In the case of a linear behavior, known the system is represented by a model of finite elements 
or of discrete elements, one has (after discretization): 
F 
iner = MR. X! has 
F 
int = K Teststemxà 
·  
Teststemxà is the vector of nodal displacements of the discretized structure, in the reference mark 
absolute; 
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·  
M is the matrix masses structure; 
·  
K is the matrix stiffness of the structure; 
·  
F 
= F - F 
ext. 
E 
C is the vector of the forces imposed on the studied structure, FC that of 
possible forces of shock (cf [R5.06.03]). 
To simplify the presentation, it is considered that the structure is only requested by 
displacements imposed on the level of its various supports. Thus, Fe = 0. 
With an aim of simplifying the presentation, one generally separates the degrees of freedom into two, 
in 
function of their type: 
· degrees of freedom of structure not subjected to an imposed movement - also called 
active degrees of freedom - they are the unknown factors of the problem; 
· degrees of freedom of structure subjected to an imposed movement - also called 
ddl_impo - they are the boundary conditions in displacement of the problem (limiting conditions 
of Dirichlet). 
On the edges of the structure where Xs displacements are imposed, one a: B X = X 
has 
S.B is 
stamp passage of all the degrees of freedom of the structure to the degrees of freedom of structure 
subjected to an imposed movement. 
The balance of the system is written then, some is v pertaining to the space of displacements 
kinematically acceptable i.e., some such as B v = 0 are v: 
MR. X! + Famo has + K Teststemxà - Fext, v = 0 
B X 
 
= Xs has 
That is to say: 
M 
X! 
T 
+ Famo has + K Teststemxà - Fext = - B.  
 
éq 3.1-1 
B X 
 
= Xs has 
F 
B 
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= - T has. is the vector of the forces of reactions exerted by the supports on the structure. 
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By taking account of the partition of the degrees of freedom, the vector of displacements in the 
reference mark 
X 
has  
m 
m xs  
absolute is written: Teststemxà =. The operators describing the structure become: M = 
, 
X 
 
 
S  
m 
m 
sx 
ss  
K 
K xs  
K =  
with m 
MT 
= 
and K 
kT 
= 
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and the vector of the external forces applied to 
K 
K  
 
sx 
xs 
sx 
xs 
sx 
ss  
- FC  
the structure is written: Fext =  
. 
0  
The fundamental equation of dynamics in the absolute reference frame is written then, by taking 
account of 
the partition of the degrees of freedom: 
m 
 
m X 
!  
K 
K X 
- F 
xs 
has 
 
. + F 
xs 
has 
C 
+ 
. =  
 
m 
 
m  
X 
amo 
 
! 
K 
K  
X  
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F 
sx 
ss S  
sx 
ss S  
has  
Maybe, by considering only the active degrees of freedom: 
m X! + F 
+ K X = - F - m X 
has 
amo 
has 
C 
xs! 
- K X 
S 
xs 
S 
This approach requires the knowledge of displacements and absolute velocities associated 
the accélérogramme (T) but the recorders measure either of accelerations or speeds. One can 
to go up with displacements by simple or double integration with order CALC_FONCTION 
[U4.62.04]. However, uncertainties of measurement give drifts which it is advisable to correct:  
displacements are thus well-known than speeds and accelerations. One will keep in memory 
orders of magnitude of the maximum amplitudes following: 
· some tenth of “G” for accelerations; 
· a few tens of cm/s for speeds; 
· a few tens of cm for displacements. 
One will also make sure that at the end of the seism speed and displacement are realistic i.e. with 
more few tens of cm for displacement, null for speed. 
3.2  
Equations of the movement in the relative reference mark 
3.2.1 Decomposition of the absolute movement 
The requests undergone by a structure at the time of a seism are classified in two types in the rules 
of construction (ASME, RCC-M): 
· constraints induced by the relative movement of the structure compared to its deformation 
primary statics or constraints. These requests are due to the effects inertial of the seism; 
· constraints induced by differential displacements of anchorings or constraints 
secondaries. 
Generally, one thus breaks up the study of the structures into the study of the static deformation due to 
movements of the supports (it is the movement of drive) and in the study of the vibrations induced by 
accelerations of the supports around this deformation (it is the relative movement). 
Handbook of Reference 
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X 
 
Teststemxà 
S displacement imposed of the supports 
Xe 
absolute movement Teststemxà 
Xr 
movement of drive Xe 
relative movement Xr 
(Ra) 
The absolute displacement of any point M of the structure, not subjected to an imposed displacement, is 
equal 
with the sum of relative displacement and displacement of drive of this point: 
X (M) = X (M) + X (M 
has 
R 
E 
) 
éq 3.2.1-1 
That is to say: 
·  
Teststemxà, the vector of displacements in the absolute reference frame; 
·  
Xr, the vector of definite relative displacements like the vector of displacements of 
structure compared to the deformation which it would have under the static action of displacements 
imposed on the level of the supports. Xr is thus null at the points of anchoring: B Xr = 0; 
·  
Xe, the vector of the displacements of drive defined as displacements of 
structure requested statically by imposed displacements of the supports 
B 
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X = X 
E 
S 
 
= R + 
X 
. X. 
K X = - B 
 
T 
E  
E = 
S 
E 
. with  
 
E 
is the matrix of the static modes. The static modes represent, in the absence of 
external forces, the response of the structure to a unit displacement imposed on each 
degree of freedom of connection (others being blocked). 
3.2.2 Simple or multiple excitation 
To clarify more in detail the approach moving relative, and more particularly the calculation of 
components of drive, it is necessary to introduce concept of the simple or multiple excitation. 
3.2.2.1 Excitation  
simple 
It is considered that the imposed seismic movement is a solid movement of body. One says 
generally that the structure mono - is supported. 
Teststemxà (T) 
Xr (T) 
Xs (T) 
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The absolute displacement of any point M of the structure, not subjected to an imposed displacement 
thus break up into a relative displacement compared to a pointer related to the support where is 
imposed the seismic movement and in a rigid displacement of drive. 
In this case, the static modes correspond to the six modes of rigid body. Like the structure 
is linear rubber band, one separately studies the effects of the six components of the seismic movement. 
For each seismic direction, one writes simply the inertias induced by the seism under 
following form: 
P (T) = - M. X 
! S = - (T). M  
·  
(T) seismic movement in a direction is the accélérogramme; 
·  
is mode of the solid and unit body in this direction; 
· The seismographs measure only signals of translation. To consider that the structure 
studied mono is supported amounts supposing that all its points of supports undergo 
even translation. In this case, the components of [] are worth 1 for the degrees of freedom 
who correspond to displacement in the seismic direction considered and 0 for 
degrees of freedom which correspond to displacement in seismic directions 
perpendiculars with that considered or rotations. 
 
However, considering the size of the models, the complete seismic analysis of equipment is carried out  
generally in several stages. Detailed seismic analysis of the equipment considered 
use then as excitations, the accelerations calculated at the time of the first stage. They 
compose of the six accélérogrammes of translation and rotation. The three are thus calculated 
modes corresponding to imposed displacements of translation and the three modes 
corresponding to imposed displacements of rotation. If the seismic movement is one 
" 
" 
imposed rotation, in a point M, M = OM for the degrees of freedom which 
correspond to displacement of translation and for the degrees of freedom which 
correspond to rotations. 
3.2.2.2 Excitation  
multiple 
One cannot always only consider: 
· the accelerations undergone by the whole of the points of anchoring of the studied structure are 
identical and in phase; 
· the supports indeformable and are actuated by the same movement of rigid body. 
 
In this case, one says that the structure is multi - supported. Static modes =  
Id 
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correspond then to the 6.nb_supports static modes (or 3.nb_supports modes) where nb_supports is 
the number of accélérogrammes different undergone simultaneously by the structure. They are 
calculated by 
operator MODE_STATIQUE [U4.52.04] with option DDL_IMPO. They are solution of the equation 
following: 
X = X 
E 
S 
K 
 
K 0  
 
xs 
that is to say  
. =  
 
éq 3.2.2.2 - 1 
K X = - B 
 
 
 
T 
E 
. E 
K 
K 
Id 
F 
sx 
ss  
 
has 
E  
Maybe, by considering only the active degrees of freedom: K. + K. Id = 0. 
xs 
The inertias induced by the seism are written then simply: 
nb_supports 
P (T) = - 
Mr. X 
m! S (T) 
m 
m=1 
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3.2.3 Modeling of damping 
It is considered that the damping dissipated by the structure is of viscous type i.e. the force 
of damping is proportional to the relative speed of the structure: 
F 
= C X 
amo 
! R where C is the matrix of damping of the structure. 
That amounts neglecting the effect imposed speed. Indeed, one can more generally write: 
F 
= C X! = C X! + C. X 
amo 
has 
R 
! S. 
In the case of a uniform excitation at the base (case of the mono-support), damping only intervenes 
on relative displacements (the forces of damping are null for a rigid displacement). 
In the case of a multiple excitation where the static solution is not any more one rigid displacement, 
to consider that the force of damping is proportional to the relative speed of the structure is one 
simplifying assumption. 
3.2.4 Fundamental equation of dynamics 
The fundamental equation of dynamics [éq 3.1-1], in the relative reference mark, is written then, 
taking into account 
equations [éq 3.2.1-1] and [éq 3.2.2.2 - 1]: 
MR. X 
! + C X! + K X = - M. X! + F - BT. 
R 
R 
R 
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S 
ext. 
R 
éq 3.2.4-1 
Maybe, by partitionnant the degrees of freedom: 
m 
 
m X 
! C 
C X 
! K 
 
K X 
- F 
. 
. 
 
xs 
R 
xs 
R 
xs 
R  
C  
(m + m I 
xs 
) dx! S  
. + 
. + 
. =  
-  
 
m 
 
m  
 
0 
C 
C  
0 
K 
 
K  
0 
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F 
sx 
ss  
sx 
ss  
sx 
ss  
 
has 
R  
(Mr. + m. I 
 
sx 
ss 
) dx! S 
with C 
= cT 
sx 
xs 
Maybe, by considering only the active degrees of freedom: 
m.x! + c.x 
R 
! + k.x = - F 
R 
R 
C - (Mr. + m. I 
xs 
) dx! S 
Principal advantages of the approach in relative displacement compared to that in displacement 
absolute are as follows: 
· it is not necessary to integrate the accélérogramme (T); 
· relative displacements obtained make it possible to determine the primary constraints directly 
induced by the seism. 
3.3  
Calculation of the seismic loading 
The seismic loading (cf [§3.2]) - Mr. is - (Mr. + m. I 
xs 
) dx! S on the degrees of freedom 
credits is built by operator CALC_CHAR_SEISME [U4.43.01]. It is usable directly at the time 
of a direct transitory analysis with DYNA_LINE_TRAN [U4.54.01] or of a transitory analysis by 
modal synthesis with DYNA_TRAN_MODAL [U4.54.03]. On the other hand, during a transitory 
analysis 
direct nonlinear with DYNA_NON_LINE [U4.32.02], it should be transformed into a concept of the type 
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charge. This is carried out starting from operator AFFE_CHAR_MECA [U4.25.01] in the following way: 
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char_sei = CALC_CHAR_SEISME (...); 
charge = AFFE_CHAR_MECA (MODEL: …, VECT_ASSE: char_sei); 
dyna_nlin = DYNA_NON_LINE ( 
excit (LOAD: con_lim, LOAD: cham_no, FONC_MULT: acceler) 
...) ; 
In the case of a supported mono structure, it is enough to indicate the direction of the seism: 
mono_x = CALC_CHAR_SEISME (MATR_ASSE: mass, 
DIRECTORATE (...), MONO_APPUI: “YES”); 
In the case of a structure multi supported, should as a preliminary have been calculated the static modes. 
One 
calculate as many seismic loadings of supports which undergo a different acceleration. 
multi_xi = CALC_CHAR_SEISME (MATR_ASSE: mass, DIRECTORATE (...), 
NODE: NOI, MODE_STAT: mode_stat,); 
3.4  
Loading of incidental the wave type 
It is also possible to impose a seismic loading by wave planes via 
order AFFE_CHAR_MECA and the key word factor ONDE_PLANE. That corresponds to the loadings 
classically met during calculations of interaction ground-structure by the integral equations. 
In harmonic, a wave planes elastic is characterized by its direction, its pulsation and its type 
(wave P for the waves of compression, waves SV or HS for the waves of shearing). In 
transient, the data of the pulsation, corresponding to a standing wave in time, must be 
replaced by the data of a profile of displacement which one will take into account the propagation with 
run from time in the direction of the wave. 
More precisely, one characterizes: 
· a wave P by the function U (X, T) = F (k.x - C T) K 
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p 
· a wave S by the function U (X, T) = F (k.x - C T) K 
S 
With: 
·  
K, unit vector of direction  
·  
F then represents the profile of the wave given according to the direction K. 
O 
“Principal” face of wave 
K 
corresponding at the origin 
profile 
H 
Function F 
H0 is the distance from the principal face of wave in the beginning O, carried by the directing vector of 
the wave with 
the initial moment of calculation, H the distance from the principal face of wave in the beginning O, one 
unspecified moment. 
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Note: 
This type of load is available in a direct transitory calculation linear DYNA_LINE_TRAN or 
not DYNA_NON_LINE. 
The use of this type of loading will be detailed in a specific note. 
4  
Transitory seismic response by modal synthesis 
4.1  
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Description of the method 
The method of modal recombination consists in breaking up the relative movement of the structure on 
the base of the clean modes. As this one is null on the level of the supports, one projects the equation of 
dynamics on the basis of blocked clean mode (clean modes obtained by blocking all them 
degrees of freedom of connection). 
X 
Q 
R =. 
·  
is the matrix of the blocked clean modes; 
·  
Q the vector of the unknown factors generalized on the basis of blocked clean mode. 
The blocked clean modes are solution of: 
( 
0  
K -- 2i.M) I = where F 
F 
 
I are the modal reactions at the points of supports. 
I  
The equation of the movement projected on the basis of dynamic mode is written then: 
MR. Q 
! (T) + C! ( 
Q T) + K Q (T) 
T 
= -. M.X 
T 
! S +. F 
T 
ext. -. B T 
G 
G 
G 
.r 
where MR. G, CG and K G are the matrices of mass, of generalized damping and stiffness. For 
to simplify, one considers that they are diagonal. The matrix of damping generalized CG too 
because it is supposed that the assumption of Basile is checked (the matrix of damping is a combination 
linear of the matrices masses and stiffness). 
Maybe, by considering only the active degrees of freedom: 
Mr.! ( 
Q T) + C. ! ( 
Q T) + K. ( 
Q T) 
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T 
= - .f 
T 
C -. (Mr. + Mr. I 
xs 
) D X 
G 
G 
G 
! S 
In the absence of shock, one is thus led to solve a whole of uncoupled equations (there is 
as much as clean modes). 
Note: 
It is possible to calculate a modal base with nondiagonal matrices. It is enough to 
to specify during the construction of the classification generalized by the key word 
STORAGE: “FULL” with order NUME_DDL_GENE [U4.55.07]. 
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4.2  
Choice of the modal base 
For the seismic analysis of a linear structure, it would be necessary in theory to retain all the modes of 
which them  
Eigen frequencies are lower than the cut-off frequency (generally about 33 Hz). 
In practice, one is often satisfied to preserve in the modal base only the modes which 
contribute to a significant degree to the answer. One then preserves only the modes of which mass 
effective unit in a direction is higher than 1 and one also makes sure that, for 
the whole of these modes selected, the unit effective mass cumulated in each direction is little 
different from the total mass of the structure (higher than 90%). The criterion of office plurality of the 
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masses 
modal effective is reached by connecting the following operators: 
· Calcul of the total mass of the structure: POST_ELEM [U4.61.04] 
masse_in = POST_ELEM (MASS_INER: (ALL: “YES”)) 
· Calcul of the blocked dynamic clean modes  
: they are calculated in the operator 
MODE_ITER_SIMULT [U4.52.02] or in MODE_ITER_INV [U4.52.01] according to the selected 
method. 
mode = MODE_ITER_SIMULT (); or mode = MODE_ITER_INV (); 
· Normalisation of the modes compared to the generalized mass: NORM_MODE [U4.64.02] 
NORM_MODE (MODE: mode, STANDARD: “MASSE_GENE”, MASSE_INER: masse_in); 
· Extraction of the modal base of the modes whose unit effective mass exceeds a certain threshold 
(1 for example) and checking which the extracted modes represent at least 90% of the mass 
total: EXTR_MODE [U4.64.03] 
EXTR_MODE ( 
FILTRE_MODE (MODE: mode, CRIT_EXTRE: “MASSE_EFFE_UN”, THRESHOLD: 1.e-3) 
IMPRESSION (OFFICE PLURALITY: “YES”); 
Note: 
Macro order MACRO_MODE_MECA [U4.52.05] makes it possible to connect the unit directly 
of the three last preceding orders. 
Attention, certain local answers (in the particular case of nonlocalised linearities) can be 
strongly influenced by modes of a higher nature whose frequency is beyond the frequency 
of cut and whose effective modal mass is low (lower than 1). Key word VERI_CHOC of 
order DYNA_TRAN_MODAL [U4.54.03] allows to check a posteriori that the selected modal base 
is sufficient. If it is not the case, one highly advises to supplement it. 
4.3 Calculation of the dynamic response of the structure studied by 
modal synthesis 
After having calculated the base of the dynamic clean modes and having built a generalized classification 
by NUME_DDL_GENE [U4.55.07], one projects then the matrices of mass, damping and of 
stiffness, on this same basis with the operator PROJ_MATR_BASE [U4.55.01], vectors second 
member with PROJ_VECT_BASE [U4.55.02]. 
Note: 
Macro order MACRO_PROJ_BASE [U4.55.11] makes it possible to connect the unit directly 
of the three operations. 
The matrices and vectors thus projected, one calculates the generalized response of the mono system or 
multi-excited using operator DYNA_TRAN_MODAL [U4.54.03]. 
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4.4  
Taking into account of the modes neglected by static correction 
During the calculation of the generalized response of an excited mono structure, it is possible to take in 
count, a posteriori, the static effect of the neglected modes. In this case, once reconsidered the base 
physique one corrects the value of relative displacement calculated (respectively relative speed and 
relative acceleration) by the contribution of a pseudo-mode. The pseudo-mode is defined by 
difference between the static mode associated the unit loading of constant acceleration type 
imposed and projection on the calculated dynamic modes of displacement (respectively 
relative speed and relative acceleration). 
One has then: 
 
 
p 
 
X 
= X + 
F (T). 
I 
I 
- 
.  
r_corrigé 
R 
 
 
J 
J  
I 
 
 
j=1 
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p 
 
 
! X 
F T  
 
r_corrigé =! 
X +! (). 
R 
I 
I -! . 
J 
J 
 
I 
 
 
j=1 
 
 
 
 
p 
 
! X 
F T  
 
r_corrigé =! X +! (). 
R 
I 
I -! . 
 
J 
J 
I 
 
 
j=1 
 
 
 
Multiplicative functions of time F (T 
I 
) correspond to the accélérogramme imposed I (T) in 
each direction I considered. 
The step to be followed is as follows: 
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· Calcul of the unit loading of type forces imposed (constant acceleration) in the direction of 
seism: AFFE_CHAR_MECA [U4.25.01]. One will pay attention to permute the sign of the direction 
since the seismic inertia is form ( 
P T) = - M. 
. X! S 
cham_no = AFFE_CHAR_MECA (MODEL: model, GRAVITY: (VALE, DIRECTION)) ; 
· Calcul of the linear static response of the structure to the preceding loading case: 
MACRO_ELAS_MULT [U4.31.03]. 
mode_cor = MACRO_ELAS_MULT (CHAR_MECA_GLOBAL: con_lim,… 
CAS_CHARGE: (NOM_CAS: “xx”, CHAR_MECA: cham_no)) ; 
It will be noted that there is as many loading case of direction of seism 
· Calcul of the derived first and second of the accélérogramme: CALC_FONCTION [U4.62.04]. 
deri_pre and deri_sec = CALC_FONCTION (OPTION: DERIVES); 
· Calcul of the answer generalized by taking of to account the modes neglected by correction 
statics: 
dyna_mod = DYNA_TRAN_MODAL (MASS_GENE: , RIGI_GENE: 
MODE_CORR: mode_cor 
EXCIT (CORR_STAT: “YES” 
D_FONC_DT: deri_pre, D_FONC_DT2: deri_sec.) 
...) ; 
Note: 
In the case of an excited structure multi, the taking into account of the modes neglected by correction 
statics is not developed. One postraite absolute displacement in this case. 
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4.5  
Taking into account of the character multi - supported of a structure 
It was seen previously (cf [§3.3]) that to calculate the seismic loading in the case of one 
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structure multi supported, should as a preliminary have been calculated the static modes. If one wants to 
be able 
to restore the sizes calculated in the absolute reference mark or if one wants to be able to take into 
account 
not located linearities, it also should be specified in DYNA_TRAN_MODAL that the studied structure 
is multi excited. Indeed, in this last case, one compares at every moment, the vector of 
absolute displacements of each point of shock considered, in order to determine if there is shock and of 
to calculate the corresponding forces of shock. 
The step to be followed is as follows: 
· Calcul of the static modes: MODE_STATIQUE [U4.52.04]. 
mode_stat = MODE_STATIQUE (DDL_IMPO: (...)); 
· Calcul of the answer generalized by taking of account the component of drive: 
dyna_mod = DYNA_TRAN_MODAL (MASS_GENE: , RIGI_GENE: 
MODE_STAT: mode_stat 
EXCIT (MULT_APPUI: “YES” 
ACCE: accelero, QUICKLY: speed, DEPL: move 
DIRECTION: (...), NODE: NO1 
...) 
...) ; 
4.6 Post  
treatments 
Operators REST_BASE_PHYS [U4.64.01] or RECU_FONCTION [U4.62.03] can then restore 
in physical space calculated evolutions: 
· the operator  
REST_BASE_PHYS restores overall (the complete field) displacements, 
speeds and accelerations; 
· the operator  
RECU_FONCTION restores locally (temporal evolution of a degree of freedom) 
displacements, speeds and accelerations.  
One can restore the relative sizes by specifying (MULT_APPUI: “NOT”) or sizes 
absolute by (MULT_APPUI: “YES”). 
One obtains then displacements of drive necessary to the calculation of the secondary sizes in 
withdrawing from absolute displacements relative displacements. This is carried out by the order 
CALC_FONCTION [U4.62.04] option COMB. 
From the preceding evolutions, one can also extract the max. values and RMS and calculate it 
spectrum of response of associated oscillator. This is carried out by order CALC_FONCTION options 
MAX, RMS and SRO. 
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5  
Direct transitory seismic answer 
Direct integration is realizable is with assumptions of linear behavior: operator 
DYNA_LINE_TRAN [U4.54.01] is with assumptions of nonlinear behavior: operator 
DYNA_NON_LINE [U4.32.02]. Setting with share the way of taking into account the seismic loading 
(cf [§3.3]), syntaxes of DYNA_NON_LINE and DYNA_LINE_TRAN are identical. 
5.1 Taking into account of a damping are equivalent to damping 
modal 
Generally, the most precise information that one has on damping comes from the tests from 
vibration which makes it possible to determine, for a frequency of resonance given fi, the width of 
corresponding resonance and thus damping reduces I to this resonance. It is thus 
necessary to be able to take into account, in a direct transitory calculation, a damping 
equivalent with modal damping. 
From the spectral development of the matrix identity: 
n_mod be X XT K n_modes X XT K 
Id =  
I 
I 
= 
I 
I 
T 
 
2 
I 1 
X K X 
I 1 
M 
= 
I 
I 
= 
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G_i .i 
one shows: 
· that one can develop the matrix of damping of the structure C in series of modes 
clean: 
n_mod be 
T 
C = have. (K.I 
) (K.I 
) 
i=1 
· and that, account held of the definition of the critical percentage of damping: 
 
T 
I 
I. 
C I =. 
2 MG_i .i. I .ai =. 
2 KG_i.i 
It is thus advised with the user to specify (syntaxes of DYNA_NON_LINE and DYNA_LINE_TRAN 
are identical), the values of modal depreciation for each Eigen frequency by 
the intermediary of the key word factor AMOR_MODAL. 
That amounts imposing a force of damping proportional to the relative speed of the structure: 
n_mod be 
 
F 
= C X 
I 
T 
amo 
! R with C = 2. 
. (K.I 
) (K.I 
) 
K 
i= 
. 
G I  
1 
_ 
I 
5.2 Taking into account of a request multi supports with restitutions 
relative and absolute fields 
By defect, the sizes are calculated in the relative reference mark. In DYNA_NON_LINE and 
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DYNA_LINE_TRAN, one uses a syntax identical to that of DYNA_TRAN_MODAL (presence of the 
words 
keys MODE_STAT and MULT_APPUI: “YES”) to calculate them in the absolute reference mark. 
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6 Interaction  
ground-structure 
The seismic behavior of a building depends on the characteristics of the ground on which it is posed 
since it depends on the seismic movement imposed on the ground and the dynamic behavior of the 
building and 
of its foundations. The interaction ground-structure most frequently contributes to decrease the answer of 
studied structure. 
6.1  
Impedance of a foundation 
That is to say a surface rigid foundation without mass, subjected to a harmonic force of pulsation: 
P T 
it 
() = P .e 
0 
It is thus actuated by a movement X (T) of the same frequency. One calls 
impedance of the foundation, the complex number ( 
K), function of the frequency such as: 
( 
P (T) 
K) = 
. 
X (T) 
Several analytical or numerical methods make it possible to calculate the impedance of a foundation 
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according to the complexity of the foundation and ground on which it is posed or partially hidden. 
Among 
most frequently used, one quotes: 
· analytical methods within the competences of WOLF or DELEUZE where it is supposed that it 
to erase circular, rigid and is posed on a homogeneous ground. The foundation must be surface; 
· numerical method of code CLASSI where it is supposed that the foundation raft is of form 
unspecified, rigid and posed on a possibly laminated ground. The foundation must be 
surface; 
· numerical method of the code MISS3D where the foundation raft can be of an unspecified form, 
possibly deformable and posed on a possibly laminated ground. 
It is possible to treat the interaction ground-foundation by the frequential method of coupling (taken in 
count frequency response of the matrix of impedance) by carrying out a coupled calculation 
MISS3D/Code_Aster. This type of calculations is not detailed in this reference material. One 
present here only the case more the current where the interaction ground-foundation is treated by the 
method 
springs of ground (it is considered that the terms of the matrix of impedance are independent of 
frequency). 
In the case of a surface rigid foundation, the impedance is calculated in the centre of gravity of 
surface in contact in a reference mark related to the principal axes of inertia of this surface. For each 
frequency, it is expressed in the shape of a matrix of dimension (6, 6). One adjusts then the value 
of each term according to a particular clean mode of the building studied in blocked base: 
· frequency of the first mode of swinging 0 for the horizontal stiffnesses 
Kx (0), Ky (0) and of rotation Krx (0), Kry (0); 
· frequency of the first mode of pumping  
 
1 for the vertical stiffness Kz (1) and of torsion 
Krz (1). 
As the Eigen frequencies of the building depend on the stiffnesses of ground, the calculation of the 
values 
total within the six competences of ground results from an illustrated iterative process appears [Figure 
6.1-a].  
first stiffnesses of ground Kx (0), Ky (0), Kz (1), Krx (0), Kry (0) and Krz (1) are selected 
according to the first Eigen frequencies of swinging (0) and pumping (1) of 
structure in blocked base. The stiffnesses of grounds are then adjusted at the first frequencies 
clean significant of the structure on spring until correspondence of the frequencies to which 
functions of impedance are calculated with the values of the Eigen frequencies of the coupled system 
ground-building. 
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Selection of the stiffnesses of ground 
Kv (J) and K (I) in the matrix 
of impedance 
Code_Aster 
Modal calculation with structure on 
comes out from ground. 
Not 
Eigen frequencies 
models on spring 
correspond to 
frequencies I and J 
Yes 
End 
Appear 6.1-a: Process of adjustment of the stiffnesses of ground 
6.2 Taking into account of a modal damping calculated according to the rule 
RCC-G 
One breaks up damping due on the ground into part of material origin and a part 
geometrical: damping due to the reflexion of the elastic waves in the ground. 
The rule of the RCC_G consists in summoning, for each mode, depreciation of each under 
structure constitutive of the building considered and depreciation structural and geometrical of the 
ground 
balanced by their respective rate of potential energy compared to total potential energy: 
Eki.k + Esi.si 
 
K 
S 
I = 
Eki + Esi 
K 
S 
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with: 
·  
I, damping reduces average mode I; 
·  
K, the reduced damping of the kème element of the structure; 
·  
if, the reduced damping within the competence of ground S for mode I; 
·  
Eki, potential energy of the kème element of the structure for mode I; 
· and  
Esi, potential energy within the competence of ground S for mode I. 
In the payment, modal damping is limited to a maximum value of 0,3. 
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The part of material origin of the damping of the ground is calculated by balancing damping of 
each under structure by the report/ratio: rate of potential energy on total potential energy. As for 
the geometrical part of damping, it is calculated by distributing the values of damping 
for each direction (three translations and three rotations) balanced by the rate of potential energy 
in the ground of the direction. The directional values of damping are obtained while interpolating, 
for each calculated Eigen frequency, directional functions of damping exit of a code 
of interaction ground-structure (PARASOL, CLASSI or MISS3D). The report/ratio of the imaginary 
part on two 
Im (K ()) 
time the real part of the matrix of impedance:  
, provides the values of this damping 
. R 
2nd (K ()) 
radiative. 
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The step to be followed is as follows: 
· Calcul of the potential energy dissipated in the studied structure: POST_ELEM [U4.61.04] 
Ek = POST_ELEM (ENER_POT: (ALL: “YES”)) ; 
· Calcul of modal damping by the rule of the RCC_G: CALC_AMOR_MODAL [U4.64.04] 
l_amor = CALC_AMOR_MODAL ( 
ENER_SOL: (MODE_MECA: base_modale, GROUP_NO_RADIER: , 
Kx ( 
Ky ( 
Kz (1) 
0 ) 
0 ) 
KX:  
, KY:  
, KZ:  
, 
Krx ( 
Kry ( 
Krz (1) 
0 ) 
0 ) 
KRX:  
, KRY:  
, KRZ:  
)) ; 
AMOR_INTERNE: (GROUP_MA: , ENER_POT: E K, AMOR_REDUIT: K) 
Im (K ()) 
AMOR_SOL: (FONC_AMOR_GEO:  
. R 
2nd (K ()) ) 
) ; 
The calculation of the contribution of the ground to the potential energy Es (key word factor 
ENER_SOL) is calculated with  
to leave the values of impedance of ground determined previously (cf [§6.1]). It can be calculated 
according to two different methods according to whether one average modal efforts (key word 
RIGI_PARASOL) 
or modal displacements with the node of the foundation raft. 
The reduced damping within the competence of ground S S (key word factor AMOR_SOL) is calculated 
from 
values of radiative damping. 
6.3  
Distribution of the stiffnesses and damping of ground 
If one wants to study the effect of a seism on the possible separation of the foundation raft for example, 
one can be 
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brought to model the ground either by a single spring in the centre of gravity of the interface ground-
building 
but by a carpet of springs. This is possible thanks to order AFFE_CARA_ELEM [U4.24.01] 
option RIGI_PARASOL. 
The step consists in calculating in each node of the grid of the foundation raft the elementary stiffnesses 
(K, K, K, Kr, Kr, Kr 
X 
y 
Z 
X 
y 
Z) to apply starting from the total values within the three competences of translations: 
kx, ky, kz and within the three competences of rotations: krx, kry, krz resulting from a code of interaction 
ground-structure 
(or calculated analytically). 
It is supposed that the elementary stiffnesses of translation are proportional to surface S (P) 
represented by the node P and with a function of distribution F (R) depend on the distance R of the node 
P in the centre of gravity of the foundation raft O: 
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K = K 
. 
X 
X (P) = K 
S (P). F (P 
X 
O) 
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P 
P 
 
K = K 
y 
y (P) = K. S (P). F (COp 
y 
) 
 
P 
P 
K = K 
Z 
Z (P) = K. S (P). F (COp 
Z 
) 
 
 
P 
P 
One deducts K X then from them then K (P 
X 
) starting from calculation: 
S (P). F (COp) 
kx (P) = K. S (P). F (P 
O) = K 
X 
X.  
. 
S (P). F (COp) 
P 
One deducts of the same K (P from them 
y 
) and K (P 
Z 
). 
For the elementary stiffnesses of rotation, one distributes what remains after having removed the 
contributions 
had with the translations in the same way that translations: 
 
K = K 
2 
2 
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2 
2 
X-ray 
X-ray (P) + [K y (P) .zO + K 
P 
Z (P). yOP] = K. S (P). F (COp 
X-ray 
) + [ky (P) .zO + K 
P 
Z (P). y P 
O] 
 
P 
P 
P 
P 
 
K = K 
2 
2 
2 
2 
ry 
ry (P) + [kx (P) .zO + K 
P 
Z (P). xOP] = K. S (P). F (COp 
ry 
) + [kx (P) .zO + K 
P 
Z (P). X P 
O] 
 
P 
P 
P 
P 
K = K 
2 
2 
 
= 
. (). (O) +  
2 
2  
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K 
S P F 
P 
[kx (P) .y PO +ky (P) .x 
rz 
COp] 
rz 
rz (P) + 
[kx (P) .yO +k 
P 
y (P). X P 
O] 
 
P 
P 
P 
P 
One deduces krx then from it then K (P 
X-ray 
) starting from calculation: 
krx (P) = K. S (P). F (COp 
X-ray 
) 
 
S (P). F (COp) 
= K 
. 2 
. 2  
X-ray - [K y (P) zO + K 
P 
Z (P) y P 
O]. 
 
S (P). F (COp 
P 
) 
P 
One deducts of the same K (P from them 
ry 
) and K (P 
rz 
) . 
Note: 
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By defect, one considers that the function of distribution is constant and unit i.e. 
each surface is affected same weight. 
One can distribute in the same way six total values of damping, analytical or calculated by one 
code interaction ground-structure. 
6.4  
Taking into account of an absorbing border 
If one wants to calculate the seismic response of a stopping, it is necessary, amongst other things, 
capacity to take into account 
not reflexion of the waves in the valley. This is possible thanks to elements at absorbing border: 
option IMPE_ABSO in DYNA_NON_LINE and DYNA_LINE_TRAN. This functionality is not 
detailed in this document. It will be the subject of a specific note. 
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Stochastic approach for the seismic analysis 
Summary: 
This document presents a method of calculation probabilistic to determine the response of a subjected 
structure 
with a random excitation of seismic type starting from the interspectres of the excitation at the points of 
support of 
structure. The answer itself is expressed in the form of interspectres. 
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1 Introduction 
Classically the response of a structure subjected to a seismic excitation can be calculated by  
two approaches: 
· transitory calculation of dynamics if the excitation is defined by a accélérogramme 
(cf [R4.05.01]). 
· calculation by the traditional spectral method if the excitation is defined by a spectrum of answer 
of oscillator (SRO) (cf [R4.05.03]). 
However a seismic excitation is by random nature. These two methods are not envisaged 
initially to hold account of it: in a case it is necessary to reiterate for various excitations the many ones 
temporal calculations then to make a statistical average of it (important cost calculation), in the other 
case one 
carry out very conservative assumptions by considering averages (of quadratic type 
simple or supplements for example) for the maximum of the answers. 
Also it was developed a method of calculation of the probabilistic type, also called “approach 
stochastic of the seismic calculation ", based on the calculation of the dynamic response expressed in 
interspectres of power starting from the spectral concentrations of power of the excitation. This method 
have in particular the advantage of better taking into account the correlations between the excitations to 
various supports of the structure. 
The discussion of the various advantages of this method can be thorough in the reference 
[bib1]. 
We thus present the principle of the method and the notations retained starting from the steps 
traditional, then in third part probabilistic calculation itself. 
Finally in fourth part the various methods will be presented to obtain the interspectre 
discharger. 
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2  
Principle of the step 
2.1  
Position of the problem considered and principle general 
A multi-supported structure is in the case of placed, i.e. the structure has m ddl- 
supports, each one being subjected to its own excitation (not necessarily equal everywhere). One 
supposes 
that the structure is represented by a model finite elements comprising N ddl. The answer is sought 
in a number finished (and low) of L ddl. 
It is supposed that the size excitation is of imposed movement type and results in a family 
of accélérogrammes G T 
J () for each one of the ddl-supports J, j=1, Mr. 
The absolute movement of the structure is broken up classically moving of drive 
and relative movement. 
The calculation of the response in interspectres of power is carried out by modal recombination. 
Following this modal calculation, a calculation of dynamic response random breaks up into three 
parts: 
· definition of the interspectre of power discharger, 
· calculation of the interspectre of power answer. 
These the first two parts are the subject of order DYNA_ALEA_MODAL [U4.56.06]. 
The restitution of the interspectre of power response on physical basis is carried out with the order 
REST_SPEC_PHYS [U4.80.01]. 
· calculation of statistical parameters starting from the interspectre of power result. 
This last stage is treated by order POST_DYNA_ALEA [R7.10.01] [U4.76.02]. 
2.2  
Decomposition of the movement 
The following decompositions and projections are detailed in the reference material 
relating to the resolution by transitory calculation of a seismic calculation [R4.05.01]. We retain any 
here only 
the broad outline. 
That is to say Teststemxà the vector absolute displacement (of dimension N) of all ddl of the structure. 
The total answer known as absolute Xa of the structure is expressed as the sum of a contribution 
relative Xr and of the contribution of drive Xe due to displacements of anchoring (subjected to 
accelerations represented by a accélérogramme G (T 
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J) of each ddl-support J, j=1, m).  
X (T) = X (T) + X 
has 
R 
E (T) 
Are M, K and C the matrices of mass, rigidity and damping of the problem, limited to 
ddl not supported. 
The equation of the movement is written then in the reference mark related to the relative movement: 
 
MR. X 
! (T) + C X! (T) + K X (T) = - MR. X! (T) + F 
R 
R 
R 
E 
ext. 
ext. 
F vector of the external forces 
In general the external forces are null during a calculation of seismic answers. 
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2.3  
Decomposition on the modal basis 
The calculation of response in interspectres of power is carried out by modal recombination and is 
made 
call, moving imposed, at a modal base which includes/understands at the same time dynamic modes and 
static modes. 
That is to say = {I I, = N, 
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1} matrix (N, N) of the dynamic modes calculated for the conservative system 
associated, by maintaining the m blocked supports. 
That is to say = {J, j= m, 
1} the matrix (N, m) of the static modes. The mode J corresponds to the deformation of 
the structure under a unit displacement imposed on the ddl-support J, other ddl-supports being blocked. 
The imposed displacement of anchorings Xs (T) is connected to Xe (T) by the relation: X (T) = X 
E 
S (T). 
Components of the acceleration of the points of anchoring! Xs (T) are the accélérogrammes G (T 
J), 
j=1, Mr. 
m 
One can thus write! X (T) =! X (T) = G (T) 
E 
S 
J J 
 
j=1 
One carries out the change of variable X () = ( 
Q), ( 
Q 
R T 
T 
T) is the vector of the co-ordinates 
generalized. By prémultipliant the equation of the movement per T, one obtains - in the absence of forces 
external others that the seismic excitation - the equation projected on the basis of dynamic mode: 
T 
T 
T 
T 
Mq! (T) + Cq! (T) + Kq (T) = - MX! S (T) 
It is supposed that the matrix of damping is a linear combination of the matrices of mass and of 
rigidity (assumption of damping of constant Rayleigh on the structure or assumption of Basile 
allowing a diagonal damping). The base  
, which orthogonalise the matrices M and K, 
orthogonalise thus also the matrix C. 
Taking into account this assumption, the preceding equation breaks up into N equations scalar 
uncoupled in the form: 
m 
! 
IQ + 2 
2 
I 
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I! Q + Q = - p G (T) 
I 
I 
I 
ij J for i=1, N 
j=1 
Where one noted: 
µ T 
I = 
I 
M I  
modal mass 
T 
ki= iK I  
modal rigidity 
K  
 
I 
I = 
 
µ 
the modal pulsation 
I 
T C 
 
I 
I 
I = 2µ 
reduced modal damping 
I I 
T iMj the factor of modal participation of 
ij 
p = 
µi  
the support J on the dynamic mode I 
Solution IQ (T) of this equation corresponds to the response of the dynamic mode I to the whole of 
the seismic excitation. 
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One can still break up the problem by introducing the unknown factor dij (T) solution of the equation 
differential: ! D + 2 
! D + 2 
 
D = G (T) 
ij 
I I ij 
I 
ij 
J 
, this last equation corresponds to the answer of 
dynamic mode I with acceleration G T 
J (). Relative displacement on the physical basis is expressed 
then: 
N m 
X (T) = - p D 
R 
ij ij (T) I 
i=1 j=1 
Information on the position of the point of support is contained in the factor of modal participation. 
2.4 Answer  
harmonic 
One thus broke up the total response of the structure into a relative contribution and a contribution 
differential due to displacements of anchorings such as: 
X (T) = X (T) + X 
has 
R 
E (T) 
with 
m 
 
X! (T) = X 
E 
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! S (T) = jgj (T) 
 
j=1 
 
N m 
X (T) = - p D (T) where D (T) are 
T solution of D 
! + 
D! + 2 
2 
D 
R 
ij ij 
I 
ij 
ij 
I I ij 
I 
ij = G J (T) 
 
i=1 J 
 
=1 
The solution of this last differential equation by the method of the transformation of made Fourier 
1 
to intervene modal transfer transfer functions hi () such as: hi () = 
. 
(2 - 2 + I 
I 
2 II) 
One thus obtains: D () = H (). G () and D 
2 
ij 
I 
J 
! ij () =  
- 
I 
H (). G J () 
The total harmonic response of the structure results from the preceding formulas by recombination 
modal. 
! X () =! X () +! X () 
has 
R 
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E 
 
N m 
m 
! X () = 2p H () G () + G () 
has 
ij J 
J 
I 
J J 
i=1 j=1 
j=1 
One then makes apparaitre the complex matrix (N, m), known as matrix of transfer H () following: 
H () = 2 p 
H  
( )  
+  
where p is the matrix of the factors of participation, H () the vector of the modal transfer transfer 
functions 
hi (). 
The total response of the structure is worth! X () = H ()! ( 
E), where! ( 
E 
has  
 
 
) is the vector of m lines 
constituted of the transforms of Fourier of accelerations G T 
J () with the m ddl-supports. 
It is seen that this expression determines the response in acceleration. This then forces to integrate 
twice the answer to obtain displacement, this problem is presented in [bib4]. One of 
additional interests of the method which we propose here is to abstract itself from this difficulty. 
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3  
The random dynamic response 
3.1  
Recall on the spectral concentrations of power [bib2] 
3.1.1 Definitions 
That is to say a probabilistic signal defined by its density of probability px (x1, T1; …; …; xn, tn). This 
density of 
probability makes it possible to calculate the functions moments of the signal. 
Moment of order 1 or hope of the signal: 
+ 
µX (T) = [ 
E X (T)] = X p (X, T) dx 
X 
- 
Moments of order 2 or intercorrelation of two signals: 
+ 
XY (T, T) = [ 
E X (T) Y (T)] = X y p (X, T; y, T) dxdy 
1 2 
1 
2 
 
1 
2 
- 
When the signal is stationary, the intercorrelation depends only on = T - T 
2 
1 . 
It is written R 
( ) = [ 
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E (T) (T 
XY 
X 
Y -)] 
Spectral concentration of power and interspectre 
One defines SXY () the interspectre of power or density interspectrale of power between two 
stationary probabilistic signals by the transform of Fourier of the function of intercorrelation, 
what one writes: 
+ 
1 
S 
() = 
R 
- I 
XY 
 
D 
2 
XY () E 
- 
+ 
The opposite formula is written: R 
() = S 
 
I 
XY 
XY () E  
D 
- 
SXY () is generally complex and checks the relation of symmetry: S () = S 
YX 
XY (). 
When X = Y, SXX () is called autospectre power or spectral concentration of 
power (DSP). This function with the real and always positive property to be. 
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3.1.2 Relations between the DSP and the other characteristics of the signal 
Note: 
Most of the time, the signal is defined over a limited time, its transform of Fourier does not exist 
not, one defines a transform of Fourier then estimated over one period length T by: 
T /2 
" 
1 
X () 
X (T) E I 
= 
- 
D 
T 
 
 
. 
2 
- T/2 
One then has the following relationships to this estimated transform of Fourier: 
 
2 
S 
= 
" " 
XY () 
lim 
E 
T 
T 
T+ T 
[X () Y ()] 
 
2 
S 
= 
" " 
XX () 
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lim 
E 
T 
T 
T+ T 
[X () X ()] 
Bond between the autospectre of power and the power of the signal: 
The power of a signal is equal to its variance. For a centered signal, the variance is worth: 
2X = X 
R X (0). 
+ 
One thus has: 2X = X 
R X (0) = SXX  
() D. 
- 
3.2  
Equations of motion 
The total response of the structure is determined by the relation: ! X () = H ()! ( 
E 
has  
 
) , 
where! E () is the vector of m lines made up of the excitations represented by the transforms of 
Fourier of the accélérogrammes G (T  
J 
) with the m ddl-supports, 
( 
H) is the matrix of transfer defined by ( 
H = 2  
) 
p H () +  
where p is the matrix of the factors of participation, 
( 
H) the vector of the modal transfer transfer functions hi () 
base dynamic modes 
base static modes 
it comprises N lines (= a number of ddl free of the structures) and m columns. 
3.2.1 Stamp  
“interspectrale-excitation” 
NB: 
This name “stamps interspectrale-excitation” is abusive: it means “matrix of 
density interspectrale of power of the excitation”. 
It is supposed that the seismic excitation can be regarded as a stationary signal - taking into account 
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relationship between times representative - and centered. This makes it possible to use a certain number 
of 
result of the probabilistic analysis. One is interested then in the stationary response of the system to one 
stationary excitation. 
S is noted 
( ) 
EE 
! ! the matrix of the interspectres of power corresponding to the excitation. Its data 
is clarified in the chapître 4. 
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For memory we recall here that it is calculated starting from transforms of Fourier of 
accelerations. It is a matrix (mxm). The ij term corresponds to the interspectre between the signals! I.E.
(internal excitation) and 
! E J is still between the transforms of Fourier of the accélérogrammes G and G 
I 
J. 
3.2.2 Random dynamic response 
It was seen that the interspectre power between two probabilistic signals is the transform of Fourier 
function of intercorrelation of the two signals. One applies it to the total response of the structure: 
+ 
+ 
1 
1 
T 
S 
() 
R 
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() E I 
- D 
E  
! X (T)! X (T) E I 
-  
= 
= 
- 
D 
! 
 
X! X 
2 
! X! X 
2 
 
has 
has 
has has 
has has 
 
 
 
 
 
 
- 
- 
One works then in the temporal field to express the function of intercorrelation of the answer 
total R 
T T 
! has! (, ') 
X X 
. 
has 
One notes ( 
H T) the impulse response of the system: H (T) = 
- 
TF1 [H ()] 
and! E (T) the transform of Fourier reverses exiting DSP: ! E (T) = 
- 
TF1 [! E ()] 
By transform of Fourier relation reverses: ! X () = H ()! E () 
has  
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one has! X (T) = H *  
has 
! E (T) = H (U) 
 
! E (T - U) D 
U 
R 
T 
R 
(T, you) = E! X (T)! X (T  
! X! X 
has 
has 
') 
has has 
 
 
 
 
 
T 
 
R 
(T, you) = E H (U) E 
 
-  
H 
E -  
X X 
 
! (T U) of 
(v) 
 
! (you v) FD 
! has! has 
 
R 
R 
 
 
 
 
R 
(T, you) = E 

file:///Z|/process/refer/refer/p1190.htm (7 of 22)10/2/2006 2:53:10 PM



file:///Z|/process/refer/refer/p1190.htm

H (U) E - E - 
H 
 
X X 
 
! (T U T 
)! (you v T 
) 
(v) FD 
! has! has 
 
R R 
 
 
One supposes in this analysis the deterministic system, one can thus leave the impulse response  
calculation of the expectation. It comes 
R 
T T = 
H U 
E T - U T E T - v T H v 
FD of 
! 
 
 
[ 
 
 
has! 
( , ') 
() E! ( 
) ! ( ' )] ( ) 
X Teststemxà 
R R 
The excitation is supposed a stationary process, the intercorrelation thus depends only on the variation on 
time = T - you: 
R (T - you-U + v) = E [E - 
E - 
= 
for = - - + = - + 
EE 
! (T U T 
)! (you v)] R () 
T you U v 
U v 
! ! 
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! ! 
EE 
T 
from where R 
(T, you) = 
H (U) R () H (v) FD 
= R 
! 
( ) 
X 
 
what justifies a posteriori the approach. 
has! Teststemxà 
! E! E 
! Teststemxà! Teststemxà 
R R 
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One now defers this expression in the expression of the spectral concentration of power of 
answer: 
+ 
+ 
1 
1 
S 
() 
R 
I 
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() E D 
H (U) R (U v T 
) H (v 
I 
) E  
= 
= 
- + 
FD of D 
! 
 
X 
2 
 
2 
 
has! Teststemxà 
! Teststemxà! Teststemxà 
! E! E 
 
 
- 
- R R 
By répartisssant the dummy variables of integration one reveals the transforms of Fourier 
T 
respective of ( 
H U), R (- U + v), H (v) 
! ! 
EE 
, it comes finally: 
S 
H () S 
() T 
= 
 
H () 
X 
! X 
has! 
E 
has 
! E! 
with H () = 2 p 
H  
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( )  
+  
Taking into account the relations between the transforms of Fourier of displacement, the speed and of 
acceleration, one has moreover: 
-1 
S 
= 
H () S () T 
H () 
X! X! 
2 
E 
! E! 
has has 
 
1 
S 
= 
H () S () T 
H 
X X 
() 
has has 
4 
EE 
! ! 
 
These relations make it possible to express the response of the structure by the DSP of displacement or of 
speed. 
Note: 
· According to the expression given to H (), one respectively expresses the DSP of the displacement (of 
the speed or of acceleration) total, relative or differential: 
absolute movement: H () = 2 p 
H  
( )  
+  
relative movement: H () = 2 p 
H  
( )  
 
differential movement (IE of drive): H () =  
· It is of use, during a calculation with Code_Aster, to restrict the matrix of the function of 
transfer to the lines of the L ddl of observation. This makes it possible to reduce of as much calculations 
as soon as L 
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is small in front of N. 
3.3  
Application in Code_Aster 
The whole of the spectral approach for seismic calculation is treated in the order 
DYNA_ALEA_MODAL [U4.56.06]. The data are gathered under three key words factors and a word 
single-ended spanner. 
The modal base is consisted of the dynamic modes calculated by the order  
MODE_ITER_SIMULT [U4.52.02] or MODE_ITER_INV [U4.52.01] stored in a concept of the type 
mode_meca recovered by the key word factor BASE_MODALE, on the one hand; calculated static 
modes 
by order MODE_STATIQUE [U4.52.04] stored in a concept of the mode_stat type recovered 
by key word simple MODE_STAT, in addition. The key word factor BASE_MODALE also has 
the arguments which make it possible to determine the frequency band or the modes retained for 
calculation 
and corresponding depreciation. 
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The data corresponding to the excitation are gathered under the key word factor EXCIT 
(cf paragraph [§4]): one specifies there the type of excitation within the meaning of the SIZE: excitation 
in 
displacement or in effort, the nodes NODE and component excited NOM_CMP, the name of 
interspectres or autospectres INTE_SPEC, complex functions read beforehand or calculated, 
respectively by operators LIRE_INTE_SPEC [U4.56.01] or CALC_INTE_SPEC [U4.56.03] and 
stored in a table of interspectre of concept tabl_intsp which applies in each ddl excited. 
Under the key word factor ANSWER are the data related to the choice of the discretization. 
Order DYNA_ALEA_MODAL provides the response in the form of spectral concentration of power 
on modal basis. To obtain the restitution of the DSP on physical basis, REST_SPEC_PHYS will be used 
[U4.80.01] which makes it possible to specify the type of size of the answer (displacement or effort), 
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with 
“points of observation” (node-component) of the result. In the presence of a response of the type 
displacement, one will specify here also if the answer corresponds to absolute displacement, relative or 
differential. 
REST_SPEC_PHYS provides a table of interspectres which contains according to the request of the user, 
stamp interspectrale in displacement SXX, of speed S! ! 
XX, or in acceleration S! ! 
XX for one 
expression in the absolute reference mark (index has), the relative reference mark (index R) or of drive 
(index E). 
Each preceding “combination” requires a call specific to order REST_SPEC_PHYS. 
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4 Definition of the matrix interspectrale of power 
exciter 
The seismic excitation is by nature, we said it, random. Also it can be known not by 
its temporal expression but in frequential form by a spectral concentration of power known as 
also interspectre. 
When there are several supports, they can be excited by identical or different excitations, it 
last case is that of the multi-supports. 
For m supports, one defines the matrix of density interspectrale of power of order m, or per abuse 
language the interspectre of order m, which is a matrix (mxm) of complex functions depending on 
frequency. 
The diagonal terms represent the “auto-” densities spectral of powers - or autospectres- 
to the points of excitation, the extra-diagonal terms correspond to the densities interspectrales enters 
the excitations in two points of support distinct (each line or column of the matrix represents in 
fact a point of support in physical grid or a mode in modal calculation). By definition of these terms, it 
results from it that the matrices of density interspectrales of power handled are square.  
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(See [bib2] or reference material associated with order POST_DYNA_ALEA [R7.10.01]) 
We present hereafter the various orders of Code_Aster which make it possible to obtain one 
stamp density interspectrale of power. 
4.1  
Reading on a file 
The most elementary way to define a matrix of density interspectrale of power is of 
to give, “with the hand”, the values with the various steps of frequency. 
Operator LIRE_INTE_SPEC [U4.56.01] is used then. 
LIRE_INTE_SPEC reads in a file “interspectre excitation”. The format of the file in which is 
consigned the matrix interspectrale is simple: one describes successively the function of each term 
matrix interspectrale; for each function, one gives a line by frequency while indicating 
frequency, parts real and imaginary of the complex number; or the frequency, the module and the phase 
complex number (key word FORMAT). 
Example of file interspectre excitation (for a matrix reduced in the term): 
INTERSPECTRE 
DIM = 1 
FONCTION_C 
I = 1 
J = 1 
NB_POIN = 4 
VALUE = 
2.9999 0. 0. 
3. 1. 0. 
13. 1. 0. 
13.0001 0. 0. 
FINSF 
END 
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4.2  
Obtaining a interspectre starting from functions of time 
One can deduce the matrix from density interspectrale of power starting from functions of time. One 
use then operator CALC_INTE_SPEC [U4.56.03] in Code_Aster [bib3]. 
Starting from a list of NR functions of time, this operator allows to calculate the interspectre 
NxN power which corresponds to them. 
For each term of the matrix interspectrale (NxN) one uses the following step [bib3]. 
To calculate the interspectre of two signals one uses the relation of Wiener-Khichnine [bib7] which 
allows 
to establish a formula of computation of the spectral concentration of power by the transform of Fourier 
finished samples of the signals ( 
X T) and ( 
y T). 
It comes then: 
1 
S (F) = lim 
E [ 
(F, T). Y * (F, T 
xy 
Xk 
K 
)] 
T T 
T 
 
X (F, T) = TF [X] (F) = X (T - i2 F 
) E 
dt 
K 
K 
K 
 
where  
0 
T 
Y (F, T) 
 
= TF [y] (F) = y (T - i2 F 
) E 
dt 
K 
K 
K 
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0 
are the discrete transforms of Fourier 
X 
of and  
y 
of. 
When one is interested in signals resulting from measurements, one has most of the time only 
known signals in a discrete way, in the same way a transitory computation result is a discrete signal. 
An approximation of the interspectre of the discrete signals X [N] and y [N] definite on L points spaced 
of T, 
cut out out of p blocks of Q points is obtained by the relation: 
p 
" 
1 
S 
I 
I 
xy [K] 
( ) 
= 
X [K] () 
Y * [K] 
p Q T 
i=1 
Q 
(I) 
X [K] 
(I) 
= T 
X [N] -2i kn/q 
E 
n=0 
Q 
(I) 
Y [K] 
(I) 
= T 
y [N] -2i kn/q 
E  
n=0 
The various blocks can or not overlap. The values p and Q are with the choice of the user. 
This method is that of the periodogram of WELCH [bib8]. 
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Calculation is done on a window which moves on the field of definition of the functions. The user 
specify in the order the length of the window of analysis, the shift between two windows of 
calculation successive and the number of points per window. 
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4.3 Excitations preset or reconstituted starting from functions 
complexes existing 
One can wish to define a matrix of density interspectrale of power in various ways: 
· by a white vibration: the values are constant 
· according to the analytical formula of useful KANAI-TAJIMI in seismic calculation (filtered white 
vibration), 
· or by taking again existing complex functions. 
Operator DEFI_INTE_SPEC [U4.56.02] is used then. 
4.3.1 Existing complex functions 
It is enough under the key word factor PAR_FONCTION to give the name of the function for each pair 
of index NUME_ORDRE_I, NUME_ORDRE_J, corresponding to the higher triangular matrix (in 
reason of its hermiticity). 
4.3.2 Noise  
white 
A white vibration is characterized by a constant value on all the field of definition considered. Under 
the key word CONSTANT factor, one gives this value (VALE_R or VALE_C) on the frequency band 
[FREQ_MIN, FREQ_MAX] for each pair of index INDI_I, INDI_J, corresponding to the matrix 
triangular higher (because of its hermiticity). To define the function perfectly, one specifies 
the interpolation and prolongations. 
4.3.3 White vibration filtered by KANAI-TAJIMI [bib9] 
For a structure pressed on the ground, it is common to take as excitation the spectral concentration 
of power of Kanaï-Tajimi. This spectral concentration represents the filtering of a white vibration by the 
ground. 
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The parameters of the formula make it possible to exploit the centre frequency and the bandwidth of 
spectrum. 
The spectrum G () is expressed by the following relation: 
4 + 4 2 2 2 
G 
G 
G 
G 
() = 
G 
(2 
2 2 
2 
2 
2 
0 
G -) + 4 G 
G  
= 2 F 
G 
G pulsation clean 
G 
 
modal damping 
G0 
white sound level before filtering 
The user must specify the Eigen frequency F G of the filter, modal damping G and the level of 
white vibration G0 (= VALE_R) before filtering; like as for any function: the interpolation, them 
profiles external and the field of definition (frequency band). 
By defect a ground running is well represented by the values F G = 2.5 Hz and G = 0.6. 
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Example of use for a white vibration filtered by KANAI_TAJIMI: 
Interex = 
DEFI_INTE_SPEC ( 
DIMENSION: 1 
KANAI_TAJIMI: ( 
NUME_ORDRE_I: 1 
indices of the term of the matrix of density 
NUME_ORDRE_J: 1 
interspectrale of power 
FREQ_MOY: 2.5  
Eigen frequency 
AMOR: 0.6 
modal damping 
VALE_R: 1 
white sound level 
Interpol: “FLAX” 
linear interpolation 
PROL_GAUCHE: “CONSTANT” 
prolongation 
PROL_DROIT: “CONSTANT” 
FREQ_MIN: 0. 
field of definition 
FREQ_MAX: 200. 
NOT: 1. 
) ) ; 
4.4  
Other types of excitation 
Calculations of the preceding paragraphs were carried out within the framework of the assumption of an 
excitation 
moving imposed on a ddl. With the help of some modifications it is possible to use the same one 
approach for an excitation in effort [§4.4.1] or by fluid sources [§ 4.4.2], this one being 
expressed in a finite element [§4.4.3] or on a function of form of the structure [§4.4.4]. 
In the continuation of this paragraph, one supposes the random excitation known and provided by the 
user under 
the form of a DSP, spectral concentration of power. 
4.4.1 Case of the excitation in imposed forces 
Under key word EXCIT there is SIZE = EFFO. 
When the excitation with the supports is of type forces imposed, the general equation of the movement 
is: 
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m 
! ( 
MX T) +! ( 
CX T) + K ( 
X T) = Fj 
j=1 
The response of the structure is then calculated on a basis of dynamic modes = {I I, = N, 
1 } , 
these modes being calculated by supposing the free exiting supports. One does not distinguish, in it 
case of absolute, relative and differential movement and one does not use static modes. 
T iFj 
One defines the factor of modal participation in the form: Pij = 
I 
µ 
The transitory, harmonic and random answers have the same expressions as the answers of 
relative movement of the excitation multi-support in the case general [§3]. (What corresponds to the 
absence 
static modes). The exiting force is represented in each ddl-support by its DSP in form 
of a term are equivalent to S 
 
EE 
! ! ( ) . 
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4.4.2 Excitation by fluid sources 
The fluid sources appear, for example, in the study of a network of pipings. They 
correspond to active bodies or connections of secondary pipings. They are 
generally sources of pressure or sources of flow. These various types of source are 
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presented hereafter according to their mathematical working and what Code_Aster makes 
in each configuration. 
These fluid sources are not directly seismic excitations but can be induced by 
a seism. The resolution of the mechanical problem calls upon very the methods, because of their 
randomness, which justifies their presentation here. 
The modeling of the network of piping is supposed to be realized using acoustic beam vibro of 
Code_Aster. 
The response to fluid sources is calculated within the framework of the response to imposed forces 
(cf [§4.4.1]), within this framework one is interested in answers of size of the type “displacement” 
(SIZE = DEPL_R under the key word ANSWER). 
The sources of pressure and force, for reasons of modeling of the fluid sources are 
represented by dipoles [bib5], it is thus necessary to give two points of application. 
Source of flow-volume: SIZE = SOUR_DEBI_VOLU under key word EXCIT 
A volume flow rate is expressed in m3/s, its spectral concentration of power in (m3/s) 2/Hz. 
A source of flow-volume is considered, in the formulation P - elements of 
piping with fluid, like an effort imposed on the ddl of the node of application of the source 
[R4.02.02].  
The user provides the DSP of volume flow rate Svv (), the DSP vv () applied in effort to the ddl 
is: () = () 2S () 
vv 
vv 
where is the density of the fluid. 
Source of flow-mass: SIZE = SOUR_DEBI_MASS under key word EXCIT 
A flow-mass is expressed in kg/s, its spectral concentration of power in (kg/s) 2/Hz.  
flow-mass is the product of flow-volume by the density of the fluid. 
The user provides the DSP of Smm flow-mass (), the DSP 
( ) 
mm applied in effort to 
ddl is:  
= 2S 
mm 
mm 
Source of pressure: SIZE = SOUR_PRESS under key word EXCIT 
A source of pressure is applied in Aster in a dipole P1P2. 
For a source of pressure whose DSP is S PP (), expressed in Pa2/Hz, Aster builds one 
stamp density interspectrale of power 
( ) 
PP which is applied in force imposed to 
the ddl of the points P1 and P2. 
S 2 
S 2 
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dx 
-  
dx 
 
() = S () 
 
PP 
PP 
 
S 2 
S 2  
-  
 
 
dx 
 
 
 
dx  
where S is the fluid section, dx the distance between the two P1 points and P2. 
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Source of force: SIZE = SOUR_FORCE under key word EXCIT 
The force corresponds simply to the product of the pressure by the fluid section of the tube: F = PS. 
It thus is also applied to a dipole P1P2. 
For a source of force whose DSP is SFF (), expressed in N2/Hz, Aster applies in force 
imposed on the ddl of the points P1 and P2, (distant of dx), the matrix of density interspectrale of 
power 
( ) 
FF such as: 
1 2 
1 2 
 
 
 
dx 
-  
dx 
 
() = S () 
 
FF 
FF 
 
1 2 
1 2  
-  
 
 
dx 
 
 
 
dx  
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4.4.3 Excitation distributed on a function of form 
If the spectral concentration of power of the excitation E () corresponds to an effort imposed on one 
function of form fi, E () gives the frequential dependence of the level of the excitation. 
The space weighting of the effort is represented in Code_Aster by a field with the nodes which 
does not depend on the frequency: key word CHAM_NO under the key word factor EXCIT. This field 
with the nodes 
is a “assembled vector”. From the theoretical point of view the formalism of calculation is the same one 
as 
previously (excitation in imposed force [§4.4.1]), for a vector of force in second member 
equal to fi. 
4.5 Applications 
These various types of excitation are included in the tests of validation, and are presented by 
examples in the report/ratio [bib6]. In particular the excitations of the fluid type are in the test: pipe 
subjected to random fluid excitations [V2.02.105] (SDLL105). Excitations on functions of 
form are tested in the case test: beam subjected to a random excitation distributed [V2.02.106] 
(SDLL106). 
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R4.05 booklet: Seismic analysis  
Document: R4.05.03  
 
 
 
 
Seismic response by spectral method  
 
 
 
 
Summary:  
 
The study of the response of a structure under the effect of imposed movements of seismic type, with 
one  
single imposed movement (mono support) or multiple (multi supports) is possible in transitory 
analysis (time  
history). One will refer to the note [R4.05.01].  
 
For studies of dimensioning, one can be interested only in one estimate of the induced maximum 
efforts  
by the requests, to evaluate the safety margin with payments of construction, without resorting to  
a transitory analysis.  
 
The spectral method is based on the concept of spectrum of oscillator of a accélérogramme of seism. 
One  
detail the method of development of this spectrum of answer available in operator 
CALC_FONCTION  
[U4.32.04].  
 
It is shown how this spectrum of oscillator can be used to evaluate one raising of the answer in  
relative displacement of a simple oscillator. This approach is justified if one does not wish to know the 
history of  
displacements and of the efforts, while limiting themselves to the analysis of the inertial effects.  
 
The spectral method uses general notions of the method of modal recombination [R5.06.01].  
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One describes the various rules of combination usable to obtain one raising realistic but conservative  
the maximum response of the structure. These methods are available in operator 
COMB_SISM_MODAL  
[U4.84.01].  
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1  
Concept of spectrum of oscillator  
 
Spectral method for the study of the answer of a structure under the effect of imposed movements  
of seismic type is based on the concept of spectrum of oscillator of a accélérogramme of seism.  
 
1.1  
Imposed movement defined by a accélérogramme A (T)  
 
For a movement imposed S of the seismic type, one can deal with the problem in absolute 
displacement  
X or in relative displacement X such as: X = X + S. general equations of the movement of one  
simple oscillator are written then:  
 
 
Absolute movement  
Relative movement  
 
X  
 
 
S  
X  
 
 
X 
m &+ X 
c& + kx = - S 
m  
K 
& + & + 
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= & + 
 
X 
m 
X 
C 
kX 
S 
C 
ks  
& 
m  
C  
 
 
 
 
One retains the formulation starting from the relative movement for two principal reasons:  
 
·  
the seismic analysis of the structures uses the constraints induced by the inertial effects of  
seism, constraints calculated starting from the structural deformations which are expressed with  
to leave relative displacements;  
 
·  
the characterization of the signal of excitation can be reduced in this case to the accélérogramme  
seism s= 
& ( 
With T), size provided directly by the seismographs. Signals of  
displacement S and speed &s are in general not available in the bases of  
data geotechnics.  
 
For the determination of the response of a simple oscillator to an imposed movement and the 
notations  
conventional one will refer to appendix 2 [R4.05.03 Annexe 2].  
 
The reduced equation is in this case, if the seism is defined by a accélérogramme ( 
With T), acceleration  
absolute applied to the base:  
 
x+ 
& 2 X  
 
éq  
1.1-1  
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0 &+ 
2 X = - S 
0 
& = - ( 
With T)  
 
The solution of this problem is the integral of DUHAMEL presented at appendix A [éq A3.3-1]:  
 
T 
X (T) 1 
= 
( 
With)  
- T  
0 ( 
) 
E 
sin (T  
-) D F 
= ( , 
With, 
 
- 
 
éq  
1.1-2  
0 ) 
0 
0 
0 
=  
1-  
 
0 
(2 
0 
) 
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1.2  
Spectrum of oscillator of a accélérogramme  
 
The concept of spectrum of oscillator was introduced initially to compare between them the effects of  
different accélérogrammes. The spectrum of FOURIER of a signal ( 
With T) informs about its contents  
frequential. The response of a mechanical system to a movement imposed on the base largely depends  
dynamic characteristics of this system: Eigen frequencies and reduced damping (.  
0 ) 
Appendix A details this aspect.  
 
If one wishes to know the maximum value of the response of a simple oscillator to the parameters  
(, A, one must evaluate the integral of DUHAMEL which provides the response of the oscillator [éq 
1.1-2] to  
0 ) 
an excitation imposed on the base.  
 
Accélérogramme 
0.7 
0.6 
0.4 
0.2 
0.0 
0.2 
Absolute acceleration 
0.4 
0.6 
0.7 
0 
3 
6 
9 
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12 
15 
18 
Time 
 
Appear 1.2-a: Accélérogramme  
 
1.2.1 Spectrum of oscillator in relative displacement  
 
From the integral of DUHAMEL, one can define the spectrum of oscillator of a accélérogramme  
( 
With T) like the function of the maximum values of relative displacement X (T) F 
= ( , 
With, for each  
0 ) 
value of (, by recalling that '  
= 
1-  
.  
0 
(2 
0 
) 
0 ) 
 
Srox (, 
With, = X T 
0 ) 
() max 
 
T 
X (T) 1 
= 
( 
With) - T  
0 ( 
) 
E 
sin (T  
-) D F 
= ( , 
With, 
 
- 
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0 ) 
0 
0 
0 
 
One notes, on the figure [Figure 1.2.1-a] that beyond a certain frequency (35 Hz here), known as  
cut-off frequency of the spectrum, it does not have there significant dynamic amplification: 
displacement  
relative is null.  
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Spectrum of oscillator (relative Displacement) 
1 
0.1 
10 
Increasing depreciation  
from 0.01 to 0.20 
10 2 
Depreciation 
103 
1% 
5 % 
Relative displacement 
10% 
20% 
10 4 
10 5 
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1e05 
10 0 
10 1 
Frequency 
 
Appear 1.2.1-a: Spectrum of oscillator in relative displacement  
 
1.2.2 Spectrum of oscillator in pseudo relative speed  
 
For structures with weak reduced damping < 2 
. 
0 = 
% 
20, for which it is  
acceptable to assimilate 0 and 0 one usually uses the spectrum pseudo speed defined by:  
 
Srox& (, 
With, = Srox, 
With, = X T 
 
0 ) 
0 
( 
0 ) 
0 
() max 
 
Pseudo speed is the value the speed which gives a value of the kinetic energy of the mass  
oscillator equal to that of the maximum deformation energy of the spring:  
 
1 
1 
1 
1  
E = m x& T 2 
() = m Srox& A 
2 
,, 
= m2 
. X T 2 
( ) 
= K X T 2 
( ) 
= E 
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( ) 
[ 
( 
0 )] 
0 
p 
max 
max 
 
2 
2 
2 
2 
Spectrum of oscillator (Pseudo relative speed) 
0.5 
Increasing depreciation  
from 0.01 to 0.20 
I 
ve 
1 
10 
Depreciation 
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E 
1% 
5 % 
10% 
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0.004 
10 0 
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Frequency 
 
Appear 1.2.2-a: Spectrum of oscillator in pseudo relative speed  
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1.2.3 Spectrum of oscillator in pseudo absolute acceleration  
 
In the same way for a weak reduced damping one can define the spectrum of pseudo acceleration 
definite  
by:  
Srox (&, 
With, = Srox, 
With, = X T 
 
0 ) 
2 
0 
( 
0 ) 
2 
0 
() max 
 
Spectrum of oscillator (Pseudo absolute acceleration) 
4 
Increasing depreciation  
from 0.01 to 0.20 
10 0 
Depreciation 
1% 
5 % 
10% 
20% 
Pseudo absolute acceleration 
1 
10 
0.1 
1 
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100 
10 
Frequency 
 
Appear 1.2.3-a: Spectrum of oscillator in pseudo absolute acceleration  
 
The interest of this spectrum of pseudo acceleration lies in the fact that S R OX ( 
&, 
With, is good  
0 ) 
approximation of the maximum of absolute acceleration X& (T). Indeed, at the moment when relative 
displacement  
is maximum, relative speed is cancelled and the reduced equation is written x& + 0 + 2 
X 
= - S what us  
0 
max 
& 
show that  
 
2 
2 
X& 
= x&+ s& 
= X 
= Srox, 
With, = S R ox&, 
With,  
0 
max 
0 
( 
0 ) 
( 
0 ) 
max 
max 
 
For this reason, this spectrum of oscillator is called spectrum pseudo absolute acceleration.  
 
The asymptote of this high frequency spectrum (acceleration at null period) corresponds to the 
answer  
of a clean high frequency oscillator, i.e. very rigid. In this case, the mass tends to follow  
completely the imposed movement of the base. This asymptote thus corresponds to acceleration  
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maximum  
( 
With T) 
imposed movement (ground or not of fixing of the oscillator). It is  
max 
attack in practice starting from the cut-off frequency of the spectrum. For this reason, one says that 
one  
accélérogramme is fixed, for example, on 0.15 G, when its maximum amplitude and its spectrum  
of oscillator of pseudo absolute acceleration at null period are equal to 0.15 G.  
 
1.3  
Determination of the spectrum of oscillator  
 
Determination of the spectrum of oscillator of a accélérogramme ( 
With T) is available in the operator  
CALC_FONCTION [U6.62.04] with key word SPEC_OSCI: it is obtained by numerical integration of  
the equation of DUHAMEL by the method of NIGAM [R5.05.01]. This order provides the spectrum of  
pseudo absolute acceleration and, on request, the spectrum pseudo speed or the spectrum of  
relative displacement.  
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1.4  
Representation and use of the spectra of oscillators  
 
1.4.1 Representation tri logarithmic curve  
 
The spectra of response of oscillator are usually represented by tri graphs  
logarithmic curves which make it possible to read on only one graph the three sizes: relative 
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displacement,  
pseudo relative speed, pseudo absolute acceleration.  
 
This representation is obtained by tracing the spectrum pseudo relative speed Srox& in  
co-ordinates log-log such as log Srox& = F (log) on which one defers two graduations  
0 
complementary to ± 45° if the scale of the graduations logarithmic curves is the same one on the two 
axes:  
 
·  
a graduation logarithmic curve with +45° to measure relative displacements  
log Srox = log (Srox& = log Srox& + log  
0 
) 
0 
·  
a graduation logarithmic curve with to measure absolute accelerations  
Srox  
log Srox = log 
& 
& 
= log Srox& - log 0 
 
 
 
0 
 
 
10 
Speed m/s 10 
103 
1 
Displacement m 
F = 3 Hz 
Ý  
X f= 1 
= 3 Hz 
m/s 
1 
x& = 1 m/s 
X = Ý  
X = 1 = 0.05305  
With 
x& 
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1 
C 1 
1 
C 
 
6 
0 2 
é 
X = 
= 
= 05305 
. 
0 
breadth 
10 
rat 
 
6 
io 
Ý  
N 
X = Ý  
X = 6 = 18.849 
ms2 
x& = X = 6 = 
849 
. 
18 
101 
10 
2 
10 
1 
10 
Frequency Hz 
3 
1 
10 
3 Hz 
 
Appear 1.4.1-a: Representation tri logarithmic curve  
 
1.4.2 Use of the spectra of oscillators  
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To evaluate the maximum response of a modal oscillator (  
, 
with a accélérogramme ( 
With T), one  
I 
I) 
use the spectrum of pseudo absolute acceleration.  
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It is represented in Code_Aster, by a tablecloth made up of several functions  
Srox& = F (freq) with = cte 
N 
.  
 
One uses a linear interpolation on the damping reduced for < <  
because amplification  
N 
I 
N 1 
+ 
X 
1 
dynamics with resonance for = (that is to say = 1) is equal to m = 
[éq A2.2-3].  
0 
S 
 
2 
0 
I 
 
The variation of the module of the response in the vicinity of resonance also justifies an interpolation  
logarithmic curve for < <  
. The spectrum of oscillator must be represented with one  
m 
I 
m 1 
+ 
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discretization in sufficiently fine frequency to limit the effects of the interpolation.  
 
1.5  
Spectra of oscillators used for studies  
 
For the studies of industrial facilities, such as the nuclear thermal power stations, the seismic analysis  
conduit to establish several models:  
 
·  
a model of the civil engineering of design of the buildings to determine:  
-  
accidental requests for the calculation of the frameworks of these buildings;  
-  
movements imposed on the points of fixing of the equipment (reactor vessel,  
supports of the networks of pipings, electrical equipment boxes.) at various levels of  
buildings;  
·  
models of study of checking of each equipment subjected to the imposed movements  
amplified by the dynamic behavior of the buildings.  
 
1.5.1 Spectrum of ground of design and checking of the buildings  
 
This stage, the equipment is known only like inertial overloads and one can  
to admit that they do not bring any rigidity to the building. The structures in this case are subjected to 
one  
spectrum of ground.  
 
The frequential contents of a spectrum of oscillator reflect that of the accélérogramme used and are 
thus  
“marked” by the properties of the ground instead of recording. To work out the spectrum of ground at 
the stage  
project, it is thus recommended to establish the spectra of oscillators for several accélérogrammes  
and to build a spectrum envelope which smoothes anti resonances.  
 
Spectrum of oscillator of a accélérogramme and the spectrum of associated ground 
10 0 
1 
Representation  
tri logarithmic curve 
10 1 
Damping 1% 
102 
Pseudo_vitesse_relative 
0.001 
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10 2 
Frequency 
 
Appear 1.5.1-a: Spectrum of ground for a project  
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Note:  
 
In many cases one does not know the rotational movement imposed by the seism,  
since the accélérogrammes of known seisms result from recordings of sismo- 
graphs, sensors with a degree of freedom of translation.  
 
1.5.2 Spectrum of floor of checking of the equipment  
 
The study of the dynamic behavior of the equipment subjected to the movements imposed by  
structure support at the points of supports is possible starting from the accélérogrammes of answer in 
these  
points, results of the transitory analysis of the behavior of the building: these accélérogrammes, 
known as of  
floor, make it possible to build spectra of floors.  
 
For a checking of the equipment, one can limit oneself to a spectral analysis starting from the spectra  
of floor and the differential displacements imposed on the supports.  
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The spectra of floor are representative of the dynamic amplification brought by the structure  
support: a smoothing of the spectrum can be useful to take into account uncertainty on the position  
Eigen frequencies of the building, but one will take care to preserve realistic margins, since it  
spectrum of ground is already one raising of the seismic request. The spectrum of oscillator must be  
represented with a discretization in sufficiently fine frequency “to collect” resonances of  
structure.  
 
Note:  
 
Techniques of direct determination of the spectra of floors, starting from the spectrum of ground and  
modes of the structures were developed [bib1], but are not available  
currently in Code_Aster.  
 
 
2  
Seismic response by modal recombination  
 
2.1  
Recalls of the formulation  
 
The spectral method of seismic analysis is based on the formulation of the dynamic response  
transient by modal recombination presented in the documents “Methods of RITZ in  
linear and nonlinear dynamics " [R5.06.01] and “Analyzes seismic by direct method or  
modal recombination " [R4.05.01].  
 
Let us summarize the principles of the step detailed in the note [R4.05.01] for a structure  
represented in form discretized by the matric system:  
 
MU& + CU& + KU = F (T)  
éq  
2.1-1  
 
Notations moving absolute  
 
U represents all the components of the movement (ddl of structure and ddl subjected to one  
X 
imposed movement): one separates them in the form U = describing S. the operators  
K 
K xs 
C 
cxs 
m 
mxs 
structure become: K =  
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C =  
M = 
 
K 
K 
C 
C 
m 
m  
sx 
ss  
sx 
ss  
sx 
ss  
 
The problem moving relative of the structure compared to the supports with the decomposition  
Absolute movement = relative Movement + Mouvement of drive results in introducing it  
change of variable U = U + E.  
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Notations moving relative  
 
U represents all the components of the movement (ddl of structure and ddl subjected to one  
X 
movement imposed) which is written, with the preceding partition, U = 0. The partition of  
components of drive gives, by expressing the drive of the ddl of structure like one  
be 
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combination liéaire of the movements imposed on the supports, E = S  
 
Assumption  
 
It is supposed that no force of excitation is applied to the d.d.l structure what reduces it  
0 
second member F (T), with the same partition with F = R  
 
The passage of the absolute movement to the relative movement can be written by introducing the 
operator of  
passage:  
 
X 
X be 
X 
I E 
U = 
U.E. 
 
 
 
with  
 
S = + = 0 + S = 
 
S 
= 0 I 
 
 
 
The system [éq. 2.1-1] takes the general form then:  
 
x& 
x& 
X 
0 
T 
 
+ T C 
+ T K  
= T 
M 
 
 
 
éq  
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2.1-2  
s& 
 
s& 
 
S 
 
R  
 
2.1.1 Single imposed movement: mono support  
 
The movement of drive corresponds then to a movement of solid body: the vector  
of drive in any point of the structure can express like a linear combination R S  
components of displacement imposed on the centre of gravity of the foundation, where the R are  
stamp modes of bodies rigid of the structure reduced to the ddl of structure, which leads to:  
 
X 
 
X 
 
 
R S  
U = S = 0 
+ S  
I 
 
= 
R 
0 
 
 
I  
 
 
 
The properties of the modes of rigid body cf [R4.05.01] lead to:  
 
K 0 
C 0 
 
m 
m + m 
R 
 
T K =  
T C =  
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T M  
xs 
= T 
 
0 0 
0 0 
 
 
 
 
m + m 
m 
R 
sx 
R 
 
 
what makes it possible well to uncouple the system [éq 2.1-2]  
 
m x&+c x&+k X = - m ( 
+ m 
 
m 
1 
R 
xs) S 
& éq  
2.1.1-1  
 
In this case the transformation highlights well the inertial effect of the seismic loading.  
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2.1.2 Multiple imposed movement: multi supports  
 
This situation corresponds to a discrete number of points of connection of the structure in supports  
subjected to different imposed displacements. In this case, the diagonalisation of the term of rigigity  
is acquired while imposing:  
 
K 
K 0 
xs 
S 
 
 
=  
of or K + K 
= 0 
that is to say = - K -1 K  
éq 2.1.2-1  
K 
K 
I 
R 
S 
xs 
S 
xs 
sx 
ss  
 
 
The matrix S gathers 6. nappuis static modes for the models of structures and 3 times the number  
supports for the models of continuous mediums. Each static mode  
1 
S = - 
- 
K 
K 
J 
xs is a mode  
J 
of fastener, corresponding to a unit displacement imposed on a component of support, the others  
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null components, and being produced by operator MODE_STATIQUE [U4.52.14].  
 
The change of reference mark can then be expressed by:  
 
 
 
X  
X 
 
X 
S S  
U = S = 0 
+ S  
X  
I 
S  
= 0 I  
S 1  
S 2  
 
m 
m 
 
S + m  
T M =  
xs 
 
TS m+ msx 
ms 
 
 
 
 
Concerning the terms of damping, decoupling is acquired only if damping is  
proportional to rigidity, usually allowed assumption, but was not necessary with the modes  
rigid.  
 
This makes it possible well to uncouple the system [éq 2.1-2]  
 
mx& + cx& + kx = m 
- ( 
m m 
1 
- 
+ 
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S 
xs) s&  
éq  
2.1.2-2  
 
This formulation must be interpreted like the decomposition of the movement of the structure in one  
movement of drive corresponding to an instantaneous static deformation (displacement  
differential of the supports) and a relative movement corresponding to the inertial effects around this  
new static deformation.  
 
This interpretation is in conformity with the classification of the requests defined by the rules of  
construction (ASME, RCC-M):  
 
·  
the constraints induced by the relative movement are, as for the statical stresses,  
primary constraints (effects of inertia),  
·  
constraints induced by differential displacements of the supports which are they classified  
in secondary constraints.  
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2.1.3 Summary  
 
The equations [éq 2.1.1-1] and [éq 2.1.2-2] lead to the general form  
 
mz& + cz& + kz - 
= m (+ m m 
1 
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X 
xs) s& = - 
S 
O 
m &  
éq  
2.1.3-1  
 
The mxs terms correspond under the terms of coupling of the matrix of mass with the degrees of  
freedom of support: this fraction of the total mass is very weak and it is justified to neglect it. Let us 
recall  
that this term is indeed null for the models of structures whose matrix of mass is  
diagonal: models masses - arises, models with elements of the type “lumped mass”.  
 
In this case, one obtains the simplified formulas:  
 
·  
mono support: O =  
where  
R 
R are the six modes of solid body  
·  
multi supports: O =  
where  
S 
S are 6 N supports modes of fastener  
 
The second member - m O is built by operator CALC_CHAR_SEISME [U4.63.01].  
 
2.2  
Response in modal base  
 
2.2.1 Temporal response of a modal oscillator  
 
If the studied structure is represented by its spectrum of low frequency real clean modes  
in embedded base, solution of ( 
2 
K -  
M 
) = 0 or of ( 
2 
K - m) = 0 one can introduce one  
new transformation X = Q and the system of equations [éq 2.1.3-1] is written, by using the matrix  
modal factors of participation P  
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T C 
2 
T Mo 
q& + 
Q 
 
éq  
2.2.1-1  
T 
& + Q = - 
S 
T 
& = - Ps& 
m 
m 
Assumption:  
 
For industrial studies concerned with the seismic analysis by spectral method, one limits oneself  
with the case of damping proportional, known as of RAYLEIGH, for which one can diagonaliser it  
T C 
term  
=  
2. Damping is then represented by a modal damping  
T m 
I,  
possibly different for each clean mode [R4.05.01].  
 
Each clean mode, characterized by the parameters (,  
I 
I) is compared to a simple oscillator  
whose behavior is represented in the case general by  
 
q& + q& + 2 
2 
Q = - PS éq  
2.2.1-2  
I 
I 
I 
I 
I 
I 
() &i 
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Let us recall that the &&s are accelerations of drive.  
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2.2.2 Modal factor of participation in mono support  
 
When the movement of drive is single, [éq 2.2.1-2] becomes  
 
q& + q& + 2 
2 
Q = - p S  
éq  
2.2.2-1  
I 
I 
I 
I 
I 
I 
I & 
with  
T 
T 
Mo m 
I 
I 
p 
R 
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= 
= 
éq  
2.2.2-2  
I 
T 
m 
µ 
I 
I 
I 
where µi is the generalized modal mass, which depends on the standardization of the clean mode. Let 
us state  
some properties of the factors of modal participation pi in the case of rigid modes of  
translation, but extensible with the modes of rotation.  
 
·  
A mode X-ray, that we will note X, to recall that components in the direction  
X are unit, belongs to the space of dimension NR degrees of freedom of which NR  
clean modes constitute a base in which =  
X 
I I.  
I 
From the properties of orthogonality of the clean modes T m = µ  
I 
I 
I ij, one identifies them  
coefficients I with the factors of modal participation piX in direction X and  
 
= p  
X 
iX 
I  
éq  
2.2.2-3  
I 
·  
Moreover T m  
X 
X = 
T 
m masses total structure what leads to:  
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2 
p µ 
T 
T 
2 
2 
 
 
m 
= 
p p  
 
m 
p µ and m 
p µ or 
éq 2.2.2-4  
X 
X 
 
= 
iX 
jX 
J 
I 
 
= 
iX 
I 
T 
iX I iX I =1 
ij 
ij 
ij 
ij 
MT 
 
Modal parameter pi depends on the standard of the clean mode and is accessible, for each mode  
X 
clean in the concept result of the type mode_meca [U5.01.23] under name FACT_PARTICI_DX; of  
even p2iX I 
µ, independent of the standard, is accessible under the name of MASS_EFFE_UN_DX.  
 
2.2.3 Modal factor of participation in multi supports  
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For a multiple imposed movement, [éq 2.2.1-2] becomes:  
 
q& + q& + 2 
2 
Q = - 
p S  
éq  
2.2.3-1  
I 
I 
I 
I 
I 
I 
ij &j 
J 
with  
T 
T 
Mo m 
I 
I 
S J 
p = 
= 
éq  
2.2.3-2  
ij 
T 
m 
µ 
I 
I 
I 
 
where µi is the generalized modal mass, which depends on standardization on the clean mode and the 
pij  
can be regarded as factors of participation relating to mode I and a direction J  
of imposed movement of a support.  
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As previously, one can establish [bib4] the two properties  
 
 
= p and T m = p2 µ 
S J 
ij 
I 
S J 
S J 
ij 
I  
éq  
2.2.3-3  
I 
I 
 
One makes, at this stage, no assumption of dependence between the various pij terms. Let us recall  
that the components &sj express the acceleration of drive applied to a direction of support J.  
The factors of pij participation are not built independently and only appear  
like intermediate variables in order COMB_SISM_MODAL [U4.84.01].  
 
 
3  
Seismic response by spectral method  
 
The spectral method is an approximate technique of evaluation of the maximum of the answer of  
structure starting from the maxima of answer of each modal oscillator read on the spectrum  
of oscillator of the excitation.  
 
3.1  
Spectral response of a modal oscillator in mono support  
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The maximum response in relative displacement of a modal oscillator (,  
I 
I) for a direction X is  
determined by reading on a spectrum of oscillator of pseudo absolute acceleration cf [§1.4.2] the 
value  
pseudo absolute acceleration has 
= Sro x& (A 
2 
iX 
X 
, I, I 
) and while dividing by I from where:  
 
Sro x&X (A, I, I 
) has 
Q 
iX 
iX max = 
= 
2 
2 éq  
3.1-1  
I 
 
I 
 
 
The contribution of this oscillator to the relative displacement of the structure for the component xk  
depends on the factor on participation and component K 
I in physical space:  
 
has 
xk 
K 
= p Q 
K 
= p 
iX 
iX max 
I 
iX 
iX max 
I 
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iX 
I 
2  
 
éq  
3.1-2  
 
and the contribution to the pseudo absolute acceleration &xk is of the same &xk 
K 
max =  
p has 
iX 
I 
iX 
iX.  
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3.2  
Spectral response of a modal oscillator in multi supports  
 
One proceeds in the same manner to determine, starting from the value read &S jX on the spectrum  
of oscillator of pseudo absolute acceleration associated &sj, the contribution of the support J in  
direction X:  
Sro s&j (A, I 
, I 
) S& 
Q 
jX 
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iX max J = 
= 
2 
2  
éq  
3.2-1  
I 
 
I 
 
The expression of the contribution of this oscillator to the relative displacement of the structure for  
component xk in physical space and for a movement imposed J becomes:  
 
S& 
xk 
K 
= p 
Q 
K 
= p 
jX 
iX max J 
I 
ijX 
iX max J 
I 
ijX 
I 
2 éq  
3.2-2  
 
3.3  
Generalization with other sizes  
 
Note:  
 
The method of spectral analysis is strictly limited to the sizes depending linearly on  
displacements in linear elasticity: generalized strains, stresses, efforts, nodal forces,  
reactions of supports.  
In particular it cannot apply to equivalent sizes of deformation or of  
constraints (Von Mises).  
 
For each Rk size, component of a field by elements it is possible to calculate  
modal component R K 
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I associated with the clean mode I what leads to  
 
has 
Rk 
= rk p Q 
= rk p 
iX 
iX max 
I 
iX 
iX max 
I 
iX 
I 
2  
 
éq  
3.3-1  
or  
S& 
Rk 
= rk p 
Q 
= rk p 
jX 
iX max J 
I 
ijX 
iX max J 
I 
ijX 
I 
2 éq  
3.3-2  
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4  
Rules of combination of the modal answers  
 
To evaluate one raising of the answer R of the structure, one must now combine the answers  
modal Rkimax defined previously. Several levels of combination are necessary:  
 
·  
combination of the clean modes selected,  
·  
static correction by pseudo mode,  
·  
effect of the excitations different applied to groups from supports,  
·  
combination according to the directions of excitation seism.  
 
4.1  
Direction of the seism and directional answer  
 
Various considerations result in separately studying the seismic behavior according to each  
direction of space:  
 
·  
for the study of a building on a ground, the accélérogramme of the vertically imposed movement  
is different from that describing the horizontal movement, him even different according to two  
orthogonal directions of space;  
·  
for the study of equipment, the spectra of floor differ significantly according to  
three directions of space, since they integrate the participations of various modes of  
building (inflection of floors, inflection or torsion of the framework.).  
 
This resulted in establishing a directional modal answer X-ray starting from spectra of oscillator  
different and from factors of modal participation established in each direction X representative one 
from  
directions of the TOTAL reference mark of definition of grid (X, Y or Z) or a particular direction  
defined explicitly by the user.  
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4.2  
Choice of the modes suitable to combine  
 
To correctly represent the modes of deformation likely to be excited by  
imposed movement, it would be necessary to know all the clean modes of frequency lower than  
cut-off frequency of the spectrum, beyond which there is no dynamic amplification  
significant. This condition can prove to be difficult to fill for the complex structures having one  
large numbers of clean modes.  
 
The size of the modal base necessary must thus be evaluated to make sure that no mode having one  
important contribution in the internal efforts and the constraints was not omitted in each  
studied direction.  
 
4.2.1 Expression of the modal deformation energy  
 
1 
The deformation energy associated with each clean mode U 
T 
I = 
xi 
K X 
max 
I 
2 
max can be expressed  
for a particular direction  
 
2 
2 
1  
has  
1  
has  
1 a2 
U  
= p iX 
T 
K = p 
iX 
2 
iX 
µ = 
p2 
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iX 
I 
µ 
2 
I 
I 
iX 
2 
I 
I 
2 
iX 
I  
éq  
4.2.1-1  
2  
 
2 
 
2 
I  
 
I  
I 
 
 
This expression corresponds to an excitation mono support and can extend to the case from the multi 
supports.  
 
The classification of the modes with decreasing deformation energies makes it possible not to retain  
systematically, for a general study of the structure, modes which do not produce  
significant deformations. On the other hand, for the study of the effect of the requests in a zone  
particular of the structure, it will be necessary to use the “local” modes which can be detected  
by an analysis of the distribution of the deformation energy on groups of mesh.  
 
Let us note that one does not have an estimate of the total deformation energy to quantify  
the error made by being unaware of certain modes.  
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4.2.2 Expression of the modal kinetic energy  
 
1 
The kinetic energy associated each clean mode is written V 
T 
I = 
ximax m xi 
who gives  
2 & 
& max 
 
1  
has 2 
1 a2 
V 
= p 
iX 
T 
iX 
m = 
p2 
iX 
iX 
I 
I 
µ 
2 
iX 
I  
éq  
4.2.2-1  
2  
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I  
2 I 
 
The expression [éq 4.2.2-1] utilized effective modal mass p2iX I 
µ defined in [§2.2] what  
allows to state the criterion of office plurality of the unit effective modal masses [éq 2.2.2-4]  
 
Criterion of office plurality of the effective modal masses  
 
The quality of a modal base, the point of view of the representation of the inertial properties of  
structure, is evaluated by cumulating, for this direction, the unit effective modal masses  
modes available. A threshold of admissibility of 95% of the total mass is usually allowed.  
The same criterion can apply partially in the case of an excitation multi supports with N  
T 
N 
modes while comparing  
m  
and 
p2 
µ 
S J 
S J 
ij 
I.  
I 
 
Estimate of the error made with an incomplete modal base  
 
The criterion of office plurality of the effective modal masses cannot always be satisfied. Indeed one  
limit in general at a modal base of N clean modes with N modes << NR ddl. For  
rigid foundations, the spectrum of the Eigen frequencies necessary usually exceeds the frequency  
of cut of the spectrum of oscillator.  
 
From the expression [éq 4.2.2-1] one can write the total kinetic energy in the form  
 
N 
NR 
V = V + V 
X 
iX 
iX 
1 
1 
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who allows to express the absolute error from [éq 3.1-1]  
 
NR 
NR 
2 
2 
has 
has 
NR 
( + 
2 
iX 
2 
N 1) X 
2 
V = V =  
p µ 
 
p 
X 
iX 
µ 
2 
iX 
I 
2 
iX 
I 
 
 
 
N 1 
+ 
N 1 
+ 
I 
I 
N 1 
+ 
 
while noting has 
= Sro X 
( 
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) 
1 
& (A 
N 
X 
X 
, m 
in, 
+ 
N 
+1) the value read on the spectrum of pseudo acceleration  
absolute for  
N 
n+1 and the modal damping weakest min likely to give  
the raising amplitude. If the maximum frequency of the base fn exceeds the cut-off frequency then  
has 
= has 
= ( 
With T) 
(n+) 
1 X 
nX 
max. This gives one raising of the absolute error  
 
1 a2 
NR 
2 
( 
1) 
1 A 
N 
 
 
 
n+ X 
(n+1) X 
V  
2 
2 
µ 
µ 
2 
p 
= 
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m - 
2 
p 
 
X 
iX 
I 
T 
iX 
I 
 
éq  
4.2.2-2  
2 
 
2 
I 
n+1 
I 
 
1 
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4.2.3 Conclusion  
 
The sizes allowing for choice of the modes necessary to each analysis are available in  
Code_Aster (operator POST_ELEM with options MASS_INER, ENER_POT and ENER_CIN and  
modal parameters FACT_PARTICI_DX and MASS_EFFE_UN_DX in the concept result of the type  
mode_meca [U5.01.23]).  
 
No criterion of automatic admissibility is currently programmed and the sizes  
N 
T m and p2 µ 
Sj 
Sj 
ij 
I, necessary to the checking of the criterion for an excitation multi supports,  
1 
are not printed.  
 
4.3  
Static correction by pseudo-mode  
 
4.3.1 Mono  
support  
 
The evaluation of one raising of the response to a seismic excitation requires, as suggests it  
preceding analysis, a correction by a term representing the static contribution of the modes  
clean neglected.  
 
If one subjects the structure to a quasi-static constant acceleration in direction X, the answer  
aX is solution of K = m I 
aX 
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X 
, without dynamic amplification. The field of displacement  
aX of the nodes of the structure subjected to a constant acceleration in each direction is  
product by operator MODE_STATIQUE [U4.52.14] with key word PSEUDO_MODE.  
 
By breaking up this deformation on the basis of clean mode one obtains cf [§2.2.2]  
 
NR 
NR 
NR p 
K  
= m p from where = k-1 m p  
iX 
=  
 
aX 
iX 
I 
aX 
iX 
I 
 
2 I 
1 
1 
1 
I 
 
This makes it possible to introduce a pseudo-mode cX, for each direction, while withdrawing from the 
mode quasi  
statics has X the static contributions of the modes used I  
 
N p 
 
=  
iX 
-  
 
cX 
aX 
 
 
éq  
4.3.1-1  
1 2 

file:///Z|/process/refer/refer/p1220.htm (2 of 23)10/2/2006 2:53:12 PM



file:///Z|/process/refer/refer/p1220.htm

I 
I 
 
N 
 
 
The expression [éq 4.3.1-1] is homologous with the term m - 
p µ  
2 
T 
iX 
I of [éq 4.2.2-2] and the pseudo one  
 
1 
 
mode makes it possible to supplement the incomplete base of clean modes to introduce a correction of  
static effects of the neglected modes. The contribution of the pseudo mode is the value read on the 
spectrum  
pseudo absolute acceleration has 
= Sro X 
( 
) 
& (A 
N 
X 
X 
, m 
in, N 
), 
+ 
+ 
for 
N 
 
1 
1 
N 
+1 and  
the modal damping weakest min.  
 
Correction to be brought to relative displacements and the sizes which result (efforts from them  
generalized, forced, reactions of supports) in excitation mono support is then K 
K 
X 
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= has 
 
cX 
cX 
(n+) 
1 X 
in accordance with the conditions of estimate of the error cf [§ 4.2.2].  
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For the evaluation of the correction of absolute acceleration one obtains:  
 
K 
N 
 
 
K 
x& = - 
 
cX 
X 
piX I has (n+) 1X  
 
 
 
 
1 
 
 
4.3.2 Multi  
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supports  
 
In excitation multi supports, the formulation of the pseudo mode and its contribution take again the 
principle  
precede.  
The field of displacement  
K 1 
- 
= 
m 
nodes of the structure subjected to an acceleration  
ajX 
SjX 
unit of the support J in direction X is produced by operator MODE_STATIQUE [U4.52.14] with  
key word PSEUDO_MODE.  
The correction to be brought to relative displacements and the sizes which result some writes then  
for the support J in direction X:  
N P  
X 
ijX 
I 
cjX = cjX has (n+) 
1 jX with  
=  
- 
cjX 
ajX 
 
 
2 
1 
I 
For absolute acceleration, the correction is written:  
N 
 
 
& 
=  
- 
 
cjX 
X 
SjX 
I ijX 

file:///Z|/process/refer/refer/p1220.htm (5 of 23)10/2/2006 2:53:12 PM



file:///Z|/process/refer/refer/p1220.htm

P 
(n+) 1 has jX 
 
 
 
 
1 
 
 
4.4  
General information on the rules of combination  
 
Rules of combination or office plurality of the various components, modal or directional,  
are multiple and more or less complexes to be implemented.  
 
One presents the methods “natural” from the point of view of their aptitude required one raising 
realistic  
requests induced in a structure represented by a base of real clean modes resulting  
of a model in linear elasticity, raising estimated without transitory analysis for a size of  
Gk component, which one will name Gkmax. For the continuation the suffix max indicates the 
estimate of  
maximum value attack during the seismic excitation, by being unaware of the moment when it was 
reached) and  
the index R applies to clean modes, pseudo modes, directions of supports,…  
 
Note:  
 
Whatever the method of combination used, the value of a component obtained by  
combination cannot be used as data to calculate a new size: for example calculation  
of one raising of a differential displacement between two points must be calculated mode by mode,  
then compound.  
 
4.4.1 Combination  
arithmetic  
 
Gk 
= Gk 
max 
R max  
R 
It is not usable since the spectral method disregards moment when values  
maximum are reached in two directions or for two different modes. No relation of  
phase, and thus of sign, does not exist between the contributions to combine. They is thus available 
only  
in the case of differential displacements in multi support.  
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4.4.2 Combination in absolute value  
 
Gk 
= Gk 
max 
R max  
R 
In an obvious way, it can provide an upper limit, since it supposes that all them  
contributions reach their maximum at the same moment with the same sign. Too much penalizing, it 
is  
available, but unusable industrially.  
 
4.4.3 Simple quadratic combination  
 
This method is also known under denomination SRSS (Public garden Root of Sum of Squares).  
 
2 
Gkmax = (Gkrmax)  
R 
Assumption:  
 
The assumption which justifies this method of combination can be stated:  
the probable maximum of the energy stored in the structure is the sum of the maxima  
probable of the energy stored on each mode and each component  
directional of the seism, i.e. with respect to energy, the clean modes and them  
components of the seism are uncoupled. They is similar to the rule of addition of the variables  

file:///Z|/process/refer/refer/p1220.htm (7 of 23)10/2/2006 2:53:12 PM



file:///Z|/process/refer/refer/p1220.htm

random Gaussian and with null average.  
 
Validity of this assumption, which will be discussed for each particular case of use of this  
method of combination, is not established and various proposals were presented to obtain  
a better approximation whenever it is put at fault cf [§ 3.4.1.2] following.  
 
In addition, one will be able to refer to [bib3] for a criticism of this approach, in particular of sound  
aptitude to consider a maximum probable of the deformations and constraints, but the approach  
alternative which it evokes was the subject of any development in Code_Aster.  
 
4.5  
Establishment of the directional response in mono support  
 
The directional answer, previously definite, is obtained by simple quadratic combination of  
two terms which we will discuss:  
R = R2 + R2 
X 
m 
C  
 
Rm answer combined of the modal oscillators  
Rc contribution of the static correction of the neglected modes (pseudo mode)  
 
The assumptions justifying the method of quadratic combination simple, on this level, do not seem  
not to have to be called into question [bib1]. To simplify the notations one notes Rm instead of RmX,
…  
 
4.5.1 Combined response of the modal oscillators  
 
The response of the Rm structure, in a direction of seism, is obtained by one of the combinations  
possible of the contributions of each clean mode taken into account for this direction.  
The number of possible methods proves simply the difficulty in releasing a justification  
sufficient to guarantee a conservative and realistic estimate. If simple quadratic combination  
(SRSS or CQS) is evoked by all, one will retain [bib1] that it is often put at fault and one  
he will prefer the complete quadratic combination (CQC). The other methods are available for  
possible comparisons.  
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4.5.1.1 Summons absolute values  
 
This combination corresponds to an assumption of complete dependence of the oscillators associated 
with  
each mode clean and led to a systematic overvaluation of the answer:  
 
N 
R = 
R  
m 
I 
I 
 
Simple 4.5.1.2 quadratic Combination (CQS)  
 
By considering that the contribution of each modal oscillator is a random variable  
independent, an estimate of the maximum answer, for the component of xkmax displacement,  
can be obtained by simple quadratic combination of the contributions of each mode from where, for  
an excitation mono support:  
 
N 
2 
N 
 
 
2 
xk 
= xk 
K 
 
max 
I max 
 
 
 
= 
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(p Q 
I 
I I max)  
éq  
4.5.1.2-1  
I 
I 
 
Generally, for any size IH associated with a modal oscillator (,) 
I 
I.  
 
N 
R = R2 
m 
I  
I 
 
It constitutes a good approximation of reality when the spectrum of oscillator defining it  
seism is with broad frequency band and where the clean modes of the structure are quite separate 
them  
from/to each other and are located inside or in the vicinity of this band. It is in particular put in  
defect if clean modes are at close frequencies or for distant modes  
peak of excitation. [bib2]. The other methods of combination of the modal answers try  
to correct this point.  
 
Quadratic 4.5.1.3 Combinaison supplements (CQC)  
 
The quadratic combination supplements (established by DER KIUREGHIAN [bib5]) makes a correction 
to  
the preceding rule by introducing coefficients of correlation depending on depreciation and  
distances between close clean modes:  
 
R = R R 
m 
I I 
I 
I  
1 2 
1 
2 
I 
I 
1 
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2 
with the coefficient of correlation:  
 
8  
( + )  
I J I 
J 
I I 
J 
J 
I 
J 
ij = 
 
2 
( 
- 2 2 
) +  
4 2 
( 
+ 2) + 4 2 
( 
+ 2  
) 
 
2 2 
I 
J 
I J I 
J 
I 
J 
I 
J 
I 
J 
 
or by introducing the report/ratio of pulsation or frequencies between two modes =/  
J 
I  
 
 
8 
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( + ) 
 
I J 
I 
J 
ij = 1 
(- 2 2 
) +  
4 1 
( + 2 ) +  
4 2 2 
( 
+ 2 
I J 
I 
J)  
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and for constant  
8 2 1 
( + )  
ij = 
 
1 
(- 2 2 
) + 4 2 1 
(+ 2) + 8 2 2 
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4.5.1.4 Combination of ROSENBLUETH  
 
This rule (proposed by E. ROSENBLUETH and J. ELORDY [bib6]) introduced a correlation enters  
modes, different from that of method CQC. The answers of the oscillators are combined by  
double nap (Double Sum Combination):  
 
Rm = R R 
1 
I 2i 1i 2i 
1 
I 
2 
I 
 
 
It requires an additional data, the duration S of the “strong” phase of the seism. The coefficient of  
correlation is then:  
 
 
-1 
 
' -' 
2 
2 
 
 
I 
J 
= 1+  
 
where ' 
1 2 ' and ' 
 
ij 
 
 
 
' + '  
I 
I 
I 
I 
I 
 
= 
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- 
= 
+ S  
I 
I 
J 
J 
I 
 
 
 
4.5.1.5 Combination with rule of the 10%  
 
The close modes (of which the frequencies different from less than 10%) are initially combined by  
summation of the absolute values. The values resulting from this first combination are then  
combined quadratically (simple quadratic combination). This method was proposed by  
American payment U.S. Nuclear Regulatory Commission (Regulatory Guides 1.92 - February 1976)  
to attenuate the conservatism of the method of nap of the absolute values. It remains at fault  
for structures with an own frequency spectrum dense and should not be used any more.  
 
4.5.2 Contribution of the static correction of the neglected modes  
 
The contribution of the pseudo mode cf [§4.3.1] can be combined quadratically because independence  
with the contributions of the modes of vibration is not disputed.  
 
4.6  
Establishment of the directional response in multi supports  
 
4.6.1 Calculation of the total answer  
 
In this case, one retains like order of the combinations a step similar to that retained for  
the excitation mono support without that being completely justified.  
 
One establishes the directional answers for each movement &sj applied: one will note RjX it  
result of this combination. To obtain this directional answer a news will thus be needed  
stage of combination by taking account of the dependence or the independence of the &sj.  
 
The flow diagram for treatment becomes:  
 
·  
for each movement imposed &sj calculation of the directional answers  
R 
= R2 + R2 + R2 
jX 
mj 
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cj 
ej  
 
Rmj answer combined of the modal oscillators  
Rcj contribution of the static correction of the neglected modes (pseudo mode)  
Rej contribution of the movement of drive of the support J  
 
·  
combination of the answers R jX  
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4.6.2 Separate calculation of the components primary education and secondary of the answer  
 
Each component is the subject of a similar separate treatment. This step is adapted to the post  
treatment RCC-M in force for the seismic analysis of pipings [§ 4.9]:  
 
primary component RIX (inertial answer):  
 
·  
for each movement imposed &sj calculation of the directional answers  
R 
= R2 + R2 
I J X 
mj 
cj  
 
Rmj answer combined of the modal oscillators  
Rcj contribution of the static correction of the neglected modes (pseudo mode)  
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·  
combination of answers IH J X  
 
secondary component RII (quasi static answer):  
 
·  
combination of the Rej answers  
 
4.6.3 Combined response of the modal oscillators  
 
The response of the Rmj structure, in a direction of seism, is obtained by one of the combinations  
possible of the contributions of each clean mode taken into account for this direction.  
The selection criterion of the method of combination of the contributions of the modes is the same 
one as for  
an excitation mono support and one will use method CQC preferentially.  
 
4.6.4 Contribution of the pseudo mode  
 
The corrective term by pseudo mode cf [§4.3.2] can be combined quadratically.  
 
4.6.5 Contribution of the movements of drive  
 
The movement of drive of the structure not being uniform, one can add a term with calculation  
directional answer. This is not necessary if one chooses to consider this contribution  
statics like a specific loading case inducing of the secondary constraints. This term is  
defined starting from the maximum relative displacement which cannot be known starting from the 
only spectra of  
pseudo absolute acceleration of the supports.  
 
Rej = J  
S 
J max  
 
Sj  
static mode for the support J  
jmax maximum relative displacement of the support J compared to a support of reference  
(for which J max = 0)  
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4.6.6 Combination of the directional answers of supports  
 
This stage is obligatory, but the choice of the method of combination of the directional answers  
remain very open. Indeed the assumption of independence of the &s J strongly depends on the clean 
modes  
structure support of the studied equipment. An analysis of the studied system is necessary for  
to gather the supports by groups: for examples for a piping connecting two buildings, the group  
supports of the building 1, that of building 2 and finally that of the intermediate stanchions.  
 
For each group one will be able to choose one of the three methods:  
 
Combinaiso quadratiqu 
 
N 
E: 
R =  
2 
X 
RjX 
Linear Combinaiso 
 
N 
:  
R = 
X 
RjX  
Combinaiso 
value 
 
in 
 
N 
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:  
absolute 
 
R = 
X 
RjX 
 
The rule of combination can be the same one for all the supports or differentiated according to the 
supports or  
groups of supports defined by an occurrence of the key word factor COMB_MULT_APPUI. In this case  
total answer is obtained by:  
 
 
2  
2 
R = 
R2 +  
R +  
R  
 
 
 
X 
Q X 
L 
has 
Q 
L 
 
has 
 
 
where Q supports combined quadratically, L linearly combined supports, has supports combined in  
absolute value.  
 
4.7  
Combination of the directional answers  
 
Two rules of combination of the directional answers are available.  
 
4.7.1 Combination  
quadratic  
 
This combination corresponds to the assumption of strict independence of the answers in each  
direction cf [§ 3.3.3]. Let us recall that this rule of combination does not have any geometrical 
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significance,  
although the three directions of analysis are orthogonal.  
 
R = R2 + R2 + R2 
X 
Y 
Z  
 
The assumptions justifying the method of quadratic combination simple, on this level, do not seem  
not to have to be called into question [bib3], but this method is not used.  
 
4.7.2 Combination of NEWMARK  
 
This rule of empirical combination is most usually used and in general leads to  
estimates slightly stronger than the preceding one. It supposes that when one of the answers  
directional is maximum, the other are with most equal to the 4/10 their maximum contributions  
respective. For each direction I (X, Y, Z), one calculates the 8 values:  
 
R = ± R ± 0 4 
, R ± 0 4 
, R 
L 
X 
Y 
Z  
 
What leads, by circular shift, with 24 values and R = max (Rl)  
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4.8  
Warning on the combinations  
 
Several remarks are essential to warn the user on the way of using the methods  
of combination and sizes combined in a note of study.  
 
Notice 1:  
 
If one wishes to use arithmetic combinations (direction) and combinations  
quadratic (modes) the quadratic office pluralities must be always carried out in the last.  
 
Notice 2:  
 
Any quadratic combination applies only to the sizes for which in values  
instantaneous the office plurality has the direction of a sum: combination of the components of 
displacement,  
or effort generalized or of constraint of each clean mode.  
The modal or directional quadratic combination cannot thus apply to intensities of  
constraint (constraint principal, of Von Mises, Tresca).  
 
Notice 3:  
 
The results of a combination, whatever the rule of office plurality, should not be used as data  
to calculate other sizes: for example a differential displacement between two points (or  
a deformation) can be calculated only starting from modal differential displacements that one  
combine then.  
A fortiori the generalized efforts and the constraints can be calculated only mode by mode  
before any combination and not starting from inertias deduced from the fields from acceleration  
obtained by combination of modal accelerations.  
 
 
4.9 Practical  
lawful  
 
4.9.1 Partition of the primary and secondary components of the answer  
 
The various supports of a line of piping can be animated different movements. One  
even section of piping can be left again on different buildings, levels or  
different equipment. It thus undergoes a multiple excitation. This results in two types of  
loading [§ 2.1.2]:  
 
·  
an excitation whose frequential contents vary from one support to another and who constitutes one  
primary education loading according to classification RCC-M,  
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·  
seismic Differential Displacements (DDS) inducing a state of stress by  
displacements imposed on the supports and classified like secondary.  
 
The generalized moments resulting from these 2 loadings intervene separately in  
inequations of dimensioning RCC-M and on several levels. Thus, for pipings of levels  
2 and 3, the DDS not taken into account with the inertial seismic loading in inequation 10, are  
cumulated with the cases of displacements of thermal anchoring of origin in inequation 7.  
In the sight of a post deepened treatment RCC-M, It is thus necessary to have the components  
primary education and secondary of the seismic answer.  
In a more general way, the method of combination of the answers of supports can differ according to  
whether one treats the case of the inertial or differential components. Moreover the number of 
support  
concerned with these two summations can not be equal. One is caused to often to impose  
overall differential movements even for supports associated with spectra users  
different. In addition, of the DDS formulated in rotation are sometimes to consider. They cannot be  
associated an inertial loading (limited to the translations).  
Handbook of Reference  
R4.05 booklet: Seismic analysis  
HT-66/02/004/A  

Code_Aster ®  
Version  
6.0  
 
Titrate:  
Seismic response by spectral method  
 
 
Date:  
06/09/02  
Author (S):  
J.R. LEVESQUE, L. VIVAN, D. SELIGMANN, Y. PONS Key: R4.05.03-B Page  
: 27/34  
 
 
Code_Aster thus proposes two treatments:  
 
·  
Determination of the total answer:  
The contributions inertial and static of drive are cumulated during calculation of  
directional answers of support [§4.6].  
· Partition of the primary and secondary components of the total answer:  
The two contributions précèdentes are not cumulated any more during the calculation of the answers  
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directional and are the subject of 2 independent treatments:  
The inertial component is obtained by removing the term of drive Re J in  
calculation of the total answer [§ 4.6].  
The static component is given by combining the terms of drive  
defined under key word DEPL_MULT_APPUI. Methods of combination of these  
loading cases DDS are indicated in key word COMB_DEPL_APPUI.  
 
4.9.2 Method of the spectrum envelope  
 
Even if pipings are subjected to a multiple seismic excitation, the current practice is of  
to be reduced to the calculation of a structure mono-supported while preserving the loading cases 
DDS.  
This simplified step implies to define a single spectrum by direction for all the supports of  
piping. For each direction, one adopts a spectrum then “wraps” various spectra  
with the supports. The spectra retained for the horizontal directions X and Y are identical.  
In almost the whole of the cases, this method is generating of “margin of dimensioning”.  
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Transitory appendix 1 Response of a deadened simple oscillator  
 
A1.1 Vibration forced of a system to a d.d.l in translation  
 
For a simple oscillator of rigidity K, mass m and viscous damping C, the equation of the movement  
is form:  
 
K 
C 
mX& + cX& + kX = 0 
m 
F X 
X 
 
 
for which the traditional notations are:  
 
K 
the own pulsation of the system not deadened: 
0 = m 
critical damping: 
C criticize = 2 m0 
the amortissementréduit: 
C 
C 
= 
= 
(expressed as a percentage damping criticizes) 
C criticizes 2 m 0 
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the own pulsation of the deadened system: 
' =  
2 
0 
0 
(1- ) 
F 
the static deflection for a force F: 
 
0 
0 
St = K 
 
the reduced frequency: 
= 0 
reduced equation of the movement: 
X& + 2 X& + 2 
0 
0 X = 0 
 
The total response to a harmonic excitation of the form F (T) = F cos (T 
0 
) is the sum:  
 
·  
of a free answer X T 
L () deadened oscillatory general solution where X l0 and 
0 
are given  
by the initial conditions  
 
X (T) = X 
- T 
E 
0 Co ( 
S T 
L 
l0 
0 + 0 
)  
 
·  
of a forced answer X 
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T 
F () permanent particular solution X (T) = X 
cos (T 
F 
f0 
-)  
 
F 
 
C 
 
X 
0 
= 
= arctg 
f0 
2 
 
 
 
 
éq A1.1-1  
K - m2 2 + (C) 2 
 
K - m  
( 
) 
 
who is written in reduced form:  
 
X 
K X 
f0 
f0 
1 
 
2  
= 
= 
= arctg  
 
 
 
 
 
éq A1.1-2  
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F 
St 
0 
( 
2 
2 
2 
1 - 2 ) + (  
2 ) 
1-  
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Harmonic response of a system to 1 ddl: modulate 
30 
Modulate  
28 
displacement  
X relative/X static 24 
function of  
reduced frequency 
20 
16 
Depreciation 
20 % 
12 
10 % 
05 % 
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Relative amplitude 
02 % 
8 
01 % 
4 
0 
0 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
Reduced frequency 
Harmonic response of a system to 1 ddl: phase  
180 
Phase of  
displacement  
160 
 
X relative/X static 140 
120 
100 
Depreciation 
20 % 
Phase 80 
10 % 
05 % 
60 
02 % 
01 % 
40 
20 
0 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

file:///Z|/process/refer/refer/p1230.htm (5 of 24)10/2/2006 2:53:13 PM



file:///Z|/process/refer/refer/p1230.htm

1.2 
1.4 
1.6 
Reduced frequency 
 
Appear A1.1-a: Response of an oscillator in imposed force (module and phase)  
 
 
The response to a harmonic excitation of the form F T = F  
J T 
( ) 
0 E 
with a forced answer solution is written  
(J T) 
particular permanent X (T) = X 
F 
f0 E 
 
F 
 
C 
 
X 
0 
= 
= arctg 
f0 
2 
 
 
 
 
éq A1.1-3  
K - m2 2 + (C) 2 
 
K - m  
( 
) 
who is written in reduced form:  
K X f0 
1 
2  
= 
H  
2 
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(J) = arctg  
 
 
 
éq A1.1-4  
F 
2 
0 
1 - + J 2 
1-  
where H (J) is the harmonic answer complexes of a simple oscillator  
 
1 
H (J) = ( 
 
2 
1- 2 ) + (  
2) 2 
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Appendix 2 Movement imposed of a system on a d.d.l in  
translation  
 
A2.1 absolute Movement of a system to a d.d.l.  
 
For a simple oscillator of rigidity K, mass m and viscous damping C, the equation of the movement  
absolute is form:  
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mX& + ( 
C X& - s&) + K (X - S) = 0 
K 
C 
S 
mX& + cX& + kX = ks + cs& 
m 
X& + 2 X 
2 
2 
 
 
 
0 & + 
X = 
S + 2 
S 
0 
0 
0 & 
F X 
X 
 
 
The response forced to a harmonic imposed movement of the form S (T) = S cos (T 
0 
) is form  
X (T) = X 
cos (T 
m 
m0 
- - 
1 
2) nap of two terms of answer, particular solutions permanent:  
 
·  
term induced by the excitation in displacement X 
cos (T 
d0 
- D 
)  
 
K S 
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C 
 
X 
0 
= 
= arctg 
d0 
D 
2 
 
K - m2 2 + (C) 2 
 
K - m  
( 
) 
 
·  
term induced by the excitation of speed X 
cos (T 
vo 
- v 
)  
 
C S 
 
C 
 
X 
0 
= 
= arctg 
v0 
v 
2  
(K - m2) 2 + (C) 2 
 
K - m  
 
what leads to a total forced answer  
 
K 2 + C 2 
X (T) = X cos (T - -) 
( ) 
S 
[ 
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cos T 
m 
m 
- - 
1 
2 
0 
1 
2  
(K - m2) 2 + (C) 2] 
( 
) 
 
from where the reduced form of the absolute amplitude:  
 
2 
X 
1 + 2  
2  
1  
m 
( 
) 
= 
= arctg  
 
 
 
= arctg  
 
S 
2 
1 
2 
2 
0 
[1 (- 2 2 
) + (2 ) ] 
1-  
2  
 
 
If the movement imposed on the base is expressed in form S T complexes = 
(S J T 
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() Re 0 E), the relative amplitude  
or transmissibility can be written starting from the harmonic answer complexes of an oscillator 
simple H (J)  
 
X m = 
2 
1 + (2) H (J)  
 
 
 
 
 
éq A2.1-1  
s0 
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A2.2 Movement relating of a system to a d.d.l.  
 
The problem of the response to an imposed movement can be dealt with in relative displacement of the 
mass by  
report/ratio at the base by posing X = X - S.  
 
The equation of the relative movement for a harmonic imposed movement of the form S (T) = S cos (T 
0 
) is  
then of the form m x& + C x& + K X = - m s& or in reduced form:  
 
& 
X + 2 
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&x + 2 X = - &s = 2 
 
 
S 
( 
cos T 
0 
0 
0 
) éq A2.2-1  
 
The relative forced answer is then, for a permanent solution X 
(T 
m0 cos -),  
 
m2 S 
 
C 
 
X 
0 
= 
= arctg 
m0 
2 
 
 
 
 
éq A2.2-2  
(K - m2 2 
) + (C) 2 
 
K - m  
 
who is written in reduced form:  
X 
2 
m0 
 
= 
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éq A2.2-3  
s0 
(- 2 2 
) + () 2 
1 
2 
 
 
Harmonic response of a system to 1 ddl: relative module  
24 
21 
Modulate displacement  
X relative/X static 
18 
function of  
the reduced frequency 
15 
12 
Depreciation 
20 % 
9 
10 % 
5 % 
2 % 
6 
1 % 
Relative amplitude 
3 
0 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
Reduced frequency 
 
Appear A2.2-a: Response of an oscillator moving imposed (module of relative displacement)  
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Appendix 3 Movement imposed not periodical of a system on one  
d.d.l.  
 
The problem dealt with previously was limited to a periodic imposed movement. For an excitation not  
periodical, of variable amplitude with time, being exerted for one finished length of time.  
 
A3.1 Impulse response  
 
The simplest form is the unit impulse force, which applied to a rest mass front  
the application of the impulse (X = X = for T < or T = - 
& 0 
0 
0) can be written  
 
~ 
t+ T 
 
F = lim F dt = F.dt = 1 = m &X (T =) 
0 - m &X (T = - 
 
0) = m &X0  
T 
T 
0 
1 
The initial conditions are then noted X (T =) 
0 = X = 0 and X& (T =) 
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0 = X 
0 
&0 =  
m 
 
The general equation of the response in free vibration of a system to a d.d.l.  
 
 
X& + X 
 
X T 
- T 
0 
() = E 
X cost 
0 
0 0 
+ 
sin T 
L 
0 
0 
0  
 
0 
 
 
 
G (T) of a system then becomes the impulse response to a d.d.l.  
 
- T 
0 
E 
X (T) = G (T) = 
sin T 
L 
 
 
 
 
 
 
éq A3.1-1  
m 
0 
0  
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~ 
F 
For an impulse nonunit F = F.T 
initial speed is &X0 = and the answer becomes  
m 
~ 
F - T 
E 
0 
~ 
X (T) = 
sin T = F G (T 
L 
) 
m  
0 
 
 
 
 
éq A3.1-2  
0 
 
If the impulse force is applied to one unspecified moment the answer is  
 
~ 
X T = F G (T 
L () 
- )  
 
A3.2 Response in unspecified forced vibration  
 
The force of excitation F (T) can be broken up into a series of impulses of variable amplitude F ()  
applied to the moment during a time. If the 0 response to one moment T is obtained by  
T 
X (T) = 
F () G (T - 
 
) D  
0 
 
and while replacing by the expression of the impulse response [éq A.3-2] one obtains the equation of 
convolution  
for a system at rest at moment 0 of the form  
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1 
T 
X (T) = 
F () -0 (T -) 
E 
 
sin 0 (T -) D  
 
 
éq A3.2-1  
m 0 0 
known under the name of Integral of DUHAMEL  
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A3.3 Response moving unspecified imposed  
 
For an analysis moving relative represented by [éq An2-2]  
 
& 
X + 2 
2 
2 
0 
&x + X = - 
0 
&s = s0 
( 
cos T)  
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the integral of DUHAMEL becomes  
 
1 T 
X (T) = 
S ( 
&) -0 (T -) 
E 
 
sin 0 (T -) D 
 
 
éq  
A3.3-1  
0 0 
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Then, we present the modal synthesis which uses the traditional techniques of under-structuring and 
of 
modal recombination. 
The modal computational tools by modal synthesis implemented in Code_Aster, then, passed in 
review. We present, first of all, the techniques of traditional dynamic under-structuring of 
CRAIG-BAMPTON and of MAC NEAL. Then, we approach the methods of dynamic under-
structuring 
cyclic. Completely dedicated to the study of the structures with cyclic repetitivity, they benefit the best 
from 
geometrical characteristics of the structure. Methods of CRAIG-BAMPTON and MAC NEAL, 
developed 
within this framework, are exposed. 
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1 Introduction 
In front of the complexity of the structures mechanical, often made up of an assembly of several 
components, numerical or experimental methods traditional of vibratory mechanics 
reveal expensive, sometimes even unusable. In perfect coherence with the modular organization 
great projects, the methods of under-structuring seem the most effective means 
to make a vibratory study of the whole starting from the dynamic behavior of the components 
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[bib4]. 
In this report/ratio, we present, first of all, the theoretical bases of the methods of synthesis 
modal. They associate techniques of under-structuring and modal recombination. Each 
substructure is represented by a base of projection made up of dynamic clean modes 
and of static deformations to the interfaces. The study of the conditions of connection between 
substructures is 
simplified by the consideration of compatible grids. 
Then, we present the two techniques of modal calculation per traditional under-structuring, 
implemented in Code_Aster [bib6]: methods of Craig-Bampton and Mac Neal. They 
distinguish by the use of different bases for the substructures. 
Lastly, we present the techniques of modal calculation per cyclic under-structuring. Methods 
implemented in Code_Aster [bib5], allowing the calculation of the modes of a structure repetitivity 
cyclic starting from the study of the one of its sectors are exposed. 
General notations: 
 
: 
Maximum pulsation of a system (rad.s-1) 
m 
M 
: 
Stamp of mass resulting from modeling finite elements 
K 
: 
Stamp rigidity resulting from modeling finite elements 
Q 
: 
Vector of the degrees of freedom resulting from modeling finite elements 
F 
: 
Vector of the forces external with the system 
ext. 
F 
: 
Vector of the bonding strengths applied to a substructure 
L 
 
: 
Stamp containing the vectors of a base of projection organized in column 
 
: 
Vector of the generalized degrees of freedom 
B 
: 
Stamp extraction of the degrees of freedom of interface 

file:///Z|/process/refer/refer/p1230.htm (21 of 24)10/2/2006 2:53:13 PM



file:///Z|/process/refer/refer/p1230.htm

L 
: 
Stamp connection 
T 
: 
Kinetic energy 
U 
: 
Deformation energy 
Id 
: 
Stamp identity 
 
: 
Stamp diagonal generalized rigidities 
R 
: 
Stamp residual dynamic flexibility 
E () 
Re () 
0 
: 
Stamp residual static flexibility 
Note: 
The exhibitor K characterizes the sizes relating to the substructure S K and the sizes 
generalized are surmounted by a bar: for example M K is the matrix of mass 
generalized of the substructure S K. 
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2 Synthesis  
modal  
The dynamic under-structuring consists in determining the behavior of a structure from 
vibratory characteristics of each one of its components ([bib3] and [bib4]). Methods 
implemented in Code_Aster, use simultaneously the traditional techniques of 
modal recombination and of dynamic under-structuring. 
These methods, although different from that of the finite elements, adopt a step enough 
comparable. They reveal three essential stages: 
Stage 1: numerical study of each component by the determination of their characteristics 
vibratory. Work consists in identifying clean modes and static deformations by 
traditional techniques of vibratory mechanics. If one compares each substructure to one 
super-element, this stage is similar to elementary calculation. 
Stage 2: connection of the substructures. The given vibratory characteristics are used 
previously for each component, and one takes account of their liaisonnement. This work constitutes 
the stage of under-structuring itself. It is connected with an assembly. 
Stage 3: the resolution and a phase of increase makes it possible to obtain the solution sought in 
locate physical total structure. 
2.1  
Transformation of RITZ 
The transformation of RITZ is the subject of the reference material [R5.06.01]. We recall here 
its principle. For the problem of the numerical determination of the real clean modes of the system 
not deadened associated the structure, that we will indicate by clean modes, one is reduced to 
resolution of the problem of minimization according to: 
Either virtual displacement, one seeks: Min 
1 T ( 
2 
K - M) 
 
 
2 
 
whose solution Q checks: 
(K - 2M) Q = 0 
éq 2.1-1 
The method of RITZ consists in seeking the solution of the equation of minimization on a subspace 
space of the solutions. Let us consider the matrix containing the vectors of the base of under 
space in question, organized in columns. Restricted with this space of reduced size, the equation 
of minimization takes the form: 
Min 
1 T ( 
2 
 
) 
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p 
p K 
M p 
= 
- 
2 
That is to say the required solution: 
Q =  
 
éq  
2.1-2 
it checks: 
(K - 2M) = 0 
éq 2.1-3 
where: is the vector of generalized displacements, 
K = TK 
M = T 
and 
M 
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After having solved the system [éq 2.1-3], obtaining the clean modes in the physical base is done with 
assistance of the relation [éq 2.1-2]. The transformation of RITZ thus makes it possible to replace the 
problem with 
eigenvalues initial [éq 2.1-1] by a problem of comparable nature [éq 2.1-3], but of dimension 
reduced. The new matrices of rigidity and mass remain symmetrical. 
However, this transformation must be used with prudence. Indeed, the new base being 
incomplete, an approximation is made on the level of projection. The precision of the final result depends 
then choice of the basic vectors and the relative error due to this reduction in the number of unknown 
factors 
must be estimated. 
2.2 Recombination  
modal 
A traditional use of the transformation of RITZ, is the dynamic analysis by recombination 
modal. It is usually used for the calculation of the response of a structure to an excitation 
low frequency. We will limit ourselves here to the calculation of the response to an excitation of a 
structure 
conservative. In this case, the finite element method enables us to be reduced to the equation 
following matric differential: 
Mq 
! + Kq = fext 
éq 2.2-1 
If one applies the transformation of RITZ, with as incomplete projection, the first bases 
clean modes of the structure, the relation [éq 2.2-1] becomes: 
M! + K = fext 
éq 2.2-2 
Where: F 
T 
= F 
ext. 
ext. is the vector of the generalized forces. 
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The clean modes are orthogonal relative with the matrices of mass and rigidity. The equation 
differential [éq 2.2-2] thus revealed diagonal matrices: the system is then made up 
uncoupled equations. Each one of them is the equation of an oscillator to a degree of freedom of 
type mass-arises which reveals the mass, generalized rigidity and force relating to the mode J 
(respectively: mj, K J, F J). 
If one considers the transformation of RITZ [éq 2.2-2], on the level of a degree of freedom, one a: 
IQ = ij 
J 
J 
Where: 
IQ is the ième co-ordinate of the vector Q, 
J is the coordinated jème vector, 
ij is the component of the ième line and the jème column of the matrix. 
It thus appears that the response of the structure is expressed like the recombination balanced of 
answers of oscillators to a degree of freedom uncoupled. The transformation of RITZ allows, in it 
cases, to define a diagram are equivalent of the structure, which reveals the oscillators with a degree of 
freedom associated with the identified clean modes. Their stiffness and their mass are generalized 
rigidities 
(K J) and generalized masses (mj) of the corresponding modes. 
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F 
F 
F 
1 
2 
Fm 
m1 
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m2 
mm 
K 
K 
K 
(K, M) 
1 
2 
... 
m 
<=> 
Held primarily being studied in low frequencies, the modal recombination consists with 
to use the properties of orthogonality of the clean modes of a structure to simplify the study of its  
vibratory answer. In addition to the interest to decrease the order of the numerical problem to solve, 
transformation of RITZ, in this case, also makes it possible to uncouple the differential equations and 
to release a physical interpretation of the result obtained. According to the frequency of excitation, one 
will use 
a more or less truncated modal base. It is however necessary to estimate the truncation error for 
to ensure itself of the validity of the result. 
2.3 Synthesis  
modal 
In a general way, the methods of modal synthesis consist in using simultaneously 
dynamic under-structuring (cutting in substructures) and modal recombination on the level 
of each substructure. Often confused, by abuse language, with the under-structuring 
dynamics, the modal synthesis is only one particular case of this one. 
The dynamic under-structuring consists in considering the displacement of a substructure in 
overall movement, as its response to the bonding strengths which connect it to the others 
components. 
The modal synthesis means that one calculates this movement, on the level of each substructure, by 
modal recombination. One thus uses a base of projection which characterizes each substructure. 
Indeed, if the total structure is too important to be subjected to a modal calculation, dimensions 
substructures make it possible to carry out this work. The modal synthesis forces to study initially 
separately each component, in order to determine their base of projection. 
In the continuation of this chapter, we present the types of modes and deformations static used in 
methods of modal synthesis using the following simple example: 
q1 
q2 
I 
I 
q1 
2 
J 
Q J 
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1 
Substructure 1 
Substructure 2 
2 
The vector of the degrees of freedom of the substructure is characterized by an exhibitor who defines it 
number of the substructure, and an index which makes it possible to distinguish the degrees of freedom 
intern (index 
I), of the degrees of freedom of border (index J). 
qk 
 
 
qk 
I 
=  
qkj 
 
 
Handbook of Reference 
R4.06 booklet: Under-structuring 
HP-51/98/016/A 

Code_Aster ® 
Version 
4.0 
Titrate:  
Modal calculation by traditional and cyclic dynamic under-structuring 
Date:  
08/12/98 
Author (S): 
G. ROUSSEAU, C. VARE 
Key: 
R4.06.02-B 
Page: 
7/34 
One is brought, to study the substructure K, to define an impedance in the level of the degrees of 
freedom of connection. Within the framework of the developments carried out in Code_Aster, it is is 
null, 
that is to say infinite. 
The basic vectors used in the methods implemented in Code_Aster are: 
· normal modes, 
· constrained modes, 
· modes of fastener. 
2.3.1 Normal modes 
The clean modes or normal modes are advantageously used as bases projection of 
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substructures for several reasons: 
· they can be calculated ou/et measured, 
· they offer interesting properties of orthogonality compared to the matrices of mass and 
of rigidity of the substructure. 
They can be of two types according to the condition given to the interfaces of connection: 
· modes specific to blocked interfaces, 
· modes specific to free interfaces. 
Substructure 1 
Substructure 2 
Modes specific to blocked interfaces 
 
Substructure 1 
Substructure 2 
Modes specific to free interfaces 
Let us note that in the case of a free substructure, modes of rigid body (or overall modes) 
existing belong to the base of transformation. 
2.3.2 Static deformations 
One defines a mode of interface in each degree of freedom of connection of each substructure. 
According to 
case, it can act of constrained modes or modes of fastener. 
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The constrained modes are static deformations which one joint with the normal modes with interfaces 
blocked to correct the effects due to their boundary conditions. A constrained mode is defined by 
static deformation obtained by imposing a unit displacement on a degree of freedom of connection, them 
other degrees of freedom of connection being blocked. 
q=1 
q=1 
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Substructure 1 
Substructure 2 
Constrained modes 
The modes of fastener are static deformations which one joint with the normal modes with interfaces 
free to decrease the effect of modal truncation. A mode of fastener is defined by the deformation 
statics obtained by imposing a unit force on a degree of freedom of connection, other degrees of 
freedom of connection being free. 
f=1 
Substructure 1 
Mode of fastener 
In the case of a substructure having of the modes of rigid body (here, substructure 2), its 
stamp rigidity is not invertible and it is not possible to calculate its modes of fastener. It is 
then necessary to block certain degrees of freedom to make the structure isostatic. 
2.4  
Conditions of connection between substructures 
Let us consider the problem of two substructures bonded S1 and S 2 in a rigid way. So that 
the movement of the structure supplements is continuous, it is necessary to impose the equality of 
displacements of 
two components with the interface and the law of action-reaction: 
Mr. S1 S2 
1 (M) = 2 (M 
1 
) and 
(M) = - 2 
U 
U 
F 
F (M 
L 
L 
) 
éq 2.4-1 
Where: 
u1 (M) represents the field of displacements of substructure 1, 
u2 (M) represents the field of displacements of substructure 2, 
F 1L (M) represents the field of the bonding strengths applied to substructure 1, 
F 2L (M) represents the field of the bonding strengths applied to substructure 2. 
In Code_Aster, we limit ourselves to the compatible cases of grids. That means that they check 
following properties: 
· the meshs of each substructure S1 and S2 rest strictly on the same ones 
nodes in their intersection, 
· the finite elements associated these meshs of connection are the same ones on both sides of 
border. 
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Consequently, the condition [éq 2.4-1] is strictly equivalent to the formulation below: 
q1 
2 
1 
2 
1 
2 = Q 1 
2 
and 
F 
= - F 
éq 2.4-2 
S S 
S S 
L 
L 
S1S 2 
S1S2 
Where: 
qk 
is the vector of the degrees of freedom to the nodes of S1 interface 
S2 
 
 
S1 S2 
 
substructure K, 

file:///Z|/process/refer/refer/p1240.htm (7 of 23)10/2/2006 2:53:13 PM



file:///Z|/process/refer/refer/p1240.htm

F K 
1 
2 
L  
is the vector of the bonding strengths to the nodes of interface S S of 
S1 S 2 
 
substructure K. 
Indeed, grids of the two substructures S1 and S 2 coinciding, functions of form 
associated the finite elements are the same ones with the interface. It is thus enough to impose the 
equality on the nodes 
interfaces of connection of each substructure to impose the equality on all the field of connection. 
Let us introduce the matrices of extraction of the degrees of freedom of interface Bk 
: 
S1 S2 
 
qk1 2 = Bk1 2qk 
éq 2.4-3 
S S 
S S 
By using the equation of projection [éq 2.1-2], the condition of continuity of displacements [éq 2.4-2] 
and 
the formulation applied above to the two substructures, one obtains: 
B1 
1 1 
2 
2 2 
1 
2 = B 
 
S S 
S1S2 
That is to say: 
L1 
1 
2 
2 
1 
2 = L 1 
2  
with 
Lk 1 2 = Bk 
K 
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éq 2.4-4 
S S 
S S 
S S 
S1S2 
where: 
L1 
is the matrix of connection of S1 associated with the S1 interface 
S2 
 
, 
S1S2 
L2 
is the matrix of connection of S 2 associated the S1 interface 
S2 
 
. 
S1S2 
As we will see it in the next chapters, whatever the method chosen, the problem 
with the eigenvalues of the total structure, provided with its boundary conditions, can be written under 
form: 
(K - 2M) + LT = 0 
éq 2.4-5 
L = 0 
Matrices of generalized mass and rigidity, the vector of the generalized degrees of freedom and 
stamp connection which appears here, are defined on the total structure. They take a form 
particular with each method (Craig-Bampton, Mac Neal, traditional, cyclic) which will be clarified more 
late. The vector of the multipliers of Lagrange makes it possible to translate the law of action-reaction to 
which 
the interfaces are subjected. 
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It is thus about a traditional problem of search for eigenvalues, to which is associated one 
linear equation of constraint. In Code_Aster, this type of problem is solved by double 
dualisation of the boundary conditions [R3.03.01]. 
Thus, one can show that this system is also solution of the problem of minimization of 
following functional calculus [bib6]: 
F 
B 
= 
1 dt 
F (! ,). 
has 
2 
where F (, 
! , 
 
1 
T 
1 
T 
T 
1 
2 
1, ) 
2 = 
 
2 
K + 2! M! + (1 +) L 
2 
- ( 
2 
1 - ) 
2 
The variables of this functional calculus are the generalized co-ordinates and the multipliers of 
Lagrange 1 and 2 (in a number equal to 2 times the number of equations of connection). The last term of 
functional calculus imposes the equality of the coefficients of Lagrange. 
The extremum is reached for the values of the variables which cancel the derivative of F, whatever 
has and B realities: 
- 1 + L + 2 = 0 
LT ( 
2 
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1 +) + (K - M) 
2 
= 0 
1 + L - 2 = 0  
- Id L 
Id  
0 0 
 
0  
1 
 
1 
0 
T 
T 
 
2 
 
 
 
 
 
L 
K 
L - 0 M  
0 =  
0 
 
 
 
Id L - I  
D 2 
 
0 0 
 
 
0 2  
0 
The double dualisation thus leads to a real symmetrical matric problem. One shows [R3.03.01] 
that it makes it possible to make the algorithms of triangulation of matrix unconditionally stable. 
This method thus makes it possible to treat the connection of interfaces corresponding to basic types 
modal different without cost from management of an always delicate elimination. In addition, it is 
relatively simple. The major disadvantage of this formulation is to lead to systems 
assembled final of size more important than in the case of elimination. Indeed, it 
coupling of the matric equations was made by introducing a number of degrees of freedom 
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additional equal to twice the number of equations of connection. This increase in dimensions 
matrices can thus be very important. Let us note that the degrees of freedom of Lagrange introduced 
are, in this case, the forces applied to the interfaces to ensure the connection between the two pennies 
structures. 
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3  
Modal calculation by traditional dynamic under-structuring 
3.1 Introduction 
After having separately studied the various stages of the under-structuring, and the techniques 
that they bring into play, it appears interesting to present the two principal methods of 
dynamic under-structuring: method of Craig-Bampton and that of Mac Neal. 
Craig-Bampton uses, as bases projection of the substructures, modes constrained and 
normal modes with fixed interfaces [bib1]. 
In addition, Mac Neal uses, as bases projection of the substructures, modes of fastener and 
normal modes with free interfaces [bib2]. 
3.2  
Method of Craig-Bampton 
The following presentation utilizes only two substructures S1 and S 2, but it is 
generalizable with an unspecified number of components. After having studied separately each 
substructure, their bases of projection (normal modes with fixed interfaces and constrained modes) are 
known. For each one of them (identified by the exhibitor K), one establishes a partition of the degrees 
of freedom, distinguishing the vector from the degrees of freedom intern qki and the vector of the 
degrees of freedom 
of connection qkj: 
qk 
 
 
qk 
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I 
=  
qkj 
 
 
Are: 
K the matrix of the clean vectors of the Sk substructure, 
K the matrix of the constrained modes of the Sk substructure. 
The base of projection of S K is characterized by the matrix: 
K [K K 
= 
] 
The transformation of RITZ (equation [éq 2.1-2]), enables us to write: 
qk 
K 
 
 
 
 
qk 
I 
K 
K 
I 
K 
K 
= K = [] =  
éq 3.2-1 
Q 
K 
J 
J 
 
 
 
 
ki is the vector of the generalized degrees of freedom associated the clean modes of Sk, 
kj is the vector of the generalized degrees of freedom associated the constrained modes of Sk. 
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However the normal modes are given with fixed interfaces, and each constrained mode is obtained 
by imposing a unit displacement on a degree of freedom of connection, others being blocked.  
generalized co-ordinates relating to the static deformations are then the values of the degrees of 
freedom of connection: 
qk 
K 
J = J 
Let us interest in the contribution of the component S K from an energy point of view. Energies 
kinetics and of deformation are: 
T 
T K 
1 K T 
K K 
1 
1 
2 ! 
Q M! Q 
2 (K K 
! ) 
K 
K K 
K T 
K K 
= 
= 
M! = 2! M! 
T 
The U.K. 
1 K T 
K K 
1 
1 
2 Q 
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K Q 
2 (K K 
) K K K 
K T 
K K 
= 
= 
K = 2 K  
These expressions reveal projections of the matrices of mass and rigidity on the basis of 
substructure. These matrices, known as generalized, check a certain number of properties: 
· because of orthogonality of the normal modes compared to the matrices of rigidity and mass, 
the left higher block of these matrices is diagonal. Moreover, we will consider that these 
modes are normalized compared to the matrix of mass, 
· one can also show that the constrained modes are orthogonal with the modes 
normal compared to the matrix of rigidity [bib6]. 
The matrices of generalized rigidity and mass thus have the following form: 
K 
 
K T 
K 
K 
 
0 
 
 
K 
K 
Id 
M  
K =  
 
M =  
 
K T 
éq 3.2-2 
0 
K K K 
K T 
 
 
Mk K 
K T 
 
Mk K 
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where K is the matrix of the generalized rigidities associated the clean modes of S K. 
The choice of the base of projection to blocked interfaces thus leads to a coupling of the modes 
normal and of the static deformations by the matrix of mass. 
In the case of the calculation of the clean modes of the total structure, external forces applied to 
system are null. In addition, on the level of each connection, because of law of action-reaction and of 
continuity of displacements, the work of the bonding strengths is null. This is explained physically by 
the fact that the bonding strengths are internal forces with the total structure. 
Thus, on the level of the complete structure, only the energies kinetic and of deformation are not 
null: 
T 
T 
T = T1 + T2 = 1 1 
1 1 
! M! + 1 2 
2 2 
2 
2 ! 
M! 
T 
T 
U = U1 +U 2 = 1 1 
1 1 
K + 1 2 
2 2 
2 
2  
K  
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The work of the bonding strengths being null, equations of Euler-Lagrange relating to the clean modes 
total structure are: 
T  
K1 0 L1  
M1 
 
1 
0 
0  
0 
 
 
 
 
T  
 
 
 
 
0 
K 2 L2 
2 
-  
0 
M2 
2 
0 = 0 
 
 
 
éq 3.2-3 
 
 
 
L1 
L2 
0  
0 
0 
0  
 
 
0 
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Consequently, the problem with the eigenvalues of the complete structure can be expressed by the system 
[éq 2.4-5] that we studied in chapter 2.4: 
(K - 2M) + LT = 0 
L = 0 
Thus, the calculation of the clean modes of the total structure by the method of Craig-Bampton consists 
with 
to solve a problem with the eigenvalues matric of reduced size. The matrices which it brings into play 
are symmetrical and are calculated starting from the bases of the substructures. This resolution gives us 
Eigen frequencies and generalized co-ordinates of the required modes. Theirs are obtained 
physical co-ordinates on the grids of the substructures by using the relation [éq 3.2-1]. This 
stage is called: stage of restitution on physical basis. 
This method is interesting if one considers a numerical study of the substructures. Indeed, them 
normal modes with fixed interfaces and the constrained modes lend themselves well to calculation. On 
the other hand, them 
experimental determination is delicate. 
It is shown moreover that this method, is order 2 in/m where m is the greatest pulsation 
clean identified. 
3.3  
Method of Mac Neal 
It would be possible to present this method in a way similar to that of Craig-Bampton, the single one 
difference residing in the use of the normal modes at free interfaces and the modes of fastener. 
However, it appears interesting to adopt a slightly different step, which makes it possible to lead to 
a criterion of truncation, and to reveal the modes of fastener like the static contribution of 
not identified clean modes. 
As previously, one considers the problem of the calculation of the clean modes of a structure with 2 
components. The method is generalizable with an unspecified number of substructures. In the 
continuation 
we will identify any size associated with the substructure S K by the exhibitor K. 
We limit ourselves, here, with the modal calculation of the total structure, therefore the external forces 
are null. 
Also, the displacement of S K in the movement of the total structure, checks the equilibrium equation 
following dynamics: 
(K K 2Mk) qk 
F K 
- 
= L 
éq 3.3-1 
where F kL is the vector of the bonding strengths applied to S K. 
Handbook of Reference 
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We will consider that the base of projection of S K consists of all its modes suitable for 
free interfaces. Thus, the dimension of the projected problem is equal to the dimension of the problem 
resulting from 
modeling finite elements. We suppose, moreover, that a certain number of these modes was 
determined, others being unknown: 
K 
 
K 
 
1  
qk 
[ 
K 
1 2 ] 
K K 
= 
 
=  
K  
 
2  
Where: 
k1 
is the matrix of the identified modal vectors of the substructure S K, 
k2 
of the not identified modal vectors substructure S K is the matrix, 
K 
is the vector of the generalized degrees of freedom associated the clean modes identified of 
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1 
S K, 
K 
is the vector of the generalized degrees of freedom associated the not identified clean modes 
2 
of S K.  
The equation [éq 3.3-1] becomes, with the previously definite generalized co-ordinates: 
(kT K K - 2kT K K) K = kT K 
K 
M 
F L 
that is to say: 
(K K 2Mk) K 
K T 
 
F K 
- 
= 
L 
éq 3.3-2 
The clean modes are orthogonal compared to the matrices of mass and rigidity and us 
let us choose to normalize them compared to the matrix of mass. One thus has: 
K 
 
0  
0 
1 
Id 
 
K K 
 
 
M K 
= 
= 
K 
 
éq 3.3-3 
0 
 
0 
Id 
 
 
2  
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Now let us consider all two substructure. Each one of them checks them 
equations [éq 3.3-2] and [éq 3.3-3]. The whole of these dynamic equations constitutes the system 
according to: 
 
T 
1 
1 
1 
1 
 
Id 0 
0 
0  
 
F  
1 
0 
0 
0 
1 
1 
1 
 
L 
 
 
 
 
 
 
0 
 
2 
2 
2 
2 
0 
Id 
0 
0 
F 
1 
0 
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0  
2 
1 1  
 
1 
 
 
L 
 
- 
= 
 
éq 3.3-4 
0 
0 
1 
1 
1 
1 
 
0 
0 
Id 
0  
 
 
2 
0 
 
2 
 
 
2 
 
 
F 
2 
 
 
L  
 
 
 
 
 
0 
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0 
0 
 
 
2 
2 
2 
2 
0 
0 
0 
Id  
 
 
 
2  
 
 
2 
 
 
 
2  
F 
2 
L  
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By gathering the identified modes and the not identified modes: 
1  
 
1 
 
1 
 
2 
co-ordinates of the identified modes 
1  
=  
éq 3.3-5 
 
1  
 
2 
co-ordinates of the not identified modes 
2  
 
2  
2  
The equation translating the transformation of RITZ becomes: 
q1  
1 
 
Q = = [1 
 
2 
]  
Q 
2  
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éq 3.3-6 
2  
With these notations, the system of dynamic equations [éq 3.3-4] becomes: 
 
F 
1 
0  
Id 0  
L  
2 
1  
T 
T 
1 
 
 
= 
 
 
éq 3.3-7 
0 
- 
0 
 
Id 
[1 2 ] 
 
 
F 
2  
 
2  
2 
L  
This system of equations translates the dynamic behavior of the substructures separately. It 
do not represent the movement of the total structure. For that, it is necessary to associate the conditions 
to him of 
connection between the two components. 
The equations between substructures which ensure their liaisonnement derive as of the equations [éq 2.4-
2] 
and [éq 2.4-4], as of the organization of the base which we chose [éq 3.3-5]: 
1  
L = [L L 
1 
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2 ] 
= 0 
éq 3.3-8 
2  
F = - F 
L 
L 
éq 3.3-9 
1 
2 
The equations [éq 3.3-7] and [éq 3.3-9] enable us to express the generalized co-ordinates 
relating to the not identified modes: 
 
2 
1 
T 
2 = - 2 - 
- 
( 
 
) 
Id 
2 F 1L 
éq 3.3-10 
From the equations [éq 3.3-8] and [éq 3.3-10], one thus obtains: 
L - L 
2 
- Id 1 
- 
( 
) Tf 
1 1 
2 
2 
2 L = 0 
éq 3.3-11 
1 
However, according to the formula [éq 2.4-4], one knows that one can write the matrices of connection, 
in the form: 
L = B 
K 
K 
K 
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éq 3.3-12 
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One thus has, according to [éq 3.3-11] and [éq 3.3-12]: 
- + 
(- 2 
- 
B 
B 
Id 1 
) Tf 
1 1 1 
2 2 
2 
2 L = 0 
éq 3.3-13 
1 
One sees appearing the matrix of residual dynamic flexibility associated the not identified modes: 
R () = ( 
2 
1 
2 2 - Id - 
T 
E 
) 2 
éq 3.3-14 
The bonding strength is nonnull with the degrees of freedom of connection of the substructures. We have 
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thus: 
F = BTf 
L 
1 L 
1 
1 
Consequently, the matric problem [éq 3.3-7] can be reduced to the system are equivalent according to: 
 
2 
- Id - TBT  
0 
1 
1 
1 
1 
 
 
=  
éq 3.3-15 
 
- B 
B R E  
() F L 
0 
11 
2 
 
1  
This problem has as unknown factors the generalized co-ordinates associated the identified clean modes 
and bonding strengths applied to the first substructure.  
There are 2 cases according to whether one takes into account or not the matrix of residual flexibility. 
3.3.1 First  
case 
One neglects the matrix of residual dynamic flexibility associated the not identified modes: 
Re () = 0. 
The method of resulting dynamic under-structuring is thus very simple. It has the disadvantage of 
to be based on a method of modal recombination very sensitive to the effects of truncation. 
3.3.2 Second  
case 
A limited development is used: R () = R 
2 
2 
E 
E () 
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0 + O (/m): 
Let us adopt the following notations: 
Are: 
N 
the number of modes of the complete base, 
m 
the number of not identified modes, 
 
the matrix of N normal modes to free interfaces, 
 
the matrix of N modes of fastener (definite for all the degrees of freedom of 
system), 
 
2 
I = I 
the diagonal matrix of N eigenvalues. 
The complete matrix of the modes of fastener checks: K = Id = K -1 
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The complete modal base of the normal modes with free interfaces constitutes an orthonormal base.  
stamp stiffness, expressed in this base is written: 
K = TK =  
Same manner: 
K -1 
T K-1 
- 
= 
= 
1 
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One thus deduces a new form from it of the complete matrix of the modes of fastener: 
= - =  
- 
K 1 
1T 
As the clean modes are orthogonal two to two and stamps it eigenvalues is 
diagonal, the complete matrix of the modes of fastener takes the final form: 
N 
= 
- 
1 T 
II I 
i=1 
Now let us consider the matrix of residual dynamic flexibility, resulting from the method of 
Mac Neal: 
N 
R () = ( 
2 
1 
2 
1 
2 2 - Id - 
T 
- 
T 
E 
) 2 = I 
(I -) I 
 
i=m+1 
To highlight the effect of modal truncation, we can approximate this matrix by sound 
development with order 1: 
N 
 
2 
1 
 
R 
- 
T 
1 
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E () I 
I 
+ 
 
2 I 
 
i=m+1 
 
I  
When the number of identified modes is sufficiently important, the dynamic contribution becomes 
negligible in front of the static contribution: 
2 
N 
- 
T 
<< 
Re  
() Re () = II  
1 
1 
0 
2 
I 
I 
i=m 1 
+ 
where R E () 
0 are the matrix of residual static flexibility. 
This matrix can be calculated according to the matrix of the modes of fastener: 
N 
m 
m 
R 
1 
- 
T 
1 
- 
T 
( ) 
0 = -  
R 
1 
- 
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T 
E 
I I 
I 
I I 
I 
E () 
0 = - I 
I I 
 
I 1 
= 
I 1 
= 
I 1 
= 
The second term of this formulation is calculable in an exact way, since it utilizes only them 
modes (with free interfaces) identified. 
Lastly, let us note that in the method of Mac Neal, only the contribution of the modes of fastener to the 
nodes  
of interface is necessary. 
The resolution of the system [éq 3.3-4] enables us to determine the Eigen frequencies of the structure 
total and generalized co-ordinates of the clean modes. Increase with the expression of the modes 
clean in the physical bases of the substructures is done by the following relation: 
qk 
K K 
1  
R K (0) Bk Tf K 
= 
1 + 
E 
1 
L1 
The method of Mac Neal thus succeeds, in the case of the calculation of the modes of the total structure, 
with one 
problem with the eigenvalues of reduced size. Matrices of mass and rigidity exits of under 
structuring are symmetrical. Two methods are actually proposed, according to whether one takes in 
count or not residual flexibility. The literature on the subject tends to show that the use of 
residual flexibility is essential to obtain reliable results [bib2]. 
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3.4  
Implementation in Code_Aster 
3.4.1 Study of the substructures separately 
The base of projection of each substructure is made up of dynamic clean modes and of 
static deformations. 
The dynamic clean modes of the substructure are calculated with the traditional operators of 
Code_Aster: MODE_ITER_SIMULT [U4.52.02] and MODE_ITER_INV [U4.52.01]. In the case of 
under-structuring of Craig-Bampton, the interfaces of connection must be blocked. This is carried out 
with operator AFFE_CHAR_MECA [U4.25.01]. 
Operator DEFI_INTERF_DYNA [U4.55.03] allows to define the interfaces of connection of 
substructure. In particular, one specifies the type of the interface, which can be is “CRAIGB” 
(Craig-Bampton), either “MNEAL” (Mac Neal), or finally “NONE”. 
Operator DEFI_BASE_MODALE [U4.55.04] allows to calculate the base of complete projection of 
substructure. Thus, the dynamic modes calculated previously are recopied. In addition, them 
static deformations are calculated according to the type defined in operator DEFI_INTERF_DYNA 
[U4.55.03]. If the type is “CRAIGB”, one calculates the constrained modes of the interfaces of 
substructure. If the type is “MNEAL”, one calculates the modes of fastener of the interfaces of 
substructure. If the type is “NO”, one does not calculate static deformation, which corresponds to 
a base of the type Mac Neal without static correction. 
Operator MACR_ELEM_DYNA [U4.55.05] calculates the generalized matrices of rigidity and mass of 
the substructure, as well as the matrices of connection. 
3.4.2 Assembly and resolution 
The model of the complete structure is determined by operator DEFI_MODELE_GENE [U4.55.06]. In 
private individual, each substructure is defined by the macronutrient which corresponds to him (resulting 
from 
MACR_ELEM_DYNA) and the swing angles which make it possible to direct it. The connections enters 
substructures are defined by the data of the names of the two implied substructures and those 
of the two interfaces in opposite. 
The classification of the complete generalized problem is carried out by operator NUME_DDL_GENE 
[U4.55.07]. The matrices of generalized mass and stiffness of the structure supplements are 
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assemblies according to this classification with operator ASSE_MATR_GENE [U4.55.08]. 
The calculation of the clean modes of the complete structure is carried out by the operators 
MODE_ITER_SIMULT [U4.52.02] or MODE_ITER_INV [U4.52.01]. 
3.4.3 Restitution on physical basis 
The restitution of the results on the initial grids of the substructures is carried out by the operator 
REST_BASE_PHYS [U4.64.01]. 
To decrease the duration of the graphic treatments during visualizations, it is possible to create one  
coarse grid by operator DEFI_SQUELETTE [U4.75.01]. This grid, ignored during calculation, 
is used as support with visualizations. 
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4  
Modal calculation by cyclic dynamic under-structuring 
4.1 Introduction 
In this chapter, we make the synthesis of the methods of cyclic dynamic under-structuring. 
We give a definition of the cyclic repetitivity (or cyclic symmetry) and we present them 
principal incidences of this property on the dynamic behavior of the structure (circles and 
nodal diameters, double modes). Then, we expose, in a rather detailed way, both 
methods of cyclic dynamic under-structuring, implemented in Code_Aster.  
improvements were made to the traditional methods, by the taking into account of the presence of 
nodes of the axis. 
These methods suppose that the grid of the basic sector is such as its traces on the interfaces 
right-hand side and left are coinciding (compatible grids). 
Notations specific to the cyclic under-structuring: 
NR 
= 
a number of sectors 
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= 
angle formed by the basic sector 
 
= 
dephasing AND element 
OZ 
= 
cyclic axis of symmetry 
 
= 
rotation of angle and axis OZ 
Re (Z) 
= 
real part of complex Z 
Im (Z) 
= 
imaginary part of complex Z 
 
= 
stamp passage of the nodes of right-hand side to the nodes of left 
 
= 
stamp change of sector for the nodes of the axis 
has 
Note: 
The index 
D 
is relative 
with the degrees of freedom of right-hand side 
" 
G 
" 
" 
with the degrees of freedom of left 
" 
has 
" 
" 
with the degrees of freedom of the axis 
" 
1 
" 
" 
with the identified clean modes 
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" 
2 
" 
" 
with the unknown clean modes 
4.2 Repetitivity  
cyclic 
4.2.1 Definition 
It is said that a structure is with cyclic repetitivity of axis OZ, if there is an angle 0 < < such as 
structure is geometrically and mechanically invariant by rotation around OZ of this angle. 
If is the smallest angle checking this property, then any angular portion of angle of 
structure is called “basic sector” (or “irreducible sector”). 
The total structure is then made up of NR sectors: 
2 
NR =  
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4.2.2 Propagation  
of wave 
One notes the rotation of axis OZ and angle defined in R3. 
Let us consider a basic sector of a structure with repetitivity of axis OZ, and two similar points of 
two contiguous sectors G and D: 
G 
OZ 
 
D 
One with the relation between the points G and D: 
G = (D) 
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It is noticed that the structure is left invariant by any rotation m (with m whole). 
One can note that all rotations leaving the invariant structure (geometrically and 
mechanically) are in a finished number: 
m m {,  
0 , 
1…, NR -} 
1 
Let us consider a scalar variable of state of the mechanical system studied U, and Z the associated 
complex: 
U = Re (Z) = Re U 
(+ jV) 
It is possible to show, by the theory of the finished groups, the following relation for the points D and G 
[bib5]: 
m  
NR 
0 1 
Z G = E jm 
{ , ,..., } 
( ) 
Z (D) 
2 
such as  
 
éq 4.2.2-1 
Note: 
· the quantities are expressed in the cylindrical reference mark (R, Z), 
· for an axisymmetric structure (particular case of cyclic repetitivity), m is called 
index of FOURIER, 
· in the case of a wave planes not deadened, E jm is complex dephasing between two 
contiguous sectors; the equation means that this dephasing can take only one number 
finished known values, 
· it is possible to limit the number of the values of m to the values ranging between 0 and 
NR/2; indeed, it is shown that the wave associated with dephasing NR - m is identical to 
that associated dephasing m, but progresses in opposite direction [bib5]. 
If NR is even: m = 0 and m = NR/2 correspond to real modes: 
m = 0 
 
D 
 
U ((D)) = U (D) 
m = NR/2  
D 
 
U ((D)) = U 
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- (D) 
All the other values of m correspond to modes appearing per orthogonal pairs with 
a given frequency (one speaks then about degenerated modes): 
U = Re (Z) and V = Im (Z) 
Handbook of Reference 
R4.06 booklet: Under-structuring 
HP-51/98/016/A 

Code_Aster ® 
Version 
4.0 
Titrate:  
Modal calculation by traditional and cyclic dynamic under-structuring 
Date:  
08/12/98 
Author (S): 
G. ROUSSEAU, C. VARE 
Key: 
R4.06.02-B 
Page: 
21/34 
If NR is odd: m = 0 corresponds to a real mode not degenerated: 
m = 0  
D 
 
U ((D)) = U (D) 
All the other values of m correspond to degenerated modes appearing per pairs 
orthogonal: 
U = Re (Z) and V = Im (Z) 
4.2.3 Concept of diameters and nodal circles 
The cyclic property of repetitivity, translated by the equation [éq 4.2.2-1] makes it possible to know a 
priori 
pace of the clean modes of the structure, which strongly approaches what one can observe 
for axisymmetric structures. If one considers a clean mode of a structure with symmetry 
cyclic, all the sectors have the same deformation but with an amplitude function of their position 
angular, which one can translate by a dephasing between substructures. This mode can be classified 
starting from the number of nodal diameters and circles which characterize it. A nodal diameter (which 
is not 
confused with a diameter that if the structure is axisymmetric) is a line of points of 
null movement passing by the axis of repetitivity; a nodal circle (which with the circular form only for 
the axisymmetric structures) is a line of points of null movement, it even with repetitivity 
cyclic. It is noted that it is the deformation of the mode of the substructure on which the mode is pressed 
structure supplements which determines the number of circle (S) nodal (with). On the other hand, the 
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number of 
diameter (S) nodal (with) is defined by dephasing between two consecutive sectors. 
Deformation 
Phase enters 
Deformation 
Family 
sector 
sector 
overall 
NR sectors 
0 circle 
Inflection 1 
in phase 
0 diameter 
N/2 sectors 
0 circle 
Inflection 1 
in phase  
1 diameter 
NR sectors 
1 circle 
Inflection 2 
in phase 
0 diameter 
N/secteurs 
1 circle 
Inflection 2 
in phase 
1 diameter 
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4.2.4 Boundary conditions 
Let us consider a structure with cyclic repetitivity, and two basic sectors successive of this one: 
G 
k+1 
D 
Rk+1 
Interface 
G 
K 
D 
Rk 
The connections between sectors being regarded as perfect, there are the conditions between the sectors: 
qk = qk+1 
G 
D 
continuity of displacements 
éq 4.2.4-1 
F K = - F k+1 
L 
L 
principle of action - reaction 
G 
D 
The exhibitor indicates the number of the sector considered. The preceding conditions of connection are 
expressed in the total reference mark. 
By the formula [éq 4.2.2-1] relating to the propagation of wave in the structure and while posing: =  
m, 
one a: 
{qk+} 
1 
J 
1 = E 
{qk} 
K + 
K 
{F k+} 
1 
J 
1 = E 
{F K} 
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L 
K + 
L K 
The index K means that the quantity is expressed in the reference mark related to the sector K: Rk. 
The equations of connection [éq 4.2.4-1], written in the reference mark related to the sector K thus utilize 
stamp passage of the sector K to the sector K + 1. This matrix is not other than the matrix of 
rotation of the degrees of freedom of right-hand side towards those of left, is the matrix of rotation of 
axis OZ and 
of angle, noted: . 
We thus obtain the following system: 
{qk} 
J 
= E { 
qk} 
G K 
D K 
éq 4.2.4-2 
{F K} 
J 
= - E { 
F K} 
L 
K 
L 
K 
G 
D 
The boundary conditions [éq 4.2.4-2] make it possible to calculate the clean modes of the whole of 
structure starting from one only basic sector. 
This formalization can be generalized with the case of the nodes of the axis. One obtains then: 
{qk} 
J 
= E {qk} 
K has 
has 
K has 
{F K} 
J 
= - E {F K} 
L 
K 
has 
L 
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K 
has 
has 
It is checked that if is nonnull, the displacement of the nodes of the axis is null (in fact, one notes then 
presence of one or several nodal diameters). 
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4.3  
Methods of cyclic under-structuring  
4.3.1 Method of Craig-Bampton 
One considers the problem with the eigenvalues of the total structure expressed on the basic sector. 
This last is thus subjected to the bonding strengths which are applied to him by the contiguous sectors. 
By 
elsewhere, the basic sector checks the equations of connection [éq 4.2.4-2]. We thus have: 
(K - 2M) Q = F L 
Q 
J 
G = 
 
E 
Q 
D 
éq 4.3.1-1 
F 
J 
L = - 
 
E 
F 
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L 
G 
D 
We suppose that the base is made up of the dynamic clean modes of the basic sector 
embedded with its interfaces, noted, and of the constrained modes relating to the degrees of freedom of 
interfaces 
right-hand side and left, noted D and G. 
Taking into account the fact that the only contribution to displacements of a degree of freedom of 
interface 
comes from the constrained mode corresponding, the transformation of RITZ can be written: 
Q  
 
 
I  
I  
Q = Q 
D = [D G] Q 
D =  
Q 
 
Q 
 
G  
G  
Consequently, by using the transformation of RITZ, the system of equations [éq 4.3.1-1] becomes: 
 
 
 
 
0 
I  
T  
2 
 
 
 
(K - M) Q 
D = [D G] fL  
D 
Q 
 
F 
 
 
G  
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Lg  
Q 
J 
G = 
 
E 
Q 
D 
éq 4.3.1-2 
F 
J 
L = - 
 
E 
F 
L 
G 
D 
The surmounted matrices of a bar are projections of the matrices finite elements on the basis 
modal of the basic sector (generalized matrices). 
One can show that the constrained modes are orthogonal with the normal modes with respect to 
stamp rigidity [bib5]. Thus, the corresponding products are null. 
Let us adopt the following notations: 
m: index relating to the clean modes of the sector, 
D: index relating to the constrained modes of the right interface, 
G: index relating to the constrained modes of the left interface. 
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One can thus write these matrices in the form: 
K 
 
0 
0  
M 
M 
M 
 
mm 
 
mm 
Mandelevium 
Mg  
K = 0 
K 
K 
dd 
dg  
M = M 
M 
M 
DM 
dd 
dg  
0 
K 
K  
M 
M 
M  
 
Gd 
gg  
gm 
Gd 
gg  
Taking into account their definition, the constrained modes check: 
 
 
 
 
 
di 
di 
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gi 
gi 
 
 
 
 
 
 
 
 
 
D = dd = Id 
 
 
 
G = Gd = 0  
0  
 
Id  
dg 
 
 
gg 
 
 
 
 
 
The second member of the matric equation [éq 4.3.1-2] becomes: 
 
 
 
 
I 
0 
0 
0 
0 
 
 
di Id 0 F 
L = F 
L  
D 
D 
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gi 
0 
Id F 
L 
F 
L 
 
 
G 
G 
 
 
 
 
By taking account of these notations, let us develop the matric equation checked by the basic sector: 
K 
2 
mm I 
- (M + M Q + M Q 
mm I 
Mandelevium D 
Mg G) = 0 
K Q + K Q 
2 
dd D 
dg G - (M + M Q + M Q 
DM I 
dd D 
dg G) = F Ld 
K Q + K Q 
2 
Gd D 
gg G - (M + M Q + M Q 
gm I 
Gd D 
gg G) = F Lg 
Q 
J 
= E Q 
G 
D 
F 
J 
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= - E F 
L 
L 
G 
D 
Let us introduce the two last equations of this system into the three first: 
(K -2M 
2 
J 
mm 
mm) I 
- (M + E M 
Mandelevium 
Mg) qd = 0 
(K 
J 
+ E K 
2 
J 
dd 
dg) qd - (Mdm I 
+ (M + E M 
dd 
dg) qd) = fLd 
(K 
J 
+ E K 
2 
J 
J 
Gd 
gg) qd - (Mgm I 
+ (M + E M 
Gd 
gg) qd) = - E 
F 
Ld 
The association of the two last equations makes it possible to eliminate the terms from the bonding 
strengths. One 
leads then to a problem with the eigenvalues final which one can put in the form: 
(~ 
2 ~ 
() -  
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())~ 
K 
M 
Q = 0 
éq 4.3.1-3 
Handbook of Reference 
R4.06 booklet: Under-structuring 
HP-51/98/016/A  

file:///Z|/process/refer/refer/p1250.htm (26 of 26)10/2/2006 2:53:14 PM



file:///Z|/process/refer/refer/p1260.htm

Code_Aster ® 
Version 
4.0 
Titrate:  
Modal calculation by traditional and cyclic dynamic under-structuring 
Date:  
08/12/98 
Author (S): 
G. ROUSSEAU, C. VARE 
Key: 
R4.06.02-B 
Page: 
25/34 
With: 
~ I  
Q =  
Q 
D  
~ 
K 
mm 
0 
 
K =  
I 
- I T 
T 
 
0 
K 
 
dd + E K dg + E 
K Gd + K 
 
gg  
I 
~ 
 
M 
M 
mm 
Mandelevium + E M 
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M =  
Mg 
 
M 
I T 
I 
I T 
T 
DM + - 
E 
M 
M 
gm 
dd + E Mdg + - 
E 
Mgd + M 
 
gg  
The matrices of mass and rigidity of the final problem are square. Eigenvalues 
solutions are thus real. In addition, the problem is of reduced size. 
The resolution of the problem to the complex eigenvalues [éq 4.3.1-3] makes it possible to determine 
them 
complex generalized co-ordinates of the clean modes of the total structure. Values 
complexes of displacements of the basic sector in the total mode are given, from 
generalized co-ordinates, by the following formula: 
Q = [  
J 
~ 
D + E D] Q 
éq 4.3.1-4 
To determine the actual values of displacements, it is necessary to distinguish three cases according to 
values' from 
dephasing AND element: 
Case n° 1: = 0: 
The displacements Q given by the formula [éq 4.3.1-4] are then with actual values. All sectors 
deformed even and vibrate in phase. There is then only one real clean mode: 
Q = Re (Q) = Q 
éq 4.3.1-5 
Case n°2: 0 < < (NR + 1)/2: 
The displacements provided by the formula [éq 4.3.1-4] are with complex values. With each one of these 
complex modes correspond two orthogonal degenerated real modes: 
Q = Re (Q) 
Q = Im (Q 
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1 
2 
) 
éq 4.3.1-6 
Case n°3: = NR/2 (=> NR is even): 
The displacements provided by [éq 4.3.1-4] are then with complex values. There are NR/2 diameters 
nodal, two contiguous sectors vibrate then in opposition of phase. Each complex mode is with 
the origin of only one real mode: 
Q = Re (Q) = - Im (Q) 
éq 4.3.1-7 
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Taking into account of the nodes of the axis: 
One supposes in this paragraph that the degrees of freedom carried by the nodes of the axis, with same 
titrate that the nodes of interfaces right-hand side and left, were blocked for the calculation of the modes 
dynamic of the basic sector and were the subject of calculations of constrained modes. 
The base of projection is thus made up of the dynamic clean modes of the basic sector 
embedded with its interfaces, noted, and of the constrained modes relating to the degrees of freedom of 
interfaces 
right-hand side, left and axis, noted D, G and A. 
As we saw in chapter 4.2.4, if is nonnull, the displacement of the nodes of the axis is 
no one (presence of at least a nodal diameter). The taking into account of the nodes of the axis thus does 
not have a direction  
that if = 0. In this demonstration, we will limit ourselves to this case. 
The problem with the eigenvalues of the total structure and equations of connection, expressed on this 
base are worth then: 
I  
0  
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Q 
 
F 
 
 
D  
Ld  
(K - 2M) = D G has  
 
Q 
[ 
] F 
G  
Lg  
éq 4.3.1-8 
Q  
F 
has  
 
HQ = Q 
 
and 
Q 
D 
= Q has 
, F 
has has 
L = - F 
 
and 
F 
L 
L = - F 
L has 
G 
D 
has 
has 
Let us adopt the following notations: 
m: index relating to the clean modes of the sector, 
D: index relating to the constrained modes of the right interface, 
G: index relating to the constrained modes of the left interface, 
a: index relating to the constrained modes of the interface centers. 
One can thus write the matrices in the form: 
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K 
mm 
0 
0 
0  
M 
M 
M 
M 
mm 
Mandelevium 
Mg 
my  
0 K 
K 
K  
M 
M 
M 
M  
K =  
dd 
dg 
da  
M DM 
dd 
dg 
da  
 
= 
0 
K 
K 
K  
M 
M 
M 
M  
 
Gd 
gg 
ga  
gm 
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Gd 
gg 
ga  
0 
K 
K 
K 
M 
M 
M 
M 
 
 
AD 
Ag 
aa  
 
amndt 
AD 
Ag 
aa  
Taking into account their definition, the constrained modes check: 
di  
 
di 
gi  
gi  
have have  
 
 
Id 
 
 
 
 
 
dd 
Gd 
0 
 
0 
 
AD 
 
 
 

file:///Z|/process/refer/refer/p1260.htm (6 of 28)10/2/2006 2:53:15 PM



file:///Z|/process/refer/refer/p1260.htm

 
 
 
 
 
 
D = 
= 
G = 
= 
 
 
= 
= 
 
 
 
0  
 
has 
 
dg 
gg 
Id  
Ag 0  
 
 
 
 
 
 
 
 
 
 
0 
 
da  
 
 
ga  
0  
 
 
 
aa  
Id  
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The second member of the matric equation [éq 4.3.1-8] becomes: 
 
0 0 
I 
0 
0 
0  
 
 
F 
 
 
F 
 
 
di 
Id 
0 
0 L L  
D 
D 
 
 
 
= 
 
F 
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F 
 
 
gi 
0 
Id 
0 
L 
L 
G G 
 
 
 
 
F F  
have 
0 
0 
Id L 
L 
has has  
By taking account of these notations, let us develop the matric equation checked by the basic sector: 
K 
2 
mm I 
- (M + M Q + M Q + M Q 
mm I 
Mandelevium D 
Mg G 
my A) = 0 
K Q + K Q + K Q 
2  
dd D 
dg G 
da has - (M + M Q + M Q + M Q 
DM I 
dd D 
dg G 
da has) = F Ld 
K Q + K Q + K Q 
2 
Gd D 
gg G 
ga has - (M + M Q + M Q + M Q 
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gm I 
Gd D 
gg G 
ga has) = F Lg 
K Q + K Q + K Q 
2 
AD D 
Ag G 
aa has - (M + M Q + M Q + M Q 
amndt I 
AD D 
Ag G 
aa has) = F 
HQ = Q 
and 
F 
D 
L = - F L 
G 
D 
qa = Q 
and 
F 
has has 
L = - F 
L has 
has 
has 
Let us replace, in the first four equations of the system HQ and F L by their expressions 
G 
respective, according to qd and F L and let us rewrite, in another form, the two last 
D 
equations of the system, relating to the nodes of the axis. 
(K -2M 
2 
mm 
mm) I 
- ({M + M 
Mandelevium 
Mg) Q + M Q 
D 
my A} = 0 
(K +K 
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2 
dd 
dg) Q + K Q 
D 
da has -  
({Mdm I + (M +M 
dd 
dg) qd) + M Q 
da has} = fLd 
(K +K 
2 
Gd 
gg) Q + K Q 
D 
ga has -  
({Mgm I + (M +M 
Gd 
gg) qd) + M Q 
ga has} = - F 
Ld 
(K +K 
2 
AD 
Ag) Q + K Q 
D 
aa has -  
({Mam I + (M +M 
AD 
Ag) qd) + M Q 
aa has} = fLa 
Q 
Q 
has 
has = (1+ A) 2 
(T 
1+ A) fL = 0 
has 
One replaces, in the first four equations of the system qa by his given expression 
in before last equation. In addition, the association of the second and the third equation 
allows to eliminate the terms from the bonding strengths on the right. Lastly, the fourth equation is 
multiplied 
by (1+ T) 
has, which makes it possible to eliminate the terms from the bonding strengths to the axis. One leads 
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then to one 
problem with the eigenvalues final which one can put in the form: 
~ 
~ 
( - 2 )~ 
K 
M Q = 0 
éq 4.3.1-9 
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With: 
 
I 
~  
 
Q = qd  
Q 
/  
has 2 
 
 
K 
mm 
0 
0 
 
~ 
K = 0 
K 

file:///Z|/process/refer/refer/p1260.htm (12 of 28)10/2/2006 2:53:15 PM



file:///Z|/process/refer/refer/p1260.htm

T 
T 
T 
dd + K dg + K Gd + K gg 
(Kda + Kga) (1+a) 
 
 
 
T 
T 
0  
1  
 
1  
1  
 
 
(+ has) (Kad +Kag) 
(+ has) Kaa (+ has)  
 
M 
M 
mm 
Mandelevium + M 
 
M 
Mg 
my (1+ A) 
 
 
 
~ 
M = M 
T 
T 
T 
T 
DM + M 
M 
gm 
dd + Mdg + M Gd + M gg 
(Mda + Mga) (1+a) 
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T 
T 
T 
1  
1  
 
1  
1  
 
(+ has) Mam 
(+ has) (Mad +Mag) 
(+ has) Maa (+ has)  
Displacements of the axis, divided by two, make it possible to preserve at the matrices of rigidity and of 
mass their square character. One restores modal complex displacements by the formula 
following: 
Q = [  
J 
~ 
D + E  
D 2a] Q 
4.3.2 Method of Mac Neal 
One considers the problem with the eigenvalues of the total structure expressed on the basic sector. 
This last is thus subjected to the bonding strengths which are applied to him by the contiguous sectors. 
By 
elsewhere, the basic sector checks the equations of connection [éq 4.2.4-2]. We thus have: 
(K - 2M) Q = F L 
Q 
J 
G = 
 
E 
Q 
D 
éq 4.3.2-1 
F 
J 
L = - 
 
E 
F 
L 
G 
D 
The modal base used to reduce dimensions of the problem to be solved, is a modal base with 
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free interfaces including/understanding of the dynamic modes and the modes of fastener relating to the 
degrees of 
freedom of the interfaces right and left. Let us suppose that the degrees of freedom of the basic sector are 
ordered in the following way: 
Q  
I  
degrésde freedom internal 
Q = Q 
D degrésde freedom of the right interface 
Q 
 
 
degrésde freedom of the left interface 
G  
Are data base and Bg, the rectangular matrices of extraction such as: 
Q = B Q and Q = B Q 
D 
D 
G 
G 
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The boundary condition on displacements becomes with these notations: 
B Q 
J 
= E B Q B Q = 0 with B 
J 
= E  
 

file:///Z|/process/refer/refer/p1260.htm (15 of 28)10/2/2006 2:53:15 PM



file:///Z|/process/refer/refer/p1260.htm

B 
 
- B 
G 
D 
dg 
dg 
D 
G 
éq 4.3.2-2 
For the forces, the boundary condition becomes: 
F = BTf + BTf 
F 
T 
- J T T 
T 
L 
D L 
L = (B - E 
B 
G 
D) F 
= - B F 
L 
G 
L 
dg L 
G 
D 
G 
G 
Let us regard as base, for the transformation of RITZ, the whole of the clean modes 
dynamic of the basic sector, by distinguishing the identified modes and the unknown modes: 
1  
Q = [1 2]  
éq 4.3.2-3  
2  
where index 1 (resp. 2) refers to the known modes (resp. unknown). In the continuation, us 
will suppose that the clean modes are normalized with the unit modal mass. 
By replacing Q by its expression according to the clean modes, and while multiplying on the left by 
transposed of the matrix of the modes, the matric equations [éq 4.3.2-1] and [éq 4.3.2-2] become: 
( 
2 
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-  
) 
T 
1 
Id 1 = 1 F L 
( 
2 
-  
) 
T 
2 
Id 2 = 2 F L 
éq 4.3.2-4 
Bdg11 + Bdg22 = 0 
where is the matrix of generalized rigidities (the generalized masses are unit). 
One can thus draw a formulation from it from 2: 
 
2 
1 T 
2 = 2 - 
- 
( 
 
) 
Id 
2 fL 
éq 4.3.2-5 
Consequently, one can eliminate 2 from the system of equations [éq 4.3.2-4]. One obtains the problem 
then with 
eigenvalues according to: 
( 
2 
- 
) 
T T 
1 
Id 1 + 1 B F 
dg L = 0 
G 
B 
T T 
dg  
2 
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1 
- 
11 - Bdg ( 
2 - I) 
2 
D 
2 B F 
dg L = 0 
G 
The final system to solve can be written: 
~ 
~ 
( - 2 )~ 
K 
M Q = 0 
éq 4.3.2-6 
With: 
1  
~  
 
Q = F 
 
 
 
Lg  
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The forms of the matrices of rigidity and mass are: 
T T 
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~ 
1 
B 
 
1 
dg 
~ 
Id 
 
0 
K =  
 
M 
T 
= 
B 
 
 
dg 
 
0 
0 
1 
- B R () B 
 
dg 
E 
dg  
 
 
The matrix [R ()] 
E  
is the matrix of residual dynamic flexibility of the not identified modes: 
R () = ( 
2 
1 
2 2 - Id - 
T 
E 
) 2 
One approximates residual dynamic flexibility by his static contribution, by taking of account them 
modes of fastener. Then, the formula of restitution which makes it possible to calculate the complex 
values of 
displacements starting from the generalized co-ordinates of the solutions modes of [éq 4.3.2-6] is 
following: 
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Q = [ 
T ~ 
1 
- R (0) B 
E 
dg] Q 
The actual values of displacements are determined, as for the method of Craig-Bampton, 
by the formulas [éq 4.3.1-5], [éq 4.3.1-6], [and éq 4.3.1-7]. 
Taking into account of the nodes of the axis: 
We suppose, in this paragraph, that the degrees of freedom carried by the nodes of the axis, with 
even title that the nodes of interfaces right-hand side and left, were the subject of calculations of modes 
of fastener. 
We limit ourselves to = 0 who is the only case modified by the taking into account of the nodes of the 
axis 
(§ 4.2.4 and 4.3.1). We thus have: 
(K - 2M) Q = F L 
HQ = Q 
 
and F 
D 
L = - F 
L 
G 
D 
Q 
éq 4.3.2-7 
= Q has 
has has (1 - has) qa = 0 
F 
F 
T 
 
L = - F 
L F L has =  
 
has 
has 
has 
(1 - has) 2 
The organization of the degrees of freedom of the basic sector is similar to that of the preceding chapter: 
IQ  
degrésde freedom internal 
Q 
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D  
degrésde freedom of the right interface 
Q =  
Q 
G degrésde freedom of the left interface 
Q 
has  
degrésde freedom of the interface centers 
Are Ba the rectangular matrix of extraction of the degrees of freedom of the axis: 
Q = B Q 
has 
has 
The boundary condition on displacements of the axis becomes with these notations: 
(1-a) Baq = 0 Baaq = 0 with Baa = (has -) 1Ba 
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For the forces, the boundary condition becomes: 
F 
F = BTf 
+ BTf + BTf 
F = - BT F + BT 
T 
 
L 
G L 
D L 
L has 
L 
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dg L 
1 has -  
G 
D 
has 
G 
(A) 2 
F 
F = - BT F - BT 
L 
dg L 
aa 
G 
2 
The base of the transformation of RITZ is made up of the whole of the free clean modes of 
basic sector, by distinguishing the identified modes (index 1) and the unknown modes (index 2) definite 
by the equation [éq 4.3.2-3]. 
The equation [éq 4.3.2-7], written in this base takes the following form: 
( 
2 
- 
) 
T 
1 
Id 1 = 1 fL 
( 
2 
- 
) 
T 
2 
Id 2 = 2 fL 
éq 4.3.2-8 
Bdg11 + Bdg22 = 0 
Baa11 + Baa22 = 0 
The second equation makes it possible to determine 2 (cf [éq 4.3.2-5]), which can thus be eliminated 
from 
system. One then obtains the problem with the eigenvalues according to: 
F 
( 
2 
- 
) 
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T T 
T T 
 
1 
Id 1 + 1 B F 
dg L + 1 Baa 
= 0 
G 
2 
F 
B 
T 
T 
 
dg 1 - B 
R ( 
dg 
E) B 
F 
dg L - B 
R ( 
dg 
E) 
1 
Baa 
= 0 
G 
2 
F 
B 
T 
T 
 
aa 1 - B 
R ( 
aa 
E) B 
F 
dg L - B 
R ( 
aa 
E) 
1 
Baa 
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= 0 
G 
2 
Thus, by defining the following unknown vector: 
 
 
1 
~  
 
Q = fL  
G 
F 
 
/  
 
2 
 
 
The following final system is obtained: 
~ 
~ 
( - 2 )~ 
K 
M Q = 0 
éq 4.3.2-9 
with: 
 
T T 
T T 
1 
B 
1  
dg 
B 
 
1 
aa 
Id 0 
 
0 
~ 
 
 
T 
T 
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~ 
 
 
K = B 
dg1 - B R () B 
dg 
E 
dg 
- B R () B 
dg 
E 
aa  
M = 0 0  
0 
B 
 
T 
T 
aa  
 
 
0 
0 0 
1 
- B R () B 
aa 
E 
dg 
- B R () B  
 
 
 
aa 
E 
aa  
 
 
Division by two of the bonding strengths applied to the axis makes it possible to preserve at the matrices 
of 
rigidity and of mass their square character. 
Handbook of Reference 
R4.06 booklet: Under-structuring 
HP-51/98/016/A 

Code_Aster ® 

file:///Z|/process/refer/refer/p1260.htm (25 of 28)10/2/2006 2:53:15 PM



file:///Z|/process/refer/refer/p1260.htm

Version 
4.0 
Titrate:  
Modal calculation by traditional and cyclic dynamic under-structuring 
Date:  
08/12/98 
Author (S): 
G. ROUSSEAU, C. VARE 
Key: 
R4.06.02-B 
Page: 
32/34 
One restores modal complex displacements by the following formula: 
Q = [ 
T 
T 
1 
- R 
B 
E (0) dg 
- 2R (B 
E 0) 
~ 
aa] Q 
4.4  
Implementation in Code_Aster 
The treatment of the basic sector is identical to that of the substructures in the under-structuring 
traditional. It utilizes the operators: MODE_ITER_SIMULT [U4.52.02] or MODE_ITER_INV 
[U4.52.01], DEFI_INTERF_DYNA [U4.55.03] and DEFI_BASE_MODALE [U4.55.04]. 
The clean modes of the structure with cyclic symmetry are calculated by operator MODE_ITER_CYCL 
[U4.52.03] according to the base of projection of the basic sector previously defined and of 
a number of sectors of the complete structure. 
The restitution of the results on physical basis is identical to the traditional under-structuring. It makes 
to intervene the operator REST_BASE_PHYS [U4.64.01] and possibly operator DEFI_SQUELETTE 
[U4.75.01]. 
5 Conclusion 
The principles of under structuring make it possible to expose the transformation of RITZ and 
modal recombination to lead to the modal synthesis which integrates these two techniques. Rules 
of liaisonnement between substructures are clarified. 
Two methods were developed in Code_Aster: that of Craig-Bampton and that of Mac 
Neal. We present, here, their characteristics, as well in the definition of the initial modal base, 
that in its exploitation. 
After having exposed the definition of a structure to cyclic symmetry and the properties which result 
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from this, 
we presented the methods of cyclic under-structuring implemented in 
Code_Aster. They appear very interesting for the calculation of the clean modes of a structure with 
cyclic symmetry, such as the rotors of the revolving machines of which they benefit fully from 
geometrical and mechanical characteristics. 
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Harmonic response by under-structuring 
traditional dynamics 
Summary: 
After having made some recalls concerning the methods of modal synthesis and having introduced the 
base of 
Harmonic Craig-Bampton, we present the theoretical bases of the methods of calculation of answer 
harmonic by under-structuring. Initially, we establish the dynamic equations 
checked by the substructures separately. Then, the taking into account of the conditions of assembly 
enters 
substructures, enables us to determine the dynamic equations checked by the total structure. In 
private individual, we stick to well highlighting the treatment of the matrix of damping and of 
vector of the external efforts, which intervene in the harmonic calculation of response per under-
structuring. 
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1 Introduction 
After having developed in Code_Aster of the modules of modal calculation by under-structuring of 
which 
the theoretical bases are presented in reference [R4.06.02], the operators of calculation of answer 
harmonic by modal synthesis were implemented. 
The methods of modal synthesis which consist in condensing the degrees of freedom resulting from  
modeling finite elements on fields of displacement particular to each substructure, 
translate by important profits into computing times and place memory. 
For the harmonic problems, the studied system is subjected to a force spatially unspecified, 
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but sinusoidal in time. The form of the loading, the frequency of excitation and properties 
modal, play each one an essential role. It is also necessary to take account of dissipation in 
solid, which one can translate by the introduction of a matrix of damping. Method of calculation 
harmonic by under-structuring, programmed in Code_Aster, which makes it possible to replace it 
total problem by a simplified problem, proceeds in four times. First of all, of the clean modes 
and of the static deformations are calculated on each substructure composing the system. 
Then, the total problem is projected on these fields, and one takes account of the couplings between 
substructures, on the level of their interfaces. One can then solve the problem classically 
tiny room obtained. Finally, it any more but does not remain to deduce the overall solution by 
reconstitution from it. 
General notations: 
 
: 
Pulsation (rad.s-1) 
J 
: 
Imaginary pure unit (j2 = -) 
1 
NS 
: 
A number of substructures 
M 
: 
Stamp of mass resulting from modeling finite elements 
K 
: 
Stamp rigidity resulting from modeling finite elements 
C 
: 
Stamp damping exit of modeling finite elements 
Q 
: 
Vector of the degrees of freedom resulting from modeling finite elements 
F ext.: Vector of the forces external with the system 
F L 
: 
Vector of the bonding strengths applied to the system 
 
: 
Stamp vectors of the base of the substructures 
 
: 
Vector of the generalized degrees of freedom 
B 
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: 
Stamp extraction of the degrees of freedom of interface 
L 
: 
Stamp connection 
Note: 
The exhibitor K characterizes the sizes relating to the substructure S K and the sizes 
generalized are surmounted by a bar: for example M K is the matrix of generalized mass 
substructure S K. 
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2  
Harmonic response by under-structuring 
2.1  
Base of harmonic Craig-Bampton 
Methods of modal synthesis (cf [R4.06.02]), whatever their applicability 
(modal, harmonic and/or transitory) the techniques of under-structuring associate those of 
modal recombination. To carry out a calculation by under-structuring means that the structure is cut out 
in several elements and that its displacement is calculated like the response to the bonding strengths 
which 
connect to the other components and the external forces which are applied to him. In addition, 
response of each substructure is calculated by modal recombination. Thus, all components 
are defined by a base of projection made up of clean modes and modes of interface. Two 
bases of projection introduced into Code_Aster were presented in the documentation of 
reference [R4.06.02]: 
· bases of Craig-Bampton, 
· bases of Mac Neal without/with static correction. 
A third base of projection was introduced within the framework of the developments concerning 
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harmonic calculation of response per traditional dynamic under-structuring. It is about the base of 
Harmonic Craig-Bampton. 
We present this new base of projection using the following simple example: 
q1 
q2 
I 
I 
q1 
2 
J 
Q J 
1 
Substructure 1  
Substructure 2 
2 
The vector of the degrees of freedom of the substructure is characterized by one 
qk 
 
 
exhibitor who defines the number of the substructure, and an index which allows 
qk 
I 
=  
qk 
to distinguish the degrees of freedom intern (index I), of the degrees of freedom of 
J 
 
 
border (index J). 
The harmonic base of Craig-Bampton consists of modes specific to interfaces blocked and of 
harmonic constrained modes [bib6]. The latter are joined to the normal modes with interfaces 
blocked to correct the effects due to their boundary conditions. A harmonic constrained mode is 
defined by the response of the substructure not deadened to a harmonic displacement, of amplitude unit 
and of frequency given, imposed on a degree of freedom of connection, the other degrees of freedom of 
connection being blocked. 
Substructure 1 
Substructure 2 
Modes specific to blocked interfaces 
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Q = E J T Q = E J T 
Substructure 1 
Substructure 2 
Harmonic constrained modes 
This modal base is more particularly appropriate to the problems of interactions fluid-structures, 
for which the static loadings applicable in Code_Aster (are not not taken in 
count effect of added mass). It can be used for any type of calculation (modal, harmonic 
and transient). 
2.2  
Dynamic equations checked by the substructures separately 
We will consider a structure S made up of NS noted substructures S K. Us 
let us suppose that each substructure is modelled in finite elements. We saw that in one 
calculation by dynamic under-structuring, the vibratory behavior of the substructures results from 
external forces which are applied to him, and of the bonding strengths which on them the others exert 
under 
structures. Thus, on the level of the substructure S K, we can write: 
Mkqk + Ckqk + K kqk = F K + F K 
! 
! 
ext. 
L 
éq 2.2-1 
where: 
Mk 
is the matrix of mass resulting from modeling finite elements of S K 
Ck 
is the matrix of damping resulting from modeling finite elements of S K 
K K 
is the matrix of rigidity resulting from modeling finite elements of S K 
F kext 
is the vector of the external forces applied to S K 
F kL 
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is the vector of the bonding strengths applied to S K 
qk qk and qk 
, ! 
! 
are the vectors speed displacement and acceleration resulting from 
modeling finite elements. 
In a harmonic problem, one imposes a loading dynamic, spatially unspecified, but 
sinusoidal in time. One is interested then in the stabilized answer of the system, without holding account 
transitory part. 
The field of the external forces is written: 
F K (T) = F K 
J T 
ext. 
{ext.} E 
The field of the bonding strengths is written: 
F K (T) = F K 
J T 
L 
{L E 
} 
The field of displacements is written: 
qk () = qk 
J T 
T 
{ 
E 
} 
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6/12 
The fields speed and acceleration are written: 
! qk (T) = J {qk} J T 
E 
! 
qk (T) = - 2 {qk} J T 
E 
Finally the substructure S K checks the following equation: 
(K K + Ck - 2Mk) {qk} = {F K} + {F K 
J 
} 
ext. 
L 
éq 2.2-2 
The method of modal synthesis consists in seeking the field of unknown displacement, resulting from 
modeling finite elements, on an adapted space, of reduced size (transformation of Ritz). 
We saw that for each substructure, this space is composed of clean modes 
dynamic and of static deformations: 
K 
 
 
qk 
[K K 
] I 
K 
K 
= 
K =  
 
éq 2.2-3 
J 
 
 
K are the modal vectors associated the dynamic clean modes of Sk, 
K are the modal vectors associated the static deformations of Sk, 
ki is the vector of the generalized co-ordinates associated the clean modes of Sk, 
kj is the vector of the generalized co-ordinates associated the static deformations of Sk, 
K is the vector of the generalized co-ordinates of Sk. 
The equation [éq 2.2-2] is projected on the basis of S K by taking account of [éq 2.2-3]. This allows us 
to write: 
(K K + Ck - 2 Mk) {K 
} = {F K} + {F K 
J 
} 
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ext. 
L 
éq 2.2-4 
where: 
Mk 
K T Mk K 
=  
 
is the matrix of generalized mass of S K, 
Ck 
K TCk K 
=  
 
is the matrix of generalized damping of S K, 
K K 
K T Kk K 
=  
 
is the matrix of generalized rigidity of S K, 
{F K} 
K T {F K 
=  
} 
is the vector of the generalized harmonic external forces applied 
ext. 
ext. 
with S K, 
{F K} 
K T {F K 
=  
} 
is the vector of the generalized bonding strengths applied to S K, 
L 
L 
{K} O 
is the vector of generalized harmonic displacements. 
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By supposing that the dynamic clean modes and the static deformations are organized like 
show the formula [éq 2.2-3] and by considering that the clean vectors associated the modes 
dynamic are normalized compared to the unit modal mass, the matrices of mass and rigidity 
generalized take the following form: 
 
K T 
K 
K  
 
K 
K T 
K 
K  
K 
Id 
M  
K 
 
K  
M =  
 
K =  
 
K T 
Mk K 
K T 
 
Mk K 
K T 
 
Kk K 
K T 
 
K K K 
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where: 
Id is the Identité matrix, 
K is the diagonal matrix of the squares of the own pulsations of the base. 
It is shown, in the case of the method of Craig-Bampton, that the normal modes and the modes 
constrained are orthogonal with respect to the matrix of rigidity whose diagonal terms are, as of 
at the time, null [R4.06.02]. However, this property is not used in the algorithm programmed in 
Code_Aster. 
We consider, like type of dissipation, only viscous damping (it is the only one which is 
supported by the tools for under-structuring in Code_Aster). Two methods are usable for 
to take into account this damping: 
· the damping of Rayleigh applied at the elementary level which consists in supposing that 
stamp elementary damping This partner with each finite element of the model is one 
linear combination of the matrices of elementary mass and rigidity K E and Me: 
C = K + M 
E 
E 
E 
E 
E 
The matrix of damping then is assembled Ck then projected on the basis [éq 2.2-3]: 
kT K K 
K T 
K 
K  
K 
C  
C  
C =  
 
K T 
Ck K 
K T 
 
Ck K 
 
 
· the damping proportional applied to the dynamic clean modes of each 
substructure. The resulting matrix is thus an incomplete diagonal (one does not know 
to associate damping proportional to the static deformations): 
K 
 
 

file:///Z|/process/refer/refer/p1270.htm (11 of 20)10/2/2006 2:53:15 PM



file:///Z|/process/refer/refer/p1270.htm

0 
Ck =  
 
 
0 
 
 
0 
2.3  
Assembly of the substructures 
After having studied each substructure separately, one proposes to establish the equations which 
govern their assembly. Let us consider two substructures S K and Sl connected between them to the level 
interface S K 
Sl 
. They are represented by their modeling finite elements and it is admitted that 
their respective grids are compatible. Thus, on the level of the interface, the nodes coincide and them 
meshs in opposite are identical. Consequently, the law of action-reaction and the continuity of 
displacements 
with the interfaces, which represent the assembly of S K and Sl, are written: 
F K 
= - F L 
L 
L 
S K S L 
S K Sl 
 
 
qk K 
L = ql 
S 
S 
S K Sl 
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where: 
F kL 
is the vector of the bonding strengths applied to the substructure S K, the level of 
S K S L 
 
the interface S K 
Sl 
, 
qk 
is the vector of the degrees of freedom of the interface S K 
Sl 
resulting from modeling 
S K Sl 
 
finite elements of the substructure S K. 
Let us introduce the matrices of extraction of the degrees of freedom of the interface S K 
Sl 
: 
qk K 
L = B K K 
L qk 
S S 
S S 
ql K  
L = Bl K 
L ql 
S S 
S S 
By using the equation of projection [éq 2.2-3] and the formulation applied above to both 
substructures subjected to a harmonic loading, one obtains: 
B K 
K 
K 
K 
L  
 
{ 
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} = Bl 
L 
L 
 
{ } 
S 
S 
S K Sl 
 
 
That is to say: 
Lk 
K 
K 
L {} = Ll 
L 
{ } 
éq 2.3-1 
S 
S 
S K Sl 
 
 
where: 
Lk 
is the matrix of connection of the interface S K 
Sl 
Sk substructure, 
S K Sl 
 
Ll 
is the matrix of connection of the interface S K 
Sl 
Sl substructure. 
S K Sl 
 
This treatment can be carried out on the level of all the interfaces of the total structure. In particular, 
it is noted that the work of the bonding strengths is null on the interface S K 
Sl 
; it is thus null on 
total structure: 
W 
K 
K 
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L 
L 
= F 
Q 
+ F 
Q 
= 0 
S K Sl 
L 
S 
S 
L 
S 
S 
S K Sl 
K 
L 
S K Sl 
K 
L 
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2.4  
Dynamic equations checked by the total structure 
The dynamic equations that checks the total structure are: 
K1 
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C1 
 
M1 
 
 
 
... 
 
 
... 
 
 
.. 
 
 
 
 
 
 
 
 
K K 
+ J  
Ck 
2 
-  
M K 
 
 
 
 
 
 
 
... 
... 
... 
 
 
 
 
 
 
 
 
 
K NS  
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C NS  
 
Mr. NS  
 
 
 
 
 
 
1 
F 1 1  
ext. 
F 
 
L 
...  
... ...  
 
 
 
 
 
K  
 
 
 
= F K 
K 
+ 
ext.  
F L  
... ... ...  
 
 
 
 
NR 
NR 
 
NS F S 
 
 
F S 
ext. L  
Which, it is necessary to add the equations of connection (according to [éq 2.3-1]): 
K, L 
K 
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K 
L K 
L {} = 
L 
L 
L 
{ } 
S S 
S K Sl 
This system is solved by double dualisation of the boundary conditions [R3.03.01]. Its formulation 
finale thus utilizes the vector of the multipliers of Lagrange and can be written in the form 
condensed: 
éq 2.4-1 
(K + J C - 2M) {} 
+ LT = {F} 
ext. 
L {} 
= 0 
The problem defined by the equation [éq 2.4-1] is symmetrical. In addition, its dimension is given 
by the number of modes taken into account (dynamic modes and static deformations). One is 
thus brought to solve a traditional harmonic problem, of reduced size, to which is associated one 
linear equation of constraint. Its resolution thus does not pose a problem. 
2.5  
Implementation in Code_Aster 
2.5.1 Study of the substructures separately  
The parameters E and E of the damping of Rayleigh are introduced, if necessary, by 
operator DEFI_MATERIAU [U4.23.01]. 
The treatments of the substructures are identical to the case of modal calculation [R4.06.02]. Modes 
clean dynamic are calculated with the operators: MODE_ITER_SIMULT [U4.52.02] or 
MODE_ITER_INV [U4.52.01]. The conditions with the interfaces of connection are applied with the 
operator 
AFFE_CHAR_MECA [U4.25.01]. Operator DEFI_INTERF_DYNA [U4.55.03] allows to define them 
interfaces of connection of the substructure. Operator DEFI_BASE_MODALE [U4.55.04] allows 
to calculate the base of complete projection of the substructure. 
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Operator MACR_ELEM_DYNA [U4.55.05] calculates the generalized matrices of rigidity, mass and 
possibly of damping of the substructure, as well as the matrices of connection. 
The damping of Rayleigh is taken into account by supplementing operand MATR_AMOR. 
Damping proportional is introduced by operand AMOR_REDUIT. 
The harmonic loading is defined, on the level of the substructure, by the operators 
AFFE_CHAR_MECA [U4.25.01] (application of the force on the grid), CALC_VECT_ELEM 
[U4.41.02] 
(calculation of the associated elementary vectors) and ASSE_VECTEUR [U4.42.03] (assembly of the 
vector of 
loading on the grid of the substructure). 
2.5.2 Assembly and resolution 
As in the case of modal calculation [R4.06.02], the model of the complete structure is defined by 
operator DEFI_MODELE_GENE [U4.55.06]. Its classification is carried out by the operator 
NUME_DDL_GENE [U4.55.07]. Matrices of mass, rigidity and possibly of damping 
generalized of the structure supplements are assembled according to this classification with 
operator ASSE_MATR_GENE [U4.55.08]. 
The loadings are projected on the basis of substructure to which they are applied, then 
assembled starting from classification resulting from NUME_DDL_GENE [U4.55.07] by the operator 
ASSE_VECT_GENE [U4.55.09]. 
The calculation of the harmonic response of the complete structure is carried out by the operator 
DYNA_LINE_HARM [U4.54.02]. 
2.5.3 Restitution on physical basis 
The restitution of the results on physical basis is identical to the case of modal calculation [R4.06.02]. It 
makes 
to intervene the operator REST_BASE_PHYS [U4.64.01] and possibly operator DEFI_SQUELETTE 
[U4.75.01] (creation of a grid “skeleton”). 
3 Conclusion 
Method of calculation of response harmonic per modal synthesis available in Code_Aster 
rest on that of modal under-structuring, also programmed. It consists in expressing 
the whole of the equations in a space of reduced size, made up of modes of different 
substructures, by a method of Rayleigh-Ritz. The definition of these fields is that used for 
the modal under-structuring and includes/understands normal modes as well as other statics or 
harmonics. The procedure employed results in a projection of the matrices and the second member 
on restricted space. 
In the document, we presented the bases of this method. We showed 
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how the projected equations were obtained starting from the problem arising in continuous space.  
base of harmonic Craig-Bampton which is used for primarily to solve the problems of interaction 
fluid-structures was presented. The formulation of the conditions of connection was also evoked. 
We thus obtained the reduced equations, according to the generalized co-ordinates, which 
allow to solve the modular problem of way, with less costs. In addition, the catch 
in account of the phenomena of damping was examined. It leads to the introduction into  
calculation by under-structuring of depreciation of Rayleigh or clean modal depreciation 
with each substructure. 
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Transitory response by under-structuring 
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Summary: 
This document presents the theoretical bases of the two methods of calculation of answer transitory by 
dynamic under-structuring implemented in Code_Aster. 
The first method consists in carrying out a transitory calculation by under-structuring for which 
equations of 
problem are projected on the bases associated with each substructure. The second method consists with 
to determine the clean modes of the complete structure by under-structuring and to project on this basis 
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them 
equations of the transitory problem. 
In both cases, only the case of an excitation per force imposed on the substructures is currently 
available. 
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1 Introduction 
The components of nuclear thermal power station are often of important size, complex geometry and 
sometimes composed of an assembly of several elements. To model the dynamics of these 
structures, the tools for vibratory analysis traditional then are badly adapted and it is necessary to have 
resort to methods of reduction the such techniques of modal synthesis which were 
developed in Code_Aster. 
The methods of modal synthesis associate techniques resulting from the under-structuring and 
modal recombination [bib4]. Thus, the field of study is cut out in several substructures and it 
vibratory behavior of the complete structure is given according to the characteristics 
vibratory of each one of them. In addition, each substructure, is represented by a base 
of particular projection, made up of clean modes and static deformations of interface, on 
which are projected the equations of the problem ([R4.06.02], [R4.06.03] and [bib4]). 
From the purely data-processing point of view, these methods have two important advantages. Of one 
leaves, they allow to limit the size memory necessary to the storage of the sizes used at the time 
calculation and in addition, the computing times are generally very reduced. From the point of view of 
the organization of a draft study, the techniques of under-structuring are particularly 
interesting because they make it possible to validate, stage by stage, the models of the substructures.  
difficulties related to the modeling of a complex structure can thus be approached separately, it 
who makes easier from there the resolutions.  
Several computational tools by dynamic under-structuring are currently available in 
Code_Aster. They make it possible to carry out modal calculations [R4.06.02] and calculations of answer 
harmonic [R4.06.03]. Work completed to establish the harmonic calculation of answer by 
dynamic under-structuring in Code_Aster, resulted in defining the treatment of the vector of 
forces external and of the matrix of viscous damping. 
The object of this reference material is to present the theoretical bases of the two methods 
of transitory calculation of response per dynamic under-structuring available in Code_Aster.  
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first consists in carrying out a transitory calculation by under-structuring for which equations of 
problem are projected on the bases associated with each substructure. The difficulty lies in 
double dualisation of the boundary conditions which leads to a matrix of singular mass. For 
to use the diagram of integration explicit (which requires the inversion of the matrix of mass), it is 
necessary 
thus to modify the treatment of the interfaces in the operator of calculation of the transitory answer.  
second method consists in determining the clean modes of the structure supplements by 
under-structuring and to project on this basis the equations of the transitory problem. The stage of 
restitution on the basis of physical final generalized result must thus take account of this double 
projection. 
The operator of transitory calculation of answer which receives the under-structuring is the operator 
DYNA_TRAN_MODAL [U4.54.03]. Being based on methods of modal recombination, it was 
conceived to solve transitory problems in generalized co-ordinates and it is very effective 
for the problems of big size of which it makes it possible to reduce the number by degrees of freedom. 
Of other 
leaves, it supports the taking into account of localised non-linearities (with the nodes) which one wishes 
to generalize with the case of the under-structuring. 
In this report/ratio, we present the two methods of calculation transitory per under-structuring 
available in Code_Aster, like their implementation. 
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General notations: 
NR 
: 
A number of substructures 
S 
M 
: 
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Stamp of mass resulting from modeling finite elements 
K 
: 
Stamp rigidity resulting from modeling finite elements 
C 
: 
Stamp damping exit of modeling finite elements 
Q 
: 
Vector of the degrees of freedom resulting from modeling finite elements 
F 
: 
Vector of the forces external with the system 
ext. 
F 
: 
Vector of the bonding strengths applied to the system 
L 
 
: 
Stamp vectors of the base of the substructures 
 
: 
Vector of the generalized degrees of freedom 
B 
: 
Stamp extraction of the degrees of freedom of interface 
L 
: 
Stamp connection 
Id 
: 
Stamp identity 
 
: 
Multipliers of Lagrange 
Note: 
The exhibitor K characterizes the sizes relating to the substructure S K and the sizes 
generalized are surmounted by a bar: for example M K is the matrix of generalized mass 
substructure S K. 
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2  
Transitory calculation by projection on the basis of under 
structures 
2.1  
Dynamic equations checked by the substructures separately 
That is to say a structure S made up of NS noted substructures S K. We suppose that each 
substructure is modelled in finite elements. The vibratory behavior of the substructures results 
forces external which are applied to him and of the bonding strengths which on them the others exert 
substructures. Thus, for S K, we have: 
M K qk + Ck qk + K K qk = F K + F K 
! 
! 
ext. 
L 
éq 2.1-1 
where: 
Mk 
is the matrix of mass resulting from modeling finite elements of S K, 
Ck 
is the matrix of damping resulting from modeling finite elements of S K, 
K K 
is the matrix of rigidity resulting from modeling finite elements of S K, 
F kext 
is the vector of the external forces applied to S K, 
F kL 
is the vector of the bonding strengths applied to S K, 
qk qk and qk 
, ! 
! 
are the vectors displacement, speed and acceleration resulting from modeling 
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finite elements. 
The field of unknown displacement, resulting from modeling finite elements, is required on a space 
adapted, of reduced size (transformation of Ritz) according to the formula: 
qk 
K K 
=  
éq 2.1-2 
where: 
K 
is the vector of the generalized co-ordinates of S K, 
K 
is the matrix containing the modal vectors associated the dynamic clean modes and 
with the static deformations of interface of S K. 
The transformation of Ritz [éq 2.1-2], applied to the transitory dynamic equation of the substructure 
[éq 2.1-1], allows to write: 
M K K 
+ Ck K 
+ K K K 
= F K + F K 
! 
! 
ext. 
L 
éq 2.1-3 
where: 
Mk 
K T Mk K 
=  
is the matrix of mass generalized of Sk, 
Ck 
K TCk K 
=  
 
is the matrix of generalized damping of S K, 
K K 
K T Kk K 
=  
 
is the matrix of generalized rigidity of S K, 
F K 
K T 
= F K 
is the vector of the generalized external forces applied to S K, 
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ext. 
ext. 
F K 
K T 
= F K 
is the vector of the generalized bonding strengths applied to S K, 
L 
L 
K K and K 
, ! 
! 
are the vectors generalized displacement, speed and acceleration. 
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The problem defined by the equation [éq 2.1-3] is symmetrical. In addition, its dimension is given 
by the number of modes taken into account (dynamic modes and static deformations). One is 
thus brought to solve a traditional transitory problem but of reduced size. 
2.2  
Assembly of the substructures 
After having studied each substructure separately, one proposes to establish the equations which  
govern their assembly. Let us consider two substructures S K and Sl connected between them to the level 
interface S K 
Sl 
. It is admitted that their respective grids are compatible [R4.06.02]. Thus, with 
level of the interface, the nodes coincide and the meshs in opposite are identical. Consequently, the law 
of action-reaction and the continuity of displacements to the interfaces, which represent the assembly of 
S K 
and Sl, are written: 
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F K 
= - F L 
K 
L 
L 
L 
Q K 
L = Q K 
L 
S K S L 
S K Sl 
 
 
S S 
S S 
where: 
F kL 
is the vector of the bonding strengths applied to the substructure S K, the level of 
S K S L 
 
the interface S K 
Sl 
. 
qk 
K 
L 
resulting from modeling 
S K Sl 
 
is the vector of the degrees of freedom of the interface S 
S 
finite elements of the substructure S K. 
Let us introduce the matrices of extraction of the degrees of freedom of the interface S K 
Sl 
: 
qk K 
L = B K K 
L qk 
S S 
S S 
ql K 
L = Bl K 
L ql 
S S 
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S S 
By using the transformation of Ritz and the formulation applied above to the two substructures, 
one obtains: 
Bk 
K K 
K 
L  
= Bl 
L L 
 
S 
S 
S K Sl 
 
 
That is to say: 
Lk 
K 
K 
L  
= Ll 
L 
 
S 
S 
S K Sl 
 
 
where: Lk 
K 
L 
of Sk. 
S K Sl 
is the matrix of connection associated with the interface S 
S 
2.3  
Dynamic equations checked by the total structure 
The matric writing of the dynamic equation checked by the total structure, is simply written to leave 
dynamic equations checked by each substructure: 
M1 
1 
! C1 
1 
! K1 
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1 1 
F 
1 
F  
 
ext. 
L 
... 
...  
.. 
...  
... 
... ... ...  
 
 
 
 
 
 
 
 
 
 
K  
K  
K K K  
Mk 
! +  
Ck 
! +  
K K 
= F 
+ F 
 
 
 
 
 
 
ext. L  
... 
...  
... 
...  
... 
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Which, it is necessary to add the equations of connection: 
K, L 
K 
K 
L 
= L 
L 
K 
L 
K 
L 
L K 
L  
F L 
= - F 
S S 
S S 
L 
S K Sl 
S K S L 
This system can be written in the condensed form: 
M! + C! + K = fext + fL 
éq 2.3-1 
L = 0 
éq 2.3-2 
K, L 
K 
L 
F L 
= - fL 
éq 2.3-3 
S K S L 
S K Sl 
2.4  

file:///Z|/process/refer/refer/p1280.htm (14 of 20)10/2/2006 2:53:16 PM



file:///Z|/process/refer/refer/p1280.htm

Double dualisation of the boundary conditions 
The condensed problem, given above, arises in the form of a transitory system to which is 
associated a linear equation of constraint (in force and displacement). In Code_Aster, this type 
of problem is traditional and it is solved by double dualisation of the boundary conditions [R3.03.01], 
i.e. by the introduction of auxiliary variables still called multipliers of Lagrange for 
dualiser boundary conditions. After introduction of the multipliers of Lagrange, the system 
matric puts itself in the form: 
0 
 
0 
0!  
0 
 
0 0! - Id L 
Id 0  
1 
1 
1 
 
 
T 
T  
 
 
0 M 0! + 0 C 0! + L 
K 
L 
= F 
 
 
 
 
 
 
ext.  
éq 2.4-1 
0 
 
0 
0 
 
! 
 
0 
 
0 0 
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! 
Id L 
 
 
 
- Id  
0 
 
2  
2  
2  
 
where: 1 and 2 is the multipliers of Lagrange. 
It is noted, the introduction of the multipliers of Lagrange makes singular the matrix of mass. As of 
at the time, the use of the diagram of integration explicit developed in operator DYNA_TRAN_MODAL 
[U4.54.03] of Code_Aster is impossible because they require the inversion of the matrix of mass. 
To make the matrix nonsingular, it is enough to dualiser with the same multipliers of Lagrange, 
the condition on the derivative second of the equations of connection. 
Thus the condition of continuity of displacements [éq 2.3-2] is modified by the equivalent system 
[éq 2.4-2]: 
L (+  
! ) = 0 
T L = 0  
éq 2.4-2 
L °= 
 
0 and L! °= 
 
0 
where  
° and! ° is initial generalized displacement and speed. 
The matric system which results from this is form [bib7]: 
- Id L 
Id! 0 0 0! 
1 
 
1 
- Id L 
Id 0  
 
1 
T 
T  
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T 
T  
 
 
L 
M 
L! + 0 C  
0! + L 
K 
L = fext éq 2.4-3 
 
 
 
 
 
Id L - Id! 2 0 0 0! 2 Id L - Id2 0  
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It is noted that the matrix of mass to the same form as the matrix of stiffness. It is thus 
invertible. This system is thus perfectly equivalent to the equation [éq 2.4-1] (it checks at any moment 
the conditions of connection) and it can be treated, in this form, by operator DYNA_TRAN_MODAL. 
2.5  
Treatment of the matrix of damping 
It is noted that the condition of continuity of displacements, formulated in the equation [éq 2.4-2], 
translated by an equation of the second order not deadened. At the time of the resolution by step of time 
of one 
transitory problem, any numerical error is likely car-to discuss, thus decreasing the stability of  
the algorithm. To optimize the damping of the numerical error, it is enough to dualiser the condition on 
derived first from the equations of connection with the same multipliers of Lagrange multiplied by 2 
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(so as to make this damping critical): 
L (+ 2! +!) = 0 
T L = 0  
éq 2.5-1 
L °= 
 
0 and L! °= 
 
0 
The matric system which results from this is form [bib7]: 
- Id L 
Id!  
1 
- . 
2 Id 
. 
2 L 
. 
2 Id!  
1 
- Id L 
Id 0  
 
1 
T 
T  
 
T 
T  
T 
T  
 
 
L 
M 
L! + .2L 
C 
. 
2 L! + L 
K 
L = fext  
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Id L - Id! 2 .2Id .2L - .2Id! 2 Id L - Id2 0  
It is thus noted that the treatment of the numerical error on the equations of connection results in 
modifying 
the matrix of damping of the transitory problem. This modification is completely comparable with that 
who is carried out on the matrix of mass. 
On the other hand, we did not wish to generalize this treatment the case of the resolution of the problems 
not deadened transients. That would have led us to create a matrix of temporary damping. One 
could have feared to increase the computing times, without real benefit. Moreover, it is completely 
possible with the user to define a matrix of damping whose coefficients are null.  
modification of this one being automatic, the transitory system not deadened will be actually solved, 
while optimizing the treatment of any numerical error intervening on the equations of connection. 
2.6  
Treatment of the initial conditions 
Let us consider a substructure S K characterized by its base of projection K made up of modes 
normal and of static deformations. It is supposed that initially the substructure S K is subjected to one 
field of displacement or speed (that does not modify of anything the demonstration) noted: qko.  
transformation of Ritz enables us to write: 
qk 
K K 
O = O 
where: KB is the vector of displacements (or speeds) generalized (E) S of S K to be determined. 
The vector of displacements (or speeds) generalized (E) S initial (ales) is given as follows: 
qk 
K 
K 
K T 
=  
=> qk 
K T 
K 
K 
O 
O 
O = ( 
) .o 
éq 2.6-1 
K 
K T 
K 
K T 
=> = 
- 
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3  
Transitory calculation on a modal basis calculated by under 
structuring 
3.1 Calculation of the clean modes of the structure supplements by 
under-structuring 
The second developed method consists in solving the transitory problem on the basis of modal 
complete structure calculated by under-structuring. 
Each substructure S K is represented by a base of projection, composed of clean modes 
dynamic and of static deformations, which we noted: K. The base of projection of 
structure supplements which results from it is noted: . 
The modal base of the complete structure is calculated by under-structuring. Each mode obtained is 
thus linear combination of the vectors of the bases of projection of the substructures: 
NS 
 
K 
K 
p = =  
 
éq 3.1-1 
K =1 
where: 
 
is the matrix of the clean modes of the complete structure, 
p 
 
is the matrix of the generalized modal co-ordinates of the structure. 
Projection of the matrices and the vectors constitutive of the transitory problem, on the basis of mode 
clean of the complete structure calculated by modal synthesis allows to determine: 
· the matrix of generalized mass: 
M = TM 
· the matrix of generalized rigidity: 
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K = T C 
· possibly the matrix of generalized damping: 
C = T C 
· the vector of the generalized external forces: 
F 
T 
= F 
ext. 
ext. 
Because of orthogonality of the clean modes of the structure calculated by modal synthesis, report/ratio 
with the matrices M and K, the matrices of generalized mass and rigidity obtained above are 
diagonals: 
M = TM = ( 
T 
) M = TM 
p 
p 
éq 3.1-2 
K = TK = ( 
T 
) K = TK 
p 
p 
3.2  
Dynamic equation checked by the total structure 
The complete structure is subjected to the external forces which are applied to him. Thus, we can 
to write: 
Mq 
! + Cq! + Kq = fext 
éq 3.2-1 
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The field of unknown displacement, resulting from modeling finite elements, is replaced by its 
projection on the basis of clean mode of the structure, according to the formula: 
Q = p 
éq 3.2-2 
where: is the vector of the generalized co-ordinates of the structure. 
The transformation of Ritz [3.2-2], applied to the transitory dynamic equation of the structure [3.2-1], 
allows to write: 
M! + C! + K = fext 
éq 3.2-3 
The stage of restitution on physical basis requires to take account of the double projection (on the basis 
modal of the complete structure, then on the basis of projection of the substructures - cf éq 3.2-4). 
Q = p =  
 
 
 
éq 3.2-4 
The problem defined by the equation [éq 3.2-3] is of completely traditional form. One is brought to solve 
a symmetrical transitory problem whose dimension is determined by the number of calculated modes  
by under-structuring and whose matrices of mass and rigidity are diagonal. 
Let us note finally that the treatment of the initial conditions is identical to the case of transitory 
calculation by 
projection on the basis of substructure (cf § 2.6). 
Handbook of Reference 
R4.06 booklet: Under-structuring 
HP-61/95/072/A 

Code_Aster ® 
Version 
3 
Titrate:  
Transitory response by traditional dynamic under-structuring 
Date:  
17/10/95 
Author (S): 
C. VARE 
Key: 
R4.06.04-A 
Page: 
11/16 
4  

file:///Z|/process/refer/refer/p1290.htm (3 of 12)10/2/2006 2:53:16 PM



file:///Z|/process/refer/refer/p1290.htm

Comparative study of the two developed methods 
Theoretical bases, associated the two methodologies implemented in Code_Aster for 
to carry out a transitory calculation of response by using the techniques of under-structuring, were 
presented in the preceding chapters. We specify, here, their essential characteristics. 
The first methodology consists in making a calculation of transitory response per under-structuring. 
The equation checked by the complete structure is then projected on the basis of substructure.  
precision of this method thus is directly determined by the extent of these bases. These 
last can be enriched without leading to prohibitory computing times because the substructures 
are, in theory, relatively reduced sizes. At all events, it is difficult to estimate the effect of 
modal truncation with the only knowledge of the modes of the bases of the substructures. In addition, 
them 
bases of projection of the substructures are made up of modes which all are not orthogonal 
between them (clean modes and static deformations). Matrices of generalized mass and rigidity 
constitutive of the final transitory problem are thus not-diagonals. All in all, their width of 
band can be given starting from the number of static deformations of the bases of projection of 
substructures [R4.06.02]. Duration of integration in the operator of transitory calculation 
DYNA_TRAN_MODAL will be thus all the more long as there will be degrees of freedom of interface. 
Of other 
leaves, the step of acceptable time of integration maximum by the diagram of integration explicit is 
determined starting from the maximum frequency of the base of projection. In the case of a calculation 
transient by under-structuring, this frequency results, in theory, of the static modes of which them 
diagonal terms are high in the matrix of rigidity generalized and weak in the matrix of 
mass generalized. Consequently, the step of time of integration cannot be a priori given. 
The experiment shows that it is very weak, taking into consideration Eigen frequency of the bases of 
under 
structures and that the use of the diagram of integration to step of adaptive time of 
DYNA_TRAN_MODAL 
is very advantageous. 
The second methodology consists in making a transitory calculation on the basis of modal structure 
supplements obtained by under-structuring. It is known that the stage consisting in calculating the clean 
modes 
structure can be expensive in term of computing time. This is all the more true when one 
consider nonlinear forces because the base of projection must then be sufficiently extended for 
to represent the dynamics of the system well. In addition, the modal base on which is calculated 
transitory answer is of size lower than that determined by the clean vectors of under 
structures (clean modes and static deformations). It thus does not constitute a generating system. 
Double projection thus amounts introducing a cut-off frequency. One must thus expect it 
that this method is less precise than the preceding one. However, the calculation of the clean modes 
allows to estimate the effect of modal truncation. In addition, it can make it possible to validate the 
models of 
under-stuctures if one has experimental results. Finally, essential interest of this 
method is that the matrices of mass and rigidity used in transitory calculation are 
diagonals. Numerical integration is thus very fast. 
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To conclude, it is noted that transitory calculation by under-structuring is identified with the methods  
direct of transitory calculation. One does not have access to modal information and the matrices are not 
diagonals. In this case, one can say that the vectors of the bases of projection of the substructures 
play the same part that the functions of form of the finite elements. Transitory calculation on basis 
modal calculated by under-structuring is identified, as for him, with the methods of modal recombination 
traditional. 
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5  
Implementation in Code_Aster 
5.1  
Study of the substructures separately 
If one wishes to introduce a damping of Rayleigh, the parameters E and E of this 
damping are defined, by operator DEFI_MATERIAU [U4.23.01]. 
The treatments of the substructures are identical to the case of modal calculation [R4.06.02] and 
harmonic 
[R4.06.03]. The dynamic clean modes are calculated with the operators: MODE_ITER_SIMULT 
[U4.52.02] or MODE_ITER_INV [U4.52.01]. The conditions with the interfaces of connection are 
applied 
with operator AFFE_CHAR_MECA [U4.25.01]. 
Operator DEFI_INTERF_DYNA [U4.55.03] allows to define the interfaces of connection of 
substructure. Operator DEFI_BASE_MODALE [U4.55.04] allows to calculate the base of projection 
substructure supplements (recopy of the clean modes and calculation of the static deformations). 
Operator MACR_ELEM_DYNA [U4.55.05] calculates the generalized matrices of stiffness, mass and 
possibly of damping of the substructure, as well as the matrices of connection. 
The damping of Rayleigh is taken into account by supplementing operand MATR_AMOR. 
Damping proportional is introduced by operand AMOR_REDUIT. 
The transitory loading is defined, on the level of the substructure, by the operators 
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AFFE_CHAR_MECA [U4.25.01] (application of the force on the grid), CALC_VECT_ELEM 
[U4.41.02] 
(calculation of the associated elementary vectors) and ASSE_VECTEUR [U4.42.03] (assembly of the 
vector of 
loading on the grid of the substructure). 
The operator AFFE_CHAM_NO [U4.26.01] who allows to affect a field on the nodes of a model 
the field of initial displacement ou/et makes it possible to describe the initial field speed of the 
substructure. 
5.2  
Assembly of the generalized model 
As in the case of modal calculation [R4.06.02] and harmonic [R4.06.03], the model of the structure 
supplements is defined by operator DEFI_MODELE_GENE [U4.55.06]. Its classification is carried out 
by 
operator NUME_DDL_GENE [U4.55.07]. Matrices of mass, stiffness and possibly 
of damping generalized of the structure supplements are assembled according to this 
classification with operator ASSE_MATR_GENE [U4.55.08]. 
The loadings are projected on the basis of substructure to which they are applied, then 
assembled starting from classification resulting from NUME_DDL_GENE [U4.55.07] by the operator 
ASSE_VECT_GENE [U4.55.09]. 
Initial generalized displacements and initial speeds generalized for each substructure, 
are calculated by operator ASSE_VECT_GENE [U4.55.09]. This operator also realizes 
assembly of these vectors according to classification resulting from NUME_DDL_GENE [U4.55.07]. 
In the case of a transitory calculation projected on the “bases” of the substructures, the matrices and 
vectors 
assembled generalized obtained with resulting from this stage are directly used for calculation 
transient. In the case of a calculation on the basis of complete modal structure calculated by 
under-structuring, it is necessary to carry out specific operations which are presented at the § 5.3. 
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5.3  
Calculation of the modal base of the complete structure and projection 
This chapter is specific to transitory calculation on modal basis calculated by under-structuring. 
The modal base of the complete structure is calculated with the traditional operators of Code_Aster: 
MODE_ITER_SIMULT [U4.52.02] or MODE_ITER_INV [U4.52.01]. One defines a classification of 
final problem generalized with operator NUME_DDL_GENE [U4.55.07]. Matrices of mass, of 
stiffness and possibly of damping generalized is projected on the basis of clean mode 
structure with operator PROJ_MATR_BASE [U4.55.01]. Generalized vectors corresponding 
with the external loadings are projected on the basis of clean mode of the structure with 
operator PROJ_VECT_BASE [U4.55.02]. 
5.4  
Resolution and restitution about physical base 
The calculation of the transitory response of the complete structure is carried out by the operator 
DYNA_TRAN_MODAL [U4.54.03]. 
The restitution of the results on physical basis utilizes operator REST_BASE_PHYS [U4.64.01]; 
it is identical to the case of modal calculation [R4.06.02] and harmonic [R4.06.03]. One can use 
operator DEFI_SQUELETTE [U4.75.01] to create a grid “skeleton”. Coarser than it 
grid of calculation, it makes it possible to reduce the durations of the graphic treatments. 
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6 Conclusion 
We presented, in this report/ratio, work completed to introduce, in Code_Aster, it 
calculation of transitory response linear per dynamic under-structuring. The methods which were 
chosen consist, for the first of them, to project the transitory equations on the “bases” 
of each substructure, made up of dynamic clean modes and static deformations and 
for the second, to calculate the clean modes of the structure supplements by under-structuring and with y 
to project the transitory equations. 
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We begin with a talk from the theoretical bases on which are based the first method 
of transitory under-structuring to lead to the matric formulation of the final problem. In 
private individual, an original treatment of the equation of continuity of displacements to return the 
matrix 
of invertible mass and to ensure an optimal stability of the algorithm of integration, led us 
to modify the shape of the matrices of mass and damping of the transitory problem. 
For the second method, the essential difficulty consists in restoring the results obtained in 
co-ordinates generalized on the physical basis. Indeed, it is necessary to take account of the double 
projection: 
on the basis of modal structure supplements on the one hand, and on the basis of substructure of other 
leaves. 
The developments carried out resulted in modifications of the operators 
DYNA_TRAN_MODAL [U4.54.03] and REST_BASE_PHYS [U4.64.01]. Their syntax was modified 
very little, 
so that their use is identical during a calculation by under-structuring and of a calculation 
direct by modal recombination. 
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Summary:  
 
One describes the modeling of the turbulent excitations available in Code_Aster and the way in which 
these  
last are taken into account in a calculation of dynamics. The turbulent excitations are characterized  
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by a spectral concentration of efforts, specified using operator DEFI_SPEC_TURB [U4.44.31]. Their 
catch in  
count in a calculation of dynamics is done by projection of the spectrum on the basis of modal 
structure of which  
one wants to calculate the answer. The operations of projection are carried out using the operator  
PROJ_SPEC_BASE [U4. 63.14].  
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1  
Principle of calculation  
 
1.1 Determination of a modal base of the system under flow and  
projection of the excitation  
 
The calculation of the dynamic response of a system to a turbulent excitation induced by a flow  
fluid is carried out by respecting the following stages:  
 
1) initially, one calculates the modal base of the system except flow using  
operator MODE_ITER_SIMULT [U4.52.03],  
2) one defines then the characteristics of the studied configuration, for taking into account of  
phenomenon of coupling fluid-structure, using operator DEFI_FLUI_STRU [U4.25.01].  
This operator allows for example to inform the profiles speed associated with the zones  
of fluid excitation, for configurations of the type “beam of tubes under flow  
transverse ". It produces a concept of the type [type_flui_stru] intended to be used by  
operators implemented downstream in the command file,  
the 3) modal characteristics of the system under flow are then calculated using  
operator CALC_FLUI_STRU [U4.66.02]. One has at exit a modal base for  
each rate of flow,  
4) the definition of the turbulent excitation is done then by a call to the operator  
DEFI_SPEC_TURB [U4.44.31]. Modelings available are as follows:  
·  
spectra of the type “length of correlation”, specific of the configurations of the type  
“beam of tubes under transverse flow”, for the application to the vibrations of  
tubes of Steam Generator. The key words corresponding factors are SPEC_LONG_COR_1,  
SPEC_LONG_COR_2, SPEC_LONG_COR_3 and SPEC_LONG_COR_4. These spectra are  
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preset; however, the user can adjust the parameters of them. This part is  
developed with the paragraph [§2.2],  
·  
model of turbulent excitation distributed. The key word factor corresponding is  
SPEC_FONC_FORME. The spectrum of excitation is defined by its decomposition on one  
family of functions of form while providing, on the one hand a matrix interspectrale, and  
in addition a list of functions of form associated with this matrix. Concepts  
[interspectre] and [function] associated must be generated upstream. In the case  
component “control rod”, the user can also use a spectrum of  
turbulence preset, identified on model GRAPPE1. This part is developed with  
paragraph [§2.3],  
·  
model of localised turbulent excitation. The key word factor corresponding is  
SPEC_EXCI_POINT. It is used in the case of a spectrum of excitation associated with one or  
several specific forces and moments. The definition of the excitation is done then in  
providing:  
-  
a matrix interspectrale of excitations (the concept [interspectre] associated  
must be generated upstream),  
-  
the list of the nodes of application of these excitations,  
-  
the nature of the excitation applied of each one of these nodes (force or moment),  
-  
directions of application of the excitations thus defined.  
This part is developed with the paragraph [§2.4].  
 
5) The projection of the spectrum of turbulent excitation previously definite, on the basis of modal  
structure under flow, is then carried out using operator PROJ_SPEC_BASE  
[U4.63.14].  
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1.2 Calculation of the response to the turbulent excitation  
: resolution  
frequential  
 
1.2.1 Introduction  
 
The calculation of the frequential response of the structure or the system coupled fluid-structure is 
done in  
three stages:  
 
1) calculation of the interspectres of modal excitations,  
2) calculation of the interspectres of modal answer,  
3) recombination on the physical basis.  
 
Initially, one introduces for each mode the transfer transfer function of the mechanical system  
(structure alone or system coupled fluid-structure). Each of the three stages above is then  
detailed.  
 
1.2.2 Calculation of the interspectres of modal excitations  
 
Interspectres of modal excitations S 
(F U 
QiQj 
,) are determined by projection of the spectrum  
of turbulent excitation on the basis of modal system mechanical (structure alone or coupled system  
fluid-structure). This stage of projection is detailed in paragraph [§2] for the various models  
applicable to telegraphic structures.  
 
1.2.3 Calculation of the interspectres of modal answer  
 
Interspectres of modal displacements S 
(F U 
qiqj 
,) result then from the interspectres  
modal excitations S 
(F U 
QiQj 
,) using the following relation:  
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S 
* 
Q Q 
(F, U) = Hi (F, U) SQiQj (F, U) H J (F, U) éq  
1.2.3-1  
I J 
 
where H *i (F, U) indicates the combined complex of the transfer transfer function H (F U 
I 
,) of the system  
mechanics considered. Being given a frequency F and a rate of flow U, the function of  
transfer H (F U 
I 
,) of the mechanical system for mode I is defined by:  
 
1 
H (F, U 
I 
) = 
éq  
1.2.3-2  
F 2 
F  
 
M 
2  
- + 2 J 
 
I I 
+ 
 
1 
F 
I 
 
F 
 
 
I 
I  
 
where Mi indicates the modal mass of mode I, and F 
I 
I indicate respectively, at the speed U,  
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pulsation and the Eigen frequency of mode I, I indicates, at the speed U, the reduced damping of  
mode I, and J indicates the complex number such as J 2 = -1.  
The calculation of the interspectres of modal displacements starting from the interspectres of modal 
excitations  
and of the transfer transfer functions is carried out using operator DYNA_SPEC_MODAL 
[U4.53.23].  
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One deduces in particular from [éq 1.2.3-2] the relation binding the autospectres modal displacements 
to  
autospectres of modal excitations:  
S 
2 
qiqi (F, U) = Hi (F, U) SQiQi (F, U)  
éq  
1.2.3-3  
2 
where H (F U 
I 
,) the square of the module of H (F U indicates 
I 
, )  
 
1.2.4 Recombination on physical basis  
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Being given a rate of flow U, the interspectre of physical displacement Known U (X, X, F 
1 
2 
)  
1 2 
at the points of X-coordinates X and X 
1 
2, at the frequency F, is obtained by modal recombination. This  
operation is written:  
NR NR 
S 
(X, X, F) = (X) (X) S 
J 
2 
Q Q (F, U 
U U 
I 
)  
éq  
1.2.4-1  
1 2 
1 
2 
1 
I J 
I 1 
= J 1 
= 
Where NR indicates the number of modes of the base; I (xk) is the component at the point of 
discretization  
xk of the deformation of the ième mode following the direction of space considered.  
 
The recombination on physical basis is carried out using operator REST_SPEC_PHYS  
[U4.63.22]. The direction of space considered is specified at the time of the call to this operator.  
 
1.2.5 Elements  
statistics  
 
The modal variance 2 () 
I U, associated at the speed U, is expressed as follows:  
 
2i U 
() = 2 S 
Q Q (F, U) df  

file:///Z|/process/refer/refer/p1300.htm (6 of 28)10/2/2006 2:53:17 PM



file:///Z|/process/refer/refer/p1300.htm

éq  
1.2.5-1  
I J 
0 
At the rate of flow U, value RMS 
( ) 
RMS X of response in an item X of the structure is  
data by:  
NR 
 
(X) 
2 
= (X) 2 
(U) 
RMS 
I 
I 
 
éq  
1.2.5-2  
I 1 
= 
Where NR indicates the number of modes of the base and () 
I X is the component as in point X of  
deformation of the ième mode following the direction of space considered.  
This operation is carried out by operator POST_DYNA_ALEA [U4.84.04].  
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1.3  
Calculation of the response to the turbulent excitation: temporal resolution  
 
The temporal resolution proceeds according to the sequence of the following operations:  
 
1.3.1 Factorization of the density interspectrale  
 
Operator FACT_INTE_SPEC [U4.36.04] carries out the factorization of the density interspectrale  
modal excitations S 
(F U 
QiQj 
,), before application of the method of Monte Carlo.  
 
1.3.2 Generation of the random modal excitations  
 
Operator GENE_FONC_ALEA [U4.36.05] generates random modal excitations Q (T) 
I 
in  
carrying out pullings by the method of Monte Carlo. Operator RECU_FONCTION [U4.32.03]  
allows to recover each evolution Q (T) 
I 
.  
 
1.3.3 Modification of a modal base and projection  
 
Operator MODI_BASE_MODALE [U4.66.21] modifies the modal base of the structure in substituent 
with  
initial characteristics those obtained for a rate of flow considered.  
Operator PROJ_MATR_BASE [U4.63.12] allows the projection of the matrices of mass and stiffness  
assembled on the new modal basis previously definite.  
 
1.3.4 Definition of the obstacles  
 
The definition of the geometry of the obstacles is carried out, if necessary, using the operator  
DEFI_OBSTACLE [U4.44.21].  
 
1.3.5 Resolution  
dynamics  
 
Transitory dynamic calculation for mode I (1 I NR) is carried out using a diagram  
of numerical integration with operator DYNA_TRAN_MODAL [U4.53.21].  
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M q& (T) + C q& (T) + K Q (T) = Q (T 
II I 
II I 
II I 
I 
) éq  
1.3.5-1  
 
Where M, C and K 
II 
II 
II indicate respectively the generalized mass, damping and stiffness  
associated the ième mode; Q (T) and Q (T) 
I 
I 
displacement and the excitation indicate respectively  
generalized associated the ième mode.  
 
1.3.6 Projection of Ritz  
 
The restitution on physical basis is carried out using a projection of Ritz:  
NR 
U (X, T) = U (X) Q (T) 
I 
I 
 
éq  
1.3.6-1  
i=1  
U (X, T) indicates the assembled vector of physical displacements; U (X) 
I 
is the assembled vector  
defining the ième modal form and Q (T) 
I 
generalized displacement following the ième mode.  
 
This last operation is carried out using operator REST_BASE_PHYS [U4.63.21].  
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2  
Models of turbulent excitation applicable to the structures  
telegraphic  
 
2.1 Principles  
Generals  
 
2.1.1 Assumptions  
 
One supposes that the linear excitation induced on the telegraphic structure by turbulence of the flow  
can be modelled in the form of a stationary process random ergodic Gaussian of  
null average. This turbulent excitation thus is entirely characterized by its density  
interspectrale S (X, X 
F 
1 
2,), where X and X 
1 
2 are two unspecified points of the beam and indicates  
the pulsation. The turbulent excitation applied to the structure is thus characterized by its density  
interspectrale S F.  
 
Moreover, one supposes that the turbulent forces are independent of the movement of the structure.  
The turbulent excitation is identified in experiments on a model of reference. It is  
then applicable to any real component in geometrical similarity with the model of reference.  
 
2.1.2 Calculation of the interspectres of modal excitations  
 
One indicates by F (X S 
T 
,) linear density of turbulent excitation exerted on the beam; X is  
the current X-coordinate of a point of the beam and S the complex pulsation (variable of Laplace). 
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They are done  
additional assumptions following H1 and H2:  
 
H1. The excited length is lower than the overall length L of the beam.  
 
H2. The expression of F (X S 
T 
,) does not depend on the origin of the excited zone Xe; that is translated  
by F (X, S) = F (X - X, S 
T 
T 
E 
).  
 
In this case, one can express the linear density ft in the following form:  
1 
 
D D 
 
F (X, S) = 
U 2 
 
D C, 
, 
, S 
T 
F 
, Re  
éq  
2.1.2-1  
2 
 
D 
L 
R 
H 
E 
 
 
X - X 
sD 
UD 
with: = 
E 
S = 

file:///Z|/process/refer/refer/p1300.htm (11 of 28)10/2/2006 2:53:17 PM



file:///Z|/process/refer/refer/p1300.htm

= 
L 
R 
Re 
 
U 
 
E 
 
Where the density of the fluid indicates, U is the mean velocity of flow of the fluid, D and  
Dh are respectively the diameter of the structure and the hydraulic diameter, C F represents it  
adimensional coefficient of turbulent force, X is the current X-coordinate of a point of the beam, Xe  
indicate the X-coordinate of the origin of the excited zone, represents It the excited length, is the 
variable  
of space reduced, S is the complex pulsation (variable of Laplace), Sr is the complex pulsation  
reduced, is the kinematic viscosity of the fluid, finally “Re” indicates the Reynolds number.  
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By geometrical assumption of similarity of the real component with the model of reference, one  
obtains:  
 
1 
F (X, S) = 
U 2 
 
D C (, S 
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T 
F 
R, Re)  
éq  
2.1.2-2  
2 
 
Thus, the modal turbulent excitation Q (S) 
I 
can be written in the field of Laplace (assumption H2):  
 
X + L 
E 
E 
1 
Q (X) = 
F 
 
(X, S) (X) dx = L F 
(L, S) (L 
+ X) D 
I 
T 
I 
E 
T 
E 
I 
E 
E 
 
éq  
2.1.2-3  
Xe 
0 
 
where () 
I X is the component of the ième modal deformation according to the direction of space in which  
acts the turbulent excitation.  
 
By means of the expression [éq 2.1.2-2], one deduces:  
 
1 
1 
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Q (S) = U 2 DL C 
(, S, Re) (L + X) D 
I 
E 
F 
R 
I 
E 
E 
éq  
2.1.2-4  
2 
0 
 
The densities interspectrales of modal turbulent excitations are expressed then in the form:  
 
1 
2 
1 1 
2 
D 
S 
(F, U) = U DL 
T (, F 
1 
2 
R, Re) (L 
X) (L 
X) D D 
Q Q 
E 
 
 
 
 
 
2 
 
 
+ 
+ 
 
U 
I 
1 E 
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E 
J 
2nd 
E 
I J 
1 
2 
0 0 
éq 2.1.2-4  
 
with  
1 I, J NR, where NR is the number of modes selected to determine the answer of  
structure;  
 
T: interspectre of cf enters and  
1 
2 ;  
 
fD 
Fr = 
: reduced frequency.  
U 
 
Note:  
 
In what follows, one preserves the assumptions H1 and H2 and one notes I (F 
ij 
R, Re) the integral:  
1 1 
Iij (F, Re 
R 
) =  
T (1,2, F, Re 
R 
) ( 
I 
1L + X) ( 
E 
E 
J 
2 L + X)  
D 
E 
E 
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2.1.2-5  
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Using this notation, the interspectres of modal excitations are written:  
 
1 
2 
2 
D 
S 
(F, U) = U DL 
I (F 
Q Q 
E 
ij 
R, Re)  
éq  
2.1.2-6  
I J 
 
2 
 
U 
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The expression of the autospectres of modal excitations is similar:  
 
1 
2 
2 
D 
S 
(F, U) = U DL 
I (F 
Q Q 
E 
II  
R, Re)  
éq  
2.1.2-7  
I I 
 
2 
 
U 
 
2.2  
Spectra of the type “length of correlation”  
 
2.2.1 Key words  
 
The key words factors SPEC_LONG_COR_i (I varying from 1 to 4) of operator DEFI_SPEC_TURB  
[U4.44.31] give access spectra of the type “length of correlation”. These spectra,  
specific of the configurations of the type “beam of tubes under transverse flow”, are  
preset but the user can adjust the parameters of them.  
 
2.2.2 Definition of the model  
 
2.2.2.1 Density  
interspectrale  
 
In the case of spectra of the type “length of correlation”, the density interspectrale characterizing  
the turbulent excitation is supposed to be able to be put in a form at separable variables such  
that:  
 
S (X, X,) = S () (X, X 
I 
1 
2 
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0 
0 
1 
2 )  
éq  
2.2.2.1-1  
 
In this expression, S () 
0 represent the autospectre turbulence and 0 (1 
X, x2) indicates one  
function of space correlation defined by:  
- X - X  
 
2 
1 
 
 
0 (1 
X, x2) = exp éq  
2.2.2.1-2  
C 
 
 
where X and X 
1 
2 indicate the X-coordinates of two points of observation and C represents the length of  
correlation.  
 
Four analytical expressions are available in operator DEFI_SPEC_TURB [U4.44.31]. These  
expressions correspond each one to a particular representation of S () 
0 .  
 
The user defines a spectrum of turbulence by choosing one of these analytical forms, of which it  
can adjust the parameters.  
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2.2.2.2 Modeling of the spectrum of turbulence by an expression with separate variables  
 
·  
Case general  
 
The function tt introduced into the relation is modelled by a form with variables  
separated:  
NS 
(, F, Re) = (, 
1 
2 
1 
2 ) 
T 
R 
N 
N (F R, Re)  
éq  
2.2.2.2-1  
N 1 
= 
 
Where NR S indicates the degree of the base of the functions of form N and N is a function  
independent of the variable of space. These two functions are stored in the base of  
data and can be selected by the user.  
The autospectres of modal excitations are given by [éq 2.1.2-7] while introducing:  
 
NS 
I (F, Re) = L2 (F 
II 
R 
nor 
N 
R, Re) éq  
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2.2.2.2-2  
n=1 
 
1 1 
with: L2 = (1 
, 2) (L + X 
1 
) (L + X 
2 
) D D 
nor 
N 
I 
E 
E 
I 
E 
E 
1 2  
éq  
2.2.2.2-3  
0 0 
 
The principle of calculation is as follows: one first of all calculates the values of L2ni while realizing  
the calculation of the double integrals; one calculates then N (Fr, Re) for all the values of  
N; one obtains finally the expression of S 
(F, U 
Q Q 
) using the equation [éq 2.1.2-4].  
I I 
 
·  
Particular case: model used for the tubes of steam generator  
 
The particular case of the study of the tubes of Steam Generator corresponds to a particular case of 
the case general  
presented previously by posing NS = 1. The interspectre of turbulent excitation between two  
points of reduced X-coordinates and  
1 
2 is then given by:  
 
-  
 
(, F 
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1 
2 
 
 
1 
2 
, Re) = exp - 
L 
 
T 
R 
 
E (F R, Re) éq  
2.2.2.2-4  
 
C 
 
 
 
where C represents the length of correlation of the turbulent forces and is the length  
excited. In general, one takes C of about 3 to 4 times the diameter external of the tube.  
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Spectra of autocorrelation of modal excitations, in the case of profiles speed and of  
density constant, are given by:  
 
2 
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D 
SQiQi (F U) 
1 
, 
2 
=  
U 
 
E 
DL  
III (F, Re 
R 
) éq 2.2.2.2 - 5  
2 
U 
with:  
 
1 1 
-  
 
I (F, Re) = (F, Re) .exp- 2 
1 L 
 
 
 
E. 
I 
(L + X 
1 E 
E) I 
(L + X 
2nd 
E) .d D 
II 
R 
R 
 
 
1 
2  
C 
 
 
0 0 
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éq 2.2.2.2 - 6  
 
In the case general of profiles of density and unspecified rate of flow,  
one a:  
 
2 
 
 
SQiQj (F U) 
1 
D 
, 
= D S (Fr) 
2 U 
X +L X +L 
 
 
 
E 
E E 
E 
x2 - 1 
X  
exp - 
 
 
E (1 
X) E (X) 
2 
2 U.E. (X) 2 
1 U.E. (x2) I (1 
X) I (x2) 1 
dx dx2 
 
 
 
 
 
X 
X 
 
C 
 
E 
E 
éq 2.2.2.2 - 7  
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Where D is the diameter of the structure, is the length of the excited zone, Xe is  
the X-coordinate of the origin of the excited zone, U is the mean velocity of the flow, S (Fr)  
is a spectral concentration of separate excitation the mean velocity of the flow  
U, X and X 
1 
2 are the curvilinear X-coordinates of two points of observation on the tube, (X 
E 
)  
is the profile of density of the fluid along the tube, U (X) 
E 
is the profile speed  
transverse of the flow along the tube and C indicates the length of correlation.  
 
Adimensional profiles of density and transverse speed of the flow  
external are in the following way defined:  
 
( ) 
E X indicating the evolution of the density of the external fluid along the zone  
immersed Limm of the tube, one indicates by the density of the external fluid realised  
on the immersed part of the tube:  
 
X 
+ L 
imm 
imm 
 
1 
= 
(X) dx éq 2.2.2.2 - 8  
L 
E 
imm 
ximm 
 
One indicates by R (X) the adimensional profile of density such as () =  
E X 
R (X).  
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U (X) 
E 
indicating the evolution rate of flow of the external fluid over the length  
excited of the tube, one indicates by U the rate of flow of the fluid realised on  
excited length of the tube:  
 
X + L 
E 
E 
1 
U = 
U (X) dx 
 
 
 
 
 
 
éq 2.2.2.2 - 9  
L 
E 
E 
Xe 
 
One indicates by ( 
U X) adimensional profile transverse speed of the external flow,  
such as U 
X = U U X 
E () 
( ) .  
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By introducing the average sizes and the adimensional profiles into the expression  
[éq 2.2.2.2 - 7], one obtains:  
 
2 
X + L X + L 
1 
2 
D 
E 
E E 
E 
X - X  
S 
 
 
2 
1  
QiQj (F, U) =  
U D. 
S (Fr) 
exp 
 
2 
 
 
- 
 
U 
 
 
 
C 
 
X 
X 
éq  
2.2.2.2-10  
E 
E 
2 
2 
E 
(x1) E 
(x2) Ue (x1) Ue (x2) I (x1) J (x2) dx dx 
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1 
2 
 
X - X 
After having noted = 
E, it comes:  
 
 
1 1 
1 
 
 
- 
 
2 
3 
3 2 
x2 
1 
X 
S 
(F, U) = U D L S (F) × exp - 
R 
QiQj 
E 
R 
(1 + X) R (2 + X) 
4 
 
 
 
 
 
 
E 
L 
E 
E 
L 
E 
0 0  
 
C 
 
 
2 
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U (L + X 
E 
E) 2 
1 
U (2L + X 
E 
E) I (1L + X 
E 
E) I (2 L + X 
E 
E)] d1d 2 
éq 2.2.2.2 - 11  
 
Where S (Fr) represents the spectrum of turbulence, definite according to a reduced frequency Fr  
(a Strouhal number). For a tube in interaction with a transverse flow, F R  
is written:  
 
fD 
Fr = 
 
U 
 
where F is the dimensioned frequency, D is the diameter of the tube and U is speed  
average of the flow.  
 
The double integral of the expression [éq 2.2.2.2 - 11] is evaluated by the operator  
PROJ_SPEC_BASE [U4.63.14].  
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·  
Case of multiple zones of excitation  
 
If there are several zones of excitations, the notations are introduced  
additional following:  
 
The zone of excitation K being located by its X-coordinate xk beginning and its Lk length, one  
note U (X) 
K 
profile speed transverse of the fluid flow on the level of this zone.  
average transverse speed on the zone of excitation K is then given by:  
 
X + L 
K 
K 
1 
U = 
U (X) dx 
K 
 
 
L 
K 
K 
xk 
 
One deduces the adimensional profile from it transverse speed, standardized on the zone K:  
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U (X) 
U (X 
K 
K 
) = 
 
The U.K. 
 
K indicating the total number of zones of excitation, average transverse speed on  
the whole of the zones of excitation is defined by:  
 
K 
1 
U = 
U  
K 
K 
K =1 
 
If Vgap is the speed intertube at the entry of the Steam Generator (the beach speeds retailers is defined  
in CALC_FLUI_STRU [U4.66.02] using key word VITE_FLUI), one proceeds to one  
the second standardization; transverse speed in an item X located in the zone of excitation K  
is given by:  
 
U (X) 
U 
V (X) = V 
K 
= V 
K U (X 
K 
gap 
)  
U 
gap the U.K. 
 
Thanks to this standardization, the arithmetic mean transverse speed on all them  
zones of excitation is equal at the speed intertube; one has indeed:  
 
 
+ 
1 K 
1 X L 
K 
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K 
 
 
V (X) dx V 
 
 
K 
L 
K 
gap 
= 
 
K 1 
= 
K 
 
X 
 
K 
 
The calculation of the interspectres of modal excitations, realized by operator PROJ_SPEC_BASE  
[U4.63.14], is done by adding the contributions with each zone of excitation according to  
the relation:  
 
2 K 
1  
D 
 
S 
, 
=  
 
 
I J (F V 
) 
D 
Lk 
S 
K 
ij 
(F 
Q Q 
gap 
R) 
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2  
× 
× 
V 
 
K =1 
K 
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with:  
U 
fD 
V = V 
K 
K 
K 
gap × 
and F 
= 
 
U 
R 
Vk 
 
X + L X + L 
K 
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K K 
K 
- X - X  
2 
1 
and Lk = 
exp 
(X) (X V 
) 2 (X V 
) 2 (X) (X) (X) dx dx 
ij 
 
 
 
E 1 E 2 K 1 K 
2 
I 
1 
I 
 
 
2 
1 
2 
C 
 
 
X 
X 
K 
K 
 
that is to say:  
X + L X + L 
K  
K K 
K 
- X - X  
Lk = V 4 × 
exp 
2 
1 (X) (X) u2 (X) u2 (X) (X) (X) dx dx 
ij 
K 
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E 1 E 2 K 1 K 2 I 1 I 
 
 
2 
1 
2 
C 
 
X 
X 
 
K 
K 
 
One poses:  
 
X + L X + L 
K 
K K 
K 
- X - X  
L K = 
exp 
2 
1 (X) (X) u2 (X) u2 (X) (X) (X) dx dx 
ij 
 
 
 
E 1 E 2 K 1 K 2 I 1 I 
 
 
2 
1 
2 
C 
 
 
X 
X 
K 
K 
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The expression of the interspectres of modal excitations becomes then:  
 
2 K 
1  
D 
 
S 
, 
=  
 
4 
 
I J (F V 
) 
D 
V 
L K 
S 
K 
K 
ij 
(F 
Q Q 
gap 
R) 
 
2  
× 
× 
× 
V 
 
K =1 
K 
 
from where:  
K 
1 
S 
, 
= 
3 × 3 × × 
 
I J (F V 
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) D 
(V lk S (F K 
Q Q 
gap 
K 
ij 
R) 
4 
K =1 
 
·  
Analytical expressions of the spectra available for the user  
 
Various analytical expressions of the spectra available in the operator  
DEFI_SPEC_TURB [U4.44.31] are as follows:  
 
·  
SPEC_LONG_COR_1  
 
Each Ui speed defined by the user by discretizing the beach speeds  
[U - U 
kN 
min 
max] explored is initially standardized in the Ui form while applying  
the equation:  
The U.K. 
U kN = U 
I 
I 
 
U 
 
where the U.K. and U respectively indicate the speed realised on the zone of excitation “K”, and  
mean velocity on the unit of the zones of excitation.  
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A Reynolds number “local” Rik 
E, associated the zone “K” and the Ui speed is then  
calculated starting from the local characteristics of the flow:  
 
kN 
U 
D 
Reik 
I 
= 
 
 
 
The spectrum of turbulent excitation associated the zone “K” and the Ui speed is given under  
the shape of a vector S ik, having as many components as of points used for  
to discretize the frequential interval [F 
- F 
min 
max], support of the excitation. J-ième  
component S ikj of this vector is provided by the expression:  
 
 
Sik 
0 
J = 
 
éq  
2.2.2.2-12  
 
2 
 
 
F ik 2  
F ik 2 
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rj 
rj 
1-  
 
2  
 
 
+ 4 
 
F  
 
F 
 
 
rc  
rc  
 
 
 
F ik 
rj is provided by:  
 
F D 
F ik 
J 
rj = 
 
U kN 
I 
 
where:  
 
F J is the value of frequency associated with the j-ième component in the discretization with  
the frequential interval [F 
- F 
min  
max], F rc is a cut-off frequency being worth 0.2; O,  
depend on the Reynolds number according to equations' provided in the table  
below:  
 
 
Rik 
E  
O  
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]- ; 1.5 104]  
2.83504 10-4 3  
0.7  
] 1.5 104 ; 3.5 104]  
 
Idem Idem  
20 42 
. 
- 14 10-4 Rik - 9 8 
. 110-8 
2 
Rik 
1 
+ 19 
. 7 10 12 
3 
- 
ik  
R 
13 
. 10-4  
E 
E 
E 
 
 
- 
ik 
- 
ik 
 
- 35 95 
. 10 17 
4 
R 
+ 34 69 
. 
10 22 
5 
R 
E 
E 
 
] 3.5.104; 5.104] Idem  
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4 0.3  
] 5 104 ; 5.5 104] 50.18975  
104 Idem  
Idem  
] 5.5 104 ; + ]  
Idem  
4 0.6  
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·  
SPEC_LONG_COR_2  
 
The spectrum of turbulent excitation is written:  
 
S (F 
0 
R) = 
 
éq  
2.2.2.2-13  
 
 
F  
R 
1 +  
 

file:///Z|/process/refer/refer/p1310.htm (12 of 29)10/2/2006 2:53:18 PM



file:///Z|/process/refer/refer/p1310.htm

frc  
The default values of the parameters are as follows:  
 
 
-3 
0 = 15 
. 10 
= 2 7 
. 
 
F = 01 
. 
rc 
 
·  
SPEC_LONG_COR_3  
 
The spectrum of turbulent excitation is written:  
 
S (F 
0 
R) = 
éq  
2.2.2.2-14  
F  
R 
with:  
=  
0 
0 (F 
) 
rc 
=  
 
(F) 
rc 
 
The default values of the parameters are as follows: F rc = 2  
 
If F F 
R 
rc, one a:  
 
3 
- 
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0 = 510 
 
= 05 
. 
if not  
 
-5 
0 = 4 10 
 
= 35 
. 
 
·  
SPEC_LONG_COR_4  
 
The spectrum of turbulent excitation is written:  
 
S (F 
0 
R) = 
 
 
 
 
 
 
 
éq 2.2.2.2 - 15  
F  
R v 
with:  
 
1 
 
0 = 
10 
-2 
 
6 8 
. 10 
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The other parameters are defined by:  
 
=  
To 0 5. -  
B 15. -  
C 2 5. -  
D 35. 
v 
v 
v 
v 
= 2 
 
= 4 
 
v the rate of vacuum indicates; v 
= 
is the volume throughput defined by  
 
v 
mU; m is the flow  
mass and U indicates the mean velocity of the flow. Values of the coefficients of  
polynomial in v are as follows:  
 
To = 24 042 
. 
B = -50 421 
. 
 
C = 63 483 

file:///Z|/process/refer/refer/p1310.htm (15 of 29)10/2/2006 2:53:18 PM



file:///Z|/process/refer/refer/p1310.htm

. 
D = 33 284 
. 
 
2.3  
Model of turbulent excitation distributed  
 
2.3.1 Key words  
 
The key word factor SPEC_FONC_FORME of operator DEFI_SPEC_TURB [U4.44.31] makes it 
possible to define  
a spectrum of excitation by its decomposition on a family of functions of form. The user with  
possibility of defining the spectrum by providing a matrix interspectrale and a list of functions of  
form associated. The concepts [interspectre] and [function] must then be generated in  
upstream. In the case of the component “control rod”, the user can also use one  
preset spectrum of turbulence, identified on model GRAPPE1.  
 
2.3.2 Decomposition on a family of functions of form  
 
The model of turbulent excitation distributed supposes that the instantaneous linear density of the 
forces  
turbulent F (X T 
T 
,) can be broken up on a family of functions of form () 
K X of  
dimension K in the following way:  
K 
F (X, T) = 
T 
K (X) K T () éq  
2.3.2-1  
k=1 
Coefficients () 
K T at every moment define the decomposition of the turbulent excitation on  
family of functions of form.  
 
The density interspectrale of turbulent excitation between two points of the telegraphic structure of X-
coordinates x1  
and x2 is written then:  
K K 
S (X, X,) = (X) (X) S 
F 
K 
L 
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kl () 
1 
2 
1 
2 
 
éq  
2.3.2-2  
K 1 
= K 1 
= 
 
This formulation makes it possible to take into account an excitation whose space distribution is  
unspecified.  
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2.3.3 Setting in equations  
 
2.3.3.1 Application of a turbulent excitation distributed  
 
The length of application L is characterized in an intrinsic way by the field of definition of  
functions of form associated with the excitation. The zone of application is determined by the data of  
name of the node around of which it is centered.  
xn indicating the X-coordinate locating this node, the turbulent excitation is imposed on  
field [X - L 2, X + L 
N 
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N 
2].  
The turbulent excitation being able, in addition, to be developed in a way correlated in both  
directions Y and Z orthogonal with the axis of the telegraphic structure, the functions of form are a 
priori  
vectors with two components.  
One thus informs, by convention, these functions about the interval [0,2L], the field [0, L] being  
associated the direction Y and the field [L, 2L] being associated direction Z.  
 
2.3.3.2 turbulent Excitation identified on model GRAPPE1  
 
The functions of form K are the first 12 modal deformations of inflection of the structure  
identified in experiments, distributed according to two orthogonal directions' with the principal axis 
of  
beam. The general analytical expression of these deformations is as follows:  
R 
(X) 
 
Yk 
K (X) =  
 
 
 
éq  
2.3.3.2-1  
Zk (X) 
with:  
 
N 
 
N 
 
N 
 
N 
 
Yk 
Yk 
Yk 
Yk 
 
Yk (X) = 
Yk 
With cos 
X 
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Yk 
B 
sin 
X 
Yk 
C 
CH 
X 
Yk 
D 
HS 
X 
 
L + L + L + 
L éq 2.3.3.2 - 2  
N 
 
N 
 
N 
 
N 
 
Zk 
Zk 
Zk 
Zk 
 
Zk (X) = 
Zk 
With cos 
X 
BZk sin 
X 
CZk CH 
X 
Zk 
D 
HS 
X  
 
L + 
 
 
L + 
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L + 
L éq 2.3.3.2 - 3  
 
where nYk and nZk indicate numbers of waves, L is the length of application of the excitation and them  
coefficients AYk, BYk, CYk, DYk, AZk, BZk, CZk, DZk are constant real coefficients  
characteristics of the function of form considered.  
 
The first 6 functions of form are associated the direction Y and AZk, BZk, CZk, DZk are  
thus null, for 1 K 6.  
The 6 last functions of form are associated direction Z and AYk, BYk, CYk, DYk are  
thus null, for 7 K 12.  
 
This family of functions of form is thus characterized by 5x12 = 60 real coefficients.  
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The turbulent excitation identified on model GRAPPE1 is homogeneous in the two directions  
orthogonal with the axis of the telegraphic structure, turbulence being décorrélée between these two 
directions.  
The matrix interspectrale [Skl] identified on model GRAPPE1 is thus a matrix of  
dimension 12x12, consisted of two identical diagonal blocks of dimension 6:  
 
[ 
S  
0 
 
S 
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O 
K = 
L] 
[ ( )] [ ] 
 
 
[ ] 
 
0 
[S () 
O 
] 
 
By square property of symmetry, this matrix is entirely defined by the data of the part  
triangular higher (or lower) of [S () 
O], is 21 interspectres. For each one among them, them  
characteristic parameters are the level of plate, the cut-off frequency and the slope of the spectrum  
beyond this frequency.  
 
The matrix interspectrale of turbulent excitation identified on model GRAPPE1 is thus  
characterized by 63 real coefficients (3x21).  
 
Note:  
 
Excitations GRAPPE1 are available to two flows of reference. The whole of  
data characterizing these excitations thus represents 246 real coefficients ([60+63] x2).  
 
2.3.3.3 Projection of the excitation on modal basis  
 
One notes:  
DY (X) 
 
I 
I (X) =  
 
 
the modal deformed i-éme of the structure.  
DZi (X) 
 
Are ik the co-ordinates of the modal i-éme deformed of the structure on the basis of the functions of  
form K (X):  
K 
(X) =  
I 
ik 
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K (X)  
éq  
2.3.3.3-1  
K =1 
The interspectres of modal excitations SQ Q () applied to the structure are written then:  
I J 
K K 
S 
() =  
 
S 
Q Q 
ik 
jl 
( 
)  
éq  
2.3.3.3-2  
I J 
K L 
K =1k =1 
For each mode I of the structure, the coefficients ik are given by integrating the equation  
[éq 2.3.3.3 - 1] prémultipliée by the functions J, on the applicability of the excitation. One  
obtains as follows:  
 
X + L 
0 
2 
K 
X + L 
0 
2 
(X + L 2) (X) dx = (X + L 2)  
J 
I 
ik 
J 
K (X + L 2) dx  
X - L 2 
K =1 
X - L 
0 
0 
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X + L 
0 
2 
K 
L 
(X + L 2) (X) dx = (X)  
J 
I 
ik J 
K (X) dx 
( 
I, J)  
éq  
2.3.3.3-3  
X - L 2 
K =1 
0 
0 
 
For each I, the equation [éq 2.3.3.3 - 3] is written in matric form:  
 
[has] () = (B 
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jk 
ik 
ij)  
éq  
2.3.3.3-4  
with:  
L 
has 
= 
(X) (X) dx 
jk 
J 
K 
 
0 
that is to say:  
 
L 
has 
= ((X) (X) + (X) (X))dx 
jk 
Yj 
Yk 
Zj 
Zk 
 
0 
 
and  
X + L 
0 
2 
B = 
(X + L 2) (X) dx 
ij 
J 
I 
 
X - L 
0 
2 
that is to say:  
 
X + L 
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0 
2 
B = 
(DY (X) (X + L 2) + DZ (X) (X + L 2))dx 
ij 
I 
Yj 
I 
Zj 
 
X - L 
0 
2 
 
The resolution of each linear system of equations leads to the ik.  
The calculation of the scalar products is carried out in operator PROJ_SPEC_BASE [U4. 63.14].  
 
Note:  
 
1)  
functions  
K (X) represent, in practice, the modal deformations raised on  
model. The system (), with dominating diagonal, is thus well conditioned. In  
private individual, when the telegraphic structure model has a homogeneous linear density, them  
functions K (X) are orthogonal and the matrix [jk has] is diagonal.  
2) Tests comparing the applicability of the excitation with the field of definition of  
the structure are carried out.  
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2.4  
Model of localised turbulent excitation  
 
2.4.1 Key words  
 
The key word factor SPEC_EXCI_POINT of operator DEFI_SPEC_TURB [U4.44.31] is used in  
cases of a spectrum of excitation associated with one or more forces and moments specific. The user  
can define the spectrum while providing:  
 
·  
a matrix interspectrale of excitations (the concept [interspectre] associated must be  
generated upstream),  
·  
the list of the nodes of application of these excitations,  
·  
the nature of the excitation applied of each one of these nodes (force or moment),  
·  
directions of application of the excitations thus defined.  
 
It can also use a preset spectrum of turbulence, identified on model GRAPPE2.  
 
2.4.2 Bases  
 
The model of localised turbulent excitation is a particular case of the model of turbulent excitation  
distributed. Thus, one supposes just as in paragraph [§2.3.2] that instantaneous linear density  
turbulent forces F X T 
T (,) can be broken up on a family of functions of form  
K (X) in the following way:  
K 
F (X, T) = (X) (T 
T 
K 
K 
) éq  
2.4.2-1  
K =1 
The coefficients K (T) at every moment define the decomposition of the turbulent excitation on  
family of functions of form.  
 
The density interspectrale of turbulent excitation between two points of the telegraphic structure of X-
coordinates x1  
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and x2 is written then:  
K K 
S (X, X,) = (X) (X) S 
F 
K 
L 
( 
) 
1 
2 
1 
2 
 
éq  
2.4.2-2  
K L 
K 1 
= L 1 
= 
The characteristic of the model of localised turbulent excitation is due to the specificity of the functions 
of  
form K (X):  
 
(X) =  
K 
(X - xk) allows to represent a specific force applied to the point of X-coordinate  
xk  
(X) =  
K 
(X - xk) allows to represent one specific moment applied to the point of X-coordinate  
xk  
 
(X - xk) and (X - xk) the distribution of Dirac and the derivative indicate respectively of  
distribution of Dirac at the point of X-coordinate xk.  
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Taking into account the specificity of the functions of form, the projection of a localised turbulent 
excitation  
on modal basis is much simpler than in the case general (excitation distributed), since one  
can analytically calculate the expression of the projected excitation.  
 
2.4.3 Setting in equations  
 
2.4.3.1 Application of a localised turbulent excitation  
 
One considers a turbulent excitation applied to a structure telegraphic and made up of forces and of  
specific moments. This excitation is entirely characterized by the following data:  
 
·  
list nodes of application of the forces and moments specific,  
·  
nature of the excitation applied in each node (force or moment),  
·  
direction of the excitation applied in each node.  
 
K 
M 
Thus F (X, T) = F (S) (X - xk) nk - mm (S) (X - xm) N 
T 
K 
m  
éq 2.4.3.1 - 1  
K =1 
m=1 
 
is the expression of a located turbulent excitation, characterized by K forces and M moments  
specific, applied respectively to the nodes of X-coordinates xk and xm in the directions nk and  
rnm.  
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0 
 
 
 
One a: nk =  
 
cos (K) and definite Nm in a similar way.  
 
 
 
sin ( 
 
K) 
 
represent the azimuth giving the direction of application of the force (or the moment) in the plan P  
orthogonal with neutral fibre with the node of application, such as defined in the figure [2.4.3.1 
Figure - has]  
below:  
 
Z 
P 
F 
 
Nap 
node of application 
X 
neutral fibre 
 
Appear 2.4.3.1 - has: Definition of the direction of application  
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The generalized excitation associated the ième mode of the structure, Q S 
I (), being defined by:  
 
L 
Q (S) = (X) F (X, T) dx 
I 
I 
T 
 
éq  
2.4.3.1-2  
0 
 
where L represents the length of the beam and I (X) the deformation of mode I, one obtains, taking into 
account  
expression [éq 2.4.3.1 - 1]:  
 
K 
M 
Q (S) = F (S) (X) N - M (S) (X 
I 
K 
I 
K 
K 
m 
I 
K) Nm éq  
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2.4.3.1-3  
K =1 
m=1 
 
The calculation of the interspectres of modal excitations leads then to:  
 
K 
K 
S 
(S) = S 
 
Q Q 
( 
) .n 
. ( 
) .n 
I J 
F F (S) ( 
1 
1  
 
2 
2  
K 
K 
I xk 
K) 
J xk 
K 
K =1 K = 
1 
2 
1 
2 1 
K 
M 
+ S 
 
F M 
( 
) .n 
. ( 
) .n 
(S) ( 
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1 
1  
 
2 
2  
K 
m 
I xk 
K) 
J xm 
m 
K =1 m = 
1 
2 
1 
2 1 
 
éq  
2.4.3.1-4  
M 
K 
+ S 
' 
 
MR. F 
( 
) .n 
. ( 
) .n 
(S) ( 
X 
I 
m1 
m1) 
K 
 
 
 
 
 
m 
K 
J xk 2 
2 
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m =1 K = 
1 
2 
1 
2 1 
M 
M 
+ S 
 
MR. M 
X 
 
S ('( 
) .n 
I 
m1 
m1). 
( 
) .n 
( ) 
m 
 
 
 
2 
m  
m 
m 
J X 
2 
m 1 
= m 1 
1 
2 
1 
2 = 
 
Note:  
 
When the user defines the spectrum of turbulent excitation, it must inform the matrix  
interspectrale of the specific excitations whose terms intervene above. This  
stamp has as a dimension K+M (a number of forces and specific moments applied).  
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2.4.3.2 turbulent Excitation identified on model GRAPPE2  
 
The turbulent excitation identified on model GRAPPE2 is represented by a force and one  
moment resulting, applied in the same node following the two orthogonal directions to the axis of  
structure. The linear density of this excitation has as an expression:  
 
 
0 
1 
 
F 
2 
2 
T (X, S) = 
U 
 
H 
D [LP tF (rs) (X - x0) - LP MT (rs) (X - x0)]  
0  
éq 2.4.3.2 - 1  
2 
 
1 
 
Where is the density of the fluid, U is the mean velocity of the flow, Dh is it  
hydraulic diameter, LP is the thickness of the plate of housing (corresponding to the length  
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S D 
excited), x0 is the X-coordinate of the point of application of the excitation, Sr = 
is the complex frequency  
U 
reduced, F (S 
T 
R) and M (S 
T 
R) are the adimensional coefficients representing the force and the moment  
resulting.  
The sizes, U, Dh and LP make it possible to dimension the excitation.  
 
In substituent the expression [éq 2.4.3.2 - 3] in the relation [éq 2.4.3.1 - 4] defining the modal excitation  
Q S 
I (), one obtains:  
 
 
 
0 
 
0  
1 
2 
 
 
 
2 
 
Q (S) 
U D L F (S) 
 
(X 
 
0 )  
0 + L M (S) ' 
= 
 
 
 
(X 
I 
H 
p 
T 
R 
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I 
p 
T 
R 
I 
0 )  
0  
éq 2.4.3.2 - 2  
2 
 
 
1 
 
 
 
1  
 
The specific force and moment identified on model GRAPPE2 being décorrélés, the calculation of  
interspectres of modal excitations leads finally to:  
 
 
 
0 
 
0 
1 
2 
2 
D 
 
 
 
S 
=  
U 
 
D 
L2 
Q Q 
H 
p I 
(x0)  
1 × J (x0)  
1 SF F (Sr) 
I J 
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2 
 
 
 
 
 
U 
T T 
 
 
1 
 
 
 
1 
 
éq  
2.4.3.2-3  
 
0 
 
0 
 
 
 
4 
' 
' 
 
+ LP I (x0)  
1 × J (x0)  
1 S MR. M (Sr) 
T 
T 
 
1 
 
1 
 
 
 
In this expression, D is the diameter external of the structure, S 
(S 
F F 
R) and S 
(S 
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MR. M 
R)  
T T 
T 
T 
the adimensional autospectres of force and moment represent respectively identified on  
model GRAPPE2. Operator PROJ_SPEC_BASE [U4.63.14] calculates the interspectres excitations  
modal according to the relation [éq 2.4.3.2 - 3] above.  
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Note:  
 
1) Autospectres adimensional GRAPPE2 are usable to simulate it  
behavior of any structure in similarity with the model; one then utilizes  
geometrical parameters structural feature to dimension  
the excitation. Model GRAPPE2 having been built in similarity with  
configuration engine, the following reports/ratios are fixed and characteristic of this  
geometry:  
 
D 
L 
H 
p 
and 
 
D 

file:///Z|/process/refer/refer/p1320.htm (9 of 23)10/2/2006 2:53:19 PM



file:///Z|/process/refer/refer/p1320.htm

D 
 
It is pointed out that Dh and D respectively indicate the hydraulic diameter and it  
diameter external of the structure; LP is the thickness of the plate of housing,  
corresponding to the excited length.  
The data of, U and D are thus sufficient to dimension in manner  
univocal the turbulent excitation starting from the autospectres adimensional.  
 
2) Adimensional autospectres S 
(S 
F F 
R) and S 
(S 
MR. M 
R) one and the other being defined by  
T T 
T 
T 
three real coefficients (level of plate, reduced frequency of cut and slope beyond  
of this frequency), only six constants make it possible to characterize the excitation  
turbulent adimensional identified on model GRAPPE2.  
Four configurations having been studied (ascending flow or going down, stem of  
order centered or offset), the whole of the data characterizing the excitations  
GRAPPE2 thus represents 24 real coefficients.  
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1 Notations 
p 
: 
fluctuating pressure in the fluid, 

file:///Z|/process/refer/refer/p1320.htm (13 of 23)10/2/2006 2:53:19 PM



file:///Z|/process/refer/refer/p1320.htm

! 
: 
contour of the structure indexed by! 
" 
X 
: 
S 
the field of displacements in the structure  
! 
!, 
F, S: density of the fluid, the structure, 
X 
: 
I! 
clean mode of order I of the structure! in air 
has, a: 
generalized co-ordinates, speeds, accelerations 
I 
I 
! " ! 
relating to mode I of the structure  
has " 
! in air 
I 
"! 
 
: 
the tensor of the constraints in the structure 
 
: 
the fluid vector of flow 
H 
: 
the matrix of rigidity of the fluid 
v 
: 
the field fluid speeds 
N 
: 
the interior normal of the fluid. 
2 Introduction 
Many industrial components are in contact with fluid environments, which more is often in 
flow. These surrounding fluid environments disturb the vibratory characteristics of the structures, 
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in particular their modal characteristics. This action of the fluid on the structure results in 
effects of fluid coupling/structure. 
One supposes the incompressible, perfect fluid environment here surrounding and at rest. One will 
show that then, 
a structure which vibrates with a small amplitude in this fluid modifies the field of pressure in 
fluid at rest, and thus feels a compressive force, proportional to its acceleration.  
proportionality factor is a mass. It describes the inertial effect of the fluid on the structure: it is 
why one names this mass masses added fluid on the structure. 
When several structures are in contact of the same fluid, when one of the structures is put at 
to vibrate, not only it feels the inertia of the fluid, but it modifies the field of pressure around 
interfaces with the fluid of all the other structures. The efforts that each one feels are 
proportional to the acceleration of the vibrating structure: there still proportionality factors  
called added masses of coupling are masses. 
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3  
Recalls of the equations of the problem 
3.1  
Equations in the fluid 
It is supposed that K vibrating structures are immersed in a true fluid (nonviscous), 
incompressible and at rest. One neglects the effect of gravity. One can thus write the equations 
of Euler associated with the fluid at rest: 
N 
y or X 2 
 
 
! 
Z 
N 
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X or x1 
` 
· conservation of the mass: 
F +div (v) = 
 
F 
0 
éq 3.1-1 
T 
· conservation of the momentum: 
v 
1 
+ (v ·) 
v + 
p 
= 0 
éq 3.1-2 
T 
F 
Because of incompressibility of the fluid, the equation [éq 3.1-1] becomes: 
div v = 0 
éq 3.1-3 
In the volume of the fluid, one neglects the convection induced by the movement of low amplitude of 
the structure. The equation [éq 3.1-2] thus becomes: 
v 
1 
+ 
p 
= 0 
éq 3.1-4 
T 
F 
v 
While deriving [éq 3.1-3] compared to time and by deferring the expression of according to 
T 
pressure in this equation, one obtains: 
div p = 0 
that is to say: 
p = 0 in  
who is the equation of Laplace in a fluid at rest. 
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With the fluid interface/structure, one can write that the normal acceleration of the wall of the 
structure is 
equalize with the normal acceleration of the fluid (continuity of the normal accelerations - condition 
of impermeability of the structure). One uses here following convention for the normal: it is about 
normal external with the structure, directed structure towards the fluid. 
v 
· N = X " · N 
T 
S! 
With the equation [éq 3.1-4], one obtains: 
v 
p · N = - F 
· N = - X " · N 
T 
F S! 
That is to say: p 
( 
) = - “X · 
 
N on  
N 
F S 
! 
! 
! , fluid interface/structure of the structure indexed by!. 
In short, the fluid problem consists in solving an equation of Laplace with boundary condition 
of type von Neumann: 
 
p = 0 in  
p 
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( 
) = - F “xs · N on 1, 1 = 
 
N 1 
$ ! 
! =1, K 
éq 3.1-5 
 
# 
p 
 
( 
) = 0 out of 2, 2 = -  
 
N2 
1 
3.2  
Equations in the structures 
Let us consider K structures elastic divings in a fluid environment. The equation of their movement in 
presence of fluid is written: 
 
 
! index of structure! {, 0 #, K}, M “X + K X = 0 in, volume of the structure 
 
! 
! 
! 
! 
S 
! 
! 
! , N = - 
 
 
pn on! , contour of the structure!  
M! is the matrix of mass of the structure, K! its matrix of rigidity. The boundary condition on 
contour of the structures translates the continuity of the normal constraint to the fluid interface/
structure (it 
tensor of the fluid constraints being tiny room to its nondeviatoric part, fluid being perfect). In 
integrating on the contour of each structure this normal constraint, a force F is obtained! 
resultant of the structure/compressive forces of the fluid to the fluid interface. This force is the 
integral of 
field of pressure on contour! %de each structure: 
! index of structure! {, 0 #, K}, F = - 
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! 
pnd 
! 
The field of pressure checks the problem [éq 3.1-5]. 
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3.3 Equations of the coupled problem - Description of the matrix of 
mass added 
Ultimately, the fluid coupled problem/structure is written: 
p = 0 in  
 
 
 
 
! { 
p 
0, K 
# }, 
= -  
" 
X 
 
 
N on  
S 
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N 
F 
 
 
· 
! 
 
! 
 
 
! 
 
! {0, K 
#}, M “X 
 
+ K X 
0 in  
 
 
= 
S 
! ! 
! ! 
 
! 
 
! {0, K 
#}, F = - pn  
D 
 
! 
 
on! 
 
 
! 
éq 3.3-1 
One will show from now on that the effort that feel the immersed structures is proportional to their 
acceleration. A good means of showing that is to place itself in the modal base of the structures 
in the vacuum. One can thus break up acceleration on this basis (which is in fact the meeting of 
modal bases of each structure). As follows: 
 
xS (R, T) = has (T 
I 
) Xi (R) 
! 
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! 
! 
i=1 
By deferring this expression in the second equation of the system [éq 3.3-1], one is brought to 
to seek the field of pressure in the form: 
p =  
(T) p has 
“I”! 
I (R) 
! 
= , 
1, K i=1, 
! # 
# 
By deferring in the problem [éq 3.3-1] these expressions, one has to solve in the fluid as much 
problems of Laplace whom one chose of modes for each structure. This results in: 
p 
I = 
 
0 in  
! 
 
 
p 
! {1, #, K}, I {1, #,} 
 
 
, 
! 
I 
 
 
= -  
X 
 
 
N on  
 
N  
F 
I · 
 
! 
! 
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! 
 
[semi (A) + K (A) = (F) in  
! ] " ! 
[! I]! 
I! 
! 
The “matrices” of mass and rigidity written in these bases are diagonal. 
Each component of the effort of pressure resulting projected on modal basis is written: 
K  
I {1, 
, 
# 
} 
! {1, K 
#}, (F 
 
! ) = - has " 
p X · 
 
N NR D 
I 
jk 
jk 
I 
J 
! 
K =1 j=1 
! 
One can then write the vector of the effort generalized of pressure on a structure immersed under 
matric form: 
(F) = - [m] “with m = p X has · N 
I 
I jk 
jk 
I jk 
jk I D 
! 
! 
! 
! 
! 
Handbook of Reference 
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Here! is fixed: the matrix [semi jk 
! ] is called matrix of mass added of the fluid on the structure of 
contour!. When one considers the modal base of the whole of K structures, one generalizes 
notation of the matrix of added mass [semi jk 
! ] on modal basis in the vacuum! varying from 1 to K. 
This matrix is in general not diagonal. 
3.4 Some  
definitions 
3.4.1 Definition  
1 
When! = K (even structure) and I = J (even order of mode), the coefficient semi I!! is the car-mass 
added mode I of the structure!. It is about additional inertia due to the fluid moved by 
mode of order I of the structure, taking into account the geometrical containments induced in the fluid by 
presence of the other presumedly fixed structures. 
3.4.2 Definition  
2 
When! = K (even structure) and I J (different orders of mode), the coefficient semi J!! is the mass 
added coupling between the modes of order I and J of the structure!. In air, these terms of mass 
extradiagonaux are null, because the modes are orthogonal between them. Taking into account the 
expression 
general of the coefficient semi jk 
! , modes I and J can be coupled in mass, because the field of 
pressure p J! created by the mode J of the structure! is not necessarily orthogonal with the mode of order 
I of this same structure. It is enough that this structure is immersed in an environment 
not comprising geometrical symmetry so that this coefficient is nonnull. In an environment 
symmetrical, on the other hand, the orthogonality of the field of pressure with the mode is observed. 
3.4.3 Definition  
3 
When! K (different structures) and I J (different orders of mode), the coefficient semi jk 
! is 
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mass added coupling between the modes of order I and J respectively of the structures! and K. It 
coefficient translates the inertial effort which makes undergo the structure K vibrating on its mode of 
order J to the structure 
! vibrating on its mode I. 
3.5  
Properties of the matrix of added mass 
3.5.1 Theorem 1: the matrix of added mass is symmetrical 
To simplify the demonstration, we will consider a single structure immersed in a fluid 
perfect, incompressible and nonviscous. We break up the movement of the structure on its basis 
modal (truncated with N modes), but the result can be just as easily shown in “physical” base 
(i.e the base of the nodal functions of interpolation). Lastly, the result spreads with the case of K 
structures immersed in the same fluid. 
One must show that: 
m = p X · N D = m = p X · N D 
ij 
I J 
ji 
J I 
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·  
pi (respectively pj) represents the field of pressure created in the fluid and to the interface 
with the structure by the mode of order I (respectively of order J) of the structure, 
·  
X J (respectively Xi) respectively represents the modal deformation of the mode of order J ( 
of order I). 
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However: 
p 
0 in 
fluid volume 
 
= 0 in fluid volume 
I = 
 
pj 
 
 
 
p 
and 
p 
 
I  
 
J 
= - F Xi · N on  
= - F X J · N on  
 
N 
 
N 
From where, by using the formula of Green with a normal directed of the structure towards the fluid and 
harmonicity of pi and p J: 
1 
p 
m = p X · N D = - 
p 
J D 
ij 
I J 
I 
 
 
N 
F 
 
 
1 
= - 
(p p 
D - 
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p 
· p 
D 
I J 
I 
J) 
F  
 
& ' 
( 
) 
( 
0 
1 
= - 
(p p 
D - 
p 
· p 
D 
J I 
J I) 
F  
 
& ' 
( 
) 
( 
0 
1 
p 
= - 
p 
I D = p X · N D 
J 
 
 
 
N 
J 
I 
F  
 
= mji 
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C.Q.F.D. 
3.5.2 Theorem 2: the matrix of added mass is definite positive 
One returns to the reference [bib1] for the complete demonstration. 
3.5.3 Theorem  
3 
Let us suppose that one has K structures having properties of linear elasticity identical and who are 
immersed in the same fluid. Moreover, these structures admit two degrees of freedom of 
displacement in the plan Oxy (cf diagram). Each one of these structures admits the same spectrum 
F 
F 
1, 
, N, 
* 
* of Eigen frequencies in the vacuum. 
For any Eigen frequency fn, there exists 2K Eigen frequencies {1, 
# 2K} of the coupled system 
fluid/structure checking I {1, 
2 
, K}, 
# 
F 
I 
N 
One returns to the reference [bib1] for the complete demonstration. 
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3.5.4 Others  
properties 
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· the coefficients of added car-mass are always positive 
One always supposes that one has only one structure immersed in a true fluid, incompressible and with 
rest. The demonstration spreads without difficulty with K immersed structures. 
One must show that: 
I index of mode {1, 
# } 
N, m = p X · N D 
II 
I 
I 
 
 
0 
 
However: 
1 
p 
m = p X · N D = - 
p 
I D 
II 
I I 
I 
 
 
N 
F 
 
 
1 
= - 
(p p 
D - 
p 
· p 
D 
I I 
I I) 
F  
 
& ' 
( 
) 
( 
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0 
1 
= 
((p 
) 2D 
I  
F  
0 
· let us suppose that one has K structures immersed in the same fluid. It is supposed that they have one 
only degree of freedom of translation according to OX. Then the sum of all the coefficients of mass 
added this matrix gives the car-mass added on the whole of K structures moving 
very of the same sinusoidal rectilinear motion. 
One returns to the reference [bib2] for the complete demonstration. 
4  
Implementation numerical 
4.1  
Resolution of the equation of Laplace by finite elements of volume 
Let us take again the fluid problem of Laplace with boundary condition of the type von Neumann: 
 
p = 0 in  
p 
( 
) = - F “xs · N on 1, 1 = 
 
N 1 
$ ! 
! =1, K 
 
# 
p 
 
( 
) = 0 out of 2, 2 = -  
 
N2 
1 
Let us write a variational formulation of this problem: 
v p 
D = 
 
0 
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By using the formula of Green with a normal which one supposes directed of the structure towards the 
fluid 
(thus interior with fluid volume) and by posing = 1 2: 
p 
 
v · p D + v D = 
 
 
0 
N 
That is to say: 
 
v · p D =  
v X " D 
F 
éq 4.1-1 
 
 
N 
 
1 
One considers a partition of volume in a finished number of elements. On this discretization of 
field, one can write the approximate shape of the hydrodynamic field of pressure: 
NR 
p = NR (R) p 
I 
I 
i=1 
Ni represents the nodal functions of interpolation definite on the elements: they are worth 1 with the node 
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n°i, and 0 on all the others. 
Then, by taking as function-tests v successively the nodal functions of interpolation, one 
a system of NR equations obtains while deferring in [éq 4.1-1]: 
NR 
J = 1, NR; 
p 
# 
NR (R) · NR (R) D =  
NR X D 
I 
I 
J 
F 
 
 
J “N” 
 
i=1 
1 
what can be written in the form: 
HP = with vector of components J = F NR jx " N "  
D 
 
éq 4.1-2 
with 
H stamps coefficients ij 
H = Nor · 
 
NR J D 
 
In any rigour, this system is singular. It admits an infinity of solutions differing from a constant. It 
is thus necessary to impose a pressure (boundary condition of the Dirichlet type) in a point of the fluid 
for raising 
indetermination on the solution. 
These precautions taken, by reversing the system [éq 4.1-2], one obtains the field of pressure in all 
the volume of fluid, including with the fluid interface/structure, where it interests us obviously. 
4.2 Calculation of the coefficients of the matrix of mass added on basis 
modal 
It is necessary to estimate the value of the integral numerically: 
m 
= p X · N D 
I jk 
jk I 
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! 
! 
éq 4.2-1 
! 
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starting from a field with the nodes of pressure represented by a vector column noted Pjk and of a field 
with the nodes of displacement corresponding to a modal deformation of structure in air and represented 
by the vector column Xi! . However, on the fluid interface/structure, the field of pressure approximate 
pjk due to 
the discretization of the interface in NR elements of edge can be written: 
NR 
p = Nm (R) p 
jk 
jkm 
m=1 
while the field of “modal” displacement is written on this same discretization: 
NR  
I 
X = Nn (R) I 
! 
X! N 
n=1 
Thus, by deferring these two expressions in the integral [éq 4.2-1], one obtains: 
NR 
NR 
NR 
semi jk (Nm (R) p) [Nn (R) Xi X · N + Nn (R) X · N D 
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! 
jk 
! 
X 
I y 
! 
y] 
m 
N 
N 
m=1 
n=1 
n=1 
! 
NR 
NR 
NR 
NR 
m 
 
p 
(Nm (R) Nn (R) N D) X + 
p 
(Nm (R) Nn (R) N D) X 
I jk 
! 
jk 
 
X 
I X 
! 
jk 
 
y 
I y 
m 
N 
m 
! N 
m=1 n=1 
 
m=1 n=1 
! 
! 
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One supposes in the demonstration that the problem is two-dimensional. 
This can be put in the shape of a scalar product, utilizing a product stamps vector: 
m 
T 
T 
= P A X + P A X 
with A stamps coefficients NR NR N D 
I jk 
jk 
X I X 
jk 
y I y 
X 
I J X  
! 
! 
! 
! 
and A stamps coefficients NR NR N D 
y 
I J y  
! 
5  
Implementation in Code_Aster 
5.1 Analogy  
thermics 
To solve the problem of Laplace in pressure, a thermal analogy is used: it is about 
to in hover solve the equation of heat with a thermal material of conductivity equalizes with 
the unit. As follows: 
 
p = 0 in  
div 
(gradT) = 0 in T = 0 if 
 
= 
 
1 
p 
 
T 
 
 
( 
) = - F “xs · N in  
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( 
) = N 
in  
 
N 
 
 
N 
T represents the temperature in the medium, it plays the part of the pressure in the fluid environment. N 
is 
the normal heat flow to the wall, it plays the part of the term - F “xs · N which is comparable to the 
variation 
in the course of the time of the flow of mass (fluid) to the wall of the structure. This quantity - F “xs · N 
is in 
homogeneous effect with a mass divided by a surface and a time squared. 
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5.2  
Implementation practical 
A new operator CALC_MASS_AJOU was developed to take into account the inertial coupling 
(added mass) between structures bathed in the same true, incompressible fluid and with 
rest. The fluid is described by equivalent thermal characteristics (operator 
DEFI_MATERIAU [U4.23.01]) and the part of the grid representing are affected by elements 
thermics (operator AFFE_MODELE [U4.22.01]). 
The operator uses five obligatory key words: 
· the key word: MODELE_FLUIDE: it is on this model that one solves the problem of Laplace with 
boundary conditions of Von Neumann (or its thermal problem are equivalent), 
· the key word: MODE_MECA (or CHAM_NO, or MODELE_GENE): this key word makes it possible 
to calculate them 
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boundary conditions of the flow type to the wall of the structure, 
· the key word: MODELE_INTERFACE: it is on this model which includes/understands all the elements 
thermics of edge of the fluid interface/structure which one calculates the scalar product mentioned 
in the paragraph [§4.2],  
· the key word: CHAM_MATER: it is about fluid material (described by characteristics 
thermics equivalent), 
· the key word: CHARGE: it is a thermal load (temperature imposed in a node 
unspecified of the fluid grid) which corresponds to the boundary condition of Dirichlet for raising 
the singularity of the problem of Laplace (see [§4.1]). 
One thus obtains a matrix of generalized added mass. This matrix having a profile line of 
full sky but (operator NUME_DDL_GENE [U4.55.07]) can be summoned with the matrix of mass 
generalized of the structure by using operator COMB_MATR_ASSE [U4.53.01]. This allows 
to calculate the coupled modes fluid/structure of the immersed structures (“wet” modes) (operator 
MODE_ITER_SIMULT or MODE_ITER_INV [U4.52.02], [U4.52.01]). 
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Coupling fluid-structure for the structures  
tubular and coaxial hulls  
 
 
 
 
 
Summary:  
 
This document describes the various models of coupling fluid-structure available starting from the 
operator  
CALC_FLUI_STRU. These models make it possible to simulate the forces of coupling fluid-rubber 
band in  
following configurations:  
 
· beams of tubes under transverse flow (primarily, tubes of Steam generator),  
· passage stem of order/plate of housing (exclusively for the control rods),  
· coaxial cylindrical hulls under annular flow (for example, space ferments/envelope of  
heart),  
· beams of tubes under axial flow (for example, fuel assemblies).  
 
For each configuration, the model of forces fluid-rubber bands is initially presented. The resolution 
of  
modal problem is then described. The methods of resolution employed intégrent specificities of  
various models of forces fluid-rubber bands.  
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1 Presentation  
general  
1.1 Recalls  
 
The dynamic fluid forces being exerted on a structure moving can be classified in  
two categories:  
 
· forces independent of the movement of the structure, at least in the range of small  
displacements; they are mainly random forces generated by turbulence or  
diphasic nature of the flow,  
· fluid forces dependent on the movement of the structure, known as “forces  
fluid-rubber bands”, persons in charge for the coupling fluid-structure.  
 
In this document, one is interested in the four models of forces fluid-rubber bands integrated in  
operator CALC_FLUI_STRU. The data-processing aspects related to the integration of these models 
made  
the object of notes of specifications [bib1], [bib2].  
 
1.2 Modeling  
 
The dependence of the forces fluid-rubber bands with respect to the movement of the structure is 
translated, in  
range of the low amplitudes, by a matrix of transfer enters the force fluid-rubber band and it  
vector displacement. The projection of the equation of the movement of the system coupled fluid-
structure  
on the basis of modal structure alone is written, in the field of Laplace:  
 
[{M2 
II] S + [Cii] S + [K II] - [Bij (U, S)]} (Q) = (Qt) éq  
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1.2-1  
 
 
[Mii], [Cii] and [Kii] 
where  
the diagonal matrices of mass indicate respectively,  
of structural damping and stiffness in air;  
 
(Q) the vector of the displacements generalized in air indicates;  
 
(Qt) the vector of the generalized random excitations indicates (forces independent of  
movement);  
 
[Bij (U, S)] 
and  
represent the matrix of transfer of the forces fluid-rubber bands, projected on the basis  
modal of the structure alone. This matrix depends in particular on U, speed characteristic  
flow, as well as frequency of the movement via the variable of  
Laplace S.  
 
A priori, [Bij (U, S)] is an unspecified matrix whose extradiagonaux terms, if they are not null,  
introduce a coupling between modes. In addition, terms of [Bij (U, S)]evolve/move in manner not  
linear with the frequency S. complexes.  
 
With each model of force fluid-rubber band is associated a specific matrix of transfer.  
In all the cases, the formulation of the modal problem under flow can be characterized  
by the relation [éq 1.2-1].  
For the various types of configurations being able to be simulated using the operator  
CALC_FLUI_STRU, the representations of the matrices of transfer of the forces fluid-rubber bands are  
clarified in the continuation of this document.  
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2  
Excitation fluid-rubber band acting on the beams of  
tubes under transverse flow (primarily for  
tubes of Steam Generator)  
 
The integration of this model of excitation fluid-rubber band in Code_Aster was approached in the note  
specifications [bib1]. The note of principle of software FLUSTRU [bib3] constitutes documentation  
theoretical of reference. The principal principal ones of modeling are pointed out hereafter.  
 
2.1  
Description of the studied configuration  
 
One considers a beam of tubes excited by a transverse external flow. Physically, them  
transverse external flows tend to destabilize the mechanical system when  
rate of the flow increases.  
 
An industrial case to treat in practice is that of the vibrations of the tubes of steam generators. On  
this component, the transverse flows are observed in the input area of the beam of  
tubes (monophasic flow liquidates), and in the curved part of the tube out of U (flow  
diphasic) [Figure 2.1-a].  
 
Exit vapor 
Separators 
Excited zone 
by  
Food water 
flow  
diphasic 
Water return 
Excited zone  
Beam of tubes 
by 
flow  
Plate spacer 
monophasic 
Tubular plate 
Primary fluid entry 
Primary fluid exit 
 
Appear 2.1-a: Diagram of steam generator  
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From the point of view of the coupling fluid-rubber band, the study of the dynamic behavior of different  
tubes of a beam subjected to a transverse flow is brought back to the study of an equivalent tube;  
the definition of the equivalent tube depends on the environment of the tube to treat.  
 
When the tube considered has vibratory characteristics appreciably different from those  
of its neighbors, this tube can be compared to only one tube, vibrating in the middle of a beam of tubes  
rigid.  
 
In the contrary case, the problem is more complex because one must consider a mechanical system  
with coupling between tubes of the beam and thus comprising a great number of degrees of freedom.  
To treat this kind of configuration, a model was developed at Department TTA, “the model  
total " [bib7]; this model allows the definition of a system equivalent to a degree of freedom, which  
represent the complete coupled system.  
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The approach adopted to lead calculations can be summarized in the following way [Figure 2.1-b]:  
 
· Taking into account the telegraphic nature of the structures studied, the calculation of the coupling  
fluid-rubber band in the beam of tubes is carried out by describing the tube by its X-coordinate  
curvilinear.  
· In calculation, the fluid environment of the tube is characterized, at the same time by the properties  
physiques of the fluid circulating inside the tube (fluid primary education), and by those of the fluid  
circulating outside the tube (fluid exiting secondary). These physical properties, such  
that the density, can vary along the tube, according to the curvilinear X-coordinate.  
· The rate of flow taken into account for the calculation of coupling fluid-rubber band is  
component, normal with the tube in the plan of the tube, the speed of the secondary fluid. This  
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speed can vary along the tube.  
· In order to be able to take into account the various possible types of excitation, several zones  
of excitation can be defined along the structure. In the case of the generator of  
vapor, for example, one may find it beneficial to distinguish, on the one hand the zones where the 
excitation is exerted  
by a fluid in a monophasic state, which is located in foot of tube, and in addition, the zone where  
the excitation is diphasic atstrong rate of vacuum, localised in the curved part of the tube.  
· The calculation of coupling is carried out starting from the mechanical characteristics of the structure 
in  
“fluid at rest”. The forces fluid-rubber bands of coupling are estimated from  
adimensional correlations which are obtained on analytical experiments in  
similarity. On each zone of excitation, one can thus apply the adequate correlations;  
the zones of excitation must be disjoined.  
 
S U p p O rts 
Z O N E 2 
Z O N E 3 
Z O N E 1 
0 
has X E D E the fib Re N E U tre D U you B E  
X 
(B C M is S.E has. C U rv ilig N E) 
 
Appear 2.1-b: Representation of the configuration studied  
For this configuration of coupling fluid-rubber band, the following notations will be used:  
 
 
L  
Overall length of the tube  
Lk 
Length of the zone K  
 
D 
Diameter external of the tube  
E  
di  
Internal diameter of the tube  
I  
Modal deformation of mode I  
(X 
E 
)  
Density of the external fluid to the curvilinear X-coordinate X  
(X 
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I 
)  
Density of the fluid interns with the curvilinear X-coordinate X  
T  
Density of the tube (structure alone)  
(X 
eq 
)  
Density equivalent to the curvilinear X-coordinate X  
U  
Speed of the external fluid specified by the user in the operator  
DEFI_FLUI_STRU  
V (X)  
Speed of the external fluid to the curvilinear X-coordinate X  
Vk (X)  
Speed of the external fluid to the curvilinear X-coordinate X (zone of excitation  
K) challenge I 
L 
D it D U T of 
wire D 
it 
é ifié 
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K) defined by the product of U and a profile speed specified by  
the user in operator DEFI_FLUI_STRU  
U 
V X 
K  
Mean velocity of the external fluid calculated starting from K () for  
zone of excitation  
U  
Average speeds the U.K. on all the zones of excitation  
 
 
2.2  
Stages of calculation  
 
· The first stage of calculation consists in calculating the structural features in “fluid with  
rest ". One proceeds by considering an equivalent mass of the tube; this equivalent mass  
gather, on the one hand the mass of the tube alone, and on the other hand the masses added by the fluids  
intern and external.  
 
An equivalent density is thus defined along the tube according to the X-coordinate  
curvilinear X by the expression:  
 
1 
(X) 
2 
2 
2 
2 
= 
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+  
- 
+  
eq 
( 
éq  
2.2-1 
2 
2 
I 
I 
T 
E 
I 
E 
eq 
 
D E - di) [(X) .d 
(.d D) (X) .d] 
with  
 
. C. 2 
2 
2 m D 
D 
E 
eq = 
 
 
 
 
 
 
 
 
 
 
éq 2.2-2  
 
In the equation [éq 2.2-1], the term  
(X). 2 
E D eq represents the mass added by the external fluid.  
This term depends, via the parameter Cm, of the arrangement of the beam of tubes  
(not square or triangular), and of the containment of the beam (not reduced). For calculations of  
coupling fluid-rubber band of the beams of tubes subjected to a transverse flow, one uses  
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usually, to estimate the coefficient Cm, of the given analytical expressions from  
experimental results. The whole of the data necessary to the estimate of the coefficient Cm  
is collected by operator DEFI_FLUI_STRU.  
 
· Knowing the equivalent density of the tube, the elementary matrices of mass and of  
stiffness out of water at rest are then calculated by means of the profile of density  
equivalent, by operator CALC_MATR_ELEM; one uses options MASS_FLUI_STRU and  
RIGI_FLUI_STRU. Operator MODE_ITER_SIMULT allows, after assembly of the matrices  
elementary, to directly calculate the modes out of water at rest of the studied structure.  
· The forces fluid-rubber bands of coupling are calculated by operator CALC_FLUI_STRU to leave  
adimensional correlations established on analytical models in similarity. These  
forces of coupling, [Bij (U, S)], dependent on the movement of the structure are then taken  
in account in the general equation of the movement [éq 1.2-1] to calculate the characteristics of  
system coupled flow-structure for a given speed of flow.  
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2.3  
Form of the matrix of transfer of the forces fluid-rubber bands  
 
In the case of beams of tubes excited by a transverse flow, the forces fluid-rubber bands  
of coupling are forces distributed along the structure. They are characterized by  
linear adimensional coefficients of added damping and stiffness, named  
respectively Cd and Ck. The expression of the coefficients of the fluid matrix of transfer of the forces  
rubber bands projected on the basis of modal structure in “fluid at rest” is then the following one:  
 
1 
2 
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E (X) V (X) of Cd (X, Sr) (X) dxs 
B 
2 
 
ij (U, S) 
L 
I 
= 
ij  
éq  
2.3-1  
1 
2 
2 
 
+  
 
E (X) V (X) Ck (X, Sr) I (X) dx  
L 
2 
 
 
Dependence of the coefficients Cd and Ck with respect to the movement of the structure and the speed of  
the flow of the fluid is represented by their evolution according to the reduced frequency complexes Sr,  
defined by:  
 
sD 
Sr = 
 
 
 
 
 
 
 
 
 
 
éq 2.3-2  
U 
 
The expression [éq 2.3-1] shows that one retains a diagonal matrix of transfer. That implies that:  
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· the various clean modes of the structure are rather distant from/to each other so that  
one can suppose that there is not coupling between modes.  
· the modal deformations of the structure in “fluid at rest” are not disturbed by the setting  
in flow of the fluid.  
 
These two assumptions could be checked in experiments on the beams of tubes subjected to one  
transverse flow.  
 
In practice, taking into account the various zones of excitation taken into account along the structure,  
the diagonal coefficients of the matrix of efforts fluid-rubber bands projected on modal basis are written  
:  
 
 
1 
sd U  
 
 
E 
2 
 
E (X) K 
V (X) deCdk 
I (X) dxs 
L 
 
 
 
 
K 2 
UU 
Bii (U, S) =  
 
K  
 
 
 
 
éq  
2.3-3  
K  
 
1 
 
2 
sd U  
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E 
2 
 
 
+  
E (X) K 
V (X) Ckk 
I (X) 
 
dx 
L 
 
 
 
 
 
K 2 
UUk  
 
 
 
 
where Cdk and Ckk indicate the adimensional coefficients of coupling respectively,  
UU 
of damping and stiffness, retained for the zone of excitation K. Fluid speed  
K  
U 
intervening in the reduced frequency complex in argument of the coefficients of coupling corresponds  
at the mean velocity on the zone of excitation K, after renormalisation of the profile Vk (X), so that  
its average on all the zones of excitation is worth U.  
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2.4  
Resolution of the modal problem under flow  
 
In the configuration “Beam of tubes subjected to a transverse flow”, the problem is solved  
on the modal basis characterizing the structure in “fluid at rest”.  
 
Generally, the characteristics of the system coupled flow-structure are obtained  
by seeking the solutions of the equation:  
 
[{Mii] 2s + [Cii] S + [Kii] - [Bii (U, S)]} (Q) = (0)  
éq  
2.4-1  
 
 
[Mii], [Cii] and [Kii] 
where  
the diagonal matrices of mass indicate respectively,  
of damping and stiffness structural features in “fluid at rest”;  
 
(Q) the vector of the displacements generalized in “fluid at rest indicates”.  
 
As the matrix of efforts fluid-rubber bands retained is diagonal, and that modal deformations  
are supposed not to be modified under flow, the problem of coupling fluid-rubber band  
bring back to the resolution of NR scalar problems, NR indicating the number of modes taken into 
account  
in the modal base.  
 
For each mode I and each rate of flow U, the problem to be solved is written:  
 
 
 
 
sd U  
 
2 
 
1 
Miis 
+  
 
Cii -  
E (X) K 
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V (X) 
E 
2 
deCdk 
I (X)  
dx S 
 
 
Lk 2 
 
 
 
 
UU 
 
K 
 
K  
 
 
 
 
 
 
 
éq  
2.4-2  
 
 
 
 
1 
sd U  
 
+  
 
Kii -  
E (X) 2k 
V (X) 
E 
2 
Ckk 
I (X)  
dx  
= 0 
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Lk 2 
 
 
 
 
UU 
 
K 
 
K  
 
 
 
 
 
 
 
It will be noted that the equation [éq 2.4-2] is non-linear in S; its solutions are obtained using one  
iterative method of Broyden type.  
 
For each mode I, one obtains a solution if equation [éq 2.4-2]. One then deduces from if,  
for this mode, pulsation I and damping I of the system coupled flow-structure, in  
using the relation:  
S 
2 
I =  
- II + Ji - 2 
1 
J = - 
I  
 
with  
1 éq  
 
2.4-3  
The coupled system dynamically becomes unstable when one of the damping coefficients I  
becomes negative or cancels themselves.  
Handbook of Reference  
R4.07 booklet: Coupling fluid-structure  
HI-86/02/008/A  

Code_Aster ®  
Version  
5.0  
 
Titrate:  

file:///Z|/process/refer/refer/p1340.htm (9 of 28)10/2/2006 2:53:20 PM



file:///Z|/process/refer/refer/p1340.htm

Coupling fluid-structure for the tubular structures and the hulls  
Date:  
23/09/02  
Author (S):  
T. KESTENS, Key Mr. LAINET  
:  
R4.07.04-B Page  
: 8/34  
 
 
3 Excitation fluid-rubber band acting on the stem of  
order on the level of the plate of housing  
(exclusively for the control rods)  
 
The forces fluid-rubber bands acting on this type of configuration were identified on the model  
GRAPPE2 of department TTA. The theoretical aspects of the identification of these sources are  
developed in reference [bib4]. The integration of model GRAPPE2 in Code_Aster is approached  
in the note of specifications [bib2].  
 
3.1  
Description of the studied configuration  
 
Model GRAPPE2 represents the stem of order, the higher part of the guide of bunch, and  
the thermal cuff of an engine of the type 900 or 1300 MWe [Figure 3.1-a].  
 
Cuff  
thermics 
Tube envelope 
Heart  
power station 
Plate  
housing 
 
Appear 3.1-a: General diagram of the model BUNCH 2  
 
This model primarily consists of a hollow cylindrical tube low thickness, fixed on  
a full cylindrical central heart. The hollow tube is entirely immersed in water with  
ambient temperature. A plate, representing the plate of housing, makes it possible to reproduce it  
annular containment. The flow through the plate can be ascending or descendant. The stem  
of order can be centered or offset (50% of the average play) on the level of the plate of  
housing.  
 
Four experimental configurations are thus possible, according to the direction of the flow and of  
centering or not of the stem of order. The coefficients of forces fluid-rubber bands were identified  
for each one of these configurations and are available in Code_Aster.  
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Model GRAPPE2 was dimensioned in geometrical, hydraulic similarity and of frequency  
reduced compared to the configuration engine. The only data of the diameter of the stem of order  
thus allows, in particular, to deduce the unit from the other geometrical magnitudes.  
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3.2  
Stages of calculation  
 
· The first stage of calculation consists in calculating the modal base of the water structure at rest,  
locally induced effects of mass added to the level of the containment of the plate of  
housing being neglected. This stage is carried out by operator MODE_ITER_SIMULT.  
 
With this intention, a homogeneous equivalent density is assigned to the whole of  
structure, in order to take into account the apparent mass added by the fluid, except for  
that induced by the effects of containment on the level of annular space. This mass  
voluminal equivalent is defined by:  
 
R2 
eq =  
F + tube  
éq  
 
3.2-1  
S 
 
where:  
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indicate an adimensional coefficient of containment depend on the configuration  
studied; = 1 is the value used for calculations of control rods. It  
corresponds to a vibrating roller in an unlimited fluid field.  
R  
indicate the ray external of the tube,  
S  
indicate the surface of the cross-section of the tube,  
tube indicates the density of material constituting the vibrating tube.  
 
· The second stage is the taking into account of the coupling with the fluid flow. It is carried out with  
assistance of operator CALC_FLUI_STRU.  
 
3.3  
Representation of the excitation fluid-rubber band  
 
That is to say X direction of neutral fibre of the tube. The excitation fluid-rubber band identified on the 
model  
GRAPPE2 is represented by a resulting force and a moment, applied in the same point  
of X-coordinate X O, corresponding to the central zone of the passage of the stem of order through  
plate housing. The excitation is thus defined, in the physical base, by the relation:  
 
f^c (X, S) = C 
F (S) (X - x0) - Mc (S) '(X - x0)  
éq  
3.3-1  
 
where 'the derivative compared to X of the distribution of Dirac indicates.  
 
The resulting force, C 
F, acts thus under the effect of transverse displacements of the stem of order;  
and the resulting moment, Mc, acts under the effect of the rotation of the latter.  
 
One notes X (S 
T 
) the vector of transverse displacements and ( 
S) the vector of associated rotations,  
defined by:  
 
0 
 
XT (S)  
= uy (X, S 
0 
) éq 3.3-2  
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uz (X, S 
0 
) 
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0 
 
 
 
( 
 
S) uy 
 
=  
(X, S) 
0 
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éq 3.3-3  
X 
 
 
 
uz (X, S) 
0 
 
 
X 
 
The following relations are used to calculate the forces and the moments fluid-rubber bands  
resulting starting from the added masses  
1 
Cm, cm2, of added depreciation Cd1 (Vr), Cd2 (Vr) and  
added stiffnesses Ck1 (Vr), Ck2 (Vr), adimensional coefficients identified on the model  
GRAPPE2:  
 
1 
2 
2 
1 
1  
2 
 
C 
F (S) = - D L Cm S 
1 
+ DUL Cd 
F 
p 
F 
p 
1 (Vr) S + 
U L Ck 
F 
p 
1 (Vr) XT (S) éq  
3.3-4  
2 
2 
2 
 
 
1 
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2 
3 
2 
1 
3 
1 
2 
3 
 
Mc (S) = - D L Cm S 
2 
+ DUL Cd 
F 
p 
F 
p 
2 (Vr) S + 
U L 
F 
p Ck2 (Vr) ( 
S) éq 3.3-5  
2 
2 
2 
 
 
In order to simplify the writing of the equations, one notes thereafter:  
 
C 
F (S) = H1 (S) XT (S) and Mc (S) = H2 (S) ( 
S)  
 
U 
The fallback speed adimensionnelleVr is defined here using the Vr relation = 
, where S indicates  
sD 
variable of Laplace.  
 
The expressions [éq 3.3-4] and [éq 3.3-5] utilize the thickness LP of the plate of housing. This  
thickness results from the value of the diameter of the stem of order, D, because of similarity  
geometrical with the configuration engine. The effort fluid-rubber band f^c (X, S) is thus completely  
characterized by the data of the following sizes:  
 
F  
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Density of the fluid,  
U  
Rate of the average flow in annular space between stem of order and  
plate housing,  
D  
Diameter of the stem of order,  
1 
Cm  
Coefficient of added mass associated the translatory movement,  
Cd 
 
1 (Vr)  
Added damping coefficient associated the translatory movement,  
Ck 
 
1 (Vr)  
Coefficient of added stiffness associated the translatory movement,  
 
Cm2  
Coefficient of added mass associated the rotational movement,  
Cd 
 
2 (Vr)  
Added damping coefficient associated the rotational movement,  
Ck 
 
2 (Vr)  
Coefficient of added stiffness associated the rotational movement.  
 
Adimensional coefficients of added mass,  
1 
Cm and 
2 
Cm, allow the taking into account of  
inertial effects induced by local containment of the stem of order on the level of the plate of  
housing. These effects are estimated as follows.  
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That is to say H the thickness of the annular flow on the level of containment, deduced from D by 
similarity  
geometrical compared to the configuration engine; indicate the adimensional coefficient of  
containment introduced by the relation [éq 3.2-1]. One obtains then [bib 4]:  
 
1 
3 
2 
2 
 
 
2 
 
D 
D  
D D 
 
 
D L Cm =  
-  
L =  
 
- L 
2 F 
p 
1 
F 
 
8 
F 
H 
4 
p 
F 
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4 2 
p 
H 
 
 
 
 
3 
1 
2 
D D 
 
D D 
L 
2 
3 
p 
F D LP Cm2 = F  
 
-  
(X - X) 
2 
2 dx  
= 
 
-  
 
2 
4 2 
F 
L 
O 
H 
p 
4 2H 
 
3 
 
One deduces the values from them from 
1 
Cm and cm2 by:  
 
D 
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Cm1 =  
- éq  
3.3-6  
2 2H 
 
Cm1 D 
 
Cm2 = 
=  
-  
 
 
 
 
 
éq 3.3-7  
3 
6 2H 
 
 
The Cd1 coefficients, 1 
Ck, Cd2 and Ck2 are directly deduced from measurement and are expressed in form  
adimensional correlations.  
 
3.4 Projection on modal basis and expression of the terms of the matrix  
of transfer of effort fluid-rubber band  
 
Decomposition of the movement on modal basis  
 
One notes J (X) the modal deformation of the jème mode of the structure. Decomposition of the vector of  
displacements in the modal base is expressed in the form:  
 
DX (X) 
NR 
NR  
J 
 
(ux, S) = J (X) qj (S) = DY (X) 
J 
Q J (S) éq  
3.4-1  
J =1 
J =1 
 
 
DZ J (X)  
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Where DX J, DY J and DZ J correspond to the three components of translation characterizing them  
modal deformations calculated using Code_Aster.  
 
Calculation of the generalized excitation associated mode I  
 
The generalized excitation Q (S 
I 
) associated mode I is defined by the relation:  
 
I ( 
L 
S) = f^ 
Q 
C (X, S)  
. I (X) dx  
 
 
 
 
 
 
 
éq 3.4-2  
0 
 
where L indicates the length of the structure on which one wants to impose excitations GRAPPE2.  
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Transfer transfer functions H1 (S) and H2 (S) being defined starting from the relations [éq 3.3-4] and 
[éq 3.3-5],  
one deduces some, taking into account the expressions [éq 3.3-1], [éq 3.3-4] and [éq 3.3-5]:  
 
 
0 
 
 
0 
 
IQ (S) 
NR 
L 
 
 
=  
 
 
H (S) DYj (xo) qj (S) (X - xo). I 
DY (X) dx 
0 
1 
J =1 
 
DZ J (xo) 
 
 
DZi (X) 
 
 
éq  
3.4-3  
0 
 
 
0 
 
NR 
 
 
- L 
 
 
H (S) DY' 
' 
J (xo) Q J (S) (X - xo)  
. 
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I 
DY (X) dx 
0 
2 
J =1 
 
 
' 
DZ X 
DZ X 
J (O) 
 
 
 
I () 
 
From where, after integration:  
 
IQ (S) 
NR 
= {H1 (S) [I 
DY (xo) .DY J (xo) + DZi (xo) .DZ J (xo)] 
J =1 
+ H 
' 
' 
' 
' 
2 (S) [ 
I 
DY (xo) .DY J (xo) + DZi (xo) .DZi (xo)]} Q J (S) éq  
3.4-4  
NR 
= ij 
B (S) Q J (S) 
J =1 
 
Note:  
 
' 
' 
I 
DY (xo) = DRZi (xo) and DZi (xo) = - 
I  
DRY (xo)  
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3.5  
Resolution of the modal problem under flow  
 
The modal problem is solved by supposing, at first approximation, that the diagonal terms of  
the matrix of transfer of the efforts fluid-rubber bands [B (S)] are dominating compared to the terms  
extradiagonaux.  
 
The matrix [B (S)] being thus reduced to its diagonal, the modal deformations are not disturbed  
by the taking into account of the coupling fluid-rubber band; the only modified parameters are them  
Eigen frequencies and modal reduced depreciation.  
 
The modal problem under flow breaks up then into NR independent scalar problems,  
solved by a method of the Broyden type:  
 
(M + aj 
II 
M II) 2 
S + (C + aj 
II 
C II (S))S + (K + aj 
II 
K II (S))= 0 éq  
3.5-1  
 
 
 
where  
aj 
M II  
indicate the generalized mass added by the fluid,  
 
aj 
 
C II (S) indicates the generalized damping added by the fluid,  
 
aj 
 
K II (S) indicates the generalized stiffness added by the fluid.  
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aj 
M 
aj 
aj 
II, C II (S) and K II (S) are calculated using the relations:  
 
aj 
1 
2 
 
2 
2 
2 
2 
2 
' 
' 
M II = + F D LP Cm1 {DY1 (xo) + DZi (xo)} 
 
+ LP cm2 DY I (xo) + DZ I (xo) 
 
éq 3.5-2  
2 
 
 
 
 
aj 
1 
2 
2 
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2 
2 
2 
' 
' 
C II (S) 
 
= - F DULp Cd1 (Vr) {DY1 (xo) + DZi (xo)}+ LP Cd2 (Vr) DY I (xo) + DZ I (xo) 
 
 
2 
 
 
 
éq 3.5-3  
 
aj 
1 
2 
2 
2 
2 
2 
2 
' 
' 
K II (S) 
 
= - fU LP Ck1 (Vr) {DY1 (xo) + DZi (xo)}+ LP Ck2 (Vr) DY I (xo) + DZ I (xo) 
 
 
2 
 
 
 
éq 3.5-4  
aj 
U 
C 
aj 
II and K II depend implicitly on S via the fallback speed Vr = 
.  
sD 
 
The three sizes necessary to dimension these terms are thus only D 
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F, 
and  
U, LP being deduced from D thanks to the geometrical property of similarity.  
 
Like that was indicated previously, the adimensional coefficients  
Cd1 (Vr), Ck1 (Vr), Cd2 (Vr) and Ck2 (Vr) result from the identified empirical correlations  
in experiments on model GRAPPE2.  
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4 Excitation fluid-rubber band acting on two hulls  
cylindrical coaxial under annular flow  
(example: space tank/envelope of heart)  
 
The integration of this model of excitation fluid-rubber band in Code_Aster was approached in the note  
specifications [bib2]. The note of principle of model MOCCA_COQUE [bib5] constitutes  
theoretical documentation of reference.  
 
4.1  
Description of the studied configuration  
 
The studied hardware configuration is made up of two coaxial, separate cylindrical hulls  
by an annular space in which runs out a viscous incompressible monophasic fluid  
[Figure 4.1-a]. The flow is done in the direction of the axis of revolution of the cylinders; to fix them  
notations, one supposes in the continuation of the document that it is about axis X.  
 
One notes:  
 
L  
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the common length of the two cylindrical hulls,  
R 
 
1 (, X T 
, )  
the interior ray of annular space,  
R 
 
2 (, X T 
, )  
the ray external of annular space,  
 
 
R, X, 
1 
T + R, X, 
2 
T  
R (, X T,)  
the average radius R (, X, T) 
( 
) 
( 
) 
= 
,  
 
2 
 
H (, X T,)  
play annular (H (, X T,) = R2 (, X T,) - R1 (, X T,),  
E 
 
R, E, E 
 
X  
vectors of the base of cylindrical co-ordinates.  
 
R1 
R2 
External hull 
L 
Internal hull 
 
Appear 4.1-a: General diagram coaxial hulls  
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4.2  
Stages of calculation  
 
· The first stage of calculation consists in determining the modal base in air of the structure. This  
operation is carried out by operator MODE_ITER_SIMULT. This calculation is necessary because  
decomposition of the matrix of transfer of the forces fluid-rubber bands [B (S)] is expressed in  
this base.  
· The second stage relates to the taking into account of the forces fluid-rubber bands. It intervenes in  
operator CALC_FLUI_STRU. This stage breaks up into eight sub-tasks:  
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4.2.1 Preprocessings  
 
1°/Determination of the characteristic geometrical magnitudes, starting from the topology of  
grid: common length of the two hulls, average radius, average annular play.  
 
 
2°/Characterization of the modal deformations in air: determination of the orders of hull, of  
principal plans, of the numbers of wave and the coefficients of associated deformations of beam  
with each mode of the structure, both for the hull interns the external hull.  
 
4.2.2 Resolution of the modal water problem at rest  
 
3°/Calculation of the matrix of mass added by the fluid [Maj] in the modal base of  
structure in air  
 
 
4°/Calculation of the modal characteristics of the water structure at rest while solving:  
[({Semi] + [Maj]) 2s + [Ki]} (Q) = 0  
One obtains the new structural features out of water at rest  
E 
E 
E 
Semi, Ki, fi  
(generalized mass and stiffness, Eigen frequency of mode I) as well as the deformations  
modal  
E 
I, expressed in the base in air.  
 
 
5°/Calculation of the water deformations at rest in the physical base, by basic change:  
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[I.E.(internal excitation)] = [have] [E 
.i]  
 
4.2.3 Resolution of the modal problem under flow  
 
For each rate of flow:  
 
 
6°/Calculation of [B (S)] in the modal base in air.  
This calculation is carried out by solving the non stationary fluid problem according to the method  
specified in the paragraph § 4.3.1.  
 
 
7°/Calculation of the forces fluid-rubber bands induced by the effects of damping and stiffness  
additions, in the modal water base at rest.  
[B (S)] T 
E 
= [E 
 
2 
I] [ 
{B (S)]- [Maj] S} [E 
I]  
 
 
8°/Resolution of the modal problem by neglecting the extradiagonaux terms of the latter  
stamp, by the method of Broyden (buckles on the sub-tasks 6° and 7°).  
 
E 2 
M S 
I 
+ E 
C S 
I 
+ 
E 
Ki - 
E 
Bii (S) = 0  
 
Modal characteristics of the structure:  
EC. 
EC. 
EC. 
Semi, fi  
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, I (generalized mass,  
Eigen frequency and damping of mode I, under flow) are given.  
modal deformations are supposed to be identical to those out of water at rest.  
 
End of loop on the rates of flow  
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Note:  
 
· The calculation of the terms of the matrix of transfer of the forces fluid-rubber bands requires  
resolution of the non stationary fluid problem (sub-task 6°). This resolution is not  
itself possible that if certain sizes beforehand were determined  
geometrical characteristics of the configuration, as well as the coefficients of the forms  
analytical of the modal deformations of the structures (preprocessings 1° and 2°).  
· If the user chooses to carry out the first stage (calculation of the modal base by  
operator MODE_ITER_SIMULT) by taking directly into account the effects of mass  
added, those should not be taken any more into account by operator CALC_FLUI_STRU.  
For that, key word MASS_AJOU of order DEFI_FLUI_STRU must be  
informed by “NOT”. The sub-tasks 3° with 7° become then:  
 
3° Calculation of the effects of mass added by the fluid, in the modal base of  
/  
water structure, in order to be able to cut off these effects of the effort fluid-rubber band  
total, since the terms of added mass are already taken into account.  
 
 
4° removed Sub-task.  
/  
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5° removed Sub-task.  
/  
 
For each rate of flow  
 
 
6° Calculation of the matrix [B (S)] in the modal water base.  
/  
 
 
7° Calculation of the forces fluid-rubber bands induced by the effects of damping and of  
/  
stiffness added in the modal water base:  
[eB (S)]= [B (S)]- [Maj] 2s  
 
The sub-tasks 1°, 2° and 8° are not modified.  
 
4.3  
Resolution of the non stationary fluid problem  
 
4.3.1 Assumptions  
simplifying  
 
Some assumptions on the nature of the flow make it possible to simplify the equations of Navier- 
Stokes non stationary, at the base of the problem fluid-structure.  
 
H1  
It is supposed that the flow is the superposition of a stationary average flow, obtained  
when the structures are fixed, and of a non stationary flow induced by the movement of  
walls.  
 
 
H2  
It is supposed that the vibrations of structure are of low amplitude with respect to the thickness of  
the average annular flow.  
 
 
H3  
One supposes that the disturbances speed induced by the vibratory movements are, in  
average on a ray, primarily directed in the directions and X: one supposes thus  
that the vibratory movement induced a helicoid movement of fluid around the structures  
rather than a radial movement compared to these last. These disturbances speed  
define order 1.  
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H4  
One supposes finally that the speed and pressure field is uniform, with order 1, in  
radial direction.  
 
These simplifying assumptions make it possible to solve the fluid problem analytically. The matrix  
of transfer of the forces fluid-rubber bands [B (S)] is deduced from the non stationary flow resulting 
from this  
resolution.  
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4.3.2 Analyze in disturbances  
 
With the help of the assumptions stated previously, the analysis in disturbances of the fluid problem  
conduit to seek the non stationary flow in the form:  
 
U = 0 
R 
+ 0 + 
2 
 
order  
éq  
4.3.2-1  
U = + u~ 
0 
(, X, T) + 
2 
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order  
éq  
4.3.2-2  
U 
~ 
X = U (X) + U X (, X, T) + 
2 
 
order  
éq  
4.3.2-3  
P = P (X) + p~ (, X, T) + 
2 
 
order éq  
4.3.2-4  
 
with:  
 
R = R + r~ (, X, T 
1 
1 
1 
)  
éq  
4.3.2-5  
R = R + r~ (, X, T 
2 
2 
2 
)  
éq  
4.3.2-6  
 
~ 
~ 
~ 
~ 
R 
~ 
~ 
+ 
One defines the variables H and R like:  
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~ 
~ 
H = R 
2 
R 1 
2 - R 1et R = 
.  
2 
By limiting the development of the Navier-Stokes equations to the first order, one obtains two  
systems of equations characterizing the stationary part and the disturbed part of the flow, it  
second system being a linear system.  
 
The resolution of the stationary fluid problem leads thus to:  
 
P 
1 
U (X) = U constant and  
2 
= - C U éq  
4.3.2-7  
X 
H 
F 
 
In the equation [éq 4.3.2-7], indicates the density of the fluid and C F the stationary part of  
coefficient of friction to the wall. The incompressible fluid being supposed, its density is not  
not broken up partly stationary and fluctuating part. C F is deduced from the law of Nikuradzé  
characterizing the flows in control:  
 
2 U 
H 
C 
X 
F = C fo (E 
R,) m (R, E) 
E 
R 
with E 
R = 
 
 
éq  
4.3.2-8  
 

file:///Z|/process/refer/refer/p1350.htm (7 of 29)10/2/2006 2:53:21 PM



file:///Z|/process/refer/refer/p1350.htm

where m indicates the value of an exhibitor, indicates the kinematic viscosity of the fluid and the 
roughness of  
walls.  
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It results from this:  
 
C 
, 
F 
= C fo (R 
E 
E,) 
m (R 
) 
Re 
~ 
~ 
~ 
2HU 
Hu~ 
~ 
2 
C 
X 
F 
= C F (Re) - C F (Re) 
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with Re = 
R = 
and E 
 
~ 
= (m + 
U 
2) C 
X 
F 
+ 
2 
 
order 
U 
 
The linear differential connection of a nature 1 characterizing the non stationary part of the flow 
induced  
by the movements of walls is written in the field of Laplace:  
 
 
~ 
~ 
u~ 
~ 
X 
1 U 
U  
 
H 
S ~ U R 
S ~ 
 
+ 
= - 
 
+ 
H - 
 
+ 
R 
X 
R  
H X U R X U  
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u~  
U  
1 
 
p~ 
U 
+ S + C 
~ 
F 
U + 
= 0 
éq  
4.3.2-9  
 
X 
 
H  
R  
 
~ 
~ 
2 
U 
 
U  
1 p 
U ~ 
U 
X + S + C (m 
~ 
F 
+ 2) 
U X + 
= C H 
 
F 
 
X 
 
H  
X 
H  
 
Three boundary conditions of input-output make it possible to solve this system. The first of these  
conditions is obtained by supposing that the flow is sufficiently regular upstream of space  
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annular, so that the tangential component the speed of entry can be neglected:  
 
U = 0 in X = 0 éq  
4.3.2-10  
The two others are obtained by applying the conservation equation of the kinetic energy, under  
its quasi-stationary form, between the infinite upstream and the entry of annular space, then between 
the exit of  
annular space and infinite downstream. One obtains then respectively, with the order disturbances:  
R2 
 
 
1 
~ 
~ 
~ 
2 
p + U U X (1 + C 
 
0 
0 
D 
in 
E) 
 
+ 
C U 
U rdr = X = 
 
D E 
 
 
2 
 
R 
1 
éq  
4.3.2-11  
R2 
 
 
1 
~ 
~ 
~ 
2  
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p + U U X (1 - C 
 
0 
D 
in 
S) 
 
- 
C U 
U rdr = X = L 
 
D S 
 
 
2 
 
R1 
 
In these expressions, Cd and C represent the stationary parts of the loss ratios  
E 
ds 
of load singular of entry and exit. They take into account the dissipation of induced energy,  
when the walls are fixed, by possible abrupt evolutions of the geometry at the entry or  
exit of annular space. In the majority of the cases, these coefficients can be estimated simply  
using data of the literature (Idel' cik for example). When geometrical configuration  
of entry or exit is very particular, these coefficients can also be given with the assistance  
of a two-dimensional code of mechanics of the fluids adapted to the study of the problems with fixed 
walls, of  
type N3S.  
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~ 
~ 
Cd and C are the non stationary parts of the singular loss ratios of load. These  
E 
ds 
coefficients take into account the disturbances of the lines of separation induced by  
movements of structure. They can be modelled thanks to a quasi-stationary approach of  
even natural that that introduced for the estimate of the coefficient of friction of wall.  
The system [éq 4.3.2-9] is solved analytically, using the limiting conditions [éq 4.3.2-10] and  
~ 
~ 
[éq 4.3.2-11], by clarifying the functions H and R characterizing the second member.  
 
The disturbances r~ 
~ 
1 (, X, S) and r2 (, X, S) defining the movement of the walls, the parts  
disturbed annular play and average radius are then defined, in the field of Laplace, by:  
 
~ 
H (, X S) = r~ 
, 
2 (, X S) - r~ 
, 
1 (, X, S) éq  
4.3.2-12  
 
~ 
~ 
~ 
, , 
, , 
R ( 
+ 
, X, S) 1r (X S) 2r (X S) 
= 
éq  
4.3.2-13  
2 
 
4.3.3 Decomposition on modal basis  
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That is to say NR the number of oscillatory modes of the structure in the studied frequency band.  
decomposition on the basis of modal movement of the walls is expressed in the following way:  
 
NR 
R 
~1 (, X, S) = [ 
cos K 
* 
I 
1 (- I 
1)] R 
. i1 (X) 
. I (S) éq  
4.3.3-1  
I 1 
= 
NR 
R 
~2 (, X, S) = [ 
cos K 
* 
2i (- 2i)] R 
. 2i (X) 
. I (S)  
éq  
4.3.3-2  
I 1 
= 
where  
K i1 and k2i represent the orders of hull of the ième mode for the respective movements  
hulls internal and external,  
i1 and 2i make it possible to characterize the principal plans of these modes,  
R * 
* 
I 
1 (X) and r2i (X) is deduced from the deformations of beam of the structures internal and external  
associated the mode considered,  
 
and  
(S 
I 
) represents generalized displacement.  
 
Note:  
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The functions R * 
* 
I 
1 (X) and r2i (X) is represented, within the framework of the analytical resolution,  
in the form of linear combinations of sine, cosine, hyperbolic sine and cosine  
hyperbolic:  
 
* 
 
 
 
 
R 
1 
1 
1 
1 
I 
1 (X) 
I  
I  
I  
I  
= Ad interim 1 cos 
X + B i1 sin 
X + C CH 
I 
1 
 
X + D HS 
I 
1 
 
X éq  
4.3.3-3  
L  
L  
L  
L  
 
* 
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R 
2 
2 
2 
2 
2i (X) 
I  
I  
I  
I  
= A2i cos 
X + B2i 
 
sin 
X + C CH 
2i 
 
X + D HS 
2i 
 
X éq 4.3.3-4  
L  
L  
L  
L  
 
with i1 and 2i numbers of wave of the ième mode for the movements of the hulls internal and  
external respectively.  
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Solutions of the fluid problem ~, ~ 
~ 
p U 
U 
X and are required in the form of decompositions  
on modal basis deduced from those of ~ 
~ 
R and R 
1 
2 clarified by the relations [éq 4.3.3-1] and  
[éq 4.3.3-2]. One obtains thus, in the field of Laplace:  
 
NR *, 
* 
, 
 
p~ (, X, S) 
p i1 (X S) 
=  
[ 
cos k1 
- 
+ 2 
1 
cos 2 
- 
 
I ( 
I)] p I (X S) [K I (2i)] I (S) 
 
 
éq 4.3.3-5  
2 
2 
 
I 1 
K 
K 
=  
I 
1 
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2i 
 
NR 
u~ 
* 
* 
X (, X, S) = (U I 
1 (X, S) 
[ 
cos K i1 (- i1)]+ u2i (X, S) 
[ 
cos k2i (-2i)]) I (S)  
éq  
4.3.3-6  
I =1 
NR *, 
* 
, 
 
u~ 
, , 
= 
1 
sin 1 
- 
+ 2 
1 
sin 2 
- 
 
(X S) 
v I (X S) 
 
[K I (I)] v I (X S) [K I (2i)] I (S) 
 
 
éq  
4.3.3-7  
K 
K 
 
I =1  
I 
1 

file:///Z|/process/refer/refer/p1350.htm (18 of 29)10/2/2006 2:53:21 PM



file:///Z|/process/refer/refer/p1350.htm

2i 
 
 
4.3.4 Expression of the terms of the matrix of transfer of the forces fluid-rubber bands  
 
The surface effort fluid-rubber band, F, are the resultant of the field of pressure and the constraints  
viscous and turbulent exerted by the flow on the walls of the structure moving.  
 
F = - P N + T 
+ T 
X X  
éq  
4.3.4-1  
 
The effort generalized fluid-rubber band associated the ième oscillatory mode of the structure, Q (S 
I 
), is written as follows:  
 
IQ (S) = F.Xi I 
ds  
éq  
4.3.4-2  
If 
 
Where If the surface of the walls of the structure indicates wet by the flow, and vector Xi  
represent the ième vector deformed modal in this expression. The representation of the field of  
speeds and of pressure and the representation in the form of a law of wall of the viscous constraints  
and turbulent exerted on the structure moving allow to express the effort fluid-rubber band  
generalized Q (S 
I 
) in the following way:  
 
IQ ( 
NR 
S) = Bij (S) J (S)  
éq  
4.3.4-3  
J =1 
 
with Bij (S) = B ij 
1 (S) + B2ij (S)  
 
(S 
ij 
1 
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B 
) and B2 (S 
ij 
) the contributions of the hulls indicate respectively interior and external.  
These contributions are defined by:  
 
R1 
* 
1 
* 
* 
B ij 
1 (S) = 
-  
cos [K i1  
 
, 
 
, 
. 
2 
(i1 - 1j)] K ki11j LP i1 (X S) + CfUv i1 (X S) 
 
r1j (X) dx 
K 
0  
2 
 
I 
1 
 
- R1 
* 
1 
* 
* 
 
cos 
 
 
, 
 
, 
. 
2 
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[k2i (2i - 1j)] K k2i1j Lp2i (X S) + CfUv2i (X S) 
 
r1j (X) dx 
K 
0  
2 
 
2i 
éq 4.3.4-4  
Handbook of Reference  
R4.07 booklet: Coupling fluid-structure  
HI-86/02/008/A  

Code_Aster ®  
Version  
5.0  
 
Titrate:  
Coupling fluid-structure for the tubular structures and the hulls  
Date:  
23/09/02  
Author (S):  
T. KESTENS, Key Mr. LAINET  
:  
R4.07.04-B Page  
: 21/34  
 
 
and  
R2 
* 
1 
* 
* 
B2ij (S) = -  
[ 
cos K i1  
 
 
, 
 
, 
. 
2 
(i1 - 2j)] K ki12j LP i1 (X S) + CfUv i1 (X S) 
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r2 J (X) dx 
K 
0  
2 
 
I 
1 
 
- R2 
* 
1 
* 
* 
 
cos 
 
 
 
, 
 
, 
. 
2 
[k2i (2i - 2j)] K k2i2j Lp2i (X S) + CfUv2i (X S) 
 
r2 J (X) dx 
K 
0  
2 
 
2i 
éq 4.3.4-5  
4.4  
Resolution of the modal problem under flow  
 
As one explained in the paragraph [§ 4.2], one solves beforehand the modal problem out of water with  
rest, in order to take into account the inertial coupling between modes. One estimates the matrix thus 
of  
mass added by the fluid, while calculating [B (S)] for a mean velocity of the flow null.  
modal characteristics of the system under flow are then obtained by disturbing them  
water characteristics at rest. One does not hold any more account but of damping and the stiffness  
additions: the terms of mass added previously calculated are cut off from the matrix [B (S)].  
The coupling between modes is then neglected; consequently, the modal deformations remain  
unchanged compared to those out of water at rest. Only parameters disturbed by the setting in  
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flow of the fluid are the frequency and reduced modal damping. These parameters are calculated  
by solving NR nonlinear equations mode by mode, implementation of a method of the type  
Broyden.  
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5  
Axial flow (example: fuel assemblies)  
 
The integration of this model of excitation fluid-rubber band in Code_Aster was approached in the 
note  
specifications [bib2]. The note of principle of model MEFISTEAU [bib6] constitutes documentation  
theoretical of reference.  
 
5.1  
Description of the studied configuration  
 
One considers a beam of K circular cylinders mobile in inflection and subjected to a flow  
incompressible of viscous fluid, limited by a cylindrical rigid enclosure of circular section or  
rectangular [Figure 5.1-a].  
 
L 
X 
Circular enclosure 
Z 
Y 
Rectangular enclosure 
 
Appear 5.1-a: Beam under axial flow  
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The cylinders all parallel, are directed along the axis of the enclosure. They have a common length,  
noted L. To simplify the notations, it is supposed thereafter that X is the directing axis. The flow  
stationary axial and is supposed to be uniform in each section. Density of the which can fluid  
to be variable along axis X (heat gradients), the rate of the stationary flow depends  
also of variable X.  
 
5.2  
Stages of calculation  
 
· The first stage relates to the determination of the modal base in air of the beam. This  
operation is carried out by operator MODE_ITER_SIMULT. This stage is essential because them  
forces fluid-rubber bands are projected on this basis.  
· The second stage relates to the taking into account of the forces fluid-rubber bands with the operator  
CALC_FLUI_STRU. This stage breaks up into 7 sub-tasks:  
 
5.2.1 Preprocessings  
 
1°/By means of the topology of the grid, deduction of the co-ordinates of the centers of the cylinders  
beam then checking of the good provision of the cylinders ones compared to  
others (it is checked in particular that there is not overlapping between two cylinders) and by  
report/ratio with the rigid enclosure.  
 
 
2°/Determination the length of excitation of the fluid, commune to all the cylinders, like  
of an associated discretization along the directing axis.  
 
 
3°/Constitution of the tables giving the modal deformations in air of each cylinder of  
beam, for each mode taken into account for the coupling fluid-structure. One  
interpolate for that the deformations at the points of the discretization determined before.  
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5.2.2 Resolution of the modal problem under flow  
 
4°/Resolution of the disturbed fluid problem. Determination of the potential speeds  
disturbed the inversion of linear systems of high natures requires calling the setting in  
work of the method of Crout.  
 
For each rate of flow  
 
5°/Calculation of the matrices of mass, damping and stiffness added giving the matrix of  
transfer of the forces fluid-rubber bands in the modal base in air:  
[B 
2 
ij (S)] = - [My] S - [Ca] S - [K has]  
[My] full symmetrical; [Ca] and [Ka] a priori full and nonsymmetrical.  
 
 
6°/Resolution of the modal problem under flow; one solves the complete problem with  
vectors and with the clean ones  
{[Mij] 2s + [Cij] s+ [Kij] - [Bij (S)]}. (Q) = (0)  
 
One does not neglect the extradiagonaux terms of [B (S 
ij 
)]. After reformulation, the resolution is  
carried out using algorithm QR: obtaining the masses, frequencies and depreciation  
modal reduced under flow  
EC. 
EC. 
EC. 
Semi, fi  
, I, modal deformations complex EC.  
I expressed  
in the base in air; of these last, one retains only the real part after minimization of  
imaginary part (calculation of a criterion on the imaginary part).  
 
7°/Restitution of the deformations under flow in the physical base.  
[EC. 
I] = [I] [EC. 
I]  
[I] is the matrix whose columns are the modal deformations in air, expressed in base  
physics.  
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End of loop on the rates of flow  
 
Note:  
 
· The knowledge of the co-ordinates of the centers of the cylinders (preprocessing 1°) is  
necessary to the resolution of the disturbed fluid problem (sub-task 4°). This resolution  
conduit with the estimate of the terms of the matrix of transfer of the forces fluid-rubber bands  
(sub-task 5°), which utilizes the disturbances of pressure and speed.  
· Determination a common length of excitation and the creation of a discretization  
associated (preprocessing 2°) allow to define a field of integration on the structures  
for the projection of the forces fluid-rubber bands on the modal basis. The interpolation of  
modal deformations at the same points is thus necessary (preprocessing 3°).  
· The dynamic behavior of the beam under flow can also be studied with  
assistance of a simplified representation of the beam (with equivalent tubes). Stages of  
calculation for the taking into account of the coupling fluid-structure are then identical to those  
described previously, only differences appearing in the preprocessings. This  
second approach is described more precisely in the note [bib2]. In the stage 1° of  
preprocessings, the co-ordinates of the centers of the cylinders of the beam are then specified  
directly by the user, who also establishes the correspondence between the cylinders of  
beam and beams of the simplified representation given by the grid. In the stage 3°  
preprocessings, this correspondence makes it possible to assign to the cylinders of the beam, with  
points of discretization determined in the stage 2°, the modal deformations of the beams of  
simplified representation.  
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5.3  
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Resolution of the non stationary fluid problem  
 
5.3.1 Assumption  
simplifying  
 
H1  
The field non stationary fluid speeds is analytically given while supposing  
~ 
that the disturbed flow is potential in all the fluid field, and that the flow  
stationary is uniform transversely, but function of the axial position X:  
 
~ 
U = U + u~ = U (X) X + ( 
)  
éq  
5.3.1-1  
Such a field speeds admits a slip on the walls of the cylinders which will allow  
to calculate the viscous constraint by a law of friction.  
 
H2  
~ 
The movement of the cylinders does not generate disturbances speed ~ 
U = ( 
) that  
radially and orthoradialement (assumption of the slim bodies): ~ 
~ 
~ 
U = U y 
y 
+ U Z 
Z 
 
 
H3  
The field of pressure is broken up into parts stationary and disturbed according to P = P + p~  
 
The stationary field of pressure depends only on X and its gradient is worth:  
 
P 
D (X) 
U 
D 
C 
= - U 
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(X) - fl 
2 
U U + g.x  
éq  
5.3.1-2  
dx 
dx 
DH 
 
where  
DH indicates the hydraulic diameter of the beam,  
C fl indicates the coefficient of local friction for stationary speed U. It depends on  
Reynolds number, calculated using stationary speed U, of the hydraulic diameter of  
beam and of the surface roughness. This coefficient is deduced from the law of Nikuradzé  
characterizing the flows in control;  
 
G indicates the field of gravity. Its action on the stationary field of pressure depends on  
the slope of the beam (g.x).  
 
5.3.2 Determination of the potential disturbed speeds  
 
~ 
One seeks an analytical solution for (R, X, T) in the form of a superposition of  
elementary singularities which are written:  
NR trunk 
{C (X, T) .r-n.co (Sn 
- N 
K) + Dnk (X, T) .rk .si ( 
N N 
nk 
K 
K)} éq  
5.3.2-1  
N =1 
in the center of each cylinder K and:  
Ntronc {Na (X, T) n.or.cos (No) + Nb (X, T) n.or.sin (No)}  
éq  
5.3.2-2  
n=1 
in the center of the rigid enclosure when this one is circular where:  
 
 
NR 
NR 
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3 ,  
trunk  
indicate the order of truncation of the series of Laurent (trunk =) 
K 
R  
, K  
the polar co-ordinates in a plan perpendicular to axis X indicate,  
centered in the center of the cylinder K,  
O 
R  
, O  
the polar co-ordinates in a plan perpendicular to axis X indicate,  
centered in the center of the circular rigid enclosure.  
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The coefficients Cnk (X, T), Dnk (X, T), Year (X, T) and Bn (X, T) of the expressions [éq 5.3.2-1] and [éq 
5.3.2-2]  
are given by applying the boundary condition of nonpenetration:  
 
· on the contour of each mobile cylinder K, this condition is written:  
 
~  
Dy 
Dz 
 
K, 
(Kr = R) 
K 
K = 
(X, T) cos () 
K 
K + 
(X, T) sin (K) 
 
 
 
 
K 
R 
Dt 
Dt 
 
 
 
where 
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yk (X, T) and zk (X, T) indicate the components of the displacement of neutral fibre of the cylinder K  
with X-coordinate X in the reference mark (y,) 
Z,  
 
rk and K indicate the polar co-ordinates in the reference mark (y,) 
Z whose origin is taken with  
center cylinder K,  
 
Rk indicates the ray of the cylinder K,  
D 
 
 
 
+ U (X) 
.  
Dt 
T 
X 
 
· on the contour of a circular rigid enclosure, it is written:  
 
~  
O, 
(gold = O 
R) = 0 
 
 
 
 
where Ro indicates the ray of the enclosure.  
O 
R  
 
In the case of a rectangular rigid enclosure, this condition is taken into account by a method  
derived from the method of the “images” [bib6]; the fluid problem confined by the rectangular 
enclosure  
is made equivalent to the problem in infinite medium by creating images of the mobile cylinders of  
beam compared to the sides of the enclosure. This method results in introducing news  
singularities of the form [éq 5.3.2-1], placed at the center of the cylinders “images”, in the expression of  
~ 
. It does not add however an unknown factor to the problem since the coefficients for this news  
singularities are derived from those of the mobile cylinders of the beam by the play of the images.  
 
Finally, the potential disturbed speeds is written:  
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~ 
(R, X, T) K 
=  
Dy 
Dz 
F (R,) 
K 
K 
(X, T) + G (R,) K 
K 
(X, T)  
éq  
5.3.2-3  
Dt 
Dt 
K =1 
 
Where K indicates the number of mobile cylinders of the beam. The functions F (R,) and G (R 
K 
K 
,) are  
linear combinations of RN. 
( 
cos N), RN. 
( 
sin N), RN. 
( 
cos N) and RN. 
( 
sin N) of which them  
coefficients are determined by the boundary conditions preceding. That requires the resolution of  
linear systems of high natures and with full matrices. The inversions are carried out while putting in  
work the method of Crout.  
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5.3.3 Modeling of the fluid forces  
 
One retains initially the forces due to the disturbances of pressure ~ 
p, connected to the potential speeds  
disturbed by:  
~ 
~ 
D 
p = - 
éq  
5.3.3-1  
Dt 
 
The resultant of the field of pressure disturbed around each mobile cylinder is a linear force  
2 
D y 
2 
D Z 
F ~ 
K 
K 
p acting according to y and Z. This force depends linearly on  
and  
, thus generating  
2 
Dt 
2 
Dt 
terms of mass, damping and stiffness added.  
 
One then takes into account the forces related to the viscosity of the fluid.  
 
In a quasi-static approach, one considers the action of the fluid field speed (U + u~) around  
of a cylinder at the moment T: in the reference mark related to the cylinder, the flow, speed U to order 0,  
present an incidence compared to the cylinder which is a function of the disturbances speed and of  
movement of the cylinder itself. It results from it a force from trail and a force of bearing pressure. One  
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show that the components following y and Z of the resulting linear force fv are written, for  
roll L:  
 
( 
y 
D y 
L 
F) 
 
 
 
 
= - 
L 
~ 
~ 
 
 
 
 
y 
R U.a. fl 
- U ly - 
L 
 
 
 
 
R U.a. p  
L - U ly  
éq  
5.3.3-2  
T 
 
L 
Dt 
 
( 
Z 
Dz 
L 
F) 
 
~  
 
~  
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= - 
 
 
 
Z 
R U.a. fl  
L - L 
uy - R U CP  
L - L 
uz  
L 
 
éq  
5.3.3-3  
T 
 
L 
Dt 
 
 
where  
CP very indicates the slope with null incidence of the coefficient of bearing pressure around a cylinder  
slightly tilted (CP = 0,08).  
 
~ 
uy and ~uz indicate the averages of the disturbances speed along axes y and Z around  
Dy 
Dz 
cylinders, which depend linearly on  
K and  
K (cf [éq 5.3.2-3]).  
Dt 
Dt 
 
These forces generate terms of added damping and stiffness.  
 
One finally takes into account the action of the stationary field of pressure on the mobile structures  
deformations. One shows that the resulting linear force F pl on the cylinder L has as components, with  
order 1:  
 
( 
 
 
L 
2 
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L 
F p) 
 
y  
= R 
P 
 
éq  
5.3.3-4  
y 
L X X  
( 
 
 
L 
2 
L 
F p) 
 
Z  
= R 
P 
 
éq  
5.3.3-5  
Z 
L X X  
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These forces generate only terms of added stiffness and any coupling between cylinders.  
 
The expressions [éq 5.3.3-1], [éq 5.3.3-2] and [éq 5.3.3-3] highlight the need for solving  
the disturbed fluid problem before estimating the forces fluid-rubber bands.  
 
5.3.4 Expression of the terms of the matrix of transfer of the forces fluid-rubber bands  
 
Summary of the linear forces  
 
For each cylinder L, the forces fluid-rubber bands are written according to y and Z:  
 
F = F l~p + F L + F L 
L 
p  
éq  
5.3.4-1  
and are linear combinations of:  
 
y 
2 
2 
2 
2 
2 
2 
 
K 
yk yk yk zk zk zk zk 
 
, 
, 
, 
, 
, 
, 
, 
 
 
(K =,  
1 K)  
T 
t2 
tx 
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x2 
T 
t2 
 
T X 
x2  
 
Decomposition of the movement on modal basis  
 
The movement of the beam of cylinders is broken up according to NR modes of vibration into air. One 
notes  
kj (1 K K and 1 J NR) deformations following y and Z of the cylinder K corresponding to the jème 
mode  
beam. Components of the displacement of neutral fibre of the cylinder K to X-coordinate X  
can then be written:  
 
yk (T) 
NR 
= Q J (T) K 
J (X) y 
.  
éq  
5.3.4-2  
J =1 
zk (T) 
NR 
= Q J (T) K 
J (X) Z. éq 5.3.4-3  
J =1 
where (Q) = (Q J) 
is the vector of generalized displacements.  
J =, 
1 NR 
 
Projection of the forces on modal basis  
 
· One notes (T 
I 
F) the projection of the forces fluid-rubber bands according to the ième mode of the beam.  
 
I 
F ( 
K 
L 
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T) = fk (X, T) K 
 
. I (X) dx éq  
5.3.4-4  
0 
K =1 
(T 
I 
F) is a linear combination of (Q J, q& J, q& J) 
 
J =, 
1 NR 
 
· One notes F (T) the vector of the modal forces fluid-rubber bands: F (T) = (I 
F (T) i=, 1N which is written:  
 
F (T) = - [My] (q& (T) - [Ca] (q& (T) - [Ka] (Q (T) éq  
5.3.4-5  
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Where  
[My] the matrix of the terms of mass added by the fluid indicates,  
 
[Ca] the matrix of the terms of damping added by the fluid indicates,  
 
[Ka] the matrix of the terms of stiffness added by the fluid indicates.  
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These matrices are square real of order NR and their terms are independent of the movement  
structures. The matrix [My] is symmetrical; the matrices [Ca] and [Ka] are not it  
necessarily.  
 
· The projection of the equations of the movement on modal basis provides:  
 
[(Mii] + [My]) (q& (T) + [(Cii] + [Ca]) (q& (T) + [(Kii] + [Ka]) (Q (T) = (0) éq 5.3.4-6  
 
[Mii], [Cii] and [Kii] 
where  
the matrices of masses, depreciation indicate and stiffnesses of  
structure in air; these matrices are of order NR and diagonals.  
 
In the field of Laplace, the relation [éq 5.3.4-6] becomes:  
 
[(Mii] + [My]) 2s+ [(Cii] + [Ca]) S + [(Kii] + [Ka]) (Q (S) = (0) éq 5.3.4-7  
 
· One introduces then the matrix of transfer of the forces fluid-rubber bands [B (S)] defined by:  
 
[B (S)]= - [m2 
] S has - [Ca] S - [K has]  
éq  
5.3.4-8  
 
And one finds the relation [éq 1.2-1] paragraph [§ 1.2]:  
 
[(Mii] 2s + [Cii] S + [Kii] - [B (S)]) (Q (S) = (0)  
 
5.4  
Resolution of the modal problem under flow  
 
The modal problem under flow is formulated by the relation [éq 5.3.4-7] of the preceding paragraph.  
 
This problem is solved after rewriting in the form of a standard problem to the vectors and with  
eigenvalues of type [A] (X) = (X).  
 
The new formulation is as follows:  
 
 
 
[ ] 
0 
[Id] 
Q  
Q  
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= S 
éq 5.4-1  
 
-1 
-1 
sq 
sq 
- ([Mii] + [My]) [(Kii] + [Ka]) - ([Mii] + [My]) [(Cii] + [Ca])  
 
 
 
 
 
 
Note:  
 
1) One doubles the dimension of the problem compared to that of the initial problem.  
2) The properties of the matrices [Mii] and [My] allow the inversion.  
 
The resolution of this problem is done by means of algorithm QR. Modules implemented by  
operator CALC_FLUI_STRU are the same ones as those used by MODE_ITER_SIMULT.  
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The problem with the clean elements that one solves is a complex problem. One is thus obtained  
numbers even combined complex eigenvalues two to two. One preserves only those of which  
the imaginary part is positive or null.  
 
The clean vectors complex, are defined except for constant a complex multiplicative. Like  
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one takes into account only real modes, it initially acts to determine, for each  
clean vector, the constant which minimizes the imaginary part of the vector compared to its real part,  
within the meaning of the euclidian norm. The clean vectors are then redefined compared to this 
standard.  
Taking into account standardization used, it is then possible not to preserve in the concept  
mode_meca that the real part of the clean vectors. One restores however, in the file MESSAGE,  
indicators on the relationship between imaginary part and real part of the clean vectors thus  
normalized, so that the user can consider skew introduced by not taken into account of the part  
imaginary of the normalized vectors.  
 
5.5  
Taking into account of the presence of the grids of the beam of tubes  
 
Modeling described previously, of the forces induced by an axial flow on a beam of  
cylinders, does not take into account the presence of the grids of the beam (for example, the grids of  
mix and of maintenance of the fuel assemblies). A comparison between this model and  
tests carried out on the model CHAIR (in the configuration of a beam of nine flexible tubes  
comprising a grid) is presented in a note of synthesis [bib8]: it is noted that the coupling  
fluid-rubber band between the grid and the axial flow is not negligible and that it generates one  
increase in the reduced modal damping of the tubes. The object of this paragraph is description  
additional effects due to the grids and of their taking into account in model MEFISTEAU.  
 
5.5.1 Description of the configuration of the grids  
 
One restricts here the study with two types of grids:  
 
· the grids of maintenance which are located at the ends of the beam,  
· the grids of mixture which are distributed between the grids of maintenance.  
 
The grids all are positioned perpendicular to the beam of cylinders and are presented  
in the form of a prismatic network at square base on side D G and height Hg (along axis X of  
cylinders). The grids of the same type are characterized by identical dimensions.  
 
5.5.2 Additional stages of calculation  
 
· The first additional stage relates to the specification of the type of configuration of the grids  
by operator DEFI_FLUI_STRU, then the checking of the good provision of the grids ones  
compared to the others, and the ends of the beam.  
· The second stage relates to the resolution of the modal problem under flow. In the loop  
on the rates of flow, the matrix of transfer of the forces fluid-rubber bands in the base  
modal in air is supplemented by the calculation of a matrix of added damping and a matrix  
of added stiffness, been dependent on the grids.  
 
5.5.3 Modeling of the fluid forces exerted on the grids  
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Calculation of the jump of pressure  
 
First of all, the presence of grids disturbs the stationary field of pressure P (X); one considers  
each grid like a singularity involving a jump of pressure, whose expression is put under  
form:  
1 
P (X) = (X) U 2 (X) K (X) 
G 
G 
G 
G 
G 
G 
G  
 
 
 
éq 5.5.3-1  
2 
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where  
Kg indicates the loss ratio of load due to the grid,  
 
Ug indicates the stationary speed of the flow on the level of the grid,  
 
G indicates the density of the flow on the level of the grid,  
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xg indicates the axial position of the medium of the grid along the beam.  
 
Density ( 
) 
G xg is calculated by linear interpolation of the profile of density  
(X) of the flow in the absence of grid. Stationary speed U () 
G xg is calculated in  
application of the conservation of the mass throughput, which results in the following equation:  
 
G (xg U 
) G (xg) Fg 
WITH =oUo F 
With  
 
where  
 
U 
O and O respectively indicate the profile of density and stationary speed of  
the flow in foot of beam,  
 
F 
A indicates the fluid section of the beam in the absence of grid,  
 
Fg 
A indicates the fluid section of the beam on the level of the grid: Fg 
WITH = F 
With - G 
With with G 
With  
solid section of the grid.  
 
One deduces the expression from it:  
 
1 
1 
Ug (xg) = 
oUo  
 
G 
With G (xg) 
1 
 
- 
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F 
With  
 
The loss ratio of load K G is calculated starting from the expression of the hydrodynamic force  
total which applies to the grid, and we obtain:  
 
 
2 
 
1 
With 
Kg = 
 
 
G  
WITH C (X) 
G dg 
G + 1 - 
H PC (X)  
 
 
 
éq 5.5.3-2  
F 
With  
 
 
 
G m fl G 
F 
With 
 
 
 
 
 
 
The 1st term (in G 
In Cdg) comes from the effort of trail; C () 
dg xg is the coefficient of drag of  
roast. The 2nd term (in m 
PC fl) is an effort corrector term of friction applied to  
beam alone with the altitude of the grid (Pm is the wet perimeter of the beam in the absence of grid).  
By introducing the expression [éq 5.5.3-2] into the relation [éq 5.5.3-1], one thus obtains the 
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expression of  
jump of pressure P (X) 
G for each grid of altitude xg. This jump of pressure is taken into account with  
level of the calculation of the stationary field of pressure P (X), in the following way:  
 
P (X 
) 
+1 =P (X) - P 
(X) 
I 
I 
G X 
[ 
X, X] 
G 
I 1 
+ 
I  
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Calculation of the specific fluid forces exerted on each grid  
 
According to the same quasi-static approach as that carried out in the paragraph [§5.3.3], one shows 
that  
the action of the fluid field speed (U + u~) around a grid implies a force of trail and one  
force bearing pressure, according to the incidence of the flow compared to the grid. The components 
y  
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and Z of the resulting specific force F G are thus written, for each basic cell K of one  
roast:  
( 
With 
1 
y 
Dy 
~ 
fg) 
G  
K 
K  
 
K 
K  
= - G U 
~ 
G 
C 
U 
C 
U 
 
y 
2 
 
dg 
- y + 
 
 
pg  
- y  
K  
T 
 
Dt 
 
 
( 
With 
1 
Z 
Dz 
~ 
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fg) 
G  
K 
K  
 
K 
K  
= - G U 
~ 
G 
C 
U 
C 
U 
 
Z 
2 
 
dg 
- Z + 
 
 
pg  
- Z  
K  
T 
 
Dt 
 
 
where  
Cpg very indicates the slope with null incidence of the coefficient of bearing pressure around a grid  
slightly tilted.  
 
Ag indicates the solid section of the basic cell K of the grid (which includes/understands K of them).  
K 
 
These forces thus will generate additional terms of added damping and stiffness,  
that one obtains after modal decomposition of the movement and projection of these forces on the 
basis  
modal.  
 
5.6  
Catch in depreciation account in fluid at rest  
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Until now, the damping brought to a beam of tubes by the presence of a fluid at rest  
was not taken into account in modeling. One thus proposes here a model of damping in  
fluid at rest, whose appendix 1 of the note of synthesis of the tests CHAIR [bib8] constitutes  
reference material.  
 
5.6.1 Modeling of the fluid force at rest exerted on a beam of tubes  
 
The method of calculation of damping in fluid at rest which is implemented here, is one  
generalization of the method of CHEN [bib9].  
 
It is a question of calculating the force resulting on each tube from the constraints due to shearing in  
boundary layer. It is a nonlinear problem because the fluid damping coefficient depends on  
frequency One thus introduces following simplifications:  
 
· the problem is written using the water frequencies at rest calculated without taking in  
count fluid damping,  
· one neglects the coupling between modes.  
 
R 
The linear force F K 
I being exerted on the tube K subjected to a harmonic movement of the beam  
according to mode I at the frequency fi is given by the following relation:  
 
R K 
R K R 
F = U the U.K.R C 
I  
I 
I 
K 
Dki  
 
 
 
 
 
éq 5.6.1-1  
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R 
where U ki indicates the speed of slip between the tube K and the fluid at rest, on both sides of  
the boundary layer, defined by:  
R 
R 
The U.K. the U.K. 
= 
q& (T) 
I 
im I 
 
 
 
 
 
 
 
 
éq 5.6.1-2 
with Q (T) sin ( 
= 
F T) 
I 
 
2 I and  
R 
U kim depends on the averages ~uy and ~uz of the disturbances speed around the cylinders,  
calculated beforehand by the model.  
 
CDki indicates the coefficient of drag of a cylinder of Rk ray, subjected to a flow  
R K 
R 
 
harmonic of amplitude ad infinitum U 
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= the U.K. 2 F 
I 
im 
I, and is defined by:  
max 
 
3 
F 2R 3 
I 
K 
 
 
CDki = R 
 
éq  
5.6.1-3 
K 
2 
U 
2 
F (2R) 
I 
I 
K 
max 
 
where the kinematic viscosity of the fluid indicates.  
 
The relation obtained while replacing [éq 5.6.1-2] and [éq 5.6.1-3] in the equation [5.6.1-1] is 
linearized  
by a development in Fourier series (of the term q& (T) Q (T) 
I 
& I 
) one retains only the first  
term; it comes:  
 
R 
R 
F K  
2 (2R) the U.K.F q& (T) 
I 
K 
im 
I I 
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Projection on modal basis  
 
By projection on modal basis and by neglecting the coupling between modes, one obtains the force  
generalized being exerted on the beam of tube following mode I:  
 
K L 
K 
L 
 
R R 
R 
R 
I 
F (T) = K K 
fi .i (Z dz 
) 
2 (2 K 
R) fi  
K 
K 
Uim.i (Z dz 
) q&i (T)  
K =1 0 
K =1 
 
 
0 
 
 
F (T) 
I 
is thus proportional to q& (T) 
I 
and the vector of modal force associated F (T) = (I 
F (T))i=, 1N  
puts in the form:  
F (T) = - [Ca] (q& (T))  
where [Ca] the matrix of damping added by the fluid at rest indicates.  
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1 Introduction 
In nuclear industry, certain structures make up of networks quasi-periodicals of tubes 
bathed by fluids: “combustible” assemblies, steam generators,… For 
to determine the vibratory behavior such structures, the traditional approach (each tube is 
modelled, the volume occupied by the fluid is with a grid) is expensive and tiresome even impracticable 
(in 
private individual, development of a complicated grid containing a great number of nodes). Structures 
studied presenting a character quasi-periodical, it seems interesting to use methods 
of homogenisation. 
Techniques of homogenisation applied to a network of tubes bathed by a fluid were with 
various already elaborate recoveries [bib1], [bib5], [bib4]. The models obtained differ by the assumptions 
carried out on the fluid (compressibility, initial speed of the flow, viscosity). According to 
allowed assumptions, the action of the fluid on the network of tubes corresponds to an added mass (drops 
frequencies of vibration compared to those given in absence of fluid), with one 
damping even added to an added rigidity [bib5]. 
At the beginning, finite elements associated two-dimensional models (network of runners 
bathed by a fluid) were elaborate [bib2]. To study the three-dimensional problems (network of 
tubes), a solution to consist in projecting the movement on the first mode of inflection of the beams 
[bib4]. Later on, of the three-dimensional finite elements were developed [bib3], [bib8]. 
2  
Initial physical problem 
2.1  
Description of the problem 
One considers a whole of identical beams, axis Z, laid out periodically (either the period 
of space). These beams are located inside an enclosure filled with fluid (see [2.1-a]). One 
wish to characterize the vibratory behavior of such a medium, while considering for the moment only 
the effect of added mass of the fluid which is dominating [bib6]. 
Side surface L of beam N ° L 
 
External edge  
L 
Z 
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Appear 2.1-Error! Argument of unknown switch. 
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2.2  
Assumptions of modeling 
It is considered that the fluid is a true fluid initially at rest, incompressible. Like 
the assumption of small displacements around the position of balance was carried out (fluid initially 
at rest), the field of displacement of the fluid particles is irrotational so that there is one 
potential of displacement of the noted fluid. There is no flow of fluid through external surface 
. 
It is considered that the beams are homogeneous and with constant section according to Z. To model 
them 
beams, the model of Euler is used and the movements of inflection are only taken into account.  
section of beam is rigid and the displacement of any point of the section is noted: 
S 
(sl Z (sl Z sl 
= 
, 
Z 
X 
y 
) 
L the inflection of the beam n° L  
( ) 
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( ) ( ) . 
The beams are embedded at their two ends. 
The variational form of the problem fluid-structure (conservation of the mass, dynamic equation of 
each tube) is written: 
= 
 
(sl · N)  
 
 
V 
éq 2.2-1 
 
L 
F 
L 
L 
2 L 
L 
2 L 
2 L 
L 
S 
S 
S 
2 
 
 
 
L 
 
 
 
 
L 
L 
S 
S + I.E.(internal excitation) 
= -  
N S 
S V 
 
éq 2.2-2 
S 
2 
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2 
2 
 
 
 
T 
Z  
F 
Z 
2 
S 
T 
 
 
 
0 
0 
0  
 
L 
with: 
V = (H2 
2 
1 
0 ] 
(0, [L) and V 
S 
= H (F) 
where: 
·  
N is the normal entering to the beam n° L, 
·  
F is the constant density of the fluid in all the field, 
·  
S is the density of material constituting the beam, 
·  
S is the section of the beam, 
·  
E is the Young modulus, 
·  
I is the tensor of inertia of the section of the beam. 
The second member of the equation [éq 2.2-2] represents the efforts exerted on the beam by the fluid.  
2 
pressure p of the fluid is related to the potential of displacement by: p = - 
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. In the same way, it 
F 
T 
2 
second member of the equation [éq 2.2-1] represents the flow of fluid induced by the movements of 
beams. At the border of each beam L one a: sl · N = · N. 
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3 Problem  
homogenized 
3.1  
Homogenized problem obtained 
To take account of the periodic character of the studied medium, one uses a method of homogenisation 
based in this precise case on an asymptotic development of the variables intervening in  
physical starting problem. With regard to the operational step, one returns the reader to 
following references [bib2], [bib4], [bib5], [bib6]. One will be satisfied here to state the results obtained. 
In the homogenized medium (see [3.1-a]), the two following homogenized variables are 
0 
considered: S (displacement of the beams) and (potential speeds of the fluid). In form 
0 
0 
variational, these variables are connected by the equations: 
With  
 
 
hom 
0 = - 
Ds 
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0 
V 
 
 
 
 
0 
0 
 
2 
 
éq 3.1-1 
S 
2 
S 2 
S 
2 
 
 
M 
0 S 
0 
0 
 
hom 
2 
+ K 
2 
2 
= 
D 
S 
2 
S V 
 
 
 
 
T 
 
Z 
 
Z 
F 
 
T 
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S 
 
 
0 
0 
0 
where: 
2 
V hom = L2 
2 
2 
S 
(0) H0 () 
where 
0 = S ×], 0 [ 
L 
H2 
2 
0 (0) = {v; (X, y) S 
Z 
v 
! (X, y, Z) H0] 
(, 0 [L)} 
Higher edge 
0, high 
External edge 
side 0, lat 
L 
Z 
y 
X 
0 
Lower edge 
0, low 
S 
. 
Appear 3.1-Error! Argument of unknown switch. 
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1 
YF 
 
y 
2 
YS 
N 
y1 
Appear 3.1-Error! Argument of unknown switch. 
The various tensors which intervene in [éq 3.1-1] are defined using two functions 
 
= 
( 
1 2 
,) in the following way: 
 
 
1 
1 
 
 
 
0 
y 
y 
 
Y 
1 
Y 
 
2 
 
F 
F 
1  
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2 
2 
 
Y 
 
B = (b) = 
0 
With 
 
 
 
= (has 
F 
=  
-  
éq 3.1-2 
ij) 
B 
ij 
Y 
y 
 
y 
 
 
Y 
ij 
ij  
Y 
1 
Y 
2 
 
 
F 
F 
 
 
0 
0 
 
0 
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Y 
0 
 
0 
S 
0 
 
0 
S 
2 
S 
1  
 
µ  
 
D = (D = + 
0 
0 
= 
=  
+ 
0 
 
0 
ij) 
B 
 
Y 
M 
S 
(mij) B  
S 
Y 
F 
Y 
S 
 
 
0 0 0 
 
0 
0 
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0 
éq 3.1-3 
I 
I 
 
0 
E 2 
X 
xy 
µ  
 
K = (K = 
0 
ij) 
I 
I 
 
Y 
xy 
y 
 
0 0 0 
where Y and Y respectively represent the surfaces of the fluid fields and structure of the cell  
F 
S 
elementary of reference (cf [3.1-b]). Y represents the sum of the two preceding surfaces.  
basic cell of reference is homothetic of µ report/ratio to the real cell of periodicity of 
heterogeneous medium. 
Two functions  
= 
( 
1 2 
,) are solutions of a two-dimensional problem, called problem 
cellular. On the basic cell of reference, the functions  
= 
( 
1 2 
,) are defined by: 
v = 
 
N v 
v  
F 
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V 
Y 
 
éq 3.1-4 
= 
 
0 (to have a solution uniqu) 
E 
YF 
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where: 
V = {v H 
periodical in period 1 
1 (Y), v (y) 
y 
F 
} 
Note: 
It is shown that the two-dimensional part of B is symmetrical and definite positive [bib5]. 
Note: 
In the matrix M, the term B plays the part of a matrix of mass added suitable for 
F 
each beam in its cell. 
Note: 
1 
For the various tensors, one can put in factor the multiplicative term  
. It was added 
Y 

file:///Z|/process/refer/refer/p1370.htm (14 of 24)10/2/2006 2:53:23 PM



file:///Z|/process/refer/refer/p1370.htm

in order to obtain the “good mass” of tubes in absence of fluid. One has then  
M FD 
 
= 
0 
mass tubes composing 0. 
3.2 Problem  
matric 
By discretizing the problem [éq 3.1-1] by finite elements, one leads (with obvious notations) to 
following problem: 
“A = - “Ds 
0 
0 
 
2 
2 
 
 
éq 3.2-1 
" 
s0 
 
M 
+ “Ks = “DT 
0 
 
 
T 2 
0 
F 
 
T 2 
 
what can be put in the form (one pre - multiplies the first equation by): 
F 
2s 
2 
 
 
 
0 
s0 
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~ 
T 
t2 
~ S 
 
 
 
 
0  
" 
M 
- “D 
2 
“K 
0 
S  
M 
0 
 
 
 
 
 
 
2 
+ K 
F 
T 
= 
+ 
= 
éq 3.2-2 
 
2 
0 
 
- 
 
- 
 
0 
 
0 
“D 
0 
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0 
0 
“A 
F 
F 
0 
 
 
 
 
 
t2  
t2  
Note: 
The problem obtained is symmetrical. If instead of choosing the potential of displacement for 
to represent the fluid, one had chosen the potential speed, one would have obtained a matric problem 
nonsymmetrical also revealing a matrix of damping. 
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4  
Resolution of the cellular problem 
4.1  
Problem to be solved 
On the two-dimensional basic cell (see [4.1-a]), one seeks to calculate the functions  
 
= 
( 
1, 2) checking: 
* v = 
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N v 
v  
 
 
V 
Y 
 
éq 4.1-1 
0 
to have a single solution 
* = 
 
( 
) 
Y 
where: 
V = {v H *, 
periodical in period 1 
1 (Y) v (y) 
y 
} 
y2 Y* 
Y 
 
N 
y 1 
Appear 4.1-Error! Argument of unknown switch. 
After having determined the functions  
= 
( 
1, 2), the homogenized coefficients are calculated 
B 
= 1, 2 ; = 
( 
1, 2) defined by the formula: 
 
B 
 
= 
 
 
éq 4.1-2 
Y y 
By using the formula of Green and the periodic character of, one shows that the coefficients B 
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can be written differently: 
B = 
N 
 
 
éq 4.1-3 
 
To estimate this quantity, it is necessary at the time of a discretization by finite elements, to determine 
for each 
element the outgoing normal, which can be tiresome. Another way then is operated; while taking 
in the equation [éq 4.1-1] v =, one obtains: 
B =  
éq 4.1-4 
 
 
 
 
Y 
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From the function potential energy defined by the traditional formula: 
1 
W (v) = - 
v 
éq 4.1-5 
2  
v 
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Y 
one can rewrite the coefficients homogenized in the form: 
B = - (W (+) - W () - W  
 
 
 
 
( ) 
éq 4.1-6 
In the two-dimensional case general, one must calculate three coefficients of the homogenized problem 
B, B = B, B (one knows that the matrix B = (b) is symmetrical). One must solve both 
11 
12 
21 
22 
following problems: 
Ca 
lculer V/* v = N v 
1 
 
1 
Y 
* 1 
 
Y 
Ca 
lculer V/ 
éq 4.1-7 
*  
v = 
N v 
2 
 
 
2 
Y 
* 2 
 
Y 
To calculate  
 
* V/* = + 
1 
2 
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One has then: 
B 
= -2W  
11 
( 1) 
 
B 
 
= -2 W  
éq 4.1-8 
22 
( 2) 
B 
 
= B = - 
* - 
- 
 
12 
21 
 
(W () W (1) W (2) 
Note: 
If the basic cell has symmetries, that makes it possible to solve the problem on one 
part of the cell with boundary conditions adapted well and to only calculate 
certain coefficients of the homogenized problem. For example for the cell of the figure 
n°4.1 - has one a: B = B 
B = B = 0. 
11 
22 
12 
21 
4.2  
Problem are equivalent to define  
In the equation [éq 4.1-1], the calculation of the second member requires the determination of the 
normal with 
edge. To avoid a determination of the normal, one can write an equivalent problem, checked by 
functions. 
1 
0 
1 
G = G are the vectors =  
G 
, 
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and 
=, the functions are sought, 
, V 
1 
2  
1 
2 
0 
1 
1 
such as: 
v 
G 
v 
v V 
1 
Y 
 
 
= 1  
 
 
Y  
 
v 
G 
v 
v V 
éq 4.2-1 
2 
Y 
 
 
= 2  
 
 
Y 
v 
Y 
G v 
v V 
 
=  
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Y 
By using the formula of Green and the anti-periodicity of normal N, one shows that the problems 
[éq 4.1-1] and [éq 4.2-1] are equivalent. 
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4.3  
Practical application in Code_Aster 
In Code_Aster, to solve the problem [éq 4.2-1], the thermal analogy by defining one 
material having a coefficient C equal to zero and one coefficient equal to is used. To impose it 
p 
calculation of the second member utilizing the term in G, key word GRAD_INIT in the order 
AFFE_CHAR_THER is selected. The thermal problem is solved by using the order 
THER_LINEAIRE. The calculation of the potential energy W is provided by order POST_ELEM with 
option ENER_POT. In the case general, three calculations are carried out to determine the values 
W (, 
, 
and then, the values of the coefficients of the homogenized problem are 
1) W (2) W () 
deduced manually. To impose the periodic character of the space in which the solution is 
sought, key word LIAISON_GROUP in order AFFE_CHAR_THER is used. 
5  
Choice of the finite element for the homogenized problem 
5.1  
Choice of the finite elements 
In the model presented previously, axis Z has a dominating role as a principal axis of 
beams. The developed finite elements check this characteristic. The meshs are of the cylindrical type: 
the quadrangular bases are contained in plans Z = Cte and the axis of the cylinder is parallel to 
axis Z (see [5.1-a]). 
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Lz 
Center Z 
Appear 5.1-Error! Argument of unknown switch. 
According to the equations [éq 3.1-1], derivative second following co-ordinate Z intervene in 
model, which requires finite elements C1 in direction Z. Functions of form of the type 
Hermit to represent the variations of S following axis Z are thus used. At the points of 
S S 
discretization, displacements S 
X 
y 
X, sy but also the derivative, 
who are related to the degrees of 
Z 
Z 
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sy 
S 
freedom of rotation, 
by the formulas  
X 
= 
, 
= - 
must be known. In what 
X 
 
X 
y 
 
y 
Z 
Z 
relate to the variations according to X, y, one limits itself for the moment to functions of form Q. 
1 
For the degree of freedom of potential, functions of form Q or Q following the three directions 
1 
2 
X, y, Z of space are used. 
The finite element thus has as unknown factors the following degrees of freedom: S, S. 
X 
y 
X 
y 
Note: 
The order of the nodes of the meshs support is very important. Indeed, edges parallel with 
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axis Z are in the same way represented only the edges contained in the plans 
Z = Cte. The nodes of the meshs are thus arranged in a quite precise order: list 
nodes of the lower base, then list of with respect to the higher base (or vice versa). 
With regard to the geometry, the functions of form allowing to pass from the element of 
reference to the element running are Q. The finite element is thus under-parametric. 
1 
Two finite elements were developed: 
· a associate with a mesh HEXA 8. In each node of the mesh, the unknown factors are 
S, S. The functions of form associated with the potential are Q. 
X 
y 
X 
y 
1 
· another associate with a mesh HEXA 20. In each node top of the mesh, unknown factors 
are S, S. In each node medium of the edges, the unknown factor is. Functions 
X 
y 
X 
y 
of form associated with the potential are Q. 
2 
5.2  
Finite elements of reference 
5.2.1 Net HEXA 8 
On the finite element of reference HEXA 8 (see [5.2-a]), the following functions of form are defined: 
NR L 
 
 
 
 
with L 
or D or R 
éq 5.2-1 
1, 1, 1 () = P 1 (1) P 1 (2) P L 
± ± ± 
± 
± 
±1 ( 3 ) 
= 
The indices ± 1 represent the co-ordinates of the nodes of the mesh support of reference. 
The functions which make it possible to define the functions of form write: 
1-  
1+  
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P 
 
 
1 
= 
1 
= 
- ( ) 
P () 
( ) 
( ) 
2 
2 
1-  
1+  
P  
 
1 
= 
1 
= 
- ( ) 
P () 
( ) 
( ) 
2 
2 
1 
3 
1 
1 
3 
1 
[ 
- , ] 
 
11 éq 5.2-2 
3 
 
PD 
3 
 
1 
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1 
 
 
1 
= 
- 
+ 
- ( ) 
PD1 () 
( ) 
( ) 
2  
 
2 
2  
= 
+ 
- 
2  
 
2 
2  
1 
1 
PR 
2 
3 
2 
3 
 
1  
 
 
1  
 
1 
= 
- - + 
1 
= 
- - + + 
- ( ) 
( 
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) PR () ( 
) 
( ) 
( ) 
4 
4 
The functions P D P R 
, 
are related to Hermit. 
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The unknown factors of the problem homogenized, on a mesh, break up in the following way: 
 
8 
L 8 
S 
D 
Z 
R 
=  
+ 
 
 
X () 
DX NR 
I  
I () 
DRX NR 
I 
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I () 
2 
i=1 
I 
 
=1 
 
8 
L 8 
S 
D 
Z 
R 
=  
- 
 
 
= , , 
éq 5.2-3 
1 2  
y () 
DY NR 
I 
I () 
DRY NR 
I 
I () 
( 
3 ) 
2 
i=1 
I 
 
=1 
 
8 
( 
) = NR  
J 
J () 
 
J 
 
=1 
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where DX, DY, DRX, DRY, are the values of displacement according to X, displacement according to 
I 
I 
I 
I 
I 
y, of rotation around axis X, rotation around the axis y and the potential of displacement with 
top I of the mesh. In Code_Aster, for each node, the degrees of freedom are arranged 
in the order quoted previously. 
8 
7 
3 
6 
1 
5 
2 
4 
3 
1 
0 
0 
-1 
-1 
1 
2 
-1 
0 
1 
1 
 
Appear 5.2-Error! Argument of unknown switch. 
5.2.2 Net HEXA 20 
On the finite element of reference HEXA 20 (see [5.2-b]), the following functions of form are 
defined: 
NR L 
 
 
 
 
with L D or R 
éq 5.2-4 
1, 1, 1 () = P 1 (1) P 1 (2) P L 
± ± ± 
± 
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± 
±1 ( 3 ) 
= 
NR () = Q ( 
1, 20 
éq 5.2-5 
3 ) 
J = 
J 
J 
The indices ± 1 represent the co-ordinates of the nodes tops of the mesh support of reference. 
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The functions P, P L 
± 
were already defined in the paragraph [§5.2.1]. The functions Q are defined 
1 
±1 
I 
by: 
1 
Q 
I 
I 
I 
I 
I 
I 
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= 1+  
,..., 
1  
1 
1 
+ 2 1 
2 
+ 3 3 1 1 + 2 2 + 3 3 - 2 
= 1 
8 
I () 
( 
)( 
)( 
)( 
) 
I 
8 
1 
2 
Q 
I 
I 
I 
= 1-  
, , 
, 
1  
1 
1 
+ 2 1 
2 
+ 3 3 
= 9 11 17 19 
I () 
4 ( 
( ) )( 
)( 
) 
I 
1 
éq 5.2-6 
2 
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Q 
I 
I 
I 
= 1-  
, 
, 
, 
2  
1 
2 
+ 1 1 
1 
+ 3 3 
= 10 12 18 20 
I () 
4 ( 
( ) )( 
)( 
) 
I 
1 
2 
Q 
I 
I 
= 1-  
( 
I 
I = 13, 14, 15, 16 
2 
2 ) 
3  
1 
3 
+ 1 1 
1 
+  
I () 
4 ( 
( ) )( 
) 
where (I 
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I 
I 
, , 
are the co-ordinates of node I of the mesh. 
1 
2 3) 
The unknown factors of the problem homogenized, on a mesh, break up in the following way: 
 
8 
L 8 
S 
D 
Z 
R 
=  
+ 
 
 
X () 
DX NR 
I 
I () 
DRX NR 
I 
I () 
2 
i=1 
I 
 
=1 
 
8 
L 8 
S 
D 
Z 
R 
=  
- 
 
 
= , , 
éq 5.2-7  
1 2  

file:///Z|/process/refer/refer/p1380.htm (11 of 24)10/2/2006 2:53:24 PM



file:///Z|/process/refer/refer/p1380.htm

y () 
DY NR 
I 
I () 
DRY NR 
I 
I () 
( 
3 ) 
2 
I =1 
I 
 
=1 
 
20 
( 
) = NR  
J 
J () 
 
J 
 
=1 
where DX, DY, DRX, DRY, are the values of fluid displacement according to X, of displacement 
I 
I 
I 
I 
I 
according to y, rotation around axis X, of rotation around the axis y and the potential of displacement 
at top I of the mesh (I = 1,) 
8 and fluid potential of displacement to the node medium of the edges 
J 
(J = 9,2) 0. 
8 
19 
7 
20 
18 
16 
15 
1 
6 
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5 
17 
4 
3 
1 
 
11 
3 
13 
0 
12 
14 10 0 2 
-1 
-1 
1 
9 
2 
-1 
0 
1 
1 
Appear 5.2-Error! Argument of unknown switch. 
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5.3  
Choice of the points of Gauss 
Each integral which intervenes in the forms of the elementary matrices, is transformed into 
an integral on the element of reference (a change of variable is carried out) who is then 
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calculated by using a formula of squaring of the GAUSS type. 
The points of Gauss are selected in order to integrate exactly the integrals on the element of 
reference. Families of different points of integration are used to calculate the matrices of 
mass and the matrices of rigidity (the degrees of the polynomials to be integrated are different). But 
here, for 
to calculate the various contributions of the matrix of mass, various families of points of Gauss 
can still be used. 
The element of reference being a HEXA 8 or one HEXA 20, the integral on volume can be separate in 
a product of three integrals which correspond each one to a direction of the space of reference.  
a number of points of integration necessary is determined by direction. 
According to the mesh of reference, the number of points of integration by direction is as follows: 
Net HEXA 8 
Net HEXA 20 
direction X or y 
direction Z 
direction X or y 
direction Z 
stamp “ 
K 
2 
2 
2 
2 
stamp “ 
With 
2 
2 
3 
3 
stamp “ 
D 
2 
3 
2 
3 
stamp “ 
M 
2 
4 
2 
4 
Four families of points of Gauss were defined. Each family corresponds to one of the matrices of 
problem to be solved. 
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On the segment [- 1,1], the co-ordinates of the points of integration and their weights are as follows 
[bib7]: 
A number of points of integration 
Co-ordinates 
Weight 
2 
± 1 3 
1 
0 
8/9 
3 
± 3 5 
5/9 
3 - 2 6/5 
1 
1 
± 
+ 
4 
7 
2 6.6/5 
1 
1 
3 + 2 6/5 
- 
± 
2 6.6/5 
7 
The weight of a point of Gauss in the three-dimensional element of reference is obtained by multiplying 
them 
three weights corresponding to each co-ordinate of the point of Gauss.  
5.4  
Addition of the problems of traction and torsion 
To supplement the problem of inflection homogenized described previously, the problem of traction and 
it 
problem of torsion are added in an uncoupled way. 
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5.4.1 Problem of traction 
The problem of traction homogenized is written in the following form: 
E S 2 U 
v 
2 S 2u 
Z 
S 
Z 
+ 
v = 0 
v 
 
V 
 
 
with V = H1 [(0, L]) 
 
Y 
Z 
Z 
 
Y 
T 
2 
T 
T 
The finite element of reference is a HEXA 8 having for unknown factor displacement DZ in each node. 
The associated functions of form are Q1. 
5.4.2 Problem of torsion 
The problem of torsion homogenized is written in the following form: 
E 2 
U v 
 
2  
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2u 
Z 
S 
Z 
with V = H1 [(0, L]) 
 
( 
+ 
= 
 
 
+) 
J 
J 
v 0 
v V 
 
Y 
Z Z Z 
 
 
Y 
Z 
t2 
2 1 
T 
T 
where J is the constant of torsion. 
Z 
The finite element of reference is a HEXA 8 having for unknown factor displacement DRZ in each 
node. The associated functions of form are Q1. 
5.5  
Integration in Code_Aster of this finite element 
The finite element is developed in Code_Aster in 3D. A modeling was added in 
catalogue modelings: 
· “FAISCEAU_3D” for the 3D. 
In the catalogue of the elements, the element can apply to the two following meshs: 
Net 
A number of nodes 
A number of nodes 
Name of the element 
in displacement and 
in fluid potential 
in the catalogue 

file:///Z|/process/refer/refer/p1380.htm (17 of 24)10/2/2006 2:53:24 PM



file:///Z|/process/refer/refer/p1380.htm

rotation 
HEXA 8 
8 
8 
meca_poho_hexa8 
HEXA 20 
8 
20 
meca_poho_hexa20 
In the routines of initialization of this element, one defines: 
· two families of functions of form respectively associated with displacements and rotation 
beams (linear in X, y and cubic function of form in Z) and under the terms of potential 
fluid (linear function in X, y, Z), 
· four families of points of Gauss to calculate the matrix of rigidity and the various parts 
matrix of mass. 
During the calculation of the elementary terms, the derivative first or seconds of the functions of form 
on the element running are calculated. In spite of the simplified geometry of the finite element (the axis 
of the mesh 
cylindrical is parallel to axis Z and the sections lower and higher are in plans Z = Cte), 
a general subroutine to calculate the derivative second was written [bib7]. In addition, two 
news subroutines was developed starting from the subroutines existing for the elements 
isoparametric to take account of the under-parametric character of the element. 
Handbook of Reference 
R4.07 booklet: Coupling fluid-structure 
HI-75/97/035/A 

Code_Aster ® 
Version 
4.0 
Titrate:  
Homogenisation of a network of beams bathing in a fluid  
Date:  
06/01/98 
Author (S): 
B. QUINNEZ 
Key: 
R4.07.05-A 
Page: 
16/20 
6  
Use in Code_Aster 
6.1  
Data necessary 
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The characteristics of the beams (section S, tensor of inertia I, constant of torsion J) are 
Z 
informed directly under the key word factor BEAM of order AFFE_CARA_ELEM. 
The characteristics of the homogenized coefficients and the cell of reference are indicated under 
the key word factor POUTRE_FLUI of order AFFE_CARA_ELEM. For the single-ended spanner 
words, 
correspondence is as follows: 
B_T: b11 
B_N: b22 
B_TN: b12 
A_FLUI: YF 
A_CELL: Y = Y + Y 
F 
S 
COEF_ECHELLE: µ 
The characteristics of materials are indicated in order DEFI_MATERIAU. For 
tubes, the key word factor ELAS is used to indicate the Young modulus (E: E), the coefficient of 
Poisson (NAKED: ) and density (RHO: ). For the fluid, the key word factor  
S 
FLUID is used 
to indicate the density of fluid (RHO: ). 
F 
6.2  
Orientation of the axes of the beams 
The generators of the cylindrical meshs are obligatorily parallel to the axis of the beams and them 
bases of the meshs perpendicular to this same axis. During the development of the grid, it is necessary to 
be ensured 
that the order of the nodes (local classification) of each cylindrical mesh is correct: nodes of 
base lower then the nodes of the higher base (or vice versa). Direction of the axis of the beams 
is well informed under the key word factor ORIENTATION of order AFFE_CARA_ELEM. 
The following assumption was carried out: the reference mark of reference is the same one as the 
principal reference mark 
of inertia of the characteristic tube representing the homogenized medium. That means that in 
equations [éq 3.1-3], term I is null. 
xy 
6.3 Calculation  
modal 
The developed finite element makes it possible to characterize the vibratory behavior of a network of 
beams 
bathed by a fluid. It is interesting to determine the frequencies of vibration of such a network in 
air and out of water. 
To carry out a modal calculation in air (= 0), it is necessary to block all the degrees of freedom 
corresponding 
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F 
with the fluid potential of displacement, if not rigidity stamps it (and even the matrix shiftée of 
modal problem) is noninvertible [R5.01.01]. 
To carry out a modal water calculation (0), it is necessary to use in the order 
F 
~ 
~ 
MODE_ITER_SIMULT, the option CENTER key word factor CALC_FREQ. The shiftée matrix (K - M) 
is then invertible if is not eigenvalue or if is different from zero. 
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7  
Characterization of the spectrum of the homogenized model 
7.1 Model  
heterogeneous 
That is to say a network with square step of N beams fixed in their low ends and of which ends 
higher move in the same way (uniform movement) (cf appears [7.1-a]). Only them 
movements of inflection are considered. 
Uniform movement 
Z 
y 
L 
X 
H 
Embedding 
H 
Appear 7.1-Error! Argument of unknown switch. 
The spectrum of vibration in air of this network to the following form. For each order of mode of 
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vibration of inflection, the modal structure consists of a frequency doubles correspondent with one  
mode in X and with a mode in where all the higher part moves (all the beams have there 
even deformed) and of a frequency of multiplicity (2 N - 2) correspondent with modes where all 
higher part of the beams is motionless and where beams move in opposition of phase. 
In the presence of fluid, the spectrum is modified. For each order of mode of vibration in inflection, them 
2 N frequencies of vibration are lower than the frequencies of vibration obtained in air. The effect of 
incompressible fluid is comparable with an added mass. There is always a double frequency 
correspondent with a mode in X and a mode in there where all the higher part moves (all them 
beams have the same deformation). On the other hand, one obtains (N -) 
1 couples different of double frequency 
(one in X and one in y) correspondent with modes where all the higher part of the beams is 
motionless and where beams move in opposition of phase. 
For an order of mode of inflection 
Frequency 
Frequency of 
double 
multiplicity 2n-2 
in air 
frequency 
of vibration 
out of water 
Frequency 
Spreading out of 
double 
spectrum 
Appear 7.1-Error! Argument of unknown switch. 
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7.2 Model  
homogeneous 
The heterogeneous medium was replaced by a homogeneous medium. 
7.2.1 Problem  
continuous 
Recent work, concerning a problem of homogenisation planes of a network of runners 
retained by springs and bathed by a fluid, show that the spectrum of the homogeneous model 
continuous consists of a continuous part and two frequencies of infinite multiplicity [bib10].  
spectrum of the Eigen frequencies of the water problem is also contained in an interval well 
defined limited supérieurement by the fréqence of vibration in air of a runner [bib5]. 
These results are transposable for each order of inflection of the network of tubes. 
7.2.2 Problem  
discretized 
That is to say the homogeneous field with a grid by hexahedrons. That is to say p the number of 
generators parallel with 
axis Z of the network of beams. 
Uniform movement 
Z 
y 
L 
X 
H 
Embedding 
H 
Appear 7.2.2-a 
One finds results similar to those obtained for the heterogeneous model. It is enough to replace N 
by p. For an order of inflection of beam, the number of frequencies corresponding to modes where 
beams do not vibrate all in the same direction, depends on the discretization used in 
transverse directions with the axis of the beams. 
According to the finite element used (mesh HEXA 8 or nets HEXA 20), the distribution of (2 p - 2) last 
frequencies is different. The first frequency doubles (that corresponding to the mode where the part 
higher moves) is the same one for the two finite elements. 
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For an order of mode of inflection 
Frequency 
Frequency 
Frequency of 
double 
of vibration  
multiplicity 2p-2 
HEXA 8 
HEXA 20 
Order of 
frequencies 
Appear 7.2.2-b 
All in all, the homogeneous model makes it possible to obtain the frequencies of vibration easily 
correspondent with modes where all the beams vibrate in the same direction. Other modes 
obtained provide only one vision partial of the spectrum. In the discretized spectrum, one can turn over 
one or the two frequencies of infinite multiplicity presents in the spectrum of the continuous model. 
8 Conclusion 
The use of the finite elements developed associated the homogenized model of a beam of tubes 
periodical bathed by a fluid makes it possible to characterize the overall vibratory movements (all 
the structure moves in the same direction) of such a structure. 
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Calculation of the thermal deformation 
Summary 
This document is devoted to the presentation of the calculation of the thermal deformation. One 
indicates them to it 
information necessary to the calculation of the thermal deformation and the various possibilities of 
definition of these 
information by the user. 
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1 Introduction 
The values of the dilation coefficients are determined by tests of dilatometry which take place with 
to leave the ambient temperature (0°C or more generally 20°C). So one lays out in general 
values of the dilation coefficient defined compared to 20°C (temperature to which one supposes 
null thermal deformation). 
Certain studies require to take a temperature of reference different from the temperature 
ambient (null thermal deformation for another temperature that the ambient temperature). It 
is then necessary to carry out a change of reference mark in the calculation of the thermal deformation 
(equation 
[éq 1-1] and appears below). 
HT 
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HT (T) 
HT (T 
HT (T) 
m 
ref.) 
m 
T 
Tre F 
T 
of F 
Temperature 
HT (T) = HT 
HT 
m (T) - m (ref. 
T) 
éq 1-1 
HT 
where 
m is the measured thermal deformation (definite compared to the ambient temperature) 
HT is the calculated thermal deformation (definite compared to a temperature of reference) 
In Code_Aster, the thermal deformation is calculated by the expression 
HT (T) =! (T) (T - ref. 
T) where! (T) is the average dilation coefficient (with direction RCC_M) with  
temperature T determined compared to the temperature Tref (Tref being the temperature to which one 
consider that HT (ref. 
T) = 0.). 
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2  
Thermal dilation coefficient known compared to Tref 
The values of the thermal dilation coefficient were determined by tests of dilatometry 
carried out starting from the Tref temperature. 
In this case, key word TEMP_DEF_ALPHA should not be specified in the order 
DEFI_MATERIAU [U4.23.01]. 
The equation [éq 1-1] is simplified, since HT 
m (ref. 
T) = 0. 
From where: 
HT (T) =! (T) (T - ref. 
T) 
éq 2-1 
and HT (ref. 
T) = 0 
where values of the dilation coefficient! 
(T) are well informed under the key word ALPHA (or 
ALPHA_*) in DEFI_MATERIAU. 
3 Dilation coefficient known compared to one 
temperature T T 
def 
ref. 
The values of the thermal dilation coefficient were determined by tests of dilatometry 
who took place starting from a Tdef temperature different from the temperature of Tref reference. 
Indeed, in general one has the values of the dilation coefficient defined compared to 
ambient temperature, 0°C or more generally 20°C, and certain studies require to take one 
temperature of reference different from the ambient temperature. 
It is then necessary to carry out a change of reference mark [éq 1-1]. 
In this case, the user informs under key word TEMP_DEF_ALPHA of the order 
DEFI_MATERIAU, the value of the Tdef temperature, and under the key word ALPHA (or ALPHA_*) 
them 
values of the dilation coefficient (T) (definite compared to the Tdef temperature). In 
order AFFE_MATERIAU under key word TEMP_REF, it indicates the value of the temperature of 
Tref reference. 
The calculation of HT (T) is done by using the formula: 
HT (T) = (T) (T - dTef) - (rTef) (ref. 
T 
- D 
T ef) 
=! (T) (T - ref. 
T) 
éq 3-1 
and HT (ref. 
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T) = 0 
The calculation of HT (T) requires the preliminary calculation of the values of the function! 
(T). 
The function! 
(T) remains defined (or well informed) for the same values of T as (T), I =, 
1 NR and 
keep the same attributes (even standard of interpolation (“FLAX”, “LOG”) and even type of 
prolongation 
(“CONSTANT”, “LINEAR”, “EXCLUDED”)). 
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3.1 Calculation  
of! 
(T) 
I in temperatures different of Tref (to one 
precision near) 
One obtains the expression of! 
(T) 
I by using the equation [éq 3-1]. 
I t.q. Ti - Tref Prec 
(T) (T 
I 
I - Tdef) - (T 
) (T 
ref.  
ref. - T 
) 
éq 3.1-1 
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! 
(T 
def 
I) = 
Ti - Tref 
The value of the precision is: 
· is specified by the user under the key word PRECISION of the key word factor ELAS_FO 
(order DEFI_MATERIAU [U4.23.01]), 
· is equal to 1. : default value. 
3.2 Calculation  
of! 
(T) 
I for temperatures close to Tref (to one 
precision near) 
One cannot use the equation [éq 3-1] directly. One derives the equation [éq 3-1] compared to 
temperature and one take the value of derived at the Tref temperature. 
HT (T) = (T) (T - of 
T F) - (R 
T ef) (ref. 
T 
- D 
T ef) = (! T) (T - ref. 
T 
) 
HT 
from where  
= (T) ( 
 
T - of 
T F) + (T) =! (T) ( 
 
T - R 
T ef) + (! T) 
 
éq 3.2-1 
T 
and thus! ref. 
(T 
) = (R 
T ef) ref. 
(T 
- D 
T ef) + ref. 
(T 
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) 
The equation [éq 3.2-1] gives the expression of! 
(Tref). 
It is considered that! 
(T) =! (T) I t.q. T - T 
< Prec 
I 
ref. 
I 
ref. 
The value of the precision is: 
· is specified by the user under the key word PRECISION of the key word factor ELAS_FO 
(order DEFI_MATERIAU [U4.23.01]), 
· is equal to 1. : default value. 
Also, to calculate! 
(T) 
I it is necessary as a preliminary to calculate (T 
) 
ref. 
. 
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T 
Tref < Prec  
and I and 
1 I NR 
 
1 Ti+1 - T 
T 
ref. 
ref. - 
 
T 
éq 3.2.1-1 
( 
i-1 
T 
 
ref.) 
( ) 
 
( ) ( ) ( ) 
= 2  
+ 
Ti+1 - T 
T 
ref. 
ref. - T 
 
 
i-1 
 
2nd case: I T 
t.q I - Tref < Prec and 
if 
I = NR 
Tref - T 
éq 3.2.1-2 
( 
I 1 
Tref) 
( ) ( - ) 
=  
Tref - Ti-1 
3rd case: I t.q. Ti - Tref < prec and if I = 1 
Ti+1 - T 
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éq 3.2.1-3 
( 
ref. 
Tref) 
( ) ( ) 
=  
Ti+1 - Tref 
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Estimator of error of ZHU-ZIENKIEWICZ 
in elasticity 2D 
Summary: 
One exposes in this document the method of estimate of the error of discretization suggested by 
ZHU-ZIENKIEWICZ and applied to the system of linear elasticity 2D. 
This estimator is based on a continuous smoothing of the calculated constraints allowing to obtain the 
best 
precision on the nodal constraints compared to the methods standards. 
Two successive versions of this estimator are described, corresponding each one to a different 
smoothing. These 
two versions are available in Aster. 
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1 Introduction 
Research on estimators of error on the solutions obtained by calculations finite elements and 
their coupling with procedures of adaptive grid made these last years great strides 
considerable. The set aim is to mitigate the possible inadequacy of a modeling while adapting of one 
automatic way grid with the solution sought according to certain criteria (equal distribution of the error 
of discretization, minimization of the number of nodes to reach a given, less precision 
cost). 
One introduces here an estimator of error of the type a posteriori within the framework of linear 
elasticity and 
homogeneous 2D. Historically, this estimator, proposed by ZHU-ZIENKIEWICZ [bib1] in 1987, was 
largely used because of its facility of establishment in its existing weak and computer codes  
cost. Nevertheless, the bad reliability of this estimator for the elements of even degree was 
noted empirically (undervaluation of the error) and led the authors to a modification of 
their method in 1992 [bib2], [bib3] with numerical checking of the asymptotic convergence of 
the estimator on all the types of elements. 
Nevertheless, the applicability of version 92 being for the moment more reduced (see [ß3.2]), them 
two versions of this estimator were established in Aster and are the subject of this note. 
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2  
Principle of the method 
2.1  
Equations to be solved 
One considers the solution (U,) of a linear elastic problem checking: 
· equilibrium equations: 
Lu 
 
= Q in  
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ijnj = 
 
T on  
I 
T 
with L = T BDB operator of elasticity 
· equations of compatibility: 
= Drunk 
U = 
 
U on U 
 
with = U 
T 
! 
· the law of behavior: 
= D  
The problem discretized by finite elements consists in finding (uh, H) solution of: 
U = NR U 
H 
H 
éq 2.1-1 
checking K U 
F 
H = 
with K = T (BN) D (BN) D  
 
F = 
NR Q + T 
D 
NR 
T 
T D  
 
T 
 
where: 
uh represents the nodal unknown factors of displacement 
NR associated functions of form 
The constraints are calculated starting from displacements by the relation: 
H = dB uh 
éq 2.1-2 
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2.2  
Estimator of error and index of effectivity 
One notes 
E = U - U 
the error on displacements 
H 
E = -  
the error on the constraints 
H 
The standard of the energy of the error E is written: 
 
1/2 
E =  
E L E  
T 
D 
 
 
 
 
in the case of elasticity 
 
1/2 
= you D 1 E D 
 
 
 
 
- 
éq  
2.2-1 
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The total error above breaks up into a sum of elementary errors according to: 
NR 
E 2 = E 2i 
I = 1 
where 
NR is the total number of elements. 
E I represents the local indicator of error on element I. 
The goal is to consider the error exact starting from the equation [éq 2.2-1] formulated in constraints. 
The idea of 
base method is to build a new stress field noted * from H and such 
that: 
E e* 
* 
 
= - H 
The estimator of error will be written then: 
1/2 
 
 
0 
T * 
1 
E = E D e* D  
 
- 
 
 
 
 
 
 
 
The quality of the estimator is measured by the quantity, called index of effectivity of the estimator: 
0 E 
= E 
An estimator of error is known as asymptotically exact if 1 when E 0 (or when H 0), 
what wants to say that the estimated error will always converge towards the exact error when this one 
décroitra. 
In an obvious way, the reliability of 0 E depends on “quality” on *. 
The two versions of the estimator of ZHU-ZIENKIEWICZ are different on this level (see [§3]). 
Handbook of Reference 
R4.10 booklet: Estimator of error a posteriori 

file:///Z|/process/refer/refer/p1400.htm (2 of 14)10/2/2006 2:53:25 PM



file:///Z|/process/refer/refer/p1400.htm

HI-75/94/031/A 

Code_Aster ® 
Version 
2.6 
Titrate:  
Estimator of error of ZHU-ZIENKIEWICZ in elasticity 2D 
Date:  
11/04/94 
Author (S): 
X. DESROCHES 
Key: 
R4.10.01-A 
Page: 
6/12 
2.3  
Construction of an estimator asymptotically exact 
The characterization of such an estimator is provided by the following theorem (see [bib 2]). 
Theorem 
If e* 
U 
u* 
= 
- 
is the standard of error of the rebuilt solution, then the estimator of error 
0 E previously defined is asymptotically exact 
e* 
if  
0 when 
E 0 
E 
This condition is carried out if the rate of convergence with H of e* is higher than that of E. 
Typically, if it is supposed that the exact error of the approximation finite element converges in 
E = 0 (HP) 
and the error of the solution rebuilt in 
e* = (+ 
0 H p) with > 0 
then a simple calculation gives: 
1 - 0 (H) 1 + 0 (H 
 
) 
and thus 1 when H 0 
Handbook of Reference 
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3  
Construction of the stress field recomputed (*) 
3.1 Version  
1987  
The solution uh resulting from the equation [éq 2.1-1] being C0 on (because of the choice of functions 
from 
form C0), it follows that H calculated by [éq 2.1-2] is discontinuous with the interfaces of the elements. 
To obtain acceptable results on the nodal constraints, one generally resorts to one 
average with the nodes or a method of projection. It is this last method which is adopted 
here. 
It is supposed that * is interpolated by the same functions of form that uh, is: 
* 
* 
= NR 
éq 3.1-1 
and one carries out a total smoothing by least squares of H, which amounts minimizing the functional 
calculus 
T 
J () = (- H) (- H) D in the space generated by NR. 
 
By derivation, * must check T NR (* -) D = 
 
H 
0 
 
by using the equation [éq 3.1-1], one obtains the linear system: 
M {*} = {} 
B 
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with M = 
NR NR 
T D and {} 
B = 
NR 
T H D  
 
 
This total system is to be solved on each component of the tensor of the constraints.  
stamp M is calculated and reversed only once. 
3.2 Version  
1992 
The constraint of the field * differs compared to the version 1987 in the following way: 
one supposes * polynômial of the same degree than displacements on the whole of the elements 
having a node top interns S joint. 
S is noted 
= 
K 
K 
! this unit called patch. 
S K 
 
For each component of *, one writes: 
* 
= Pa 
S 
S 
éq 3.2-1 
K 
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where 
P contains the suitable polynômiaux terms 
have the unknown coefficients of the corresponding students'rag processions 
Example: 2D 
P1 P = [ 
1, X, y] have = T [has, has, has 
1 
2 
3 ] 
Q1 P = [ 
1, X, y, xy] have = T [has, has, has, has 
1 
2 
3 
4 ] 
The determination of the coefficients of the polynomial have is done by minimizing the functional 
calculus: 
NR  
2 
F (A) =  
* 
H (X, y 
I 
I) -  
(X, y) 
 
 
 
S 
I 
I  
I 
K 
=1 
NR 
= ( 
2 
H (X, y 
I 
I) - P (X, y 
I 
I) have) 
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I =1 
(discrete local smoothing of H by least squares) 
where 
(X, y 
I 
I) are the co-ordinates of the points of GAUSS on SK. 
NR is the total number of points of GAUSS on all the elements of the patch 
The solution ace checks: 
NR 
NR 
T 
P ( 
T 
I 
X, iy) P (ix, iy) has = P 
S 
(ix, iy) H (ix, iy) 
I =1 
I =1 
NR 
from where has 
With 
B 
S = 
- 1 with A = tP (ix, iy) P (ix, iy) 
I =1  
A can very badly be conditioned (in particular on the elements of high degree) and consequently, 
impossible 
to reverse in this form. To cure this problem, the authors [bib4] proposed one 
standardization of the co-ordinates on each patch, which amounts carrying out the change of 
variables: 
X - X 
X = - 1 + 2 
min 
xmax - xmin 
y - y 
y = - 1 + 2 
min 
ymax - ymin 
where X 
, X 
, y 
, y 
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min 
max 
min 
max represent the values minimum and maximum X and y on the patch. 
This method notably improves conditioning of A and removes the problem completely 
precedent. 
Once determined, the nodal values are deduced according to the equation [éq 3.2-1] only on 
the nodes intern with the patch, except in the case of patchs having nodes of edge. 
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Patchs internal: 
QUAD4 
QUAD8 
QUAD9 
 
TRIA3 
TRIA6 
points of GAUSS where are calculated the constraints H according to the equation [éq 2.1-2] 
nodes of calculation of ** 
internal top defining the patch 
Patchs edges: 
The nodal values with the nodes mediums belonging to 2 patchs are realised, in the same way for 
nodes intern the QUAD9 in the case of. 
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Note: 
In the case of finite elements of different type, the choice of P in the equation [éq 3.2 - 1] is delicate 
(problems of validity of ace if space is too rich, loss of super-convergence if it is not it 
enough). A thorough study seems essential. 
This is why estimator ZZ2 is limited for the moment to grids comprising only one 
only type of element. This restriction does not exist for ZZ1. 
The authors showed numerically [bib3] that with this choice of *, their estimator was 
asymptotically exact for elastic materials of which the characteristics are independent 
field and for all the types of elements and that the rates of convergence with H of e* were 
improved compared to the preceding version (especially for the elements of degree 2: to see case test 
Manual SSLV110 of Validation), from where a better estimate of the error. 
One will find an illustration of these rates of convergence in the reference [bib 5]. 
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4 Establishment  
in  
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Aster and current limits of use 
4.1 Establishment  
in  
Aster  
The two preceding estimators are established in Aster in the ordering of postprocessing 
CALC_ELEM [U4.61.02]. They are activated starting from options (ERRE_ELEM_NOZ1 for ZZ1 and 
ERRE_ELEM_NOZ2 for ZZ2) and enrich a structure of data RESULT. 
Moreover, the calculation of the stress field smoothed by one or the other of the methods described with 
[ß3] 
can be started separately of the calculation of estimate of the error (option SIGM_NOZ1_ELGA for ZZ1 
and SIGM_NOZ2_ELGA for ZZ2). It should be noted that this field is discretized directly with the 
nodes and 
not by element with the nodes, which reduces the volume of exits. 
The estimator of error provides: 
· a field by element comprising 3 components: 
-  
the estimate of the relative error on the element, 
-  
the estimate of the absolute error on the element, 
-  
the standard of the energy of the calculated solution h. 
· of the exit-listing comprising same information at the total level (on all the structure) 
All the fields obtained are displayable by IDEAS via order IMPR_RESU. 
4.2 Limits  
of use 
Linear elasticity and homogeneous 2D (forced and plane deformations, axisymmetric), 
Types of elements: 
triangles with 3 and 6 nodes, 
quadrangles with 4, 8 and 9 nodes. 
For ZZ2, the grid must comprise one type of elements. 
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Estimator of error in residue  
 
 
 
 
Summary  
 
The estimator of error in residue allows to estimate the error of discretization due to the finite element 
method  
on the elements of a grid 2D or 3D. It is an explicit estimator of error utilizing the residues of  
equilibrium equations and jumps of the normal constraints to the interfaces, contrary to the estimator 
of  
Zhu-Zienkiewicz, which uses a technique of smoothing of the constraints a posteriori [R4.10.01] and 
[bib5].  
 
This estimator is established in Code_Aster in elastoplasticity 2D and 3D.  
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1 Introduction  
 
The estimator of error in residue was developed in 1993 by Bernardi-Métivet-Verfurth [bib1]. It is one  
explicit estimator of error utilizing residues of the equilibrium equations (from where its name). It  
apply to elliptic problems (Poisson, Stokes, or linear elasticity) in dimension 2 or 3.  
These problems are supposed to be discretized by finite elements associated a regular triangulation.  
 
Historically, the first estimator of explicit error relating to the unbalances is due to Babuska  
and Rheinbolt [bib2] for the problems 1D with linear elements. Gago extended this estimator  
to the 2D and added to the formulas the jumps of traction to the interfaces of the elements [bib3] and 
[bib4]. Of  
new estimators were then proposed, in whom defects of surface traction with  
borders of the field were also taken into account as well as an improvement of the estimate of  
jumps inter-elements giving of the more reliable results.  
 
One is interested here in the estimator in residue applied to the case of linear elasticity. The set aim is, 
with  
the exit of an elastic design, to if required determine the chart of error on the grid in sight  
to adapt this one (by refinement and/or déraffinement) or simply for information. The adaptation  
can be done by chaining with the software of Homard cutting.  
 
 
2  
Formulation of the estimator in residue  
 
That is to say open from RN, N = 2 or 3, of border, and T a regular triangulation of.  
 
In linear elasticity, the continuous problem is written:  
 
to find (U,) such as:  
 
div 
+ F = 0 in  
U 

file:///Z|/process/refer/refer/p1400.htm (13 of 14)10/2/2006 2:53:25 PM



file:///Z|/process/refer/refer/p1400.htm

= uD 
on D  
 
.n = G 
 
NR 
on NR 
 
D is the border of Dirichlet of the grid  
uD is the displacement imposed on this border  
NR is the border of Neumann  
N the unit normal with NR  
 
gN is the loading applied to this border; it can continuous or be discretized.  
F is force of a voluminal type (gravity, rotation); it can continuous or be discretized.  
 
H is the constraint obtained by the resolution of the discrete problem:  
 
div 
+ F 
H 
= 0 in  
U 
 
= U 
H 
D 
on D  
 
.n = G 
H 
NR 
on NR 
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with the relation H = 
U 
DB H where:  
 
D is the matrix of Hooke  
B is the linearized operator of the deformations  
 
If K indicates a current element of the grid, the estimator of error (noted ()) is defined like  
being the quadratic average of the site indicators of error, noted (K):  
 
 
1/2 
() = (K) 2  
 
KT 
 
 
 
The indicator by local residue  
 
The indicator is composed of three terms; the first represents the residue of the equilibrium equation on  
each mesh, the second term the jump of the normal constraints on the interfaces, the third  
term the difference between the normal constraints and the loading imposed on NR if the element 
intersects  
NR.  
 
V2 
V1 
K 
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S (K) 
V3 
K: 
Element running where one wishes to calculate the error, 
V1 with V3: 
Elements having a common edge with the current element, 
S (K): 
Together edges of the element running having neighbors.  
Appear 2-a: Elements intern with a grid  
 
·  
the first term of the estimator is the L2 standard of the residue of the equilibrium equation on  
net K, multiplied by HK which is, that is to say the diameter of the circle circumscribed for a finite 
element  
triangular, that is to say the maximum diagonal for a quadrangle,  
·  
the second term is the integral, on S (K) definite [Figure 2-a], of the jumps of constraints  
normals integrated on each edge F of the element which has a neighbor, and multiplied by  
root of HF, which is the length of the edge F,  
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NR: Border of Neumann 
gN: Force applied to the border of Neumann 
NR 
gN 
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K 
F 
 
Appear 2-b: Elements located on the border of a grid  
 
·  
the third term is the integral, on the intersection of each edge F of the edges K of  
the element running K with the border of Neumann NR, the jumps between the constraints  
normals of the element and the force of Neumann G NR, multiplied by the root HF, length  
edge F.  
 
There is thus the following formula for the estimator in residue:  
 
( 
1 
K) = H F + di  
v 
1/2 
1/2 
2 
+ 
H [.n 
. 
éq 2-1  
2 
 
H 
] 
( 
+ 
H 
G -  
) 
N 
K 
H L K 
F 
2 
L F 
F 
NR 
H 
L2 F 
F S 
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(K) 
( ) 
( ) 
FKN 
 
For the choice of the various terms of [éq 2-1], one returns to [bib1].  
 
 
3  
Properties of the estimator in residue  
 
 
One notes  
( ) 
EX K the exact error U - uh 
on the element K (unknown factor a priori)  
H1 (K) 
 
and  
( ) 
EX the total exact error U - uh 
 
H1 () 
 
There are then the following properties ([bib1]):  
 
·  
some is the element K, the elementary error (K) is raised by the exact site error  
(multiplied by a constant independent of the triangulation),  
 
that is to say K 
(K) C × (K) 
1 
EX  
 
 
·  
the exact total error is raised by the error considered total () (multiplied by one  
constant independent of T)  
 
that is to say  
()  
× () 
EX 
C2 
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Constant C and C 
1 
2 depend a priori on the type of finite element and the boundary conditions on  
problem. Kelly and Gago [bib3] proposed in 2D a C2 constant depending only on the degree p  
polynomial of interpolation used:  
 
1 2 
1  
1 
C =  
 
that is to say 
C = 
for 
1) 
 
(degree 
 
QUAD4 
 
and 
 
TRIA3 
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2 
2 
 
24 2 
p  
2 p 6 
 
 
1 
C = 
for 
2) 
 
(degree 
 
QUAD8 
 
and 
 
TRIA6 
 
 
 
2 
4 p 6 
 
For the 3D, one does not have evaluation of the constant. One can nevertheless say that the error  
estimated total the total exact error in all the cases over-estimates. This result is not inevitably  
truth at the local level.  
 
 
4 Establishment  
in  
Aster  
 
The estimator in residue is established in 2D and 3D on all the types of elements (except the pyramids). 
It  
is calculated by order CALC_ELEM by activating option “ERRE_ELGA_NORE”.  
 
This option calculates on each element:  
 
·  
the absolute error (K) (see [éq 2-1]),  
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·  
the standard of the tensor of the constraints H 
who is used to normalize the absolute error,  
L2 (K) 
(K) 
·  
the relative error (K) 
rel 
= 100 × 
.  
( 
2 
K) 2 + H L2 (K) 
 
Foot-note:  
 
This definition of the relative error implies that in the zones where the constraints are very  
weak, the relative error can be important and nonsignificant. It is then the absolute error  
that it is necessary to consider.  
 
It also calculates at the total level:  
 
 
1/2 
·  
the absolute error () = (K) 2,  
 
KT 
 
 
1/2 
 
2 
 
·  
the total standard of the tensor of the constraints  
=  
2 ( 
 
 
H 
,  
L) 
H L2 (K) 
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K T 
 
 
 
 
·  
the relative error () 
( ) 
rel 
= 100 × 
.  
() 2 + 2 
H L2 () 
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According to the expression [éq 2-1], one sees that to calculate the indicator of error on the mesh K, one 
must  
to know:  
 
1) possible loadings F on K and gN on K NR (or their discretization  
F 
and G 
H 
Nh),  
2) them  
quantities  
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H, H 
K 
F and N related to the geometry of the element,  
3) the stress field H,  
4) the list of the neighbors of K to recover the constraints on these elements, necessary to  
calculation of the 2nd term of [éq 2-1].  
 
1 and 2 can be calculated or recovered easily.  
 
3 must be calculated as a preliminary by one of options “SIGM_ELNO_DEPL”, “SIEF_ELNO_ELGA”  
or “SIRE_ELNO_DEPL” (option without smoothing of the constraints).  
 
In the contrary case, a fatal error message is transmitted.  
 
4 requires the calculation of a particular connectivity mesh-meshs, in addition to standard connectivity  
mesh-nodes. This new object is stored in the structure of data of the grid type.  
 
For the detail of the establishment in Aster, to see [bib6].  
For the validation of the estimator, to see [bib7].  
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Summary  
 
During digital simulations by finite elements, obtaining a rough result is not sufficient any more.  
The user is increasingly petitioning of space error analysis compared to his grid. He has  
need for support methodological and pointed tools “numériquo-data processing” to measure the 
quality of  
its studies and to improve them.  
To this end, the indicators of space error a posteriori make it possible to locate, on each element, one  
cartography of error on which the tools of mending of meshes will be able to rest: the first calculation 
on one  
coarse grid makes it possible to exhume the chart of error starting from the data and the solution 
discretized (from where it  
term “a posteriori”), refinement is carried out then locally by treating on a hierarchical basis this 
information.  
The new indicator a posteriori (known as “in pure residue”) which has been just established post-to 
treat them  
thermal solveurs of Code_Aster is based on their local residues extracted the semi-discretizations in  
time. Via option “ERTH_ELEM_TEMP” of CALC_ELEM, it uses the thermal fields (EVOL_THER) 
emanating  
THER_LINEAIRE and THER_NON_LINE. It thus supplements the offer of the code in term of 
advanced tools  
allowing to improve quality of the studies, their mutualisations and their comparisons.  
The goal of this note is to detail theoretical, numerical work and data processing which governed sound  
establishment. With regard to the theoretical study we, initially, limited ourselves to  
linear thermics of a motionless structure discretized by the finite elements isoparametric standards. But,  
in practice, the perimeter of use of this option was partially extended to thermics not  
linear.  
One gives to the reader the properties and the theoretical and practical limitations of the exhumed 
indicator, all in  
connecting these considerations, which can sometimes appear a little “éthérées”, to a precise parameter 
setting of  
operators accused and with the choices of modeling of the code. One tried constantly to bind the 
different ones  
items approached, while detailing, has minimum, of the a little technical demonstrations seldom 
clarified in  
specialized literature.  
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1  
Problems Description of the document  
 
During digital simulations by finite elements obtaining a rough result is not sufficient any more.  
The user is increasingly petitioning of space error analysis compared to sound  
grid. It has need for support methodological and pointed tools “numériquo-data processing”  
to measure the quality of its studies and to improve them.  
For example, the precision of the results is often degraded by local singularities (corners,  
heterogeneities…). One then seeks the good strategy to identify these critical areas and for  
to refine/déraffiner in order to optimize the compromise site/total error. And this, with largest  
possible precision, in an automatic, reliable way (the error analysis must be itself less  
approximate possible!) robust and at lower cost.  
 
For each type of finite elements, one in general has estimates a priori of the space error  
[bib1], [bib3]. But those are checked only asymptotically (when the size H of the elements  
tends towards zero) and they require a certain level of regularity which is precisely not reached in  
zones with problem. Moreover, these increases underlie two types of strategies for  
to improve calculation:  
 
·  
the “methods p” which consist in locally increasing the order of the finite elements,  
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·  
“  
methods H  
” which locally refines in order to decrease the characteristics  
geometrical of the elements.  
 
We are interested here in the second strategy, but through an other class of indicators:  
indicators of errors a posteriori  
. Since work founders of I. BABUSKA and  
W. RHEINBOLDT [bib18], the importance of this type of indicator is well established and they arouse 
an interest  
growing, as well in pure numerical analysis [bib5], [bib6], [bib7] as in the field of  
applications [bib4], [bib16]. They were in particular established and used in N3S, TRIFOU and it  
Code_Aster (for linear mechanics cf [R4.10.01], [R4.10.02]). For a “review” of the string  
indicators existing, one will be able to consult the reference work of R. VERFURTH [bib7] or, it  
report/ratio of X. DESROCHES [bib16], for a vision plus mecanician of these projections.  
 
To take again a sales leaflet of M.FORTIN (cf [bib17] pp468-469), the development of  
the estimate a posteriori is justified mainly by three reasons:  
 
·  
the first is the need for establishing the precision of the results obtained by a calculation elements  
finished: which credit to grant to them? All phenomena and all the data which  
they intervene are well taken into account in modeling?  
·  
the second objective is to make it possible whoever to use a computer code without having with  
to intervene in the construction of the grid in order to obtain the necessary total precision,  
·  
finally, the third direction of study is more particularly directed towards the problems  
three-dimensional for which the size of the grids is limited by the place memory  
available and the cost of the resolution.  
 
These specifications reveal two duaux problems: to estimate the precision of the solution  
obtained on the principal parameters of simulation and to propose means of calculating one  
new solution which respects a minimal precision. The first problem is truly that of  
the estimate of error whereas the second relates to the associated adaptive methods  
(refinement/déraffinement, mending of meshes, displacement of points, follow-up of border…).  
Thus these indicators make it possible to locate on each element a cartography of error on which  
the tools of mending of meshes will be able to rest.  
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Note:  
 
One prefers the denomination to him of  
«  
indicator” with the usual terminology  
of “estimator” (translation literal of English “error estimator”). Taking into account the fact  
that it has the same theoretical limitations that those of the solvor finite elements (that it  
“post-draft”), which it is him even often sullied with numerical approximations and which it  
is exhumed via relations of equivalence utilizing the many ones  
constants dependent on the problem… the information which it underlies does not give  
truly “that an order of magnitude” of the required space error. In spite of these  
restrictions, these cartographies of error a posteriori do not remain less important about it,  
and in any case, they constitute the only type of accessible information in it  
field.  
 
The first calculation on a coarse grid makes it possible to associate, with each element triangulation, 
one  
indicator calculated starting from the discretized data and of the first discrete solution. Refinement  
be carried out then locally by treating on a hierarchical basis this information.  
 
In short, and in a nonexhaustive way, the use of an indicator possibly coupled with one  
remaillor:  
 
·  
provides a certain estimate of the error of space discretization,  
·  
get a better frequency of errors due to the local singularities,  
·  
allows to improve modeling of the facts of the case (materials, loadings,  
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sources…),  
·  
allows to optimize (even precision at lower cost) and to make reliable the process of  
convergence of the grid,  
·  
to estimate and qualify a calculation for a class of grid given.  
 
These considerations show clearly that the calculation of these estimators (which is finally only one  
postprocessing of the problem considered) must:  
 
·  
to be much less expensive than that of the solution,  
·  
to require only the discretized data and the calculated solution,  
·  
to be able to be located,  
·  
to be equivalent (in a particular form) to the exact error.  
 
We will see, that with the indicators in residue, one can obtain only one total increase  
exact error joined to a local decrease of this same error. But these hight delimiters  
and lower of the error are supplemented because, the first ensures us to have obtained a solution with  
a certain tolerance, while the second enables us to optimize the number of points locally  
to respect this precision and not to over-estimate it. They utilize constants which  
not depending on the discretizations space and temporal.  
 
The goal of this note is to detail theoretical, numerical work and data processing which have  
governed the indicator installation of of error a posteriori allowing “post-to treat” them  
thermal solveurs of Code_Aster. It is about an indicator in pure residue initiated by the option  
“ERTH_ELEM_TEMP” of CALC_ELEM.  
With regard to the theoretical study we, initially, limited ourselves to thermics  
linear of a motionless structure discretized by the finite elements isoparametric standards. But,  
in practice, the perimeter of use of this option was partially extended to thermics not  
linear. For more details on the perimeter of use and functional of the thermal indicator and one  
example of use, one will be able to refer to [§6].  
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The indicator a posteriori that we propose is an indicator in pure residue based on  
local residues of the strong equation semi-discretized in time. For certain elements of the study  
theoretical (and in particular its groundwork) we took as a starting point the innovative work by  
C. BERNARDI and B. METIVET [bib6]. They have extended they-even, of elliptic with parabolic, them  
results of R. VERFURTH [bib7]. They in particular were interested in calculations of indicators on  
case models equation of heat with homogeneous condition of Dirichlet, semi-discretized in  
time by a diagram of implicit Euler. We extended these results to the problems really  
treaties by the linear operator of thermics of the code, THER_LINEAIRE. They are problems with  
limits mixed (Cauchy-Dirichlet-Neumann-Robin) inhomogenous, linear, with variable coefficients and  
discretized by one - method.  
 
A basic work was thus undertaken for encircling the theoretical springs of the problem well  
subjacent thermics and to extrapolate the results of the problem models preceding. This so  
to try to approach modelings and the perimeter of the code while detailing subtleties  
often induced mathematics in the articles of art. A particular effort was brought to put  
in prospect choices led in Code_Aster compared to research, passed and current,  
like clarifying the general philosophy of these indicators.  
One gives to the reader the properties and the theoretical and practical limitations of the released 
indicators  
while connecting these considerations, which can sometimes appear a little “éthérées”, to a parameter 
setting  
precis of operator CALC_ELEM accused in this postprocessing. One tried constantly to bind  
different the items approached, to limit the recourse to long mathematical digressions, all in  
retailer has minimum many “technical” demonstrations seldom clarified a little in  
specialized literature.  
 
This document is articulated around the following parts:  
 
·  
Initially, one leads a theoretical study in order to underline holding them and  
outcomes of the subjacent thermal problem, and, their possible bonds with the choices  
of modeling of the code. First of all, the Abstracted Variational Framework is determined (CVA)  
minimum (cf [§2.1]) on which one will be able to rest to show the existence and unicity  
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of a field of temperature solution (cf [§2.2]). By recutting these pre-necessary theoretical one  
few “éthérés” with the practical constraints users, one deduce some from the limitations  
as for the types of geometry and the licit loadings. Then one studies the evolution of  
properties of stability of the problem (cf [§3]) during the process of semi-discretization in  
time and in space.  
 
·  
These results of controllability are very useful to create the standards, the techniques and them  
inequalities which intervene in the genesis of the indicator in residue. After having introduced them  
usual notations of this type of problems (cf [§4.1]), a formulation is exhumed  
possible of the indicator as well as the increase of the total error (cf [§4.2]) and the decrease  
site error associated (cf [§4.4]). Various types of space indicators (cf [§4.3]) are  
evoked and one details several used strategies of construction of indicators in  
parabolic (cf [§4.5]). In this same paragraph, the temporal aspect of the problem is too  
examined through the contingencies of management of the space error with respect to that of the step  
time.  
 
·  
In a third part (cf [§5]), principal contributions of these theoretical chapters and theirs  
bonds with the thermal solveurs of the code are summarized.  
 
·  
Finally, one concludes by approaching the practical difficulties from implementation (cf [§6.1]),  
environment necessary (cf [§6.2]), the parameter setting (cf [§6.3]) and the perimeter  
of use (cf [§6.4]) of the indicator actually established in the operator of post-  
treatment CALC_ELEM. An example of use extracted from a case official test (TPLL01J) is  
also detailed (cf [§6.5]).  
 
Warning:  
 
The reader in a hurry and/or not very interested by the theoretical springs genesis indicator  
of error and subjacent thermal problem can, from the start, to jump to [§5] which recapitulates them  
principal theoretical contributions of the preceding chapters.  
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2  
The problem in extreme cases  
 
2.1 Context  
 
One considers a limited open motionless body occupying related of Q 
R (Q =2 or 3) of  
3 
border  
= 
: = 
: I 
regular characterized by its voluminal heat with constant pressure  
i=1 
C 
 
(X 
p 
(the vectorial variable X symbolizes here the couple (X, y) (resp. (X, y, Z)) for Q =2  
(resp. Q =3))) and its coefficient of isotropic thermal conductivity (X).  
 
Note:  
 
One will thus not take account of a possible displacement of the structure  
(cf THER_NON_LINE_MO [R5.02.01]).  
 
These data materials are supposed to be independent of time (modeling THER of Code_Aster)  
and constants by element (discretization 0 
P).  
 
Note:  
 
With modeling THER_FO these characteristics can depend on time. As of  
first versions of the code and before the installation of THER_NON_LINE, it  
allowed to simulate “pseudo” non-linearities. Taking into account its use  
rather marginal, we will not be interested in this modeling.  
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One is interested in the changes of the temperature in any item X of opened and at any moment  
T [, 
0 [(> 0), when the body is subjected to limiting conditions and loadings  
independent of the temperature but being able to depend on time. It is about voluminal source  
S (X, T), of boundary conditions of imposed the temperature type F (X, T) (on the portion of surface  
external 1 
), normal flow imposed G (X, T) (on 2 
) and exchanges convectif H (X, T) and Text (, T 
X) (out of 3 
).  
One places oneself thus within the framework of application of operator THER_LINEAIRE [R5.02.01] 
of  
Code_Aster by retaining only the conductive aspects of this linear thermal problem.  
 
Note:  
 
Non-linearities pose serious theoretical problems [bib2] to show  
the existence, the unicity and the stability of the possible solution. Some are still  
completely open… But in practice, that by no means prevents from “stretching” it  
perimeter of use of the estimator of error which will be exhumed rigorously for  
linear thermics, with nonlinear thermics (operator THER_NON_LINE  
[R5.02.02]).  
 
This problem in extreme cases interfered (type Cauchy-Dirichlet-Neumann-Robin (also called condition  
of Fourier) inhomogenous, linear and with variable coefficients) is formulated  
 
 
T 
C 
- 
p 
div (T) = S 
× ] , 
0 [ 
 
 
T 
T = F 
× 
1 
] ,0[ 
 
T 
(P) 
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0  
= G 
× 
2 
], 0 [éq  
2.1-1  
N 
T 
 
+ HT = HT 
× 
ext. 
3 
] ,0[ 
N 
 
T (, 
X) 
0 = T (X) 
 
0 
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Note:  
 
·  
In this theoretical study of the problem mixed (0 
P), one supposes that the border dissociates  
in portions on which acts inevitably a condition limits nonhomogeneous. This  
assumption is not in fact not of primary importance and one can suppose the existence of a portion 4 
, such  
3 
that = -  
4 : 
, on which a condition of homogeneous Neumann intervenes  
= 
I 
I 1 
(thus, when one builds the variational formulation associated with the strong formulation (0 
P), them  
terms of edges related to this zone disappear. The problem remains well posed then since it  
is thermically unconstrained in this zone. By means of computer, it is well it besides  
who does, since the terms of edges are initialized to zero). In practice, it is besides  
often the case.  
·  
It will be supposed that the coefficient of exchange H (T, X) is positive what is the case in  
Code_Aster (cf [U4.44.02 §4.7.3]). And that will facilitate a little the things to us in  
demonstrations to come (cf for example property 5).  
·  
The condition of Robin modelling the convectif exchange (key word EXCHANGE) on a portion of  
edge of the field, can be duplicated to take account of exchanges between two under-parts  
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border in opposite (key word ECHANGE_PAROI). This limiting condition models one  
thermal resistance of interface  
 
1 
T + HT = HT 
× 
1 
2 
12 
] ,0[ 
 
With =  
, T = 
N 
3 
12 
21 
T 
I 
has 
 
one 
 
 
éq 2.1-2 
ij 
 
 
2 
T + HT = HT 
× 
2 
1 
21 
] ,0[ 
N 
Not to weigh down the writing of the problem and insofar as this option is similar to  
condition of Robin with the external medium, we will not mention it specifically  
in calculations which will follow.  
·  
The condition of Dirichlet can spread in the form of linear relations between the ddls  
(key word LIAISON_*) to simulate, in particular, of geometrical symmetries of the structure.  
With =  
, 
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1 
12 
21 T = T 
I 
( 
has 
 
one  
) 
OUP 
LIAISON_GR 
ij 
I 
J 
1i 1 
T (X, T) + 2 T 
J 
(X, T) = (X, T) on × 
2 
1 
], 0 [éq  
2.1-3 
I 
J 
simply 
 
more 
 
or 
T 
I I (, 
X T) = (, 
X T) on 1 
× ] , 
0 [ ( 
) 
L 
LIAISON_DD 
I 
In the same way functionalities LIAISON_UNIF and LAISON_CHAMNO make it possible to impose one  
even temperature (unknown) with a whole of nodes. They constitute a surcouche  
preceding conditions by imposing couples (,) particular. Not to weigh down  
the writing of the problem and insofar as these options are only particular cases of  
generic condition of Dirichlet, we will not specifically mention them in  
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calculations which will follow.  
·  
When the material is anisotropic conductivity is modelled by a diagonal matrix  
expressed in the reference mark of orthotropism of material. That does not change basically  
following calculations which hold account only isotropic case. It is just necessary to take guard of  
not to commutate more, under the conditions limit of Neumann and Robin, the scalar product  
with the normal and the multiplication by conductivity.  
·  
For a transitory calculation, the initial temperature can be selected in three manners  
different: by carrying out a stationary calculation over the first moment, by fixing it at one  
uniform or unspecified value created by a AFFE_CHAM_NO and by carrying out a recovery with  
to start from a preceding transitory calculation. This choice of the condition of Cauchy does not have 
any  
incidence on the theoretical study which will follow.  
·  
We will not treat the case where (almost) all the loadings are multiplied by one  
even function dependent on time (option FONC_MULT, this well adapted functionality  
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for certain mechanical problems is disadvised in thermics, because it can return in  
conflict with the temporal dependence of the loadings and, in addition, it applies  
selectively with each one of them. It was not included besides in THER_NON_LINE).  
 
It is shown that the functional framework the more most convenient general and for “the catch in hand” 
of it  
parabolic problem is as follows.  
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For the geometry: opened locally limited the only one with dimensions one of its border,  
(H1)  
 
 
variety of dimension Q -1, lipschitzienne or 1 
C per piece  
(H2)  
For the data:  
 
2 
S L ( 
1 
, 
0 ; - 
H ()) 
2 
 
0 
T L () 
 
1 
2  
 
 
- 
 
 
- 
 
 
2 
F L, 
0; H 
( 1) 
1 
2 
2 
, 
G L, 
0; H 
(2 
) 
1 
2 
2 
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, 
T L 
ext. 
, 
0; H 
(3 
)  
(H 
 
 
 
 
 
 
3)  
, C,  
L 
p 
() 
2 
H L (, 
0 ;  
L (3 
)) 
 
who allows us to obtain a solution in the following intersection  
T 2 
L ( 
1 
, 
0; H ()) 0 
C ( 
2 
, 
0; L ()) éq  
2.1-4  
Note:  
 
That is to say (X, 
) Banach, one notes LP (, 0; X) the space of the functions T v (T)  
X 
strongly measurable for dt measurement such as  
1 
 
v 
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= 
v (T) dt 
0, 
. It is Banach, therefore a space of Hilbert for  
; p, X 
 
p 
 
 
 
p < + 
0 
X 
 
the associated standard.  
 
The introduction as of these spaces of Hilbert particular “space times” comes from the need from  
to separate variables X and T. Any function U: (X, T) Q = 
: × 
 
], 0 [U (, xt) can in fact  
to be identified (by using the theorem of Fubini) with another function  
u~: T] [{u~ 
, 
0 
(T) X u~ 
: 
(T) (X) = U (X, T)}. The transformation U u~ 
constituting one  
isomorphism, one will simplify the expressions thereafter by noting U what should have been meant u~.  
 
Note:  
 
·  
The fact of separating, in first, the time of the variable of space makes it possible to be strongly inspired  
conceptual tools developed for the elliptic problems. It is besides completely  
coherent with the sequence “  
semi-discretization in time/total discretization in  
space” which usually chairs the determination of a formulation usable in  
practical.  
·  
The assumptions on the geometry ensure us of the property of 1-prolongation of the open one  
. Thus one will be able to confuse the space of Hilbert  
1 
H ()  
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= 
Q 
: U L2 ()/U (L2 ())  
 
 
on which it is convenient to work, with space  
H 1 () = 
: {U Of ()/U H1 (Q) with U 
= U}  
for which standard theoretical results on the traces, the densities of space and them  
equivalent standards are licit.  
·  
Taking into account the character lipschitzien of the border the theoretical results which will follow  
will be able to apply to the structures comprising of the corners (outgoing or returning). By  
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against the treatment of points or points of graining leaves this theoretical framework  
general. In the same way, the fact that the open one must locally be located the same with dimensions 
one of its border,  
prevent (theoretically) the treatment of crack. To treat this type rigorously of  
problem, an approach consists in correcting the basic functions of the finite elements by one  
suitable function centered on the internal end of the crack (cf P. GRISVARD. School  
from Numerical Analysis CEA-EDF-INRIA on the breaking process, pp183-192, 1982).  
·  
The indicator in residue using the solution of the problem in temperature, its limitations  
theoretical are thus, at best, identical to those of the aforesaid problem.  
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Taking into account the formulation [éq 2.1-1] one thus will be interested in a solution belonging to 
space  
functional according to:  
 
Note:  
 
This space comprises also the possible conditions of Dirichlet “generalized” of  
linear relations type between ddls.  
T W: = { 
1 
U H ()/U = 
: U 
= F 
0 1 
, 
 
} éq  
2-1-5  
1 
Moreover, thanks to the geometrical assumptions (H1) and (H2), there is an operator of raising  
(compound of the operator of usual raising and the operator of prolongation by zero apart from  
1 
1 
2 
1 
) R: H (1) H () linear, continuous and surjective such as:  
1 
2 
01, RF = F 
F H (1 
) éq  
2-1-6  
One thus will not be able to make the problem initial homogeneous in Dirichlet while being interested 
any more but in  
the solution  
U V = 
: {U 1 
H ()/ 
U: = U = 
0 1 
, 
 
} 0 éq  
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2-1-7  
1 
resulting from the decomposition  
T = 
: U + RF  
éq  
2-1-8  
Note:  
 
That is to say (X, 
) Banach, one notes LP (, 0; X) the space of the functions T v (T)  
X 
strongly measurable for dt measurement such as  
1 
 
v 
= 
v (T) dt 
0, 
. It is Banach, therefore a space of Hilbert for  
; p, X 
 
p 
 
 
 
p < + 
0 
X 
 
the associated standard.  
 
This change of variable produces the problem simplified out of U  
 
 
U 
C 
- div 
p 
(U) = ^s 
× ] , 
0 [ 
 
 
T 
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U = 0 
× 
1 
] ,0[ 
 
U 
(1 
P) 
= ^g 
× 
2 
], 0 [éq  
2-1-9  
N 
U 
 
+ hu = ^h 
× 
3 
] ,0[ 
N 
 
U () 
0 = U 
 
0 
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with the new second member  
RF 
^s = 
: S - C 
+ div 
p 
(RF) 2 
L ( 
-1 
, 
0; H ()), éq  
2-1-10  
T 
new loadings  
RF 
2  
1 
^g = 
: G -  
 
- 2 
L 
, 
0, H 
(2) 
 
 
éq  
2-1-11  
N 
 
 
1 
^h = 
RF 
: H (T 
- RF 
ext. 
) 
 
2  
-  
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- 2 
L 
, 
0, H 
(3) 
 
 
éq  
2-1-12  
N 
 
 
and the new initial condition  
u0 (). = 
: T (). - RF (0 
. ,) 2 
0 
L ()  
éq  
2-1-13  
Note:  
 
·  
This theoretical raising, which can appear a little “éthéré”, has an anchoring completely  
concrete in the digital techniques implemented to solve this type of problem.  
It corresponds to a substitution (this technique is not used in Code_Aster,  
one prefers to him the technique of double dualisation via ddls of Lagrange [R3.03.01])  
conditions limit of Dirichlet. By renumbering the unknown factors so that these conditions  
appear in the last, the comparison can be schematized in the matric form  
following  
 
With 
0 
T 
s^ = 
: S - 
F has  
 
 
 
ji J 
 
 
=  
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j>J 
 
0 Id 
T 
= 
 
: RF 
 
 
1 
1  
 
F 
 
 
The assumptions of regularity on the border also ensure us of the good following properties  
for the workspaces. One then will be able to place itself within the usual abstracted variational 
framework.  
 
Lemma 1  
 
Under the assumptions (H1) and (H2) the workspaces W and V of Hilberts are provided with the 
standard  
induced by  
1 
H ().  
 
Proof:  
The result comes simply owing to the fact that the application traces  
1 
01: H () 
2 
L (1 
) is  
1 
composed of the application traces usual  
1 
0: H () H () 2 
2 
L () linear, continuous and  
surjective (taking into account the assumptions selected) and of the operator of restriction on 1 
he too  
linear, continuous and surjective. From share their definition, one deduces from it that W and V are 
closed sev  
1 
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H (). It of Hilberts is thus provided with the standard  
.  
, 
1  
!  
 
Lemma 2  
 
Under the assumptions (H 
1 
H  
1) and (H2), the standard and the pseudo norm induced by  
() are equivalent on  
functional space V. One will note P () > the 0 constant of Poincaré relaying this equivalence  
v V 
v 
P () v  
, 
1  
, 
1  
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Note:  
 
U thereafter will be noted 
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= 
: supess U (T) and  
, 
pp. T  
 
( 
2 
2 
2 
U,) 
v (m 
H () 
) (U,) 
v 
 
 
2 
 
2  
 
m = 
, : 
( 
U,) vL2 (), U 
= 
: 
U 
and U 
= 
: 
U 
.  
m  
, 
 
2 
m  
, 
 
L () 
L2 () 
m 
 
 
m 
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= 
 
m 
 
Proof:  
 
This result is a corollary of the inequality of Poincaré checked by the open ones called of “Nikodym” 
of which  
fact part taking into account the assumptions selected. There are however two cases of figures:  
 
·  
that is to say the problem is really mixed and comprises conditions limit others that those of  
Dirichlet, my (-) 0 (see the demonstration [bib1] §III.7.2 pp922-925),  
1 
·  
either one takes into account only conditions of imposed the temperature type,  
my (-) = 0, V = 
1 
H 
and one finds the standard result of equivalence of the standard  
0 () 
1 
and of the pseudo norm on this space (see for example the demonstration [bib3] pp18-19).  
!  
 
The compilation of the preceding results makes it possible to encircle the Variational Framework 
Abstracted (CVA) on  
which will rest the weak formulation:  
 
·  
1 
H 
V 
H 
,  
0 ()  
1() 
·  
V H = 2 
: L () = H “V” 
-1 
H () by identifying H and its dual,  
·  
there is a continuous linear canonical injection of V in H,  
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·  
V is dense in H and the injection is compact (it inherits in that the properties 1 
H ()  
with respect to H),  
·  
V is provided with the pseudo norm induced by 1 
H () and H of its usual standard.  
 
Note:  
 
According to a formulation of the theorem of compactness of Rellich adapted to spaces of  
Sobolev on open (for example, theorem 1.5.2 [bib3] pp29-30).  
 
2.2  
Strong formulation with weak  
 
By multiplying the principal equation of the problem in extreme cases [éq 2.1-1] by a function test v V 
and in  
using the theorems of Green and Reynolds (to commutate the integral in space and derivation  
in time, with fixed and from the characteristics materials independent of time), one obtains:  
 
D C U 
. 
^ 
 
éq  
2.2-1  
p (T) v dx + 
U (T) v dx = S (T) 
U (T) 
 
 
vdx +  
v  
D 
dt 
N 
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By introducing the conditions limit in [éq 2.2-1], it occurs the weak formulation (within the meaning 
of  
distributions (within this framework general, the temporal derivative is thus to take with the weak 
direction)  
temporal of] 
(, 0 [)) following:  
The solution is sought  
U L2 (, 
0; V) C 0 (, 
0; H)  
éq  
2.2-2  
checking the problem  
 
To find U: T], 
0 [U (T) V 
that 
 
such 
 
D 
(P) 
v V 
C U T, v 
T has; U T, v 
B T, v 
2  
(p ()) + (()) = (()) éq  
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2.2-3  
 
0, 
dt 
U () 
0 = 0 
U 
 
with  
(T has; U (T), v): = U (T) .v dx + H (T) 
 
U T vd 
0,3 () 0,3 
 
3 
éq  
2.2-4  
(B (T), v): = ^s (T), v 
+ ^g (T) 
^ 
, v 1 1 
+ H T, v 
0,2 
() 0,3 1 1 
1 
- × , 
1  
- ×, 2 
- ×, 3  
2 2 
2 2 
while noting, 
the hook of duality enters spaces  
p 
H () and Q 
H ().  
p×q, 
 
Note:  
 
·  
The unknown field and the function test belong to the same functional space, which is  
more comfortable from a numerical and theoretical point of view.  
·  
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The hooks of duality will not be able to be transformed into integrals with the traditional direction 
(like  
for the surface term of A (T;. .)) that if the space of membership of the news is restricted  
source and of the new loadings with  
2 
^s L ( 
2 
, 
0; L () 
2 
, ^g L ( 
2 
, 
0 L () 
2 
^ 
; 
and H L 
, 
0; L éq  
2.2-5 
2 
( 
2 ( 3 ) 
According to [éq 2-1-10] [éq 2-1-12] this restriction can be translated on the initial loadings  
in the form  
3 
 
 
2 
2 
F L 
, 
0; H () 
2 
, S L 
, 
0; L, G L 
, 
0; L  
and T 
L, 
0; L  
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1 
( 
2 ( ) 
2 ( 
2 ( ) 
2 
2 
ext. 
( 
2 ( 3 ) 
 
 
 
 
 
 
éq 2.2-6 
·  
The formulation (P has a direction well, because it is shown that  
2 ) 
T has (T; U (T), v) 
2 
L] (, 
0 [) Of] 
( ,0[)  
T C U  
 
 
 
p (T) 
2 
L (, 
0; V) and v V 
T 
(C up (T), v) 
2 
L] 
(, 0 [) Of] (, 0 [) 
0, 
T ^s (T) 
2 
L (, 
0 ; 
1 
H - () 
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1 
and v H () 
1 
H - ()  
T ^s (T), 
2 
v 
L] (, 
0 [) Of] 
( ,0[) 
1 
- × , 
1  
1 
1 
1 
 
- 
 
- 
T ^g (T) 
2 
L 
, 
0 ; 
2 
H ( 
and 
v H H 
 
2 ) 
 
2 
0,2 
( 2 ) 
2 ( 2 ) 
 
 
 
 
 
 
 
T ^g (T), 
2 
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v 1 1 L 
D 
0,2 
]( ,0[) 
' ] 
( ,0[) 
- × , 
2 2 2 
and one finds obviously the same thing for the term of exchange on 3.  
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·  
In the surface integrals one will henceforth note U (T) and v what should be noted (in  
any rigour) U 
and 
 
.  
0, I (T) 
v 
0, I 
·  
Membership of the solution with L2 (, 
0; V) rises from the assumptions on the data and of  
properties of the differential operators and trace. The fact that it must also belong to  
C 0 (, 
0; H) comes just from the necessary justification of the condition of Cauchy.  
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One can then be interested in the existence and unicity of the solution of the initial problem (P in  
0 ) 
showing its equivalence with (P and by applying to this last a parabolic alternative of  
2 ) 
theorem of Lax-Milgram.  
 
Theorem 3  
 
Within the abstracted variational framework (CVA) definite previously and by supposing that 
assumptions  
(H1), (H2) and (H3) are checked, then the problem (P admits a solution and only one  
2 ) 
U L2 (, 
0; V) C 0 (, 
0; H).  
 
Proof:  
 
This result comes from theorems 1 & 2 of the “Dautray-Lions” (cf [bib3], §XVIII pp615-627). For  
to use it is necessary nevertheless to check  
·  
Mesurability of the bilinear form ( 
U (T), v) 
2 
V 
T has (T; U (T), v) on], 
0 [  
·  
Its continuity on V ×V  
pp T], 
0 [have (T; U (T), v)  
U (T) 
v 
+ H (T) 
U (T) 
v 
, 
, 
1  
, 
1  
 
1 
, 
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1 
, 
, 
3 
2 3 
2 3 
( 
 
U (T), v) 2 
V 
max (  
, H (T) 
2 
2 
C P 
U T 
v 
3 
() 
, 
, 
) (), 1, 1 
3 
with C the constant of continuity of the operator of trace on and P () the constant of  
3 
3 
Poincaré.  
·  
Its V - ellipticity compared to H  
 
pp T], 
0 [have (T; v, v) 
2 
-2 
+ 
v 
C 
 
- H T 
C v 
0 
0, 
( 
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( ) 
2 
3 
, 
, 
) 20, 
2 
 
3 
 
 
 
v V has ( 
 
 
T; v, v) 
2 
-2 
+ v 
+ C 
 
- H T 
C 
v 
0 
 
0, 
( 
( ) 
2 
3 
, 
, 
) 2 
{ 
0, 
2 
 
3 
 
> 0 
1 
4 
4 
4 
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4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
3 
> 0 
with C the constant of continuity of the canonical injection of  
1 
H () in 2 
L ().  
0 
·  
The continuity of the linear form B (T) on V  
pp T], 
0 [(B (T), v) ^s (T) 
v 
+ G (T) 
^ 
^ 
1 
v 1 
+ H (T) 
v 
- , 
1  
, 
1  
- , 
 
1 
1 
, 
, 
3 
2 
2 
- , 
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2 
2 
3 
2 3 
2 
 
v V 
P () 
 
max ^s (T) 
, ^g (T) 
^ 
1 
C, H T 
C 
v 
2 
( ) 
 
 
 
- , 
1  
- , 
1 
3 
2 
, 
 
 
, 
1  
-  
 
2 
2 3 
 
with C the constant of continuity of the operator of trace on.  
2 
2 
 
!  
 
Theorem 4  
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The problems (P and (P are equivalent and thus the initial problem admits a solution and one  
2 ) 
0 ) 
only  
U L2 (, 
0; V) C 0 (, 
0; H).  
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Proof:  
 
The existence and the unicity of the solution of the problem (P result of course from the preceding 
theorem, one  
0 ) 
time that the equivalence of the two problems was shown. It thus remains to prove the implication  
opposite (P P which is very hard to exhume “not formally”. In particular conditions  
2 ) 
( 0 ) 
limits of Neumann, Robin and the condition of Cauchy are difficult to obtain rigorously.  
“Dautray-Lions” proposes a very technical demonstration ([bib1] §XVIII pp637-641). While adapting  
his results one shows that in our case of figure, the limiting conditions on I in fact are checked,  
 
-1 
 
-1 
not on L2 
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, 
0, H2 (  
, but on space (B) 'H2 
(by noting I: = × 
)  
I 
]  
 
, 
0 [ 
00 (I 
 
I 
) 
I) 
 
 
 
 
 
 
defined as being the dual topological one of  
 
1 
B = 
: W H (  
 
 
) L2 
2 
(I/ 
2 
, 
0 ; 
with 
0 and 
 
I 
) v L ( 
V) 
 
v { 
v 
v 
W 
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× 
0} = 
{ 
× 
} = 
=  
 
I 
 
!  
 
Note:  
 
·  
Because of low regularity imposed on thermal conductivity,  
L (), one cannot  
not to claim with the “standard” regularity U  
2 
H (). Indeed in the case, for example,  
of a Bi-material (with =) from which the characteristics are distinct from share and  
1 
2 
of other of the border, [éq 2-1-9] and the theorem of the divergence imposes  
1  
2  
 
1  
2  
 
 
Appear 2.2-a: Example of Bi-material  
 
U (T) 
U (T) 
1 
 
- 
=  
2 
in H 
 
pp T  
 
1 
2 
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00 ( ) 
] ,0[ 
 
 
N 
1 
N 
2 
However, therefore the condition of transmission cannot be carried out on the internal border  
1 
2 
 
U (T) 
U (T) 
 
pp pp T], 
0 [ 
 
 
 
N 
1 
N 
2 
 
Thus U (T) 
2 
H () 
2 
H  
do not involve U (T) 
2 
H (). This restriction us  
1 
( 2 ) 
will not allow to exhume, as in [bib6], of increases of the “strong” type of the error  
space total and of the site indicator of error. Within our framework of work plus general one  
will have to be satisfied with estimates of the “weak” type.  
·  
This type of problem also meets when one treats the open polyhedric ones not  
convex (for example comprising a returning corner). Open polyhedric (known as polygonal in  
two-dimensional) is a finished meeting of polyhedrons. A polyhedron is an intersection finished of  
closed half spaces.  
·  
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To obtain estimates of the “strong” type, it is necessary to concede more regularity on  
geometry and on the loadings  
variety of dimension Q - 1, C per piece (property of 2-prolongation)  
(H4) 
2 
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2 
2 
F L 
, 
0; H (, G L 
, 
0; H  
, H T 
, 
0; H  
 
(H5) 
1 ) 
2 
2 ( 2 ) 
2 
2 
ext. 
( 3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
, C,  
L 
 
p 
() 
2 
H L (, 
0 ;  
L (3) 
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What allows obtaining a solution in the following intersection  
U 2 
L ( 
2 
, 
0; H () 0 
C ( 
1 
, 
0; H () éq  
2.2-7 
 
Now that we made sure of the existence and the unicity of the solution within the framework  
functional required by the operators of Code_Aster, we semi-will discretize in time (P0)  
then to spatially discretize the whole by a method finite elements. In parallel, us  
will study its properties of stability. They we will be very useful to create the standards, them  
techniques and the inequalities which will intervene in the genesis of the indicator of error in residue.  
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3  
Discretization and controllability  
 
3.1  
Controllability of the continuous problem  
 
By not making any concession on the assumptions of regularity seen in the preceding paragraph, one  
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with increase known as “weak” (to take again a terminology in force in the article which served as  
base with our study [bib6]) following.  
 
Property 5  
 
Within the abstracted variational framework (CVA) definite previously and by supposing that 
assumptions  
(H1), (H2) and (H3) are checked, one with the “weak” controllability of the continuous problem (with  
K  
my  
P >)  
1 ( 
, 
(I), 
0, I 
( ) 
 
) 0 
, 
T 
2 
2 
2 
pp T 
C U T 
U  
D 
C U 
p 
( ) + 
( ) 
 
+ 
0, 
 
p 
0 0, 
0 
0, 
 
éq 3.1-1  
T 
2 
K 
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^ 
^  
^  
 
 
1  
S () 2 
+ G () 21 + H () 
 
 
D 
- , 
1  
- , 
1 
 
 
2 
- , 
0 
2 
2 3 
 
 
Proof:  
 
One here will detail this a little technical demonstration because, on the one hand, the specialized 
literature returns  
seldom in this level of details and, in addition, one will re-use same methodology for  
to exhume all increases which will follow one another in this theoretical part of the document. All  
initially, by multiplying the equation of [éq 2.1-1] by U (T), while integrating spatially on, then  
temporally on [, 
0 T] with T [, 
0 [one obtain, like the characteristics materials are  
presumedly independent of time,  
T 
T 
T 
1 (C U, U D div U, U D s^, U  
D éq 3.1-2  
p () 
( ) 
- ( ( ( ) ( ) 
= 
0, 
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0, 
( ) ( ) 
 
 
- × 
1 , 
1  
2 T 
0 
0 
0 
By using the formula of Green and the conditions limit [éq 2.1-1] one obtains  
1  
T 
T 
2 
2 
C U T 
C U 
U, U  
D 
H U 2D 
p 
( ) - 
p 
0 
 
 
 
+ ( ( ) ( ) 
+ 
0, 
( ) ( ) 
0, 
0, 
 
 
= 
2  
0 
0 
éq 3.1-3  
T s^ (), U () 
+ g^ () U () 
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^ 
, 
1 1 
+ H (), U () 
 
 
D 
- × 
1 , 
1  
- × , 
1 1 
 
2 
, 
0  
- ×  
2 2 
2 2 3  
One can évincer the term of exchange of [éq 3.1-3] because it is supposed that H (T) 0 pp T. By using 
one  
argument of duality, the inequality of Cauchy-Schwartz, lemma 2 and the relation  
2 
has  
2ab + (  
B) 2 (> 0), one obtains  
 
T 
 
T 
2 
T 
2 
 
1 1 
s^ (), U () 
 
D  
s^ () 2 
P () 
D + 
2 
 
U () 
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D 
- × 
1 , 
1  
2 2  
- , 
1  
 
0, 
 
 
éq  
3.1-4  
0 
 
0 
, 
0 
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One carries out same work on the loadings, thus defining the parameters and in  
taking again the notations of theorem 3 (for Ci…), then one inserts these inequalities in [éq 3.1-3]  
 
2 
2 
T 
P 
2 
C U T 
2 
2 
 
C 2 2 
 
C 2 2 
 
U  
D 
p 
( ) 
() 
 
+ 
- 
( + 
+ 
2 
3 
) 
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( ) 
0, 
 
 
 
 
 
0, 
, 
 
 
 
0 
 
2 
2 
^ 
 
éq  
3.1-5  
2 
^  
H  
T 
2 
s^ () 
G () 1 1 
( ) 
- × , 
-1×1, 
C U 
+ 
1 , 
1 
2 2 2 
2 2 3 
D 
p 
0 0, 
 
- ×  
 
 
 
+ 
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+ 
2 
2 
2 
 
 
 
 
0  
 
 
 
 
 
It now remains to seek a triplet of strictly positive realities (,), not privileging any  
particular term, in order to reveal a constant independent of the solution and parameter setting  
in front of the term in gradient. One arbitrarily chooses to pose  
2 
P () 
2 - 
(2 2 2 2 2 
+ C + C =  
 
éq  
3.1-6  
2 
3 
) 1 
, 
Maybe, for example,  
 
 
( ( 
my 1) +) 
1 
2 
= 
, 
 
2 
P () ( 
( 
my) +) 
3 
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( ( 
my 2) +) 
 
 
1 
2 
= 
, 
 
éq  
3.1-7  
2 
2 
C P 
2 
()( ( 
my) +) 
 
3 
 
 
( ( 
my 3) +) 
1 
2 
= 
, 
 
2 
2 
C P 
3 
()( ( 
my) +) 
 
3 
From where increase [éq 3.1-1] while taking  
2 
P () ( 
( 
my) +) 
3 
 
1 
2 
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2 
C 
C 
 
K = 
2 
3 
max 
éq  
3.1-8  
1 
 
 
, 
, 
 
my 
1 
my 
1 
my 
1 
, 
( 
(1)+ ) ( (2)+ ) ( (3)+ ) 
!  
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Note:  
 
·  
The recourse to measurements of the external borders is an easy way allowing the inequality  
to support the passage to limit (0) when one or more limiting conditions come to  
I 
to miss in this mixed problem.  
·  
While placing itself within the particular framework of a homogeneous problem of Cauchy-Dirichlet 
with  
characteristics materials constants equal to the unit  
= C = 1, = = and s^ = S  
éq  
3.1-9 
p 
2 
3 
and by introducing particular standards on V = 
1 
H 
and its dual  
0 () 
^s (T) v 
my 
^s (T) 
, 
* 
- × 
1 , 
1  
* 
()+ 
= sup 
with 
v 
= 
1 
v 
éq  
3.1-10 
- , 
1  

file:///Z|/process/refer/refer/p1430.htm (6 of 43)10/2/2006 2:53:27 PM



file:///Z|/process/refer/refer/p1430.htm

* 
, 
1  
2 
, 
1 
 
v V, v0 
v 
(my () + 3) P ()  
, 
1  
one finds well the inequality (2) pp427 of [bib6].  
·  
If one allows more regularity on the geometry (H4) and the data (H5), one can  
to exhume during, known as “extremely”, of the preceding property. The control of the solutions that it  
operate is of course more precise than with [éq 3.1-1] because it is carried out via stronger standards.  
Contrary to “weak” increase, it also utilizes directly the infinite standard  
coefficient of convectif exchange. One will not detail his obtaining here because this family of  
increase is not essential for the calculation of the required indicator.  
 
 
3.2  
Semi-discretization in time  
 
 
One fixes a step of time T 
such as  
either an entirety NR and such as the temporal discretization or  
T 
 
regular: T =, 
0 T = T 
, T = 2 T 
 
T = N T 
.  
0 
1 
2 
L N 
 
Note:  
 
This assumption of regularity does not have really importance, it allows just  
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to simplify the writing of the semi-discretized problem. To model a transient  
unspecified at the moment T 
= 
- 
N, it is just enough to replace  
T 
by T 
T 
T.  
N 
n+1 
N 
 
Semi-discretization in times of [éq 2.1-1] by - method leads to the following problem:  
The continuation is sought  
(one) 
V  
éq  
3.2-1  
0nN 
such as  
 
 
n+1 
U 
- one 
C 
- div  
 
 
 
 
p 
(n+1 
U 
) - (1 -) div (one) = n+1 
^s 
+ (1 -) ^sn 0 N NR -1 
 
T 
n+ 
1 
U 
= 0 
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0 N NR -1 
1 
( 
N 1 
n+1 
U 
P 
 
^ N 
1 
) + 
 
= 
+1 
G 
 
0 N NR -1  
 
 
2 
N 
n+1 
U 
n+1 
n+1 
n+1 
^ 
 
+ H U 
= H 
 
0 N NR -1 
 
3 
 
N 
0 
U (.) = U 
 
0 
éq 3.2-2  
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while posing  
 
N 
 
 
= , 
X N 
with {U, S h^ 
, 
^, H, g^} and 0 N NR  
 
T 
 
While multiplying [éq 3.2-2] by a function test v and while integrating on, one finds (via the formula of  
Green) of course the variational formulation [éq 2.2-3] semi-discretized in time  
 
 
N 
N 
n+1 
N 
n+1 
N 
n+1 
N 
n+ 
Being donn 
 
és U, s^, s^ 
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, g^, g^ 
h^ 
, 
h^ 
, 
, H, H 1 
(n+ 
P 1 To calculate 
that 
 
such 
2 
) 
n+ 
U 1 V 
éq  
3.2-3  
( 
n+ 
C U 1, v 
p 
) + T has (N 
n+ 
T; U 1, v 
 
 
) = (C one, v 
p 
) + T (bn, v 
 
) (vV) 
 
0, 
0, 
 
with  
N 1 
+ 
N 1 
 
: 
+ 
=  
+ 
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(1 -) N where {U, hu, B, S, ^ ^g} ^ 
, H 
has ( 
N 1 
 
N T; + 
U 
, v 
 
) 
N 1 
: 
+ 
= U .v dx + 
 
(hu) N 1+ 
 
 
v D 
 
 
éq  
3.2-4  
 
3 
(N 1+ 
B, v 
 
) 
N 1 
+ 
N 1 
+ 
N 1 
^ 
: = ^s, v 
+ ^g, 
+ 
v 
+ H, v 
 
 
0,2  
1 1 
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0,3 
1 1 
1 
- × , 
1  
- ×, 2 
- ×, 3 
2 2 
2 2 
 
This semi-discretization in time made it possible to transform our parabolic problem into one  
elliptic problem to which one can apply the theorem of standard Lax-Milgram. Assumptions of  
this theorem are checked easily thanks to the results of continuity and ellipticity of  
demonstration of theorem 3. From where the existence and the unicity of the continuation (U N) 
V required.  
0nN 
 
Note:  
 
· While posing RF = 0 one finds the variational formulation semi-discretized well of  
Code_Aster (cf [R5.02.01 §5.1.3]). (Or them) the condition (S) of Dirichlet (generalized or not)  
are checked in the workspace W to which the solution must belong. Moreover, in  
implicitant it completely - method (Euler retrogresses) one finds the formulation of the code  
SYRTHES [bib9].  
· To be able semi-to discretize by - method one needs to restrict the membership of  
the new source with ^s 0 
C ( 
-1 
, 
0; H () (to be able to take a value in one moment  
given). In addition, the initialization of the iterative process [éq 3.2-3] necessarily involves  
U 1 
H 
.  
0 
() 
· To simplify the expressions one will not mention any more the temporal dependence of the form  
bilinear A (T;. .) (for the implicitation of the term of exchange), it will remain implied by  
that of the solution.  
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As for the continuous problem, by not making any concession on the assumptions of regularity,  
one with “weak” increase following:  
 
Property 6  
 
By supposing that the assumptions of property 5 are checked, that it - diagram is  
1 
unconditionally stable (  
), that ^s 0 
C ( 
-1 
, 
0; H () and U 1 
H 
, one with  
0 
() 
2 
controllability “  
weak  
” of the problem semi-discretized in time (with  
K  
my  
P >)  
1 ( 
, 
(I), 
0, I 
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( ) 
 
) 0 
, 
 
n+ 
2 
N 
1 
N 
4 
3 
1 
+ 2 
1 
+ 2 
1 
- 
2 
C U 
+ T 
U 
 
C U 
+ 
N 
C U 
p 
 
p 
p 
0, 
0, 
0, 
0, 
2 
2 
 
 
T 
K T 
n+ 
2 
1 
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2 
2 
2 
 
0 N NR -1 
+ 
U 
+ 1 
n+1 
n+1 
n+1 
^ 
^s 
^g 
 
 
 
1 
H 
0, 
 
 
+ 
+ 
- , 
1  
-, 2 
-1,  
 
2 
2 
 
2 
2 3  
éq 3.2-5  
 
Proof:  
 
This inequality is obtained easily by taking again the stages described in the demonstration of  
property 5. It is necessary, on the other hand, to multiply [éq 3.2-2] by the particular function test  
U n+1 = 
: U n+1 + 
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(1 -) a V éq  
3.2-6  
and évincer the term of exchange by the argument  
0 < min (N N 1 
H, + 
H 
) 
2 
N 1 
+ 
U 
 
 
(hu) N 1+ N 1+ 
 
U dx  
 
 
max (N N 1 
H, + 
H 
) 
2  
N 1 
+ 
U 
 
éq 3.2-7  
0, 
 
0, 
3 
3 
3 
In addition there are not this time the source term and the loadings which require the easy way  
[éq 3.1-4], it should also be set up on the cross term (2 -) C U N 1 
1 
+ undx 
 
. From where one  
p 
 
fourth parameter checking a system of the type [éq 3.1-6]  
2 
P () 
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2 - 
(2 2 2 2 2 
+ C + C = 
2 
3 
) 1 
, 
 
éq  
3.2-8  
2 
2 
- 1 - 2 = 1 
!  
 
Note:  
 
· If a conditionally stable diagram in the case of is not placed, in addition to  
numerical problems which are likely to occur at the time of implementation the effective of  
the operator, one will not be able to determine the parameters (,) governing the equation [éq 3.2-8].  
· While placing themselves within the particular framework [éq 3.1-9] of the article [bib6] and by taking 
again the standards  
4 - 3 
1 
equivalent [éq 3.1-10], like  
<, one finds well the inequality (5) pp428.  
2 
2 
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While stating [éq 3.2-5] for the values of m {1 
, 
0 
, 
K} 
N and by summoning these increases to N,  
one obtains the “weak” increase following which takes account of the history of the solutions and of  
data.  
 
Corollary 7  
 
Under the assumptions of property 6, one with increase  
N 1 
N 1 
2 
2 
2 
2 
N 
C U 
+ T 
U 
 
C U 
 
C U 
p 
- 
m+ 
 
1 
+ 4 
 
(1- )- 
m 
 
p 
(4 - 3) 
p 
0, 
0 
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0, 
0, 
0, 
m= 
 
0 
m= 
 
0 
 
N 1 
2 
2 
2 
0 N NR 
+ K  
m 
m 
^ 
T 
^s 
^ 
m 
G 
H 
1 
- 
 
+1 
+1 
+1 
 
 
+ 
 
 
1 
+ 
- , 
1  
- , 
 
1 
2 
, 
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m= 
-  
0  
2 
2 3  
éq 3.2-9  
or more simply  
N 1 
2 
2 
2 
N 
C U 
+ T 
U 
C U 
p 
- 
m+ 
 
1 
 
 
p 
0, 
0 
0, 
0, 
m= 
 
0 
éq  
3.2-10  
N 1 
2 
2 
2 
0 N NR 
+ K  
m 
m 
^ 
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T 
^s 
^ 
m 
G 
H 
1 
- 
 
+1 
+1 
+1 
 
 
+ 
 
 
1 
+ 
- , 
1  
- , 
 
1 
2 
, 
 
 
m= 
-  
0  
2 
2 3  
 
Proof:  
 
Obtaining [éq 3.2-9] being already explained, it remains to be shown [éq 3.2-10]. This inequality more  
“coarse” comes simply owing to the fact that  
( 
N 
4 1 -) 1 
2 
C um 0 
p 
0, 
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m= 
 
0 
éq  
3.2-11  
(4 - ) 
2 
2 
3 
C U 
 
C U 
p 
0 
p 
0 
0, 
0, 
!  
 
Note:  
 
·  
One can obviously make the same remark as [bib6] by noting that the last term of  
[éq 3.2-9] is a sum of Riemann which tends towards the last term of [éq 3.1-1] when it  
no time tends towards zero. In addition, if one introduces the function (with [ 
 
N T 
, (n+1) T 
] 
temporal function characteristic of interval [N T 
, (N +) 
1 T 
]) U (T) un+ 
= 
1  
 
[ 
 
N T 
, (n+1) T 
] (T) 
closely connected per pieces in [éq 3.1-1], one finds exactly [éq 3.2-9].  
·  
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As for [éq 3.1-1], by adopting the less restrictive approaches (H4) and (H5), one finds  
a “strong” version of properties 6 and 7.  
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3.3  
Error of temporal discretization  
 
The preceding results on the continuous problem and its form semi-discretized in time are  
re-used jointly to study the controllability of the error of temporal discretization  
0 
N NR 
in: = U N - U (NT)  
éq  
3.3-1  
0 
E = 0 
One starts by revealing this error by withdrawing from the equation [éq 3.2-2] the relations  
(n+) T 
 
1 
1 
U 
( ) 
U (N +) 
1 T 
) - U (N T 
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) 
D = 
 
T 
 
T 
 
T 
 
N T 
 
U 
(N +) 
1 T 
) 
C 
= div  
+1 + ^ 
+1  
éq  
3.3-2  
p 
(U (N) T) 
S (N 
) T) 
T 
 
(1- ) 
U 
(N T 
) 
C 
= 1 - div  
+ 1- ^  
p 
( 
) (U (N T) ( 
) S (N T) 
T 
 
 
that is to say  
n+1 
N 
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n+1 T 
 
E 
- E 
1 
C 
- 
1 
div 
éq  
3.3-3  
p 
( 
n+ 
U  
E 
= 
D +  
U  
 
) 
( 
) 
( ) 
C p  
 
 
T 
T 
T 
T 
NT 
 
while noting  
en+1 = 
: en+1 + 
 
(1 -) in 
U 
 
U 
 
 
éq  
3.3-4  
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= 
:  
( 
 
N +) 
1) + (1 -) U 
T 
(N T 
) 
T 
 
T 
 
T 
 
 
 
From this expression one can describe, via the recourse to the formula of Taylor, controllability  
“weak” of the error of temporal discretization. But to be able to use the derivative temporal of  
the solution continues one needs a minimum of regularity in T, for example by conceding that  
U 1 
H (, 
0; V) 2 
H ( 
-1 
, 
0; H ()  
éq  
3.3-5  
 
Property 8  
 
By supposing that the solution checks the additional assumption of temporal regularity [éq 3.3-5], one  
with the “weak” controllability of the error of temporal discretization  
N 1 
2 
2 
0 N  
N 
NR 
C E 
+ T 
E 
p 
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- 
m+ 
 
1 
 
 
0, 
m= 
0, 
0 
 
K (T) 3 
N 
C 
1 
(p) 2 -1 ( 
U 
U 
1) 2 
2 
- 
(  
m T)  
 
- 
(m +) 1t) 
 
 
2 
2 
 
 
4 
m=0  
T 
T 
 
éq 3.3-6  
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Proof:  
 
While evaluating [éq 3.3-3] by a formula of Taylor to order 2, one utilizes the derivative second  
temporal of the solution and one shows that the continuation of error (in) 
V checks a similar problem  
0nN 
with [éq 3.2-2] (by supposing that the temporal discretization of the conditions limit are exact)  
 
n+1 
E 
- in 
C 
- div  
p 
(n+1 
E) = 
 
T 
 
C 
T 
p 
 
2u 
2u 
 
 
(1- ) 
(NT) - 
(N +) 1t) 
0 N NR - 
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2 
2 
 
 
1 
2 
 
T 
T 
 
(n+1 
P 
in 
N 
NR 
 
3 
) +1 
 
= 0 
0  
-1 
1 
n+1 
E 
 
= 0 
 
0 N NR -1 
2 
 
nn+1 
E 
 
+ n+1 n+1 
H 
E 
= 0 
 
0 N NR -1 
 
 
3 
N 
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0 
E (). = 0 
 
éq 3.3-7  
 
One can then apply the second result of the corollary 7 to him from where [éq 3.3-6] (one could, of 
course,  
just as easily to apply the rough result of this corollary or that of the property 6 from which it rises).  
 
!  
 
Note:  
 
·  
While placing itself within the particular framework [éq 3.1-9] of the article [bib6] with an implicit 
scheme  
(=1) and by taking again the equivalent standards [éq 3.1-10] one finds well the inequality (8)  
pp429. It is enough to make tighten T 0 and to approximate the integral by the sum of Riemann  
what constitutes the second member of [éq 3.3-6].  
·  
The existence and the unicity of the continuation (in) rise of course from that of (one) but one also can  
redémontrer by applying the theorem of Lax-Milgram to the weak formulation rising from  
[éq 3.3-7].  
 
3.4  
Total discretization in time and space  
 
It is supposed that the field is polyhedric or not and that it is discretized spatially by one  
regular family (H) H of triangulations. Because of this regularity finite element method  
applied to (N 1 
+ 
P 
converge when the largeest diameter of the elements K of ( 
2 
) 
H) H tends towards zero  
H: = max H 0  
éq  
3.4-1  
K  
K 
Th 
 
Note:  
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·  
The finite elements (K, km No, K) are closely connected equivalents with same elements of reference, 
they  
relations of compatibility on their common borders and the constraints check  
geometrical [éq 3.4-1] and [éq 3.4-2].  
·  
It is pointed out that the diameter of K is real H: = max X - Y.  
K 
(X y) 
2 
, K 
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By noting K the roundness (one recalls that the roundness of K is reality  
= 
: max {diameter 
sph 
 
 
 
 
eras K) associated K, finite elements of ( 
K 
} 
H) H also satisfy  
constraint  
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> 
HK 
0 / 
 
éq  
3.4-2  
K 
In the usual triplet (K, km No, K) one defines polynomial space as being that of the polynomials of  
total degree lower or equal to K on K  
P = 
: P 
 
éq  
3.4-3  
K 
K (K) 
and approximation spaces it (with the “weak” direction) associated  
V = 
: 
/  
P 
 
éq  
3.4-4  
H 
{v V K T v 
H 
H 
H K 
K (K)} 
V 
To conclude, one will note H, the operator of projection which associates the solution continues its Vh  
interpolated  
: V V 
H 
H  
éq  
3.4-5  
v vh 
 
Note:  
 
With a regular family of triangulations, this operator of interpolation is continuous and it can  
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to be written v = 
H 
v (xi) Neither by noting the xi tops of the grid and Ni their function of  
I 
form associated.  
 
It will be of a very particular importance when it is necessary to describe the increase which will 
exhume  
the indicator of error.  
 
Note:  
 
·  
In practice the grids are often polygonal, the approximation H of becomes  
then more rudimentary than in the polyhedric case. To preserve the convergence of  
the method it is then necessary to resort to isoparametric elements (cf [bib3] pp113-123 or  
P. GRISVARD. Behavior of the solutions of year elliptic boundary problem in A polygonal gold  
polyhedral domain. Numerical solution of PDE, ED. Academic Press, 1976).  
·  
The indicator in residue was established in Code_Aster only for the elements  
isoparametric (triangle, quadrangle, face, tetrahedron, pentahedron and hexahedron). Moreover,  
as they are simplexes or parallélotopes, the associated triangulation is  
regular (cf [bib3] pp108-112).  
·  
For the simplexes the relation [éq 3.4-2] results in the existence of a lower limit on  
angles and, for the parallélotopes, by the existence of an upper limit controlling them  
relationship between the height, the width and the length.  
·  
In the definition [éq 3.4-4] of Vh, they are the intrinsic relations of compatibility with  
family of elements which assures us  
H 
, K v 
 
1 
P 
 
1 = 
:  
 
éq  
3.4-6 
H K 
K (K) 
H (K) 
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v 
H 
H 
( 
K) 
In the literature one often prefers the more regular definition to him  
* 
V = 
: V 0 
C 
 
 
éq  
3.4-7 
H 
H 
() 
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By regaining semi-discretized shape (N 1 
+ 
P 
with functions tests in V 
2 
) 
H one obtains the problem  
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completely discretized in time and space (for a H fixed) according to:  
The continuation is sought  
(naked 
V  
éq  
3.4-8  
H) 0nN 
H 
initialized by  
0 
U: = U  
éq  
3.4-9  
H 
H 0 
checking the following problem  
 
 
N 
N 
n+1 
N 
n+1 
N 
n+1 
N 
n+ 
Being donn 
 
és U, s^, s^ 
, g^, g^ 
h^ 
, 
h^ 
, 
, H, H 1 
( 
H 
H, n+ 
P 
1 
To calculate 
that 
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such 
2 
) 
n+ 
U 1 V 
 
( 
H 
H 
 
n+ 
C U 1, v 
T has U 1, v 
C U, v 
T B 1, v 
v 
V 
p H 
H) 
+ (n+ 
, H 
H) = ( 
N 
p H 
H) 
+ (n+ 
 
H) 
(  
H 
H) 
 
0, 
0, 
éq 3.4-10  
 
Just as one supposed in the preceding paragraph as the temporal discretization of  
loadings was exact  
in 
N 
= 
: -  
 
(N T 
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) = 0 with {S H, ^ 
, 
^ 
H, g^} and 0 N NR  
(H6) 
, one supposes here moreover than their space discretization is too  
H 
N 
N 
N 
 
= 
: = with  
, 
^ 
, 
^ 
, ^ and 0  
 
(H7) 
H 
H 
{S H H G} 
N 
NR 
 
In Code_Aster, these assumptions can not be checked and it will be seen that they impact  
the quality of the indicator in residue and its relations between equivalence and the exact error (cf 
[§4.3]). In  
practical, even if one is obliged to compose with this approximation, it is not truly  
problems as long as the loadings “are not chahutés too much” in time and space.  
 
By applying the theorem of standard Lax-Milgram following the groundwork developed in  
demonstration of theorem 3, one shows the existence and the unicity of continuation (N 
U 
in the closed sev  
H) N 
(it is thus Hilbert, pre-necessary essential for the use of the famous theorem) Vh of Hilbert V.  
Moreover, by applying the second result of corollary 7 (one could, of course, just as easily  
to apply the rough result of this corollary or that of the property 6 from which it rises), controllability  
“weak” of the completely discretized problem takes the following form:  
 
Property 9  
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While being based on the triangulation defined previously and by supposing that the assumptions (H6) 
and  
(H7) are checked, one with increase  
N 1 
2 
2 
2 
N 
C U 
+ T 
U 
C 
U 
p 
H 
- 
m+ 
 
1 
 
 
H 
p 
H 
0, 
, 
0 
0, 
0, 
m= 
 
0 
éq  
3.4-11  
N 1 
2 
2 
2 
0 N NR 
+ K  
m 
m 
^ 
T 
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^s 
^ 
m 
G 
H 
1 
- 
 
+1 
+1 
+1 
 
 
+ 
 
 
1 
+ 
- , 
1  
- , 
 
1 
2 
, 
 
 
m= 
-  
0  
2 
2 3  
by noting m+1 
m 
U 
= 
: U +1 + 1 - U 
 
.  
, H 
H 
( 
) mh 
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Note:  
 
·  
While placing itself within the particular framework [éq 3.1-9] of the article [bib6] with an implicit 
scheme  
(=1) and by taking again the equivalent standards [éq 3.1-10] one finds well the inequality (14)  
pp430.  
·  
By adopting the less restrictive approaches (H4) and (H5), one finds a version “strong” of  
this increase utilizing the H1 standard of the field result.  
 
Now that we determined the functional framework ensuring us of the existence and the unicity of  
continuation discrete solution and to study the evolution of the controllability of the problem during  
discretizations, we go mutualiser these results a little “éthérés” to release increase where  
the indicator will intervene.  
 
 
 
4  
Indicator in pure residue  
 
4.1 Notations  
 
To build the site indicator of error one will require the following notations:  
 
·  
The whole of the faces (resp. nodes) of the element K is indicated by S (K) (resp. NR (K)).  
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·  
The whole of the nodes associated with one with its faces F (pertaining to S (K)) NR (F) is noted.  
 
Note:  
 
To make simple, one will indicate under the term “face”, the with dimensions one of a finite element 
in 2D or  
one of its faces in 3D.  
 
·  
The diameter of the element K (resp. of one of its faces F) HK (resp is noted. HF).  
·  
The whole of the triangulation (H) breaks up in the form  
T: = T 
T T T 
H 
H, 
 
H 1 
, 
H, 2 
H, 3 
by noting (H, I) the whole of the finite elements having a face contained in border I.  
·  
With same logic, the whole of the faces of the triangulation (H) breaks up in the form  
S: = S 
S S S 
H 
H, 
 
H 1 
, 
H, 2 
H, 3 
with  
I 
{ , 
1 
} 
3 
, 
2 
S: = K 
/K T 
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K 
= S K  
H, I 
{ 
H 
I} 
( ) 
K Th, I 
·  
In the same way, the whole of the nodes of the triangulation (H) breaks up in the form  
NR: = NR 
NR NR NR 
H 
H, 
 
H 1 
, 
H, 2 
H, 3 
·  
The function “bubble” associated with K (resp. F) is noted K (resp. F).  
 
Note:  
 
It is related to D () (together of the indefinitely derivable functions and with support  
compact) resulting from the theorem of truncation on compact: its support is limited to  
compact in question (here K or F) and it is worth between 0 and 1 on its interior (with the direction  
topological of the term). It is thus null on the border of compact and outside  
this one.  
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·  
One notes P the operator of raising on K of traces on F, built starting from an operator of  
F 
raising fixed on the element of reference.  
·  
The union of the finite elements of the triangulation dividing at least a face with K is noted  
= 
: 
K' 
 
K 
S (K) S (K')  
·  
The union of the finite elements of the triangulation containing F in their border is noted  
:= 
K'  
F 
F S (K') 
 
·  
Union of the finite elements of the triangulation which share at least a node with K (resp. with  
F) is noted  
 
= 
: 
K' 
(resp.  
= 
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: 
K' 
).  
K 
F 
NR (K) NR (K')  
NR (F) NR (K')  
 
 
Th  
H  
 
 
F  
K  
F  
K  
 
F  
K  
 
Appear 4.1-a: Designation of the types of vicinities for K and F.  
 
4.2  
Increase of the total space error  
 
We thus will see how to obtain a local indicator of calculable error from  
data and of the discrete solution (N 
U 
. As the discretized workspace is included in  
H) N 
continuous space V V, one can re-use [éq 3.2-3] with v 
H 
h. While withdrawing to him [éq 3.4-10] it occurs  
(with N and H fixed and while supposing (H6) and (H7))  
 
(C 
 
éq  
4.2-1  
p (n+1 
N 
U 
- U +1, v 
+ T 
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U +1 - U +1, v has = 
C U - U, v 
v 
V 
H 
) H) 
((N 
N 
 
, H) H) 
(p (N nh) H) (H H) 
0, 
0, 
 
Note:  
 
·  
This relation states the orthogonal character of the space error with respect to the elements of  
Vh.  
·  
It supposes in addition which the discretization is “consistent” i.e. there is not  
additional errors introduced by the numerical integration of the integrals. In  
practical it is of course not the case!  
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Let us consider the following linear form  
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( 
To v) = 
: (C 
éq  
4.2-2  
p (U n+1 - U n+1, 
+  
+1 - +1, 
 
H 
) v) 
T has (one 
U N v 
 
, H 
) (v V) 
0, 
who will be used to us as discussion thread during this demonstration. By packing it via [éq 4.2-1], one 
obtains  
( 
To v) = (CP (N 
N 
U - U, v 
+ C U - U, v - v 
+ 
H) 
) 
(p (N nh) (H) 
0, 
0, 
( 
éq  
4.2-3  
v 
V) 
(CP (n+1 N 
U 
- U +1, v - v 
+ T 
U +1 - U +1, v - v has 
H 
) (H) 
((N 
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N 
 
, H) 
H) 
0, 
While taking [éq 3.2-3] after having replaced v 
- 
 
H by v 
v 
V, one can build  
H  
(CP (n+1 n+ 
U 
- 
1 
U 
- N 
U + N 
U 
v v 
T has U 
U 
v v 
H 
H), 
- H) + (n+1 
n+ 
- 
1 , - 
 
, H 
H) 
= 
0, 
0, 
( 
éq 4.2-4  
v V) 
T (n+1 
B, v - v 
T has U 
v v 
C U 
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U 
v v 
 
H) 
-  
N 
, 
N 
N, 
0, 
( +1 - - 
1 - 
- 
 
, H 
H) 
(p (+h H) 
H) 0, 
 
Then A (v) becomes  
( 
To v) = (CP (N 
N 
U - U, v 
+ T 
B +1, v - v - 
H) 
) 
(N 
H) 
0, 
( 
éq  
4.2-5  
v 
V) 
(CP (n+1 N 
U 
- U, v - v 
- T 
U +1, v - v has 
H 
H) 
H) 
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(N, H 
H) 
0, 
Then one breaks up the last three terms on each element K of the triangulation and one applies,  
with the last, the formula of Green  
n+ 
( 
To v) 
1 
N 
= (CP ( 
U 
U 
N 
U - N 
U 
v 
T 
S 
C 
U 
v v dx 
H),) 
+  
N 1 
H 
H 
N 1 
^ 
div 
0, 
+ 
- 
- 
+ 
 
p 
(+, H) (- H) 
 
 
 
 
T 
K  
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K  
 
Th 
 
n+1 
T 
U 
- 
 
 
H, 
 
(v - v D 
H) 
2 
N 
F  
F  
S 
 
 
 
H, 
 
n+1 
U 
v - v V 
+ T 
G 
 
 
v v D 
H 
 
 
 
n+1 
^ 
- 
H, 
 
 
(- H) 
 
 
N 
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F  
F 
S 
 
 
H, 2 
n+1 
U 
+ T  
 
 
 
n+1 
^h - 
H, 
 
- 
 
(hu 
v v D 
H) 
 
 
n+1  
 
(- H) 
 
 
N 
F  
F 
S 
 
 
H, 3 
éq 4.2-6  
 
Note:  
 
·  
One allowed oneself to replace the hooks of duality of [éq 3.2-4] by integrals and one  
the formula of Green bus to compact K the assumptions (H4 can apply) and (H5) are  
checked (while replacing by K and  
 
I by  
K 
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). One thus has  
I 
1 
v - v H 
and 
éq 4.2-7 
H 
(K) 
2 
, U H 
H 
(K) 
2 
, ^S L (K) 
2 
, G L (K) 
2 
^ 
^ 
H L K  
2 
( 
3 ) 
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Let us point out some properties of the operator H of L2-local projection introduced by  

file:///Z|/process/refer/refer/p1440.htm (10 of 43)10/2/2006 2:53:29 PM



file:///Z|/process/refer/refer/p1440.htm

P. CLEMENT [bib8]  
V L2 
: 
V 
H  
( ) 
H  
éq  
4.2-8  
v vh 
It checks in particular increases of errors of projection  
 
v 
V 
v - v 
: = v - v 
C H v 
H 
H 
4 
K 
0, K 
0, K 
 
, 
1 K 
éq  
4.2-9  
K 
T, 
F 
S K 
v - v 
: = v - v 
C 
H v 
H 
( ) 
H 
H 
5 
F 
0, F 
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0, F 
 
, 
1 F 
 
where the constants C4 and C5 depend on the smallest angles of the triangulation. While taking this  
operator of space projection and by applying the inequality of Cauchy-Schwartz to [éq 4.2-6] it occurs  
thus:  
n+ 
( 
To v) 
1 
N 
- (CP ( 
U 
U 
N 
U - N 
U 
v 
Tc 
H S 
C 
U 
v 
H),) 
N 1 
- 
 
^ 
- 
H 
H + div N 1 
0  
4 
, 
 
+ 
K 
 
p 
( 
+ 
, H) 
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, 
1 
T 
K 
K  
0, K 
Th 
n+ 
 
1 
T 
U 
+ 
C 
 
 
 
H 
 
 
v 
F  
H, 
5 
 
2 
 
, 
1 
N 
F 
F  
 
S 
 
 
 
H, 
0, F 
 
n+1 
U 
v V 
+ Tc 

file:///Z|/process/refer/refer/p1440.htm (13 of 43)10/2/2006 2:53:29 PM



file:///Z|/process/refer/refer/p1440.htm

H 
^ N 
H 
G 
 
 
v 
5 
 
 
+1 - 
, 
F 
 
 
, 
1 
N 
F 
F S 
0, F 
H, 2 
n+1 
U 
+  
^n 
H  
N 
Tc 
H H 
 
hu 
v 
5 
 
 
+1 - 
, 
- 
F 
 
(H) +1 
 
 
, 
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1 
N 
F 
F S 
0, F 
H, 3 
éq 4.2-10  
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This inequality clearly lets show through a possible formulation of the indicator in pure residue:  
 
Definition 10  
 
K 
In the framework of the operator of transitory thermics linear of Code_Aster, continuation (N 
(K) 
H 
T 
 
0nN 
theoretical local indicators can be written in the form  
n+1 
N 
n+ 
U 
- U 
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1 
U 1  
n+1 
(K) 
n+ 
= 
: H S 1 
^ 
- 
H 
H 
C 
+ div U 1 
H 
, 
 
K 
 
p 
( 
n+ 
H,) 
+ 
 
 
H 
F 
 
+ 
T 
2 FS 
N 
(K) 
0, K 
 
 
0, F 
éq 4.2-11  
n+1 
n+1 
 
U 
U 
n+ 
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H G 1 - 
H, 
 
+ 
H H 1 
, 
^ 
^ 
 
 
hu  
1 
F 
 
 
n+ - 
H 
- 
F 
 
(H) n+ 
FS2 (K) 
N 
FS3 (K) 
N 
0, F 
0, F 
It is initialized by  
1 
0 
( 
0 
K) 
U 
= 
: H S 0 
^ + div U 0 
H 
 
K 
(H) + 
0, K 
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H 
F 
 
+ 
2 FS 
N 
(K) 
0, F 
éq 4.2-12  
0 
0 
 
U 
U 
H G 0 - 
H 
 
+ 
H h0 
^ 
^ 
 
h0u 0 
F 
 
 
- 
H - 
F 
H 
FS2 (K) 
N 
FS3 (K) 
N 
0, F 
0, F 
Continuation (N 
() 
theoretical total indicators is defined as being  
0nN 
1 
 
 
0 
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N  
N 
NR () = N 
(K) 2 
2 
:  
 
 
 
 
éq 4.2-13  
K HT 
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Note:  
 
·  
While placing itself within the particular framework [éq 3.1-9] of the article [bib6] with an implicit 
scheme  
(=1) one finds well the definition (24) pp432.  
·  
Whatever the initialization retained for thermal calculation, one starts the temporal continuation  
of cartography of indicators of error as if one were in hover: no the term in  
temporal finished difference, n+1=0 (in Code_Aster a transitory field of temperature  
is initialized with index 0) and =1.  
·  
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It should be stressed that this indicator is composed of four terms: the term principal,  
named voluminal term of error, controlling the good checking of the equation of  
heat, to which three secondary terms are added checking the good behaviour of the conditions  
limits (terms of jump, flow and exchange). In 2d-PLAN or 3D (resp. in 2D-AXI), if  
the unit of the geometry is the meter, the unit of the first is W.m (resp.  
1 
W.m. 
- 
rad) and that  
1 
1 
other terms is it  
2 
W.m (resp.  
1 
2 
W.m. 
- 
rad). Attention thus with the units taken in  
count for the geometry when one is interested in the gross amount of the indicator and not in its  
relative value!  
·  
While taking as a starting point the the increases developed by R. VERFURTH (cf [bib7] pp84-94) for  
the Poisson's equation one could have taken as indicator the root of the sum of the squares  
terms quoted above.  
1 
2 
2 
 
N 1 
+ 
N 
n+ 
 
U 
- U 
U 
n+ 
H 
H 
n+ 
1 
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2 
1 
H ^s - C 
+ div U 
H 
 
 
K 
 
p 
( 
1 
H 
 
 
+ 
H  
F  
 
+ 
, 
) 
2 
1 
, 
 
T 
2 FS K 
N 
 
 
K 
 
 
 
~ 
 
N 1 
+ 
 
(K) 
( ) 
 
0, 
0, F 
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:=  
 
2 
2 
N 1 
+ 
N 1 
 
U 
+ 
U  
 
N 1 
+ 
H, 
N 1 
+ 
H, 
^ 
 
H ^ 
 
G 
-  
+ 
H H 
 
 
hu 
F 
 
 
- 
- 
F 
 
(H) N 1+ 
 
 
 
FS K 
N 
FS K 
N 
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2 ( 
) 
3 ( 
) 
 
0, F 
0, F 
 
éq 4.2-14 
This definition leads to an increase of the total error which is more optimal than that which  
will be released thereafter. But we preferred, to remain homogeneous with the writings  
of B. METIVET [bib6] and with the estimator in linear mechanics already installation in  
code, us to hold some with the version of definition 10.  
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While resting on [éq 4.2-10] and definition 10 one can then exhume the increase of the total error  
following:  
 
Property 11  
 
Under the assumptions of properties 6, of (H6) and by using definition 10, one has, at the total level,  
the “weak” increase of the error (with K 
 
PC C >) via the history of  
2 ( 
, ( ), 
, 

file:///Z|/process/refer/refer/p1440.htm (23 of 43)10/2/2006 2:53:29 PM



file:///Z|/process/refer/refer/p1440.htm

4 
5 
 
) 0 
, 
indicators  
1 
1 
2 
2 
2 
C U 
U 
4 1  
C U 
U 
T 
U 1 U 1 
p ( 
N 
N 
N - nh) 
+ ( - )- 
p (m - 
m 
H) 
 
+ - 
(m+ 
m+ 
- 
 
, H) 
0, 
0, 
0, 
m= 
 
0 
m= 
 
0 
N 
2 
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0 N NR 
(4 - ) 
3 
C U 
u0 
K T 
2 
 
 
p ( 
- 
0 
) +  
2 
(m 
H 
() 
0, 
m=0 
éq 4.2-15  
or more simply  
1 
2 
2 
C U 
U 
T 
U 1 U 1 
p ( 
N 
N - nh) 
+ - 
(m+ 
m+ 
- 
 
, H) 
0, 
0, 
m= 
 
0 
N 
2 
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0 N NR 
 
C U 
u0 
K T 
2 
 
éq  
4.2-16  
p ( 
- 
0 
) +  
2 
(m 
H 
() 
0, 
m=0 
 
Proof:  
 
The estimates [éq 4.2-15] [éq 4.2-16] are obtained by reiterating the same process as for  
properties 5, 6 and 7. One takes in [éq 4.2-10] the particular function test  
N 1 
+ 
N 1 
v: 
+ 
= U 
- U 
 
 
éq  
4.2-17  
, H 
One évince the term of exchange by the usual argument  
(H (U - U 
 
éq  
4.2-18  
H) 
 
n+1 
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(n+1 n+ 
U 
- 
1 
U 
dx 
 
, H) 
> 0 
3 
It is necessary to apply the easy way [éq 3.1-4] to the cross term (2 -) C 
+1 
1 
- + 
- 
 
1 
and on  
p (U N 
U nh) (a unh) dx 
 
the product utilizing the indicator. One has then to find the parameters and checking a system  
type [éq 3.2-8]  
2 
P () 
2 
2 
- 
= 1 
, 
 
éq  
4.2-19  
2 
2 
- 1 - 2 = 1 
1  
who admits solution only if the diagram is unconditionally stable (  
). From where increase  
2 
[éq 4.2-15] [éq 4.2-16] while taking  
2 
P () 
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K = 
max C, C 
 
éq  
4.2-20  
2 
(2 2 
4 
5 ) 
, 
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The inequality [éq 4.2-16] more “coarse” results from the same sales leaflet as for corollary 7.  
!  
 
Note:  
 
·  
While placing itself within the particular framework [éq 3.1-9] of the article [bib6] with an implicit 
scheme  
(=1) one finds well the inequality (25) pp432 (with c=max (1, K2)).  
·  
By adopting the less restrictive approaches (H4) and (H5), one finds a version “strong” of  
this property.  
·  
This property can be shown more quickly while noticing than the inequation [éq 4.2-10]  

file:///Z|/process/refer/refer/p1440.htm (28 of 43)10/2/2006 2:53:29 PM



file:///Z|/process/refer/refer/p1440.htm

is similar to the equation of the problem semi-discretized in time [éq 3.2-3]: except for the inequality, 
in  
changing U by u-uh and while taking as term (bn, v 
 
) the second member of [éq 4.2-10].  
One can then directly apply the corollary 7 to him which is during estimate  
sought!  
·  
Of [éq 4.2-15] [éq 4.2-16] it appears that, at one moment given, the error on the approximation  
condition of Cauchy and the history of the total indicators intervenes on  
total quality of the solution obtained. One will be able to thus minimize the error overall  
of approximation due to the finite elements in the course of time while re-meshing “with good  
knowledge”, via the continuation of indicators, the structure. Because, in practice, one realizes that it  
refinement of the meshs makes it possible to decrease their error and thus cause to drop  
temporal sum of the indicators. The total error will butt (and it is moral) against the value  
floor of the error of approximation of the initial condition (which will have tendency it 
also to drop of course!). The indicator “over-estimates” the space error overall.  
·  
With the other alternative of indicator [éq 4.2-14] one finds the same type of increase.  
However the K2 constant changes. It is is multiplied by checking the C6 constant  
(cf [bib7] pp90)  
2 
2 
2 
v 
+ 
 
éq  
4.2-21 
 
 
K 
v 
C v 
6 
, 
1 
, 
1 
, 
1  
KT 
F 
F 
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H 
HS 
~ 
K: = C K  
éq  
4.2-22 
2 
6 
2 
 
According to the definitions [éq 2-1-8], [éq 2-1-10] with [éq 2-1-13] if the taking into account of the 
limiting conditions  
of Dirichlet (generalized or not), via the ddls of Lagrange, is exact (what is the case in  
Code_Aster)  
H 
 
RF N = 
: RF N = RF N = RF  
0  
 
(H8) 
H 
H 
(N T) 
N 
NR 
the preceding property produces the following corollary then:  
 
Corollary 11bis  
 
Under the assumptions of property 11 while supposing (H8), one with the increase of the space error  
total expressed in temperature  
1 
2 
2 
C T 
T 
T 
T1 T1 
p ( 
N 
N - nh) 
+ - 
(m+ 
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m+ 
- 
 
, H) 
0, 
0, 
m= 
 
0 
N 
2 
0 N NR 
 
C T 
T 0 
K T 
2 
 
éq  
4.2-23  
p ( 
- 
0  
) +  
2 
(m 
H 
() 
0, 
m=0 
by using definition 10 of the indicator also expressed in temperature  
U T, s^ S, G G and h^ 
^ 
HT  
 
éq 4.2-24  
ext. 
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4.3  
Various types of possible indicators  
 
By extrapolating a remark of [bib5] (pp194-195) it appears that increases of property 11  
can exhume itself while taking as indicator  
n+1 
N 
n+ 
U 
- U 
1 
U 1  
n+1 
 
K: H S 1 
^ 
C 
div  
U 1 
H 
, 
 
p, T ( 
) 
R 
n+ 
= 
- 
H 
H + 
K 
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p 
( 
n+ 
H,) 
+ 
sF  
H 
 
+ 
T 
p 
2 F S K 
N 
L (K) 
( ) 
 
 
 
Tl (K) 
éq  
4.3-1  
n+1 
n+1 
 
U 
U 
S 
n+ 
H G 1 - 
H, 
 
+ 
H H 1 
, 
^ 
^ 
 
 
hu 
1 
F 
 
S n+ - 
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- 
F 
 
(H) n+ 
FS2 (K) 
N 
N 
T 
F S K 
 
L (K) 
3 ( ) 
T 
L (K) 
 
where constant the R and S are worth  
6 
T, 
1 
p > 1 (  
2D Q = 2) or 
p  
(  
3D Q =) 
3 
5 
R (Q, p) 
Q 
Q 
: = Q +1- - 
 
éq  
4.3-2  
2 
p 
1 
-1 
-1 
S (Q, T) 
Q 
Q 
: = Q - - 
- 
2 
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2 
T 
Note:  
 
Just to introduce this generic shape of indicators, one passes from the notation hilbertienne  
standards of spaces to the notation of Lebesgue  
 
It is parameterized by the types of standards voluminal and surface which intervene for its obtaining.  
Contrary to the indicator which we chose (N 1 
+ 
 
who corresponds to p=t=2), some  
2,2 (K) 
use the voluminal standard L1 (p=t=2) or on the contrary the infinite standard.  
 
This last formulation, just like its simplified form of definition 10 (or [éq 4.2-14]),  
constitute an indicator of error well a posteriori because its calculation requires only knowledge  
geometrical materials, loadings, data, of and approximate field solution uh  
accused thermal problem. However the exact estimate of the indicator is not always  
possible when one has complicated loadings. Two approaches are then  
possible:  
 
·  
Either one approximates the integrals which return in the composition of definition 10 by one  
formulate squaring.  
·  
Either one approximates the loadings by a linear combination of simpler functions  
who will be able to allow an exact integration. Generally same architecture is used  
that that which was installation for the finite elements modelling the field of temperature.  
 
Note:  
 
·  
In both cases the loadings are “prisoners of the selected vision finite elements”  
to model the field solution.  
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These two strategies are equivalent and in Code_Aster it is the first which was  
reserve: the voluminal integral is calculated by a formula of Gauss, those surface by one  
formulate Newton-Dimensions.  
Both introduce a skew into the calculation of the estimator who can be represented in  
introducing the approximate versions of the loadings and source (into the initial problem in T and  
in the problem transformed into U)  
N 1 
+ 
N 1 
+ 
N 1 
+ 
N 1 
S 
, G 
, 
+ 
T 
H 
 
and 
 
éq  
4.3-3  
, H 
, H 
ext., H 
, H 
N 1 
+ 
N 1 
+ 
N 1 
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+ 
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^ 
^s, ^g, 
+ 
H 
H 
 
and 
 
éq  
4.3-4  
, H 
, H 
, H 
, H 
in spaces of voluminal approximation (for the source) and surface (for the loadings)  
 
X = 
: v L2/K 
T 
v 
P K 
H ( 
) {H 
( ) 
H 
H K 
L ( 
)} 
1 
 
éq  
4.3-5  
X = 
: v L2/F 
S 
v 
 
, 
P F  
H (I) 
{H (I) 
H I 
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H 
( 
F  
I)} 
I 
it 
 
In fact, one introduces two types of numerical errors during the calculation of the indicator: that 
inherent  
with the formulas of squaring (for polynomial loadings of a high nature) and that due to  
voluminal term. Indeed, this last requires a double derivation which one carries out in three stages  
because in Code_Aster one does not recommend the use of the derived seconds of the functions of 
forms.  
 
Note:  
 
They were recently introduced to treat the derivation of the rate of refund of energy  
(cf [R7.02.01 § Annexe 1]).  
 
On the one hand, one calculates (in the thermal operator) the heat flux at the points of gauss, then 
one  
extrapolate the values with the nodes corresponding by smoothing local (cf [R3.06.03] CALC_ELEM 
with  
OPTION=' FLUX_ELNO_TEMP') before calculating the divergence of the vectors flow at the points 
of Gauss.  
With finite elements quadratic the intermediate operation is only approximate (one affects  
like value with the median nodes the half the sum of their values to the extreme nodes). However  
numerical tests (limited) showed that, even in P2, this approach does not provide  
results very different from those obtained by a direct calculation via good the derivative second.  
 
Note:  
 
· The indices l1, l2, l3 of these polynomial spaces can be unspecified and different from  
that of the approximate solution: K. However, to prevent that these terms do not become  
prevalent (it is a question of rather estimating the error on the solution than that on  
modeling of the loadings) one will tend to take L K - 2 
.  
I 
(I =, 1) 
3 
, 
2 
 
Definition 10 and the weak estimate 11 associated are rewritten then in the following form. This  
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new definition, N 1 
+ 
 
, by a R (one is subscripted takes again in that the usual notations of [bib6]  
R 
(K)  
and [bib7]) (for “reality”) in order to notify well that it corresponds better to the values which are 
calculated  
indeed in the code.  
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Definition 12  
 
K 
In the framework of the operator of transitory thermics linear of Code_Aster, continuation (N 
K  
R ( 
) HT 
0nN 
real local indicators can be written in the form  
n+1 
N 
n+ 
U 
- U 
1 
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U 1  
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K: H S 1 
^ 
C 
div  
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R 
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n+ 
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n+ 
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, 
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H U 
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F 
, H 
 
n+ - 
H 
- 
F 
, H 
(H H) n+ 
FS2 (K) 
N 
FS3 (K) 
N 
0, F 
0, F 
éq 4.3-6  
It is initialized by  
1 
U 0 
0 
K: H s0 
^ 
div  
U 0 
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R ( 
) = 
+ 
K 
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éq 4.3-7  
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() 
real total indicators is defined as being  
0nN 
1 
 
 
0 
N  
N 
NR  
K 
 
 
 
éq 4.3-8  
R () = 
NR () 2 
2 
:  
 
 
K HT 
 
 
Note:  
 
· One can make the same remarks as for its alter “theoretical” ego. They is declined too  
according to the formulations [éq 4.2-14] N 
~ 
and [éq 4.3-1], [éq 4.3-2] N 
 
.  
R, p, T (K) 
R (K) 
 
While being based on the results of property 11, definition 12 and the triangular inequality one can 
then  
to exhume the increase of the following real total error (one began again that the simplified version):  
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Property 13  
 
Under the assumptions of properties 6, of (H6) and by using definition 12, one has, at the total level,  
“weak” increase of the error (with K 
 
PC C >) via the history of  
2 ( 
, ( ), 
, 
4 
5 
 
) 0 
, 
real indicators  
1 
2 
2 
C U 
U 
T 
U 1 U 1 
p ( 
N 
N - nh) 
+ - 
(m+ 
m+ 
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KT m=0 F 
H 
S2 (K) 
FS3 (K) 
 
 
éq 4.3-9  
Under (H8), one with the same expression in temperature  
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0, F 
F (H ( 
- 
ext., H 
H) m+ - (( 
- 
ext. 
H) m+ 
 
 
 
0, F 
KT m=0 F 
H 
S2 (K) 
FS3 (K) 
 
éq 4.3-10  
by using definition 12 of the indicator also expressed in temperature  
 
U T, s^ S, G G and h^ 
^ 
HT  
 
 
éq 4.3-11  
ext. 
 
Note:  
 
· As for the theoretical value there is a morals with the history because, when one will refine, the error  
total will butt against the value floor due to the approximations of the initial condition, of  
limiting conditions and of the source. One cannot obtain results of better quality  
how data input of the problem!  
 
4.4  
Decrease of the local space error  
 
Before exhuming the decrease of the space error, one will have to introduce some results  
complementary:  
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Lemma 14  
 
It is shown that there are constants strictly positive Ci (i=6… 11) checking  
 
1 
v 
P 
 
 
 
 
sup K, L, L, L (K) 
{ 1 2 3} 
C 
v 
v 
C 
2 v 
6 
K 
7 
K 
0, K 
0, K 
0, K 
v 
C h-1 v 
K 
8 K 
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K 
0, K 
0, K 
-1 
1 
v 
 
2 
P 
 
 
 
 
 
éq 4.4-1  
sup K, L, L, L (F) 
{ 1 2 3} 
C H 
Statement 
v 
C 
2 v 
9 F 
K 
F 
10 
F 
0, F 
0, F 
0, F 
v 
C h-1 v 
K 
11 F 
K 
0, 
0, 
F 
F 
 
Proof:  
 
One passes to the element of reference then one uses the fact that the standards are equivalent on  
polynomial spaces considered, because they are of finished size (cf [bib5] pp196-98, [bib7] [§1]).  
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!  
 
These preliminary results are crucial to determine a decrease of the site error by  
the real indicator. But one will see that one will be able to obtain only one opposite room of [éq 4.3-9], 
[éq 4.3-10].  
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Property 15  
 
Under the assumptions of property 6, of (H6) and while being based on definition 12 and the lemma 
14, one  
has, at the local level, the “weak” decrease of the error (with K C I = 
>) via  
3 ( 
, 
6 
I 
L) 
11 
0 
the real indicator  
 
N 1 
+ 
N 1 
U 
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0,  
K 
3 
 
 
 
 
0 
N NR -1 
 
éq 4.4-2  
Under (H8), one with the same expression in temperature  
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éq 4.4-3  
by using definition 12 of the indicator also expressed in temperature  
U T, s^ S, G G and h^ 
^ 
HT  
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éq 4.4-4  
ext. 
 
Proof:  
 
This a little technical demonstration comprises three stages which will consist in raising  
successively each term of the indicator [éq 4.3-6] (by using the inequalities of the property  
14) and to gather increases obtained:  
Firstly, one will replace in the equation [éq 4.2-6] the term in v - v by the product W 
H 
K making  
to intervene the function “bubble” of K  
n+1 
N 
+1 
U 
- U 
N 
H 
H 
K 
T 
v = 
: s^ 
- C 
+ div U +1 
H 
K 
, H 
p 
( 
N 
, H) 
T 
 
éq  
4.4-5  
W = 
: v 
K 
K K 
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From where succession of increases, via [éq 4.4-1] and the inequality of Cauchy-Schwartz,  
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éq 4.4-6  
 
Then, one reiterates the same process for the surface terms WF, I  
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Maybe, for example, for i=1 succession of increases, via [éq 4.4-1] and the inequality of  
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v 
10 max, 
1 C 
0, 
F 1 
, 
( 11) 
 
F  
 
F 
 
0, F 
C9 
 
1 
1 
 
 
+ 
n+ 
H S 1 
2 ^ 
- n+ 
S 1 
^ 
+ H2 v 
F 
 
, H 
F 
K 
 
 
0, 
0, F 
F 
 
éq 4.4-10  
Finally it is enough to carry out the linear combination implying [éq 4.4-9] and [éq 4.4-10] to 
conclude  
(bus H H and 
v 
 
v 
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v 
with F S 
).  
F 
K 
(K) 
0, 
0, 
F 
K 
 
!  
 
Note:  
 
·  
This local decrease of the error is also declined according to the formulations [éq 4.2-14]  
N 
~ 
and [éq 4.3-1], [éq 4.3-2] N 
 
.  
R, p, T (K) 
R (K) 
·  
While placing itself within the particular framework [éq 3.1-9] of the article [bib6] with an implicit 
scheme  
(=1) one finds well the inequality (29) pp432.  
·  
By adopting the less restrictive approaches (H4) and (H5), one finds a version “strong” of  
this property.  
·  
This result provides only one opposite room of total increase [éq 4.3-9], [éq 4.3-10]  
but within the framework of this type of indicator one will not be able to obtain better compromise.  
These estimates are optimal within the meaning of [bib5]. They show the equivalence of  
summon hilbertienne indicators with the space part of the total exact error.  
constants of equivalence are independent of the parameters of discretizations in space and  
in time, they depend only on the smallest angle of the triangulation.  
·  
This increase of the real indicator of error shows, which if one very locally refines  
(around K) in order to decrease N 
 
, one is not ensured of a reduction in the error  
R (K) 
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in an immediate vicinity of the zone concerned (in K). The indicator “under 
consider locally” the error space and only a more macroscopic refinement realizes  
theoretically a reduction in the error (cf property 13).  
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4.5 Complements  
 
The K3 constant just like its alter preceding ego, K2, depends intrinsically on the type on  
limiting conditions enriching the equation by initial heat as well as type by  
temporal and space discretization. To try to free itself from this last constraint,  
SR. GAGO [bib10] proposes (on a problem 2D models) a dependence of the K2 constant in  
function of the type of finite elements used. It is written  
~ 
K2 
K: = 
 
éq  
4.5-1  
2 
2 
24 p 
where p is the degree of the polynomial of interpolation used (p=1 for the TRIA3 and QUAD4, p=2 
for  
TRIA6 and QUAD8/9). From where the idea, once the indicator of total error calculated, to multiply 
it by this  
1 
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“corrective” constant  
. This strategy was implicitly retained for the calculation of  
2 
24 p 
the indicator of error in mechanics (option “ERRE_ELGA_NORE” of CALC_ELEM, cf [R4.10.02 
§3]).  
We however did not adopt it for thermics because this constant was not given  
that empirically on the equation of Laplace 2D. We do not want to thus skew the values of  
indicators.  
 
It was question, until now, only of charts of indicators of space errors calculated with one  
moment given of the transient of calculation. But, in fact, there are several ways to build one  
indicators of error on a parabolic problem:  
 
·  
one can very well, first of all, semi-to discretize the strong formulation space some and to control 
sound  
space error by indicator of error adapted a posteriori to the stationary case (in our  
elliptic case). Then one applies a solvor, of step and order variables, treating the equations  
ordinary differentials (for example [bib10] [bib11] [bib12]),  
·  
a second strategy consists in semi-discretizing in time then in space and determining  
the indicator of one moment space error given (for example [bib4] [bib6] [bib13]) from  
local residues of the semi-discretized form. One applies a linear solvor to the form  
variational allowing to repeatedly build the solution at one moment given from  
the solution of the previous moment,  
·  
another possibility consists in discretizing simultaneously in time and space on  
suitable finite elements and to control their “space-time” errors in manner  
coupled (for example [bib14] [bib15]).  
 
This last scenario is most tempting from a theoretical point of view because it proposes a control  
complete of the error and it allows to avoid unfortunate decouplings as for the possible ones  
refinements/déraffinements controlled by a criterion with respect to the other (cf following 
paragraph). It is  
however very heavy to set up in a large industrial code such as Code_Aster. It supposes  
indeed, to be optimal, nothing less than one separate management step of time by finite elements. It  
who from the point of view of architecture supporting the finite elements of the code is a true 
challenge!  
One thus prefers the second scenario to him which has the large advantage of being able to be 
established directly  
in a code D finite elements because this it is based above all on the resolution of the system completely  
discretized. It is this type of indicators which was set up in N3S, TRIFOU and Code_Aster.  
Handbook of Reference  
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Within the framework of a true “space-time” discretization of the problem (scenario 3), one  
obtains, in any rigour, a “space-time” indicator for each element of discretization  
K × [T, T 
who is the balanced sum of three terms:  
N 
N 1 
+ ] 
 
1) the residue of the calculated solution and the data discretized compared to the strong formulation  
problem (P 
K × 
0) evaluated on  
[T, T,  
N 
N 1 
+ ] 
2) the jump space through K × [T, T 
of the operator traces associated (who connects naturally  
N 
N 1 
+ ] 
formulations weak and strong via the formula of Green),  
3) the temporal jump through K × [T, T 
calculated solution.  
N 
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N 1 
+ ] 
 
The solution which was installation does not make it possible obviously to reveal explicitly it  
term of temporal jump. It re-appears however implicitly, because of method of semi 
particular temporal discretization, in all the terms in definitions 10 and 12.  
 
On the other hand, the fact of being interested mainly only in the space discretization and sound  
possible refinement/déraffinement should not occult certain contigences with respect to  
management of the step of time. Indeed, during transitory calculations comprising of abrupt  
variations of loadings and/or sources in the course of time, for example of the shocks  
thermics, the fields of calculated temperatures T N (0 < N NR) can oscillate spatially and  
temporally. Moreover, they can violate the “principle of the maximum” by taking values in  
outside terminals imposed by the condition of Cauchy and the conditions limiting. To surmount it  
numerical phenomenon parasitizes one shows, on a canonical case without condition of exchange  
(cf [R3.06.07 §2]), that the step of time must remain between two terminals:  
T 
 
H < T 
< T 
 
 
éq  
4.5-2  
min () 
( 
max 
) 
 
In practice, it is difficult to have an order of magnitude of these terminals, one thus has evil, if one 
detects  
oscillations, to modify the step of time in order to respect [éq 4.5-2]. In addition, this type  
of operation is not always possible sometimes because it is necessary to take into account the abrupt 
ones precisely  
variations of loadings (in particular when T is too small).  
When T is too large one can function as implicit Euler (=1) what will cause of  
to gum the upper limit.  
On the other hand when it is too weak, two palliative strategies are offered to the user:  
 
· diagonaliser the matrix of mass via the lumpés elements (cf [R3.06.07 §4] [§5])  
proposed in the code (that requires installation to treat the P2 elements or  
modeling 2D_AXI),  
· to decrease the size of the meshs (that increases complexities necessary calculation and memory).  
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It is from this point of view that the refinements/déraffinements practised on the faith for our  
indicator can have an incidence. The fact of refining will not pose any problem on the other hand in  
déraffinant one can deteriorate very well the decrease of [éq 4.5-2]. It is necessary thus to be very 
circumspect if  
one uses the option déraffinement software LOBSTER (encapsulated for Code_Aster in  
MACR_ADAP_MAIL option “DERAFFINEMENT” [U7.03.01]) on case test comprising a thermal 
shock.  
 
We now will summarize the principal contributions of the preceding theoretical chapters and theirs  
holding and bordering with respect to the thermal calculation set up in Code_Aster.  
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5  
Summary of the theoretical study  
 
That is to say (P0) the problem in extreme cases interfered (inhomogenous Cauchy-Dirichlet-
Neumann-Robin type  
linear and with variable coefficients) solved by operator THER_LINEAIRE  
 
 
T 
C 
- div  
 
p 
(T) = S 
× ] , 
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0 [ 
 
 
T 
T = F 
×  
1 
] ,0 [ 
 
T 
(P)  
G 
 
0  
= 
× 
2 
], 0 [éq  
5-1  
N 
T 
 
+ HT = HT 
×  
ext. 
3 
] ,0 [ 
N 
 
T (X) 
0 
, = 0 
T (X) 
 
 
Taking into account the choices of modelings operated in Code_Aster (by AFFE_MATERIAU,  
AFFE_CHAR_THER…) one determines the Abstracted Variational Framework (CVA cf [§2]) 
minimal on which  
one will be able to rest to show the existence and the unicity of a field of temperature solution  
(cf [§2]). By recutting these pre-necessary theoretical a little “éthérés” with the practical constraints  
users, one deduces some from the limitations as for the types of geometry and the licit loadings.  
Then, while semi-discretizing in time and space by the usual methods of the code (of which  
one ensures oneself of course of the cogency and owing to the fact that they preserve the existence 
and the unicity of the solution),  
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one studies the evolution of the properties of stability of the problem (cf [§3]). These results of  
controllability are very useful for us to create the standards, the techniques and the inequalities which  
intervene in the genesis of the indicator in residue. In these stages of discretization us  
also briefly let us approach the influence of such or such theoretical assumption on the perimeter  
functional of the operators of the code.  
 
Before summarizing the principal theoretical results concerning the indicator of error, we go  
repréciser some notations:  
 
·  
one fixes a step of time T 
such as  
either an entirety NR and that temporal discretization or  
T 
 
regular: T =, 
0 T = T 
, T = 2 T 
 
T = N T 
,  
0 
1 
2 
L N 
 
Note:  
 
This assumption of regularity does not have really importance, it allows just  
to simplify the writing of the semi-discretized problem. To model a transient  
unspecified at the moment tn, it is just enough to replace T by tn=tn+1-tn.  
 
·  
that is to say the parameter of - method semi-discretizing temporally (P0),  
·  
are N 
T and N 
T fields of temperatures at the moment T 0  
, exact solutions  
N ( 
N 
NR) 
H 
initial problem (P0), respectively semi-discretized in time and completely discretized in  
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time and in space.  
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Taking into account the modelings installation in the code, we can suppose that  
temporal discretization of the loadings and the source is exact and that the taking into account,  
via Lagranges, conditions limit (generalized or not) of Dirichlet is too. By  
against, one of the approaches to model the numerical approximations carried out during 
calculations  
integral of the indicator of error, consists in supposing inaccurate the space discretization of  
loadings and of the source. Their approximate values are noted  
 
N 1 
+ 
N 1 
+ 
N 1 
+ 
N 1 
S, G 
, 
+ 
T 
H 
 
and 
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éq  
5-2  
, H 
, H 
ext., H 
, H 
while posing  
 
 
N 1 
+ 
 
 
 
 
 
=  
 
, 
X (N +) 
1 
+ (1- ) , 
X N 
with {T, S, T, G, 
and 
éq  
5-3  
ext. 
} 
H 
0 N NR -1 
 
T  
 
T  
 
Note:  
 
The establishment of this type of indicator (in mechanics as in thermics) is also sullied  
of another type of numerical approximations related to calculations of the derived seconds of the term  
voluminal (cf [§4.3]). Its effect can possibly feel when one is interested in  
intrinsic value of the voluminal error for sources very chahutées on a grid  
coarse.  
 
They exist then two constants K2 and K3 independent of the parameters of discretization in time  
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and spaces some, depending only on the smallest angle on the triangulation and the type of problem, 
which  
allow to build:  
 
·  
An increase of the total space error (the history of the total real indicator  
“over-estimates” the total space error)  
1 
2 
2 
C T 
T 
T 
T1 T1 
p ( 
N 
N - nh) 
+ - 
(m+ 
m+ 
- 
 
, H) 
0, 
0, 
m= 
 
0  
N 1 
2 
0  
2 
2 
2 
N NR  
C (T - H 
T 
K T 
0 
K 
1 
 
K 
H2S 1 S 1 
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p 
0 
0 ) 
+ 
 
2 
(R () + - ({m+R () 
m+ 
m+ 
+ 
- 
K 
, H 
 
}+ 
0, 
0, K 
KT 
m= 
H 
0 
 
N 1 
2 
2 
K T 
2 
-  
 
m+1 
m+ 
H G 
- G 1 
+ 
H 
H T 
T 
1 
H T 
T 
1 
F 
, H 
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0, F 
F (H ( 
- 
ext., H 
H) m+ - (( 
- 
ext. 
H) m+ 
 
 
 
0, F 
KT m=0 F 
H 
S2 (K) 
FS3 (K) 
 
éq 5-4  
·  
A decrease of the local space error (it “underestimates” the local space error)  
 
N 1 
+ 
N 1 
T 
- 
+ 
T 
- T N - N 
 
T 
H 
C 
H 
H 
+  
K 
p 
( 
 
N 1 
+ 
N 1 
T 
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- 
+ 
T 
+ 
 
 
, H) 0, 
 
 
 
T 
K 
 
0, 
 
K 
 
1 
n+ 
 
n+ 
n+ 
n+ 
n+ 
 
1 
R (K) 
1 
1 
1 
1 
2 
K 
H S 
- S 
+ H G 
- G 
+ 
3  
K 
 
, H 
F 
 
, H 
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0, 
0,  
K 
K 
2 
 
 
1 
 
 
N 1 
2 
 
+ 
H H 
F 
 
(N 1+ N 1 
T 
- + 
T 
- n+ 
n+ 
H 
T 
- n+ 
T 
ext., 
 
) 
1 
, H ( 
1 
1 
ext., H 
, H) 
 
0,  
K 
3 
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0 
N NR -1 
 
éq 5-5  
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K 
·  
With continuation (N 
K of local real indicators (by using the notations of  
R ( 
) HT 
0nN 
[§4.1])  
n+1 
 
K 
1 
:  
K 
1 
 
K 
1 
 
K 
1 
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K 
R 
( ) 
n+ 
= R, flight () 
n+ 
+ R, jump () 
n+ 
+ R, flow () 
n+ 
+ R, éch () 
n+ 
T1 - N 
T 
1 
N 
T1  
éq 5-6  
n+ 
= 
: H S 1 - 
H 
H 
C 
+ div T1 
H 
, 
 
K 
, H 
p 
(nh,) 
+ 
+ 
+ 
 
 
H 
F 
 
+ 
T 
2 FS  
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N 
(K) 
0, K 
 
 
 
 
0, F 
n+1 
n+1 
 
T 
T 
n+ 
H G 1 - 
H, 
 
+ 
H 
H T 
T 
1 
, 
 
F 
, H 
 
F (( 
- 
ext. 
) n+ - 
H 
, H 
FS2 (K) 
N 
FS3 (K) 
N 
0, F 
0, F 
who is initialized by  
1 
T 0 
0 
K: H s0 div T 0 
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H 
 
R ( 
) = 
+ 
K 
H 
(H) + 
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H 
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2 FS 
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- 
H 
H 
FS2 (K) 
N 
FS3 (K) 
N 
0, F 
0, F 
éq 5-7  
This local continuation makes it possible to build continuation (N 
() 
real indicators  
0nN 
total  
1 
 
 
0 
N  
N 
NR  
K 
 
 
 
éq 5-8  
R () = 
NR () 2 
2 
:  
 
 
K HT 
 
 
Of [éq 5-4] (cf [§4.2]) it appears that, at one moment given, the error on the approximation of the 
condition of  
Cauchy and the history of the total indicators intervenes on the total quality of the solution obtained.  
One will be able to thus minimize overall the error of approximation due to the finite elements with 
the course  
time while re-meshing “advisedly”, via the continuation of indicators, the structure. Because, in 
practice,  
one realizes that the refinement of the meshs makes it possible to decrease their error and thus cause 
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to drop  
temporal sum of the indicators. The total error will butt (and it is moral) against the value floor  
had with the approximations of the initial condition, the limiting conditions and the source (which 
will have  
tendency it-also to drop of course!). One cannot obtain results of better quality  
how data input of the problem!  
The result [éq 5-5] (cf [§4.4]) provides only one opposite room of total increase [éq 5-4] (it  
“must” would have been to reveal also an increase at the local level) but, within the framework of it  
type of indicator, one will not be able to obtain better compromise. These estimates are optimal with  
feel [bib5]. They illustrate the equivalence of the sum hilbertienne indicators with the part  
space of the total exact error. The constants of equivalence are independent of the parameters  
discretizations in space and time, they depend only on the smallest angle of the triangulation  
and of the type of dealt with problem.  
According to this increase of the indicator [éq 5-6], if one refines very locally (around the element K)  
in order to decrease N 
 
, one is not ensured of a reduction in the error in an immediate vicinity  
R (K) 
zone concerned (in K). The indicator “locally underestimates” the error space and only  
a more macroscopic refinement carries out a reduction in the error theoretically.  
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Only in pure residue, all a “zoology” of indicators of space error are permissible  
(cf [§4.3]), we retained a type similar of it to that already set up for the mechanics of  
Code_Aster. Being based on the solutions and the discrete loadings of the moment running and the 
moment  
precedent (except with the first step of time), its theoretical limitations are thus, at best, those  
inherent in the resolution of the problem in temperature: no zones comprising of points of  
graining or of point, not of crack, problem to the multi-material interfaces, - diagram  
unconditionally stable, regular family of triangulation, polygonal grid discretized by  
isoparametric finite elements, oscillations and violation of the principle of the maximum (cf [§4.5]). Of 
course,  
in practice, one very often passes in addition to, and this without encumbers, this perimeter of 
“theoretical” use.  
 
But it is necessary well to keep in mind, that as a “simple postprocessing” of (P0),  
the indicator cannot unfortunately provide more reliable diagnosis in the zones where  
resolution of the initial problem stumbles (close to crack, shock…). Its denomination prudently  
reserved of indicator (instead of the usual terminology of estimator) is in these particular cases  
more that never of setting! But if, in these extreme cases, its gross amount perhaps prone to guarantee,  
its utility as an effective and convenient supplier of charts of error for one  
mending of meshes or a refinement/déraffinement remains completely justified.  
 
In the same vein, even if the formulation [éq 5-6] were established only in the transitory linear case,  
isotropic or not, defines by (P0), one could also stretch his perimeter of use to the non-linear one  
(operator THER_NON_LINE), to conditions limit different (ECHANGE_PAROI for example) or to  
other types of finite elements (lumpés isoparametric elements, elements of structure…) (cf.  
[§2.1]). For more information on the “data-processing” perimeter corresponding to its establishment  
effective in the code, one can refer to [§6.2] or the user's documentation of CALC_ELEM  
[U4.81.01].  
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It was question, until now, only of charts of indicators of space errors calculated with one  
moment given of the transient of calculation. But, in fact, there are several ways to build one  
indicators of error on a parabolic problem (cf [§4.5]). That which we retained  
does not allow a complete control of the error and it always requires a certain vigilance when one  
draft of the problems of the type shocks (the same one as for the problem post-treaty!). It does not make  
to appear that implicitly the term of jump temporal in all the terms in [éq 5-6].  
 
To finish, it should be stressed that this indicator is thus composed of four terms:  
 
·  
the principal term, called term of voluminal error, controlling the good checking of  
the equation of heat,  
·  
to which three secondary terms are added checking the good behaviour of the space jumps and  
limiting conditions: terms of flow and exchange.  
 
In 2d-PLAN or 3D (resp. in 2D-AXI), if the unit of the geometry is the meter, the unit of first is  
1 
1 
W.m (resp.  
1 
W.m. 
- 
rad) and that of the other terms are it  
2 
W.m (resp.  
1 
2 
W.m. 
- 
rad). Caution  
thus with the units taken into account for the geometry when one is interested in the gross amount of  
the indicator and not with its relative value!  
 
We now will approach, after the practical difficulties of implementation in the code,  
environment necessary and its perimeter of use. One will conclude for a drawn example of use  
of a case official test.  
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6  
Implementation in Code_Aster  
 
6.1 Difficulties  
particular  
 
To calculate this type of indicator it is necessary to compose with the vision “elementary calculation + 
assembly”  
generally deployed in all the codes finite elements. However the estimate, at the local level, of (K)  
requires, not only the knowledge of its local fields, but also that of its meshs  
neighbors. One thus needs to carry out a “total calculation” on a K scale, in calculation  
room! A copied strategy on what had been set up for the estimator in mechanics  
consist in transmitting this type of information in the components of wide charts which they  
will be transmitted in argument of entry of CALCULATION. It is this type of contingency which explains  
the heterogeneity of treatment at the time of the overloads of loadings between the thermal solveurs and 
it  
calculation of our indicator (cf [§6.2]).  
 
Another type of difficulty, numerical this time, relates to the calculation of the voluminal term.  
Indeed, it requires a double derivation which one carries out in three stages, because in Code_Aster one  
do not recommend the use of the derived seconds of the functions of forms.  
 
Note:  
 
They were recently introduced to treat the derivation of the rate of refund of energy  
(cf [R7.02.01 § Annexe 1]).  
 
On the one hand, one calculates (in the thermal operator) the vector flow at the points of gauss, then one  
extrapolate the corresponding values with the nodes by local smoothing (cf [R3.06.03] CALC_ELEM 
with  
OPTION=' FLUX_ELNO_TEMP' and [§6.2]) in order to calculate its divergence at the points of Gauss. 
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With  
quadratic finite elements the intermediate operation is only approximate (one affects like  
value with the median nodes the half the sum of their values to the extreme nodes). However  
numerical tests (limited) showed that this approach does not provide results very different from  
those obtained by a direct calculation via good the derivative second.  
 
Lastly, it was necessary to determine various geometrical characteristics (diameters, normals, 
jacobiens…),  
connector industries of the elements in opposite and to reach the data which they underlie in all  
cases of figures envisaged by the code (started from grid symmetrized and/or heterogeneous, loading  
function or reality, non-linear material, all isoparametric elements 2D/3D and all them  
thermal loadings).  
Beyond these fastidious developments, a large effort of validation  
“géométrico-data processing” was deployed to try to track possible bugs in this  
entrelac of small formulas. These hard tests on small cases model tests (TPLL01A/H for  
2D_PLAN/3D and TPNA01A for the 2D_AXI) appeared profitable (including for the indicator in  
mechanics and lumpés elements!) and essential. Because one does not lay out, to my knowledge,  
theoretical values allowing to validate in certain situations these indicators: “nothing  
resemble more one value of indicator… than another value of indicator!”. In the absence of other  
thing and, although in a process of validation that is not the panacea, it are thus necessary  
to try to release a maximum of confidence in all these components.  
 
6.2 Environment  
necessary/parameter setting  
 
The calculation of this indicator is carried out, via option “ERTH_ELEM_TEMP” of the operator of 
post- 
treatment CALC_ELEM, on a EVOL_THER (provides to the key word RESULT) coming from a 
calculation  
former thermics (linear or not, transient or stationary, isotropic or orthotropic, via  
THER_LINEAIRE or THER_NON_LINE, cf more precise perimeter [§6.4]).  
As one already underlined, it requires as a preliminary the recourse to option “FLUX_ELNO_TEMP” 
of  
CALC_ELEM which determines the values of the vector heat flux to the nodes (cf example of use  
[§6.5]).  
This indicator consists of fifteen components by elements and for a given moment. In order to  
to be able post-to treat them via POST_RELEVE or GIBI one needs to extrapolate these fields by 
element in  
fields with the nodes by element. The addition of option “ERTH_ELNO_ELEM” (after the call to  
“ERTH_ELEM_TEMP”) makes it possible to carry out this purely data-processing transformation. For 
one moment  
and a given finite element, it does nothing but duplicate the fifteen components of the indicator on each  
nodes of the element.  
Handbook of Reference  
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For carrying out the integral postprocessing of desired thermal calculation well, it is necessary:  
 
·  
To carry out on all the geometry, TOUT=' OUI' (default value, if not calculation stops  
in ERREUR_FATALE). This provisional choice was led by data-processing contingencies  
and functional calculuses, bus thus all the finite elements are seen affecting a homogeneous indicator  
calculated with the same number of terms (if not quid of the concept of term of jump and of  
term of CL at the edge of the field considered  
?). In addition the tool of  
refinement/déraffinement of the code (the software LOBSTER encapsulated in MACR_ADAP_MAIL),  
natural outlet of our cartographies of error, does not make it possible to treat only parts of  
grids.  
 
Note:  
 
That poses problems of propagation of subdivisions to preserve conformity  
triangulation. In fact, to divert this type of contingency, it would be necessary, that is to say to define  
a buffer zone making the junction enters the “dead” zone of the grid and the zone  
“activates” to treat, that is to say in a way more optimal but also much more difficult  
from a point of view structures, to reduce it to a layer of joined elements.  
 
·  
To provide the same temporal parameter setting: value of (default value equalizes to 0.57)  
provided to key word PARM_THETA; if necessary if transitory problem is dealt with, it is necessary  
to inform usual fields TOUT/NUME/LIST_ORDRE with licit values opposite  
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thermal calculation. The calculation of the history of the indicator can then be carried out from  
any moment of a transient, knowing that with the first increment one carries out calculation  
as in hover (=1, n+1=0 and not of term of finished difference cf [éq 5-7]).  
Moreover, in hover, if the user provides a value of different from 1, one imposes to him  
this last value after having informed some.  
In a related way, one detects the request for supply of charts of errors between  
noncontiguous sequence numbers (there is an ALARM) or the data of a EVOL_THER  
not comprising a field of temperature and vector flow to the nodes (calculation stops in  
ERREUR_FATALE). The value of and numbers it sequence number taken into account are  
layouts in the file message [§6.3]. The sequence number and the corresponding moment  
accompany also each occurrence by indicator of error in the file result ([§6.3]).  
·  
To use the same loadings and by complying with the rules of particular overloads  
with the options of error analyses of this operator. Thus, in the thermal solveurs (and  
mechanics) one incorporates the limiting conditions of the same type, whereas in calculations  
errors of CALC_ELEM (and thus also with our indicator) one cannot take into account,  
for a limiting type of condition given, that the last provided to key word EXCIT. The order of  
these loadings revêt thus a crucial importance!  
 
Note:  
 
This restriction finds its base in the first remark of the paragraph  
precedent. For making well it would be necessary, that is to say concaténer on the elements of skin  
concerned all the limiting conditions, is to provide to elementary calculations charts  
variable sizes containing all the loadings exhaustively. The first  
solution seems by far most optimal but also hardest to put in  
work. It would then be necessary also to make the same thing for the indicator in residue of  
mechanics (OPTION=' ERRE_ELGA_NORE').  
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However, in the event of conflict between loadings of the same type, one often can and  
easily to find a solution palliative via the adequate AFFE_CHAR_THER. The user is  
informed presence of several occurrence of the same type of loading by one  
message of ALARM and the list of the loadings actually taken into account is traced  
in the file message ([§6.3]).  
The code stops on the other hand in ERREUR_FATALE if the provided loadings pose some  
problems (interpolation of loadings function, access to the components, presence of  
CHAMPGD of the coefficient of exchange and absence of the CHAMPGD of the outside temperature or  
vice versa….),  
·  
Within the same framework general: value of the model (parameter MODELS), of necessary materials  
(CHAM_MATER), of the structure EVOL_THER given (RESULT) and result (assignment of  
Réentrant CALC_ELEM with possibly “reuse”). They are traced in the file  
message ([§6.3]).  
 
If the user does not respect this necessary homogeneity of parameter setting (to the rules of  
overload near) between the thermal solvor and the tool for postprocessing, it is exposed to  
skewed results even completely false (without inevitably a message of ALARM or one  
ERREUR_FATALE stops it, one cannot all control and/or prohibit!). There remains only judge then  
relevance of its results.  
 
Let us recapitulate all this parameter setting of operator CALC_ELEM impacting the calculation 
directly of  
the indicator of space error in thermics.  
 
Key word factor  
Key word  
Default value  
Value obligeatoire (O)  
or advised (C)  
MODEL  
 
Idem thermal calculation  
(O)  
 
CHAM_MATER  
 
Idem thermal calculation  
(O)  
 
ALL “YES”  
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“YES” (O)  
 
TOUT/NUME/LIST_ORDRE “YES”  
“YES” (C)  
 
PARM_THETA  
0.57  
Idem thermal calculation  
(O)  
 
RESULT  
 
EVOL_THER of calculation  
thermics (O)  
 
reuse  
 
EVOL_THER of calculation  
thermics (C)  
EXCIT CHARGES  
 
Idem thermal calculation +  
regulate of overload (O)  
 
OPTION  
 
“FLUX_ELNO_TEMP”  
“ERTH_ELEM_TEMP”  
“ERTH_ELNO_ELEM”  
 
INFORMATION  
1 1  
(C)  
Table 6.2-1: Summary of the parameter setting of CALC_ELEM  
impacting the calculation of the indicator  
 
Note:  
 
·  
In transient, it (strongly) is advised to calculate the history of the indicator on  
moments of calculations contiguous. If not, the postprocessing of the temporal semi-discretization  
will be distorted, and according to the devoted formula… the user will become only judge of  
relevance of its results.  
Handbook of Reference  
R4.10 booklet: Estimator of error a posteriori  
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6.3  
Presentation/analysis of the results of the error analysis  
 
Option “ERTH_ELEM_TEMP” provides in fact, not one, but fifteen components by elements  
stop K and by step of time tn+1. Indeed, for each one of the four terms of [éq 5-6], _ the term  
the voluminal main thing and the three surface secondary terms _, one calculates not only the error  
absolute, but also a term of standardization (the theoretical value of the discretized loadings  
that one would have had to find) and the associated relative error. By summoning these three families of 
four  
contributions, one establishes also the total absolute error, the total term of standardization and the 
relative error  
total. What makes the account well!  
 
The fact of dissociating the contributions of each component of this indicator allows  
to compare their relative importances and to target strategies of refinement/déraffinement  
on a certain type of error. Even if the voluminal term (representing the good checking  
equation of heat) and the term of jump (related to modeling finite elements) remain them  
dominating terms, it can prove to be useful to measure the errors due to certain type of  
loading in order to refine their modeling or to re-mesh the accused frontier zones.  
 
Moreover this type of strategy can be easily diverted of its goal first in order to make  
refinement/déraffinement by zone: it is enough to impose, only in this zone, a type of  
fictitious limiting condition (with very bad value in order to cause a large error).  
Mode of calculation of these components and the name of their component “of reception” in the field  
symbolic system “ERTH_ELEM_TEMP” of the EVOL_THER are recapitulated in the table below (in  
being based on the nomenclature of [éq 5-6]).  
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Absolute error  
Relative error  
Term of standardization  
(in %)  
Term  
N 1 
+ 
 
 
N 1 
+ 
 
K 
N 
NR 1 
+ 
K: = H S 1 
+ 
R, flight ( 
) 
N 
R, flight ( 
) 
R, flight (K) 
voluminal  
×100  
K 
 
 
, H 0, K 
TERMVO  
N 1 
+ 
NR 
K 
R, flight ( 
) 
. 
TERMV1  
TERMV2  
Term of  
N 1 
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+ 
 
 
N 1 
+ 
 
K 
1 
R, jump ( 
) 
R, jump (K) 
jump  
× 
N 
+  
1 
+ 
H2 
T1 
N 
F 
, H 
TERMSA  
n+ 
NR 
NR 
K: = 
 
 
R, jump ( 
) 
 
 
R jump (K) 
. 
100 
1 
, 
2  
N 
 
 
 
 
TERMS2  
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0, F 
TERMS1  
Term of flow  
N 1 
+ 
 
 
N 1 
+ 
 
K 
1 
R, flow ( 
) 
R, flow (K) 
× 
N 
NR 1 
+ 
K: = H2 G 1 
+ 
R, flow ( 
) 
N 
TERMFL  
n+ 
NR 
F 
 
 
, H 0, F 
R flow (K) 
. 
100 
1 
, 
TERMF1  
TERMF2  
Term  
N 1 
+ 
 
 
N 1 
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+ 
 
K 
1 
R, éch ( 
) 
R, éch (K) 
of exchange  
×100 
N 
NR 1 
+ 
K: = H2 H T - T 
1 
+ 
R, éch ( 
) 
F ((ext. 
) N 
TERMEC  
N 1 
+ 
NR 
K 
, H 0, F 
R, éch ( 
) 
. 
 
TERME2  
TERME1  
Total  
n+1 
 
K 
1 
: 
 
K  
N 1 
+ 
 
n+ 
NR 1 K: 
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NR 1 K  
R 
() = n+R, I () 
R (K) 
R (  
) = n+R, I () 
× 
 
I 
n+ 
NR 
I 
R 
(K) 
. 
100 
1 
ERTABS  
TERMNO  
ERTREL  
Table 6.3-1: Components of the indicator of error.  
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For the absolute error and the term of standardization, in 2d-PLAN or 3D (resp. in 2D-AXI), if the unit  
geometry is the meter, the unit of the first term is W.m (resp.  
1 
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W.m. 
- 
rad) and that of  
1 
1 
other terms is it  
2 
W.m (resp.  
1 
2 
W.m. 
- 
rad).  
 
Attention thus with the units taken into account for the geometry when one is interested in  
gross amount of the indicator and not with its relative value!  
 
This information is accessible in three forms:  
 
·  
For each moment of the transient, these fifteen values are summoned on all the grid (one  
fact the same thing as in the table [Table 6.3-1] by replacing K by) and traced  
in a table of the file result (.RESU).  
 
**********************************************  
THERMICS: ESTIMATOR Of ERROR IN RESIDUE  
**********************************************  
 
IMPRESSION OF THE TOTAL STANDARDS:  
 
SD EVOL_THER RESU_1  
SEQUENCE NUMBER 3  
MOMENT 5.0000E+00  
ABSOLUTE ERROR/RELATIVE/STANDARDIZATION  
TOTAL 0.5863E-05 0.2005E- 04% 0.2923E+02  
VOLUMINAL TERM 0.3539E-05 0.0000E+ 00% 0.0000E+00  
TERM JUMP 0.2217E-05 0.1006E- 04% 0.2205E+02  
TERM FLOW 0.4384E-06 0.3886E- 05% 0.1128E+02  
TERM EXCHANGE 0.4591E-06 0.5755E- 05% 0.7977E+01  
 
**********************************************  
 
Example 6.3-1: Layout of option “ERTH_ELEM_TEMP” in the file result  
 
·  
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It is stored by means of computer in the fifteen components of the field symbolic system  
“ERTH_ELEM_TEMP” of the thermal SD_RESULTAT. The variables of access of this field are  
, for each mesh (in our M1 example), the sequence number (NUME_ORDRE) and the moment  
(INST). With option “ERTH_ELNO_ELEM” one with the same thing for each node of  
the element considered.  
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FIELD BY ELEMENT AT THE POINTS OF GAUSS OF REFERENCE SYMBOL 
ERTH_ELEM_TEMP  
SEQUENCE NUMBER: 3 INST: 5.00000E+00  
M1 ERTABS ERTREL TERMNO  
TERMVO TERMV2 TERMV1  
TERMSA TERMS2 TERMS1  
TERMFL TERMF2 TERMF1  
TERMEC TERME2 TERME1  
1 0.5863E-05 0.2005E-04 0.2923E+02  
0.3539E-05 0.0000E+00 0.0000E+00  
0.2217E-05 0.1006E-04 0.2205E+02  
0.4384E-06 0.3886E-05 0.1128E+02  
0.4591E-06 0.5755E-05 0.7977E+01  
........  
 
FIELD BY ELEMENT AT THE POINTS OF GAUSS OF REFERENCE SYMBOL ERTH_ELNO_ELEM  
SEQUENCE NUMBER: 3 INST: 5.00000E+00  
M1 ERTABS ERTREL TERMNO  
TERMVO TERMV2 TERMV1  

file:///Z|/process/refer/refer/p1460.htm (16 of 23)10/2/2006 2:53:30 PM



file:///Z|/process/refer/refer/p1460.htm

TERMSA TERMS2 TERMS1  
TERMFL TERMF2 TERMF1  
TERMEC TERME2 TERME1  
N1 0.5863E-05 0.2005E-04 0.2923E+02  
0.3539E-05 0.0000E+00 0.0000E+00  
0.2217E-05 0.1006E-04 0.2205E+02  
0.4384E-06 0.3886E-05 0.1128E+02  
0.4591E-06 0.5755E-05 0.7977E+01  
N3 0.5863E-05 0.2005E-04 0.2923E+02  
........  
 
Example 6.3-2: Layouts, via IMPR_RESU, of the components of the field symbolic system  
“ERTH_ELEM_TEMP”/“ERTH_ELNO_ELEM” in the file result  
Handbook of Reference  
R4.10 booklet: Estimator of error a posteriori  
HI-23/02/014/A  

Code_Aster ®  
Version  
6.0  
 
Titrate:  
Indicator of error in residue for transitory thermics  
 
Date:  
03/06/02  
Author (S):  
O. BOITEAU Key  
:  
R4.10.03-A Page  
: 54/60  
 
 
·  
One can also trace the values of each one of these components in the file message  
(.MESS) by initializing the key word INFORMATION to 2. However this functionality rather reserved 
for  
developers (for maintenance or of the pointed diagnoses) also revealed  
complementary impressions (documented but too exhaustive) on the elements  
constituting the indicator and the characteristics of the finite elements and their vicinities.  
 
TE0003 **********  
NOMTE/L2D THPLTR3/T  
RHOCP 2.0000000000000  
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ORIENTATION NETS 1.0000000000000  
...  
---> TERMVO/TERMV1 1.2499997764824 1.2499997764826  
>>> CURRENT MESH <<< 3 TRIA3  
DIAMETER 3.5355335898314D-02  
EDGES OF THE TYPE SEG2  
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>  
 
NUMBER Of ARETE/HF 1 2.4999997764826D-02  
A NUMBER OF SUMMITS 2  
CONNECTOR INDUSTRY 1 2  
XN 0.59999992847442 0.59999992847442  
YN -0.80000005364418 -0.80000005364418  
JAC 1.2499998882413D-02 1.2499998882413D-02  
<<< CLOSE MESH 2 QUAD4  
IGREL/IEL 1 2  
INOV LOCAL/GLOBAL 2 5  
....  
*********************************************  
TOTAL ON MESH 2  
ABSOLUTE ERROR/RELATIVE/MAGNITUDE  
TOTAL 0.5900D-03 0.1079D- 03% 0.5466D-03  
VOLUMINAL TERM 0.1768D-01 0.1000D- 03% 0.1768D-01  
TERM JUMP 0.5882D-03 0.1080D- 03% 0.5448D-03  
TERM FLOW 0.0000D+00 0.0000D+ 00% 0.0000D+00  
TERM EXCHANGE 0.0000D+00 0.0000D+ 00% 0.0000D+00  
*********************************************  
 
Example 6.3-3: Layout, via INFO=2, in the file message  
 
Note:  
 
·  
When the term of standardization is null (a certain type of loading or source is null,  
as it is the case in the examples [Example 6.3-1] and [Example 6.3-2] above with  
voluminal term), one does not calculate the term of relative error associated. There remains initialized 
to zero.  
·  
Moreover, to calculate indeed the absolute error relating to a null limiting condition (one  
flow or a condition of exchange) it should be imposed as a function via  
the AFFE_CHAR_THER_F adhoc. And this for simple data-processing contingencies, which make  
that with a constant loading, one cannot make the distinction between:  
- null limiting condition “the user imposes zero on this portion of border and he wants  
to test the associated absolute error,  
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- null limiting condition “it does not have there limiting conditions on this edges,  
·  
Tests of not-regression “numérico-data processing” showed that the manner of  
to model the loadings and the source, as constants or functions, could  
to especially influence notably the values of very small terms of error (in relative error well  
sure) and to worry the user unnecessarily. This phenomenon is explained by differences of  
codings of the discretized loadings [éq 5-2]. This type of behavior is found too  
as soon as one changes linear solvor, preconditionnor, method of renumerotation,  
of platform…  
·  
In hover, when one uses a nonnull source with linear finite elements, it  
term principal is very badly estimated since it requires a double derivation of the field of  
temperature. An ALARM thus warns the user and the enjoint to pass into quadratic.  
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6.4 Perimeter  
of use  
 
This indicator was developed, for the moment, only on the isoparametric elements  
(TRIA3/6, QUAD4/8/9, TETRA4/10, PENTA6/13/15 and HEXA8/20/27) and for modelings  
PLAN, PLAN_DIAG, AXIS, AXIS_DIAG, 3D and 3D_DIAG. It thus does not calculate the 
contributions of  
elements of structure of the type hull (COQUE_PLAN, COQUE_AXIS, HULL), of the pyramids  
(PYRAM5 and PYRAM13) and of the modeling of Fourier (AXIS_FOURIER). It does not allow either  
to calculate the terms of jumps of these elements with the authorized elements. However, if a grid  
comprise licit and illicit elements, calculation does not stop and, via OPTION 2 in  
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the suitable catalogues of elements, one warns the user of not taken into of the aforesaid account  
elements.  
Indeed to carry out this postprocessing, it is necessary as a preliminary to call, explicitly, the option  
“FLUX_ELNO_TEMP” (calculation of the vector heat flux to the nodes) and, implicitly,  
“INIT_MAIL_VOIS” (determination of the characteristics of the vicinity K of an element K). One is  
thus tributary of their respective perimeters of use.  
 
It is also necessary to keep in mind some more minor rules but which can cover one  
very particular importance for very precise studies:  
 
1) The calculation of the indicator treats only the elements of the grid pertaining to the model  
indicated by the MODEL key word of order CALC_ELEM. One can thus work with  
grids (not cleaned) comprising “meshs of outline” to which one allots one  
different model.  
2) In  
one  
grid in dimension Q, one calculates the terms of jump and loading, only  
on elements of skin of dimension q-1. Therefore, the relations of the TRIA/QUAD are treated  
with the SEG and relations TETRA/PENTA/HEXA with the FACE. For example, in the event of  
presence of segments in a three-dimensional grid, the option will not stop but it  
will not take into account their (possible) contributions.  
3) Preliminary option “ERTH_ELEM_TEMP” and its options do not know the PYRAM.  
Their contributions will be ignored. This gap comes from their introduction into  
Code_Aster more recent than those of the already quoted preliminary options.  
 
Note:  
 
In any event these elements are minority in a grid 3D and are not  
generated that by the voluminal free maillor of GIBI, which creates some locally for  
to supplement portions of grids hexahedral.  
 
4) In  
2D,  
one should not accidentally intercalate a segment between two triangles or  
quadrangles, if not the term of jump of these elements will not be calculated and one will enquérira 
oneself with  
wrong of the existence of a possible limiting condition. Calculation will not stop but with  
this interface, the value of the indicator will be incomplete. However, for needs  
private individuals (charging density internal and localised in a structure, fissures…), one  
can of course allow this kind of situation. In 3D, the problem arises of course too  
when one intercalates quadrangles or triangles between two FACE contiguous.  
5) the same type of imbroglio occurs when two points of the grid are superimposed  
geometrically. There still, calculation should not stop, but the value of  
the indicator will be incomplete on the level of this zone of covering,  
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6) If one works with a grid which results from operations of symmetrization, it is necessary to test  
not to be in the two preceding cases of figures. Moreover, on both sides of  
the axis of symmetry, the close meshs do not have inevitably (with in particular the maillor  
GIBI) of the orientations which meet the standard of Code_Aster (they should be  
reversed). The calculation of the indicator, for which this information is crucial (to define them  
external normals with each mesh and the connector industries in opposite), detects the problem in  
calculating the jacobien each mesh. In 2D, an algorithm of substitution allows  
to circumvent the problem and to rebuild the tables of connector industry “nodes of the element  
running nodes of its neighbors”. In 3D, the problem is much more difficult and private individual with  
each element, the code thus stops in ERREUR_FATALE in the event of problem.  
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7) If one wants to refine or déraffiner his grid with MACR_ADAP_MAIL [U7.03.01], it  
grid should comprise only triangles or tetrahedrons. Concerning the loadings  
surface or voluminal, the “good practice” consists in using only groups of  
meshs. If groups of nodes are used, one must expect distorted calculations, because  
after some refinements, other points will have probably fit  
geometrically in the zone concerned with the GROUP_NO without seeing itself affecting one  
unspecified loading (one cannot modify the composition of a GROUP_NO in the course of  
session!).  
For specific loadings or points of statement (on which go, for example,  
to rest POST_RELEVE_T) the GROUP_NO is licit. On the other hand, it is not advised  
to directly use meshs (MA) or nodes (NO) (apart from group), because in it  
case, to the liking of the renumérotations, LOBSTER probably will lose their trace. It cannot  
to preserve the memory of the meshs or the nodes that through a name of GROUP_MA or of  
GROUP_NO. Thanks to this mechanism, it can adopt a Lagrangian vision of becoming of  
these meshs or of these points!  
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The calculation of the indicator takes place indifferently on a EVOL_THER coming from  
THER_LINEAIRE or of THER_NON_LINE, stationary or transitory, isotropic or orthotropic, and,  
on a motionless structure with a grid by elements answering the preceding criteria.  
 
Into non-linear one takes into account non-linearities of materials and the modification of the problem 
in  
enthalpy. However one does not treat the possible contributions of non-linear loadings  
(FLUX_NL and RADIATION). The user is informed by it by an ALARM, just like it is informed  
not taken into account of a limiting condition of type ECHANGE_PAROI. Indeed, into linear one  
recognizes, for the moment, that the contributions of the loadings SOURCE, FLUX_REP and 
EXCHANGE. For  
the taking into account of these loadings, of the particular rules of overload are applied  
(cf [§6.2]).  
 
6.5 Example  
of use  
 
To familiarize itself with the use of this indicator in thermics and its possible coupling with  
the encapsulation of HOMARD® (for more information, one will be able to consult the site  
http://www.code-aster.com/outils/homard) via MACR_ADAP_MAIL [U7.03.01] one can  
to take as a starting point this expurgée version of the case test TPLL01J [V4.02.01]. It is however only 
about one  
case data-processing test of not-regression putting forward the use of certain functionalities of  
new process control language PYTHON (buckles, test…).  
 
MATERI=DEFI_MATERIAU (THER=_F (LAMBDA = 0.75, RHO_CP = 2.0))  
M= [None] *5  
MAIL=LIRE_MAILLAGE ()  
 
# initial Grid  
M [1] =DEFI_GROUP (reuse=MAIL, MAILLAGE=MAIL,  
CREA_GROUP_NO=_F (TOUT_GROUP_MA = “YES”))  
 
# Vecteurs results has each iteration  
MODE= [None] *4  
MATE= [None] *4  
CHA1= [None] *4  
RESU= [None] *4  
 
# Buckles indicating calculation/mending of meshes; PYTHON makes 3 iterations  
for K in arranges (1,4):  
 
# Assignment of materials/model/loading  
SUBDUE [K] =AFFE_MATERIAU (MAILLAGE=M [K],  
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AFFE=_F (ALL = “YES”, MATER = MATERI))  
MODE [K] =AFFE_MODELE (MAILLAGE=M [K],  
AFFE=_F (ALL = “YES”, MODELING = “3D”,  
PHENOMENON = “THERMAL”))  
CHA1 [K] =AFFE_CHAR_THER (MODELE=MODE [K],  
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TEMP_IMPO=_F (GROUP_NO = “F1INF”, TEMP = 100.),  
FLUX_REP=_F (GROUP_MA = “FLOW”, FLUN = -1200.),  
ECHANGE=_F (GROUP_MA = “ECHA”, COEF_H = 30. ,  
TEMP_EXT = 140.))  
 
# Calculation thermal  
RESU [K] =THER_LINEAIRE (MODELE=MODE [K],  
CHAM_MATER=MATE [K],  
EXCIT=_F (LOAD = CHA1 [K]))  
 
# Calculation of the indicator of error  
RESU [K] =CALC_ELEM (reuse=RESU [K], MODELE=MODE [K],  
TOUT=' OUI',  
CHAM_MATER=MATE [K], RESULTAT=RESU [K],  
EXCIT= _F (CHARGE= CHA1 [K]),  
PARM_THETA=0.57,  
OPTION= (“FLUX_ELNO_TEMP”, “ERTH_ELEM_TEMP”, “ERTH_ELNO_ELEM”))  
 
# Subtlety PYTHON to define the new grid  
M [k+1] =CO (“M_%d' % (k+1))  
 
# Adaptation of the grid while basing itself on component ERTABS of  
# ERRE_ELEM_TEMP of RESU [K].  
# Old grid: M [K]. Grid refines: M [k+1]  
# MACR_ADAP_MAIL (ADAPTATION=_F (  
MAILLAGE_N = M [K],  
MAILLAGE_NP1 = M [k+1],  
RESULTAT_N = RESU [K],  
INDICATOR = “ERTH_ELEM_TEMP”,  
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NOM_CMP_INDICA = “ERTABS”))  
 
Example 6.5-1: Expurgé of the command file of case-test TPLL01J  
 
In this other example extracted Internet site of HOMARD®, coupling  
ERTH_ELEM_TEMP/MACR_ADAP_MAIL [U7.03.01] simulates the circulation of a “hot” fluid of 
share and  
of other of a metal part bent (in top and bottom, via a condition of EXCHANGE depend on  
time in AFFE_CHAR_THER_F). The circulation of the fluid is carried out left towards the line.  
The precision is especially necessary at the ends of the structure, on the level of the propagation of the 
fluid:  
thanks to the indicating coupling of error/tool of refinement-déraffinement, the grid thus remains fine in  
edge of part, in the zone where concentrates the “hot” fluid. Finally it is déraffiné with the back, one  
time that the fluid passed.  
It is also noted that, as envisaged by the theory (cf remarks [§2.2]), the resolution of the problem  
thermics “is blunted” in the returning corners and that the indicator of error (although it is him  
also penalized in these zones) this established fact announces (even when the part cooled).  
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Example 6.5-2: Use of option “ERTH_ELEM_TEMP” coupled with LOBSTER  
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7  
Outline conclusion  
 
During digital simulations by finite elements, obtaining a rough result is not sufficient any more.  
The user is increasingly petitioning of space error analysis compared to the grid.  
He has need for support methodological and pointed tools “numériquo-data processing” to measure  
the quality of its studies and to improve them.  
To this end, the indicators of space error a posteriori make it possible to locate, on each element,  
a cartography of error on which the tools of mending of meshes will be able to rest: a first  
calculation on a coarse grid makes it possible to exhume the chart of error starting from the data and of  
solution discretized (from where the term “a posteriori”), refinement is carried out then locally in  
treating on a hierarchical basis this information.  
The new indicator a posteriori which has been just established post-to treat the thermal problems of  
Code_Aster is based on their local residues extracted the semi-discretizations in time. Via the option  
“ERTH_ELEM_TEMP” of CALC_ELEM, it uses the thermal fields (EVOL_THER) emanating from  
THER_LINEAIRE and of THER_NON_LINE.  
This new indicator supplements the offer of the code in term of advanced tools making it possible to 
improve  
quality of the studies, their mutualisations and their comparisons. Indeed, of the indicators of error in  
mechanics and macro of refinement/déraffinement MACR_ADAP_MAIL [U7.03.02] is already  
available. It remains to supplement the perimeter of use of these tools and, to pack them, in particular 
for  
to better manage non-linearities and the interactions space error/temporal error.  
 
Note:  
 
Estimator by smoothing of constraints of Zhu & Zienkiewicz (CALC_ELEM + OPTION  
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“ERRE_ELEM_NOZ1/2” [R4.10.01]) and indicator in pure residue (“ERRE_ELGA_NORE”  
[R4.10.02]).  
 
Thereafter, the prospects for this work are several orders:  
 
·  
From a functional point of view, the complétude of this indicator could also improve in  
taking into account possible nonlinear limiting conditions (FLUX_NL and RADIATION)  
and of the exchanges between walls (ECHANGE_PAROI). In the long term, it would also be necessary 
to be able to rest  
on finite elements of structure (hull…), of the pyramids and capacity to deal with problems  
of convection-diffusion (operator THER_NON_LINE_MO [R5.02.04]).  
·  
From a theoretical point of view, when new limiting conditions are used and/or when one  
be based on new modelings (hull, beam…), a study  
“numériquo-functional calculus” similar to that of this document, should be carried out to judge  
theoretical and practical limitations (with respect to Code_Aster) of such an indicator and to exhume  
its adhoc formulation.  
·  
Let us recall finally that a string of indicators of error a posteriori are available, and,  
that enough little was tested and validated on industrial cases. In order to refine diagnoses,  
to establish comparisons and to set up strategies of mending of meshes per class of  
problem, it would be interesting to pack the list of the indicators available. Different  
indicators in residue plus local problem thus appeared more effective (but also more  
expensive) during numerical tests (into elliptic) in N3S [bib5].  
 
Note:  
 
The indicator is the standard of the solution of a local, of the same problem standard than it  
problem initial, but discretized on spaces of higher degree and of which the second  
member is the residue. According to the limiting conditions affixed with this local problem, one  
in distinguishes from various types. They thus mix the vision “bases hierarchical” and them  
aspects “residue” of the indicators of error a posteriori.  
 
·  
The ideal consists in discretizing simultaneously in time and space on finite elements  
adapted and to control their “space-time” errors in a coupled way. This  
“space-time” indicator gives access to a complete control of the error and it allows  
to avoid unfortunate decouplings as for possible refinements/déraffinements  
controlled by a criterion with respect to the other (cf discussion [§4.5]). It is however very heavy with  
to set up in a large industrial code such as Code_Aster. It supposes indeed, for  
to be optimal, nothing less than one separate management step of time by finite elements. What  
from the point of view of architecture supporting the finite elements of the code is true  
challenge!  
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Indicators of discharge and loss of 
proportionality of the loading in elastoplasticity 
Summary 
One presents a whole of scalar parameters called indicators, allowing to appreciate a loss of 
proportionality of a loading during its history. Two types of indicators are proposed:  
indicators being appeared as scalar fields allowing to detect the zones of the structure 
undergoing nonradial discharges or loadings, and total indicators integrated on a zone of 
the structure chosen by the user. The latter are more especially intended for the evaluation of the 
validity of 
rate of refund of energy in nonlinear breaking process. 
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1 Introduction 
1.1  
Definition of a loading proportional 
Considering a structure subjected to a thermomechanical loading in the interval of time [0, T] 
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it will be said that this loading is proportional (or radial) with the material point P if the field of 
constraint represented in this point by the tensor is proportional to a tensor independent of 
the moment considered, the proportionality factor being a monotonous function of time. 
Formally, that will be expressed by: 
[0, T], (P,) =  
(  
) 
(P),  
() > 0 
0 
monotonous function in [0, T]. 
This definition implies, in particular, that the principal directions of the constraints remain constant, 
at the point considered, throughout the way of loading (these directions can be of course variable 
of a point with another). 
1.2  
Importance of the loading proportional and utility of indicators 
For plastic materials, the mechanical fields depend on all the history run out during 
the way of loading. The laws of flow thus have an incremental character and their integration 
depends on each case of loading. A notable exception precisely relates to the loading 
proportional for which the law of flow can be integrated once and for all. For example, the law 
of plasticity of Prandtl-Reuss based on the criterion of Von Mises can be replaced by a law 
nonlinear rubber band (called law of Hencky-Settings). Cases of loading strictly proportional 
are rather rare. Indeed, it is necessary to fill a great number of conditions to carry out such a case 
[bib1] 
and these last are seldom checked for the industrial structures. One can even say that 
for structures presenting of the geometrical defects such as cracks, these conditions are not 
never strictly checked. 
When the loadings are multiaxial, cyclic, or thermomechanical transients, some 
sections of the way of loading can be strongly nonproportional. It is then useful to locate 
these sections and to evaluate the importance of the loss of proportionality, so for example adjusting 
discretization in time of the elastoplastic problem for the section considered, or to measure the validity 
certain postprocessings (in breaking process for example). 
1.3  
Various types of indicators of loss of proportionality 
It seems difficult to define a single and simple size which could detect at the same time zones 
space of loss of proportionality and the sections of way of loading (temporal zones) 
in a material point. This is why we propose four scalar sizes having each one them 
specificity: two, defined by fields measuring in each point the discharge and the deviation of 
constraints between two steps of time (indicating buildings), two others of more total nature, 
characterizing in a given zone of the structure a history of loading nonproportional. 
Handbook of Reference 
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2 Indicators  
buildings 
The goal of these indicators is to determine the zones of the structure where, at one particular 
moment, occurs 
that is to say a discharge or a loss of radiality of the stress field. They are produced in 
postprocessing of a static or dynamic calculation, 2D or 3D, using a law of behavior 
rubber band or not. They are appeared as fields of scalars whose examination can  
to be carried out by tracing their isovaleurs by a graphic post-processor. 
2.1  
Indicator of discharge 
This indicator measures at the point M and between the moment T and T + T 
, relative variation of the standard of 
(M, T + T 
) - (M, T) 
constraints within the meaning of Von Misès. It is written formally: I1 = 
 
. This 
(M, T + T 
) 
quantity is negative in the event of local discharge at the point Mr. the standard (M, T) can be written 
four ways different according to the choice from the modelisator: 
3 
1)  
(M, T) 
D.D 
= 
, where D is the deviatoric part of the tensor of the constraints (this 
2 
standard is useful in plasticity with isotropic work hardening). 
3 
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2)  
(M, T) = 
. , where one considers the totality of the tensor of the constraints in order to detect by 
2 
example pressure decreases hydrostatic. 
3 
3)  
(M, T) 
(D X). (D 
= 
- 
- X), with X the tensor of the constraint of recall in 
2 
case of an elastoplastic law with a kinematic work hardening. 
3 
4)  
(M, T) = 
(- X). (- X) 
2 
2.2  
Indicator of loss of radiality 
This indicator measures at the point M and between the moment T and T + T 
, variation of the direction of 
constraints. It is written: 
(M, T). 
I2 = 1 
, where the scalar product “. ” is associated the one of the four standards 
(M, T)  
the preceding ones. This quantity is null when the radiality is preserved during the increment of time. 
Note: 
These indicators are closely related to the discretization in time of the problem. In particular, if 
this discretization is too coarse, one can not detect the discharge or the loss very well of 
radiality occurring during the increment of time. 
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3 Indicators  
total 
These indicators are intended to detect if, during the history of the structure and until the moment 
current T, and for a zone of the structure chosen by the modelisator, there was loss of proportionality 
loading (these indicators thus leave a trace of the history contrary to the indicators 
buildings which are instantaneous). They are only usable within the framework of a behavior 
elastoplastic with isotropic work hardening (in 2D or 3D). 
3.1  
Indicator on the parameters of plasticity 
This quantity allows, in the case of the plasticity of Von Mises with isotropic work hardening, on the 
one hand 
of knowing (on average on a zone S of the field) if constraints and deformations 
plastics have the same directions and if the plastic threshold is reached at the current moment, and in 
addition if 
during the history the plastic deformation changed direction. This quantity is written: 
p 
1 
. 
I = 
1 
( - 
) D 
3 
 
 
 
S 
 
( 
, 
+ R (p)) p 
S 
Y 
where Y is the initial plastic threshold, R the extension of the surface of load related to work 
hardening and p 
cumulated plastic deformation. The scalar product is associated the standard within the meaning of 
Von Misès. This 
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indicator is standardized and has a value ranging between zero and one. It is null if the loading has 
preserved its character proportional in each point of S throughout the past history. 
Notice 1:  
The indicator is not affected if during the history, there were discharges then refills 
rubber bands without change of direction of the constraints when one reconsiders the threshold 
(cf [Figure 3.1-a]). 
(Pt) = (Pt 
1 
2 ) 
(pt1) 
(pt2) 
Y 
Y + R (p) 
I3 = 0 
I3 0 
Appear 3.1-Error! Argument of unknown switch. : Way of loading between T1 and t2 
in the plan deviatoric of the constraints 
Notice 2: 
In the formulation of this indicator three ingredients related to plasticity intervene: 
· the variation enters the direction of the constraints and the current plastic deformations 
(. p 
p 
 
), 
· the position of the constraints compared to the current threshold (  
( 
+ ( )) 
Y 
R p), 
· the variation enters the standard of the current plastic deformation and the cumulated plastic 
deformation 
(p p). 
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A loss of proportionality could occur during the history without the indicator not detecting it 
via the first two ingredients (i.e. one can have at the end of the loading 
coincidence of the directions of the constraints and the plastic deformations and being on the plastic 
threshold). 
On the other hand, there will be p p, and the indicator will be obligatorily higher than zero, 
consequently 
the user will be informed loss of proportionality. 
Notice 3: 
If the indicator detects obligatorily a loss of proportionality in a zone, in 
practical it is necessary that the latter not contains sufficient material points with loading 
proportional. Indeed, if one chooses a very vast zone with few points concerned, 
standardization of the indicator carried out with division by the volume of the zone implies some 
“crushing” towards zero of the value of the quantity. Typically, for a structure containing 
a defect source of nonproportionality, one may find it beneficial to choose a zone of integration 
S surrounding the defect with a weak vicinity in order to obtain a significant value of 
the indicator. 
3.2 Indicator  
energetics 
This indicator with the same function that the precedent, but is founded on the density of energy. It is 
written: 
1 
 
I = 
1 
( - 
) D 
4 
 
 
S S 
 
, 
T 
where is the density of deformation energy defined by: (T) = 
. 
! D, and is the density 
0 
of elastic energy associated the traction diagram if nonlinear elastic material were considered. 
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More precisely, this quantity is written: 
1 
2 
2 
µ 
((T)) = Ktr () + 
2, if < (+ R 
Y 
(p), 
2 
3 
1 
2 
2 
R 
(P) 
 
P 
((T)) = Ktr () + 
+ 
R Q 
2 
6 
() dq, if = (+ R 
Y 
(p), 
µ 
0 
with K the module of compressibility, µ the coefficient of shearing of Lamé, R the threshold of 
traction diagram associated with the standard with the plastic deformation P 
p 
= (this one can be different 
true plastic threshold, because P p if the loading is nonproportional). This indicator is  
also standardized between 0 and 1. It is null for a loading having always kept its character 
proportional (=). 
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4  
Environment of use of the various indicators 
The indicators presented here are usable in postprocessing of a mechanical calculation and are 
available for the finite elements of the continuous mediums in 2D (mode of plane deformations, 
constraints plane or axisymmetric, triangular or quadrangular meshs) or 3D (meshs 
hexahedral, tetrahedral, pentaedric or pyramids). Telegraphic elements, beams, plates and 
hulls are excluded from this application. 
4.1 Indicators  
buildings 
These indicators are accessible after a static or dynamic calculation whatever the law from 
behavior of material. Operator CALC_ELEM presents options “DCHA_ELGA_SIGM” and 
“DCHA_ELNO_SIGM” for the indicator of I1 discharge evaluated with the nodes or the points of 
Gauss of 
the element, and options “RADI_ELGA_SIGM” and “RADI_ELNO_SIGM” for the indicator of loss 
of 
radiality I2 evaluated with the nodes or the points of Gauss of the element [bib2]. The key word 
STANDARD allows 
to use one of the four standards described in paragraph 2.1, two last being used only if 
one carried out as a preliminary an elastoplastic calculation with kinematic work hardening. 
4.2 Indicators  
total 
These indicators are accessible only after one elastoplastic calculation with isotropic work hardening. 
Operator POST_ELEM presents options “INDIC_SEUIL” and corresponding “INDIC_ENER” 
respectively with the total indicators I3 and I4. Those are evaluated on a group of mesh 
previously defined by the user (for example by order DEFI_GROUP). 
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Algorithm of resolution for the problem 
generalized 
Summary 
In this document, we present the algorithms of resolution for the generalized modal problems which 
are established in Code_Aster via operators MODE_ITER_INV and MODE_ITER_SIMULT: 
· method of the iterations opposite, 
· method of Lanczos, 
· the method WILL GO (known as of “Sorensen”), 
· method of Bathe & Wilson. 
One gives to the reader the properties and the limitations, theoretical and practical, of the modal methods 
approached 
while connecting these considerations, which can sometimes appear a little “éthérées”, to a precise 
paramètrage of 
operators. For each method, one recapitulates in the form of tables the aforementioned paramètrage with 
his values by 
defect and of the references to the paragraphs of the document. 
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1  
Introduction - Description of the document 
A majority of study concerning the dynamic behavior of structures are carried out in 
carrying out a transitory analysis on modal basis. To exhume these modes of vibrations, one 
string of algorithms were developed since about fifty years. In order to face 
continual increase in the size of the problems and with the degradation of conditionings of 
the discretized operators, only most effective and most robust, in practice, were built-in 
in the two modal operators of Code_Aster. 
The optimal perimeters of use of these operators can be dissociated. When it is about 
to determine some eigenvalues (typically a half-dozen) or to refine some  
estimates, operator MODE_ITER_INV is completely indicated. He gathers algorithms 
heuristic and those of type powers (cf [§3]). 
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On the other hand, to capture a significant part of the spectrum, one A resorts to 
MODE_ITER_SIMULT. 
This last federates the methods known as of “subspace” (Lanczos [§4], [§5], IRAM [§6], Bathe & 
Wilson 
[§7]) which projects the operator of work in order to obtain an approximated spectrum of more reduced 
size (treated 
then by a total method of type QR or Jacobi). 
Until now, these algorithms stumbled regularly on the same shelves: detection 
correct of multiple modes, modes of rigid body and a general way, treatment of 
packed spectrum. All this led to the appearance of “phantom” modes sometimes badly easy to detect 
(modes corresponding to multiplicities missed and being able to generate correct residues with the 
direction 
of Aster, and this, more especially as the criteria of the post-modal checks were sometimes permissive 
(residue in 102 instead of 106 current), decontaminated even insufficient (test of Sturm limited to the 
values 
clean positive) which causes distortions of results downstream from calculation, during projections on 
base modal. 
To be been free from the recurring problems to this type of approach, one thus proposed to enrich 
MODE_ITER_SIMULT (starting from V5) of the algorithm WILL GO (“Implicit Restarted 
Arnoldi” [§6]). This 
alternative of Arnoldi, initiated by D.C. Sorensen in 1992, makes real great strides for the resolution of 
large 
modal systems on parallel supercomputers. 
It tries to bring an elegant remedy for the recurring numerical problems raised by the others 
approaches. In short, IRAM gets a better total robustness In V5, it made it possible to balance 
all of software anomalies related to the modal problems generalized (in V5, it allowed 
to balance all software anomalies related to the modal problems generalized) while improving 
complexities calculation and memory for a fixed precision, and, it allows a real control on 
quality of the modes via a suitable paramètrage. Its use (method by defect in 
MODE_ITER_SIMULT) is thus with advising in all the cases of figures. 
This document is articulated around the following parts: 
· initially, one recalls the context of modal calculation in Code_Aster to 
through matrices and limiting conditions used, particular properties of modes 
clean exhumed and of the difficulties of estimate of the spectrum. One recapitulates also what it is 
necessary 
to know with minima about the spectral transformations, the families of modal algorithms and 
on the broad outline of the course of a modal calculation in the code, 
· in the second time, one describes the method of the powers opposite and its phases 
preliminaries of localizations of eigenvalues (method of bisection and the secant) 
installations in MODE_ITER_INV, 
· the third part treats the framework general of the methods of subspace installation in 
MODE_ITER_SIMULT. One details in particular the implications of the choice of the shift and the type 
of 
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subspace of projection in the paramètrage of the operator, 
· the three following chapters show, in the order, the three methods of this operator: 
Lanczos, IRAM and Bathe & Wilson, 
· in the appendices one approaches more in details of the processes “of second level” to which make 
call three preceding methods. It is about the algorithms QR and Jacobi which are known as 
general practitioners because they allow to capture all the spectrum of an operator. The first, 
algorithm QR, is fundamental because it intervenes in the majority of the methods. It is 
the algorithm of reference which offers a very great robustness but calculation complexities and 
memory prohibitory. One approaches also the various algorithms of orthonormalisation put in 
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place in the code. Indeed, one will cease hammering, throughout this document, only 
their quality and their robustness are crucial for the good unfolding of the algorithms. 
This last version of the document was almost entirely rewritten while taking as a starting point the the 
indices 
written precedents, respectively by D. Seligmann [R5.01.01] index A and B. Quinnez [R5.01.01] 
index B, this in order to try to approach the code while clarifying more in details them 
characteristics of the methods and the subjacent numerical phenomena. A particular effort was 
brought to put in prospect the choices led in Code_Aster compared to research, 
passed and current, like clarifying the general philosophy of a modal calculation. 
One gives to the reader the properties and the limitations, theoretical and practical, of the modal methods 
approached while connecting these considerations, which can sometimes appear a little “éthérées”, to one 
precise paramètrage of the operators. For each method, one recapitulates in the form of tables the 
aforementioned 
paramètrage with its default values and of the references to the paragraphs of the document. 
At the time of the first passages, one strongly engages the user has to modify only the parameters 
principal noted in fat in these tables and with reading the traces of the file message. Others, 
concerning more the mysteries of the algorithms, were initialized empirically with values 
standards. 
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One tried constantly to bind different the items approached and to limit to the bare minimum the recourse 
with long mathematical demonstrations. In any event, the many references which enamel 
the text must make it possible to seek precise information. 
The object of this document is not to detail all the aspects approached, of the complete works having 
already fulfilled this mission. One will quote in particular F. Chatelin [bib3], G.H. Golub [bib6], P. 
Lascaux 
[bib11], B.N. Parlett [bib18] and Y. Saad [bib32], and one recommend the synthesis particularly 
brought up to date and exhaustive made by J.L. Vaudescal [bib23]. 
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2 Context 
2.1 Problems 
We consider the problem generalized with the eigenvalues: 
To find (, U) such as A U = B U, U 0, where A and B are symmetrical matrices with coefficients 
realities. This type of problem corresponds, in mechanics, in particular with: 
· The study of the free vibrations of a not deadened and nonrevolving structure. For this 
structure, one seeks the smallest eigenvalues or those which are in one 
interval given to know if an exiting force can create a resonance. In this case, 
stamp A is the matrix of rigidity, noted K, (possibly increased matrix of 
geometrical rigidity noted kg, if the structure is prestressed) and B is the matrix of mass 
or of noted inertia Mr. the eigenvalues obtained are the squares of the associated pulsations 
at the sought frequencies. 
The system to be solved can be written: (K + kg) U = 2 M U where =  
2 F is the pulsation, 
F the Eigen frequency and U the vector of associated clean displacement. 
· The search for linear mode of buckling. Within the framework of the linearized theory, in 
supposing a priori that the phenomena of stability are suitably described by 
system of equations obtained by supposing the linear dependence of displacement by report/ratio 
at the level of critical load, the research of the mode of buckling U associated on this level with 
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critical load, is brought back to a problem generalized to the eigenvalues of the form:  
(K+ kg) U = 0 with K stamps rigidity and kg stamps geometrical rigidity. 
Note: 
· this type of generalized modal problem is treated in Code_Aster by two operators: 
MODE_ITER_INV and MODE_ITER_SIMULT. Each one having its perimeter of application, its 
functionalities and its limitations, 
· in V5, the user can specify the class of membership of its calculation by initializing it 
key word TYPE_RESU with “DYNAMICS” (default value) or with “MODE_FLAMB”. The posting of 
results will then be formatted by taking account of this specificity. In the first case one 
will speak about frequencies whereas in the second, one will speak about critical load, 
· in the presence of depreciation and of gyroscopic effects, the study of dynamic stability 
of a structure leads to the resolution of a modal problem of a nature higher, known as quadratic: 
(K +i C-2 M) U = 0. It is solved by the two modal operators and is the object 
of a specific note [R05.01.02]. 
Now that bonds between the mechanics of the structures and the resolution of modal problems 
generalized were recalled, we will be interested in the treatments of the conditions limit in 
code and with their incidences on the matrices of mass and rigidity. 
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2.2  
Taking into account of the limiting conditions 
There are two ways, during the construction of the matrices of rigidity and mass, to take into account 
the boundary conditions (this description in dynamic term of problem is extrapolated easily with 
buckling): 
·  
double dualisation, by using ddls of Lagrange [R3.03.01], makes it possible to check 
C U = 0 (CLL for Linear Limiting Condition), 
with C stamps real of size p X N (K and M are of order N). Matrices of rigidity and of 
mass dualized have the form then 
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K 
CT 
CT  
M 0 0 
~ 
 
 
~ 
 
 
K = C - Id 
Id  
M = 0 0 0 
 
C Id - Id 
 
0 0 0 
with and strictly positive realities which will be initialized to 1 without that involving a loss 
of general information. 
The dimension of the problem was increased by 2p, because to N ddls known as “physics”, one has 
added ddls of Lagrange. There are two ddls of Lagrange by linear relation assigned to p 
limiting conditions. 
· The setting has zero of p lines and columns of the matrices of rigidity and mass. This is not 
valid that for blockings of ddls. One cannot take into linear account of relation 
and one will speak about kinematic blocking (CLB for Limiting Condition of Blocking). Matrices 
of rigidity and mass become: 
~ 
K 0  
~ 
M 0 
K =  
 
M =  
 
0 Id 
0 0 
The dimension of the problem remains unchanged but it is however necessary to withdraw the 
participations of 
ddls blocked with the components of the initial matrices (K is obtained starting from K in 
eliminating the lines and the columns from the ddls which are blocked; idem for M). 
When limiting conditions are imposed, the number of eigenvalues (with all their multiplicities) 
really implied in physics (with the flat of modeling close (grid, frequency of 
rupture…) phenomenon is thus lower than size N of the transformed problem: 
3p' 
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·  
N 
= N - 
with p'= 2 p 
ddl - active 
(double dualisation), 
2  
·  
N 
= N - p 
ddl-credits 
(kinematic blocking). 
 
Framed below the posting dedicated to these parameters in the file message shows. 
------------------------------------------------------------------------ 
THE NUMBER OF DDL 
TOTAL EAST: 220 N 
LAGRANGE EAST: 58 p'= 2p 
THE NUMBER OF ACTIVE DDL EAST: 133 nddl_actifs 
----------------------------------------- 
Example 1: Management of the ddls 
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In addition, in the modal calculation algorithms, one must ensure oneself of the membership of the 
solutions with 
acceptable space. One brings back oneself there via auxiliary treatments. Thus when blockings are used 
kinematics (CLB), it is necessary in the various algorithms and for each iteration, to use a vector “of 
positioning " ubloq, defined by: 
· if  
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ième ddl is not blocked ubloq (I) = 1, 
· if not  
ubloq (I) = 0, 
u1 (I) = u0 (I). U 
(I) (I =… N 
bloq 
) u1 
1 
If one uses the method of double dualisation, one needs a vector of positioning of the ddls for 
lagrange ulagr definite like ubloq. It is only used at the time of the choice of the random initial vector. 
So that this vector u0 checks the conditions limit (CLL) one operates in the following way: 
u1 (I) = u0 (I). U 
(I) (I = 1… N 
lagr 
) u2 
~ 
K u2 = u1 
Thereafter, to simplify the notations, we will not make the distinction between the initial matrices and 
theirs 
hanging dualized (noted with a tilde) that if necessary. Very often, they will be indicated by A 
and B in order to approach the usual modal notation without being attached to such or such class of 
problems. 
2.3  
Properties of the matrices 
As we wrote previously the matrices considered are symmetrical and with 
real coefficients. According to the cases of figure indexed in the table below, they can be 
defined positive (noted > 0), semi-definite positive (0), indefinite (0 or 0) even singular 
(S). 
Structure 
Lagranges * 
Buckling 
Fluid 
free 
structure 
K 
0 and S 
< 0 or > 0 
> 0 
0 and S 
M 
> 0 
0 and S 
0 or 0 
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> 0 
(resp. Kg) 
Table 2.3-a: Properties of the matrices of the generalized problem 
* This column relates to of course the properties of the matrices dualized made up to leave 
initial matrices [R3.03.01] 
Columns of this mutually being excluded table, in practice, a problem of using buckling 
Lagranges doubles to model some of its limiting conditions, sees its dualized matrices 
~ 
~ 
(K and K G) to become potentially indefinite. 
Note: 
This range of properties must be taken into account at the time of the choice of the couple operator of 
work - 
(pseudo) produced scalar. This framework can thus reinforce, with effectiveness and transparency, 
robustness and the perimeter of the modal calculation algorithm in all the encountered cases of figure 
by Code_Aster. 
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The following paragraphs go enable us to measure the incidence of these properties on the spectrum 
of generalized problem. 
2.4  
Properties of the clean modes 
Let us recall first of all that if the matrix of modal problem standard A U = U is real 
symmetrical, then its own elements are real; The clean elements of a matrix are its 
clean values and its vectors. In addition, A being normal, its own vectors are orthogonal. 
In the case of the problem generalized A U = B U, this condition is not sufficient. Thus, 
let us consider the following generalized problem: 
1 
1 U  
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1 
 
0 
U 
1 
1 
=  
 
1 
0 U  
0 
 
 
 
- 1 
 
 
U  
2 
2 
1 
1 
- ± 
its own modes are ± = (1± I 3) and u± = 
 
 
2 
1 + 2 1 . 
± 
If one adds the assumption “one of matrices A or B is definite positive”, then the problem 
generalized has its real solutions. There is even the characterization (sufficient condition) more precise 
following. 
Theorem 1 
Are A and B two symmetrical matrices real. If there exists and such as A + B 
that is to say definite positive, then the generalized problem has its real own elements. 
Proof: 
This result is obtained immediately by multiplying the problem generalized by and by carrying out one 
spectral shift. The problem then is obtained (A +) 
B U = (+) B U. Like 
(A +) 
B is definite positive, it admits a single decomposition of Cholesky in the form 
CCT with C stamps regular. 
1 
The problem is written C B then 
1 
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C-T Z = µ Z with Z = CT U and µ = +, which allows 
to conclude, because matrix C-1B C-T is symmetrical. 
 
Notice 
This characterization is not necessary, thus the generalized problem associated the matrices 
With = diag (1, - 2, -) 
1 and B = diag (- 2 1 
, , ) 
1 admits a spectrum real all while not answering 
condition of definite positivity. 
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Proposal 2 
If the matrices A and B are real and symmetrical, the clean vectors of the generalized problem are 
With and B - orthogonal, which means that they check the relations 
C 
 
B U 
I 
J = I 
J has J 
C A U 
I 
J = J I 
J has J 
 
 
where J has is a scalar depend on the standard of the jième clean vector, ij is the symbol of Kronecker 
and U J is the clean vector associated the eigenvalue J. 
Proof: 
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Immediate for distinct eigenvalues, by writing A and B - product scalar between two 
couples (I, J) and (J, I), then by using the symmetry of the matrices (cf [bib9]). 
 
Note: 
· one shows that A and B orthogonalities of the clean vectors are a consequence of  
hermiticity of the matrices. They are clearly a generalization of the properties of the problem 
square standard (even normal), 
· orthogonality compared to the matrices does not mean especially that the clean vectors are 
orthogonal for the traditional euclidian norm. This one can be only the fruit of 
particular symmetries (cf TP n°1 [bib25]), 
· this property simplifies calculations of modal recombinations (DYNA_TRAN_MODAL 
[R5.06.01]), when one handles matrices of generalized rigidity and mass which are 
diagonals. The kj quantities = J aj and mj = aj are called, respectively, modal rigidity 
and modal jième mode masses. 
Knowing that the modes are real, we now will worry we about their estimate. 
2.5  
Estimate of the real spectrum 
Because of membership of the spectrum to the real axis, the problems of counting of eigenvalues go 
to be largely simplified. One does not have to treat régionnement complex plan and one can 
to be based on the corollary of the law of inertia of following Sylvester. 
Corollary 3 
Are A and B two real matrices symmetrical, B being of more definite positive. The number of 
eigenvalues, strictly lower than, of the problem generalized A U = B U is then equal to 
a number of strictly negative diagonal coefficients of the matrix D such as (A - B) = LDLT. 
Proof: 
Cf paragraph n°1 of the article of Y. Haugazeau [bib7]. 
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Remarks 
· this corollary extends to the square matrices and results from the properties of the series Sturm 
(N) 
and of the principle of inclusion (one notes p 
() 
(N) 
(N) 
= die (your - B) the characteristic polynomial 
(N) (N) 
(N) (N) (N) 
problem generalized A 
U 
= B U obtained by removing N last 
( ) 
lines and columns of matrices A and B. the continuation of polynomials (p N) constitutes a continuation 
of 
N 
Sturm because the roots of the ième polynomial frame those of (i+1) the ème. This property 
of interlacing of the spectrum of symmetrical real submatrices “principle is called 
of inclusion”) [bib7], [bib9], 
· the possible multiple eigenvalues are taken into account their multiplicity, 
· thereafter, one will call modal position of and one will note it pm (), this number of 
strictly negative diagonal coefficients. 
This corollary thus makes it possible to easily determine the number of eigenvalues contained in one 
interval [, µ] and the modal position of these eigenvalues in the spectrum. It is enough to carry out two 
decompositions LDLT, that of (A - B) and that of (A - µ B) and to enter the difference 
number of strictly negative terms between the two diagonal matrices. In the jargon of the code, 
one indicates (improperly besides!) this test under the term of “test of Sturm”. 
It must however be extended to the quite particular shapes of the matrices met in 
Code_Aster, and in particular, it is necessary to be able to take into account buckling with or without 
Lagrange. 
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With this intention, one widened the criterion with a matrix B unspecified and one generalized it 
while taking in 
count the dualized matrices. 
Let us recall that one defines usually the signature of a matrix (and that of the quadratic form 
associated) like the triplet of natural entireties (R, S, T) where R indicates the number of eigenvalues > 0, 
S it 
a number of null eigenvalues and T concealment be < 0. The latter entirety is thus what one notes pm () 
in our case of figure. 
Property 4 
Are A and B the two real matrices symmetrical (of order N) related to the generalized modal problem 
~ 
~ 
(S): With U = B U. Let us note A and B, their matrices associated resulting from the double dualisation 
with p 
Lagranges making it possible to check C U = 0 (CLL), with C stamps real of size p X N. 
~ 
~ 
Then, the signature of (A - B) is written, by noting card [, 
B] the number of values has 
clean of the generalized problem included in the interval [has, B]: 
if B is indefinite and A is definite positive 
then card {} 
0 = 0 and 
R 
= card] -, [+ card [, 0+ [ 
 
 
if < 0: S = p + card {} 
éq 2.5-1 
T 
= ( 
pm) = 
 
card],] 
0 + p 
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R 
= card] -, + [ 
 
if = 0: S = p 
éq 2.5-2 
T 
= ( 
pm) = p 
 
R 
= card] -,] 
0 + card], + [  
 
if > 0: S = card {} + p 
éq 2.5-3 
T 
= ( 
pm) = 
 
card [, 
0 [+ p 
if B is definite positive and if A is semi-definite positive 
then card] 
, 
- [ 
0 = 0 and 
R 
= card], 0+ [ 
 
if = 0: S = p + card {} 
0 
éq 2.5-4 
T 
= ( 
pm) = p 
 
R 
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= card], + [ 
 
if > 0: S = p + card {} 
éq 2.5-5 
T 
= ( 
pm) = 
 
card [, 
0 [+ p 
Proof: 
To impose boundary conditions linear, a technique of double dualisation is used 
[R3.03.01] which leads to the transformed generalized system 
WITH CT 
CT  
B 0 0 U 
(~ 
~ 
 
 
 
 
-) ~ = C - Id 
Id - 0 0 0 v = 0 
 
 
(~ 
With 
B U 
S) 
 
 
 
C 
Id 
- Id 
0 0 0 W 
 
 
J 
One will note thereafter the VI null vector column of size p (i= 1. .p; j= 2,3) except with index I, for 
which it is worth 1, and 0n, the null vector column of size N. Now let us consider the three families of 
vectors following: 
u1 
I 
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~ 
·  
N - p V1 vectors = v1 
I 
I which is the clean vectors of the system (S). Clearly, 
 
v1i ~ ~ 
according to proposal 2, they are A and B - orthogonal (according to the properties of A and B) and 
one notes their eigenvalues I. 
0  
N 
 
·  
p independent vectors V2 = v2 
I 
I, 
 
v2 
I  
0  
N 
 
 
·  
p independent vectors V3 = v3 
I 
I. 
 
- v3i 
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U 
 
 
 
 
These N + p vectors form a base B of space E = ~u = v/Cu = 0 of the solutions 
 
 
W 
 
 
 
acceptable of the dualized problem (as a free family of a space of finished size). ~ 
~ 
Let us consider, for a given real number, the quadratic form associated matrix (A - B) 
(~) 
~ 
~ ~ 
 
= ( - ) ,~ , ~ 
U 
With 
B U U 
U.E. 
While breaking up on the basis B generated by the preceding vectors 
~ 
U = 
a1 V 
 
1 
2 
2 
3 
3 
I 
I 
+ 
V has 
I I + has V 
I I, 
i=, 
1 N p 
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i=, 
1 p 
i=, 
1 p 
one obtains 
~ 
T 
1 2 
1 
1 
3 2 
(U) = (A) (-) (U B U) + (- 4) (has 
I 
I 
I 
I 
I) 
i=, 
1 N p 
i=, 
1 p 
J 
(one used in particular the properties of orthogonality of the families of vectors VI and the relation 
(u1, CTv2 
1 
2 
I) = (C U, v 
I 
I 
I) = 0). From where, by noting Li the linear form which associates ~ 
U its ième 
coordinated in the base B 
~ 
~ 
T 
2  
1 
1 
2 
~ 
2 
~ 
(U) = Li (U) (I -) (U B U 
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I 
I) + 0 Ln-p+i (U) + (- 4) Ln+i (U) 
i=, 
1 N p 
i=, 
1 p 
i=, 
1 p 
Clearly them (Li) 
are linearly independent from where an immediate reading of the terms of 
i=, 
1 n+ p 
the signature according to the sign of the factors. Moreover, it is noticed that this decomposition 
comprises 
obligatorily p zeros and p minus signs. The relations of the property result all then 
naturally, by using the principle of inertia of Sylvester (who ensures us that this decomposition 
is invariant), the relations of A and B - orthogonality of property 2, the properties of the table 
[Table 2.3-a] and by noticing that: 
~T ~ ~ 
U With U 
C A U 
~T ~ ~ 
I 
J 
I 
J 
U B U = C B U 
I 
J 
I 
J = 
= 
for J  
 
0 . 
J 
J 
Restriction 0 of the case of figure (2) comes owing to the fact that if B is definite positive then the 
spectrum 
problem (S) is positive and thus the shift with a strictly negative value does not have any interest (one 
find within the framework of application of corollary 3). 
 
According to the table [Table 2.3-a] this property applies to the matrices handled by 
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Code_Aster and one can build the following corollary. 
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Corollary 5 (theoretical wide Sturm) 
In the matric configurations of Code_Aster, the number of clean modes of the problem 
generalized (S) whose clean vector checks the linear conditions limiting (CLL) and of which the value 
clean is contained in the interval], µ [is 
If µ 0 
card  
], [= p ( 
m 
) - p ( 
m 
µ 
µ 
), 
if not 
card], [= p ( 
m 
) + p ( 
m 
µ 
µ 
) - 2p. 
If no dualisation of Lagranges is required, p= 0 is posed. 
Proof: 
It is immediate by combining the results of the table with those of property 4, and, while noticing 
that the generalized modal configurations of Code_Aster can be only of two types: 
· buckling  
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A is definite positive and B is indefinite, the spectrum can be negative and one uses 
relations of the type (1), 
· dynamic  
A is semi-definite positive and B is definite positive, the spectrum is positive and one 
can use the relations of the type indifferently (1) or (2). 
Of course, if no dualisation of Lagranges is required, the same reasoning applies in 
~ 
~ 
posing p = 0,  
= , 
~ 
With 
WITH B = B and U = U. 
To finish, the principle of inertia of Sylvester ensures us that the signature of factorization 
(~ 
~ 
- ) ~~ ~ 
With 
B = LDLT is identical to that of the shiftée matrix. In spite of this transformation, them 
 
modal positions thus remain many perennial information. 
 
However this corollary is tributary of arithmetic exact, in practice it is necessary to adapt it and control 
its application. 
2.6  
Establishment of the test of Sturm 
This test is confronted into arithmetic finished with two concomitant problems: 
· the factorization of the shiftée matrix when is very close to an eigenvalue,  
~ 
· the calculation of the strictly negative terms of D to evaluate the modal position  
( 
pm). 
The first point requires, au préalable, the determination of a criterion of membership of the shift with 
spectrum of the problem. In Code_Aster that Ci is founded on the loss of decimals at the time of 
~ 
~ 
~ ~ ~ 
factorization of matrix (A - B) = LDLT. More precisely, is regarded as being one 
eigenvalue, if during factorization one loses more decimal NPREC_SOLVEUR (in any rigor it 
is only one test of bad numerical conditioning). It is then necessary to modify the value of in 
shifting this shift of PREC_SHIFT % following the algorithm: 
For I = 1, NMAX_ ITER_ SHIFT 
If loss of more than decimal NPREC_ SOLVEUR 

file:///Z|/process/refer/refer/p1490.htm (10 of 21)10/2/2006 2:53:32 PM



file:///Z|/process/refer/refer/p1490.htm

then (1+ PREC_ SHIFT), 
If not  
exit; 
Fine buckles. 
Algorithm 1: Shift of the shift 
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If at the end of tentative NMAX_ITER_SHIFT, the matrix is still not numerically invertible, 
one continues all the same calculation with the last shiftée value. Framed below shows 
trace of such a shift in the file message. 
ONE MODIFIES THE VALUE OF SHIFT OF: 5.00000E+00POURCENT 
THE VALUE OF SHIFT BECOMES: 5.96840E+04 
ONE MODIFIES THE VALUE OF SHIFT OF: 5.00000E+00POURCENT 
THE VALUE OF SHIFT BECOMES: 5.66998E+04 
VALEUR_MIN IN FREQUENCY EAST: 2.00000E-01 
VALEUR_MAX IN FREQUENCY EAST: 5.78813E+01 
THE VALUE OF SHIFT IN FREQUENCY EAST: 3.78975E+01 
Example 2: Shift of the shift 
In algorithm 1 if F 
then = - F 
corig 
corig. This parameter F corig corresponds to a value 
threshold in lower part of which it is considered that one has a numerically null eigenvalue (in 
traditional mechanics, that corresponds to a mode of rigid body, cf [§5.5.4]). The imposition 
= - fcorig thus makes it possible to dissociate these modes of the remainder of the spectrum and to avoid 
instabilities 
numerical during the test of Sturm. This threshold is paramètrable with key word SEUIL_FREQ. 
Note: 
· the preceding key words are accessible starting from the key word factor CALC_FREQ from both 
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modal operators, 
· Y. Haugazeau [bib7] proposes more generally to deal with these problems of pivots 
numerically “small” by building a matrix, unitairement similar (i.e. 
similar via a unit matrix of passage (orthogonal in reality) to the shiftée matrix, of which 
factorization would have less instability. 
By taking into account these elements and knowing that, numerically, the calculation of the pivots 
strictly negative of the diagonal matrix includes in fact also the elements (theoretically) null of 
the signature, one can rewrite the preceding corollary. 
Corollary 5bis (numerical wide Sturm) 
According to the assumptions of corollary 5, there is the numerical criterion of accountancy of the 
modes according to: 
If µ > 0 
card [,] = p ( 
m 
) - p ( 
m 
µ 
µ 
) , 
if µ < 0 
card [,] = p ( 
m 
) + p ( 
m 
µ 
µ 
) - 4p 
Proof (heuristic): 
The fact is applied that numerically the operator of factorization provides the “modal position 
numerical "  
( 
pm) = S + T with property 4 and corollary 5. In addition, establishment of the criterion 
neither the nullity of the product allows, nor the estimate of card {}. 
 
Note: 
This criterion is used in preprocessings in MODE_ITER_INV (options “ADJUSTS” or “SEPARATE”) 
and  
in MODE_ITER_SIMULT (option “BANDAGES”), in postprocessings to check the validity of the 
number 
modes (MODE_ITER_SIMULT) and in auxiliary controls (IMPR_STURM). 
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Now that we are able to enter the spectrum of the generalized problem, it remains with 
to determine! The generic algorithms being intended for the standard problems, it is necessary to 
transform 
our initial problem. 
2.7 Transformation  
spectral 
These techniques make it possible to answer objective triple: 
· to exhume a standard modal problem, 
· to direct the research of the spectrum, 
· to separate the eigenvalues. 
The spectral calculation algorithms converging of as much better than the spectrum (of work) which 
they treat 
is separated, these techniques can be regarded as prepacking of the problem of 
departure. They make it possible to return the separation of certain modes much more important than 
those of other modes, and to improve their convergence thus. 
Most widespread of these transformations is the technique known as of “shift and invert” which 
consists with 
to work with operator A such as: 
µ 
- 
With U = B U (A -) 
B 1 
1 
B U = 
U 
!# " 
# 
$ 
## 
-  
With 
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!"$ 
 
 
 
µ 
Appear 2.7-a: Effect of the “shift and invert” on the separation of the eigenvalues. 
The figure [Figure 2.7-a] shows that this separation and this orientation of the spectrum of work in µ are 
had with the particular properties of the hyperbolic function. In addition, it is observed that only them 
eigenvalues are affected by the transformation. At the end of the modal process it is thus enough to 
to pass by again in the plan of by a suitable change of variable. 
Note: 
· the variable is usually indicated by the term of “shift” or spectral shift, 
· the matrix of work A must of course be invertible, that can become one besides of 
motivations of this shift (cf [§5.5.1]). 
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For memory, let us note that with a shift complexes several scenarios are possible: 
· to work completely into arithmetic complex, 
· into arithmetic real, 
· mixer two steps by isolating the real and imaginary contributions from A 
~ 
~ 
1 1 
1 
 
With = 
( 
Re With 
 
) µ = 
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+ 
, 
2  
 
- -  
~ 
~ 
~ 
~ 
1 1 
1 
 
With = 
( 
Im A 
 
) µ = 
- 
. 
2i  
 
- -  
Each one of its approaches has its advantages and its disadvantages. For the quadratic problems, 
it is for the moment the second solution which was adopted in the code. 
Remarks 
· this choice of the operator of work is indissociable among that of (pseudo) - scalar product. It 
allows to direct itself towards such or such algorithm and can thus influence the robustness of 
calculation, 
· another class of spectral transformation, with double shifts, makes it possible to select them 
eigenvalues located on the right vertical axis. It is about the rational transformation of 
-1 
-  
Cayley: 
(A - B 
2 
1 
) (A - B  
2 
) U = 
U 
. 
!### " 
# ### $ 
# 
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- 1 
With 
!"$ 
 
µ 
We now will enumerate the various families of methods allowing to solve it 
standard modal problem. 
2.8 Calculation  
modal 
The methods of calculation modal can gather in (at least) four families: 
· The algorithms of the type QR (cf [Appendix 1]) which were presented per H. Rutishauser (1958) 
and formalized jointly by J.C. Francis and V.N. Kublanovskaya (1961). It is one 
fundamental algorithm often implied in the other methods. 
Perimeter of use: Calculation of all the spectrum. 
Advantages: Good convergence, robustness, calculation of the form of Schur (any matrix 
complex A admits the decomposition of Schur Q* A Q = T, with Q and T of the matrices 
respectively, unit and triangular higher. In the real case, T is only diagonal by 
block 1x1 or 2x2 (real form of Schur). Columns of the matrix unit, known as of Schur, 
vectors of Schur are called). 
Disadvantages: Prohibitory memory complexities and calculation, sensitivities to the “balancing (them 
techniques of balancing (English balancing) consist in transforming reversibly 
the operator of work so that its matric standard decreases. Thus its handling will be 
less sensitive to the effects of round (cf [§10.3]))”. 
Alternatives: With implicit shift or clarifies, simple or double… 
· The algorithms of the powers type which were historically developed the first for 
to solve generic modal problems. These are basic algorithms of which them 
others are an improvement. They are implied in operator MODE_ITER_INV (cf [§3]). 
Handbook of Reference 
R5.01 booklet: Modal analysis 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Algorithm of resolution for the generalized problem 
Date:  
02/03/01 
Author (S): 
O. BOITEAU 
Key: 
R5.01.01-C Page: 
18/78 

file:///Z|/process/refer/refer/p1490.htm (16 of 21)10/2/2006 2:53:32 PM



file:///Z|/process/refer/refer/p1490.htm

Perimeter of use: Calculation of the extreme values of the spectrum. 
Advantages: Simplicity, very good estimate of the clean vector in some iterations. 
Disadvantages: Convergence can become problematic, bad capture of 
multiplicities, of the clusters… (together of eigenvalues “very close”). 
Alternatives: Powers opposite, (Bi) iteration of the quotient of Rayleigh (cf [§3.3.2])… 
· Them  
methods of subspace which consist in projecting the operator of work on a space 
H such as the spectrum of the projected operator is a good approximation of the part of 
initial spectrum which one seeks. These algorithms are the hard core of the operator 
MODE_ITER_SIMULT (cf [§4]). 
 
Perimeter of use: Calculation of part of the spectrum. 
 
Advantages: Reduction of the size of the problem and memory complexities and calculation, 
require only the calculation of a product matrix-vector and not the knowledge of 
all the matrix. 
 
Disadvantages: Use the many pre one and postprocessings, convergence can become 
problems, more or less easily capture the multiplicities and the clusters according to 
alternatives. 
 
Alternatives: Iterations of subspace, Bathe and Wilson (1971), Lanczos (1950), Arnoldi 
(1951), Davidson (1975), Sorensen (1992)… 
· Them  
other approaches more or less empirical and are specialized. They are often 
connected to other problems: search for roots of polynomials, functions 
unspecified… One can thus quote the method of bisection used in preprocessings in 
MODE_ITER_INV, but also that of Jacobi, Laguerre etc… 
Note: 
Many parallels can be led between these families (method QR is not thus 
that a method of iterations of subspaces applied to entire space), but they  
also lead to processes similar to those developed for other problems: 
· optimization; The method of the quotient of Rayleigh is with the method of the powers opposite, 
what the method of Newton is for a method of descent traditional, 
· resolution of linear systems; The method of the combined gradient is a method of 
subspace for the positive definite symmetrical systems, 
· search for roots of polynomials: the method of the powers is a method of 
Bernoulli applied to the matrix “companion” of the polynomial (cf [bib11] pp502/503). 
The following paragraph will synthesize what precedes in the total flow chart by resolution of one 
generalized modal problem of Code_Aster. 
Handbook of Reference 
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2.9  
Establishment in Code_Aster 
This one can break up into four phases: 
1) 
The first operation consists in determining the shift like certain parameters of the problem. 
That is carried out in a more or less transparent way according to the option of calculation chosen by 
the user: 
· MODE_ITER_INV + option: “SEPARATE” or the shift “ADJUSTS” is determined by the first 
phase of the algorithm and the number of clean modes sought by frequential bands 
(provided by the criterion of Sturm) is limited by NMAX_FREQ, 
· MODE_ITER_INV + option: “NEAR” the shift is fixed by the user and the number of modes 
clean is equal to the number of shifts, 
· MODE_ITER_SIMULT + option: “PLUS_PETITE” the shift is null and the number of modes is 
paramètré by NMAX_FREQ, 
· MODE_ITER_SIMULT + option: “BAND” the shift is equal in the middle of the band fixed by 
the user and the number of modes are determined by the criterion of Sturm, 
· MODE_ITER_SIMULT + option: “CENTER” the shift is fixed by the user and the number of 
clean modes is paramètré by NMAX_FREQ. 
2) 
In one second phase of preprocessings, one factorizes partially the matrix of work 
With = (A - B) - 1B 
 
 
while being interested only in its reversed part. The action of this operator on an unspecified vector U, 
noted u2, will be built thus more effectively 
u1 = B U 
( 
u2 
With - B) u2 = u1 
This factorization undergoes the same risks besides as the criterion of Sturm when the shift is 
near to an eigenvalue. One carries out the same shifts then according to algorithm 1. 
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Notice 
In V5 when NMAX_ITER_SHIFT is reached calculation stops in fatal error 
(only for this preprocessing), this problem of factorization which can give place to 
numerical instabilities. 
3) 
Modal calculation itself is carried out: the standard problem is solved, then one returns to 
initial problem. In MODE_ITER_INV two alternatives are available: method of the iterations 
opposite (option: “DIRECT”) and its acceleration by quotient of Rayleigh (“RAYLEIGH”). For it 
who is MODE_ITER_SIMULT, it allows the use of three distinct methods: method of 
Bathe and Wilson (“JACOBI”), that of Lanczos (“TRI_DIAG”) and finally, that of Sorensen 
(“SORENSEN”). 
Each one of these methods have internal tests of stops. Without counting that methods 
of projection employ auxiliary modal methods: Jacobi (cf [Appendix 3]) for the first 
and QR/QL (cf [Appendix 1]) for the others. They require also tests of stops. 
The user often has access to these parameters, although it is warmly recommended, at least 
initially, to preserve their default values. 
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4) 
This last part gathers the tests of total stops which check the good unfolding of 
calculation. They are of two types: 
1 
 
2 2 
· Norme (one recalls that U 
U 
 
 
= max I, A 
max 
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With 
 
= 
ij, U = 
U 
2 
 
I and 
I 
I 
J 
I 
 
1 
 
With = max I 
(AA) 
* 2 
= max I 
(A) if A square 
2 
residue of the initial problem 
I 
 
 
 
I 
 
 
U 
U U  
If > 
SEUIL_ 
 
FREQ then 
With U - B U 2? < THRESHOLD, 
With U 2 
If not 
With U - B U 
? < THRESHOLD, 
2 
End if. 
Algorithm 2: Test of the standard of the residue 
This sequence is paramètrée by key words THRESHOLD and SEUIL_FREQ, pertaining 
respectively with the key word factor VERI_MODE and CALC_FREQ. In addition, it 
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postprocessing is activated by initialization with “YES” (default value) of STOP_ERREUR in 
the key word factor VERI_MODE. When this rule is activated and non-observance, calculation 
arrète, if not the error is just announced by an alarm. One would know of course only too 
to recommend not to decontaminate this parameter preferential treatment! 
· Comptage of the eigenvalues 
This postprocessing is set up in MODE_ITER_SIMULT and it makes it possible to check that it 
a many eigenvalues contained in a band test [1,2] are equal to the number 
detected by the algorithm. The inclusion of the initial band (in option “BANDAGES” it acts of 
values indicated by the user, if not they are the extreme values of the calculated spectrum) 
[I, F] in this band test is led in order to detect possible problems of 
clusters or of multiplicities at the initial boundaries (cf TP n°1 [bib25]). 
+ 
1 
 
 
I 
 
 
2 
- 
I 
F 
F 
Initial band 
Bandage tested 
Appear 2.9-a: Counting of the eigenvalues 
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While noting + 
- 
I and F, respectively, largest and the smallest eigenvalue not requested by 
the user and including the initial band (cf [Figure 2.9-a]), one has the algorithm of construction of 
bandage following test: 
+ 
 
- 
 
I - I 
F - F 
If + exists 
- 
 
 
I 
(resp.f) and if 
< PREC_ SHIFT resp. 
 
 
 
I 
 
 
F 
 
then 
+ 
- 
+  
 
+  
= I 
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I 
resp. 
1 
= F 
F, 
2 
 
2 
2 
 
 
 
If not 
= 
1 
I (1 - S ( 
ign I) PREC_ SHIFT) (resp. = 
2 
F (1+ S ( 
ign F) PREC_ SHIFT), 
End if. 
Algorithm 3: Construction of the band test 
This sequence is paramètrée by key word PREC_SHIFT of the key word factor VERI_MODE. 
Framed below the trace of the error messages shows when these post-checkings 
start. 
CHECKING A POSTERIORI OF THE MODES 
<E> <MODE_ITER_SIMULT> <VERIFICATION OF THE MODES> FOR THE CONCEPT 
>MOD_4< IT 
MODE NUMBER 2 OF CRITICAL LOAD 8.7243E+07 A a STANDARD Of ERROR 
OF 6.3919E-01 
<E> <MODE_ITER_SIMULT> <VERIFICATION OF THE MODES> FOR THE CONCEPT 
>MOD_4< IN 
The INTERVAL (- 1.0608E+08,1.8130E+08) IT THERE A THEORETICALLY 3 LOAD (S) 
CRITICAL (S) AND ONE OF A CALCULEE (S) 4. 
Example 3: Post-checkings 
The activation of the second postprocessing is subordinated to the initialization of STURM to “YES” in 
key word factor VERI_MODE. When this rule is activated and not respected, the continuation of the 
events 
is controlled by STOP_ERREUR (so “YES” calculation stops, if not the error is just announced by one 
alarm). It would not be known of course that too much to recommend not to decontaminate these 
parameters 'passes 
droit'! 
Now that the context of the generalized modal problems of Code_Aster was brushed, us 
let us be interested more particularly in the methods of the power type and their establishment 
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in operator MODE_ITER_INV. 
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3  
Method of the powers opposite (MODE_ITER_INV) 
3.1 Introduction 
To calculate several eigenvalues of the generalized problem, the general method is not used 
iterations opposite just as it is. 
One can, for example, to combine it with a technique deflation (technique of consistent filtering with 
to transform the operator of work so that it has the same eigenvalues except some 
preset modes which see themselves affecting a zero value) so as to filter automatically 
spectral information updated more to find it with the following iteration. With deflation by 
restriction (of other types of deflation exist, such as the method of Ducan-Collar which uses for 
to filter spectral information the first line of the matrix and the clean vector. These techniques 
vectorial spread of course per blocks) of Wielandt one builds the operator repeatedly of 
work (in the symmetrical case), by noting (µk, the U.K.) the mode to be filtered, 
With 
With 
1 
- µ 
U C 
K + = 
K 
K 
K 
K. 
This strategy, which does not apprehend the multiplicities, must be supplemented by a criterion of 
Sturm.  
In addition, the fact of working into arithmetic finished and of not building the operator indeed 
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With K with each iteration, constrained with mâtiner this step of process of orthogonalisation 
powerful. 
All these complications resulted in choosing another way, which breaks up into two parts: 
1) localization of the eigenvalues (determination of an approximate value of each value 
clean contained in an interval given by a technique of bisection, refined or not, 
by a method of the secant), 
2) improvement of these estimates and the calculation of their own vectors associated by one 
method of iterations opposite. 
The search for a value approached for each eigenvalue considered is selected in 
key word factor CALC_FREQ via OPTION: 
· if  
OPTION = “SEPARATE”, in each interval of frequencies defined by key word FREQ, 
an approximate value of each eigenvalue contained in this interval is calculated in 
using the method of dichotomy (cf [§3.2.1]), 
· if  
OPTION = “ADJUSTS”, one carries out the same operations first of all as previously and 
then, on the basis of these approximations, one refines the result by the method of the secant 
(cf [§3.2.2]). 
 
For these two options, one calculates at the same time the modal position of each value 
clean what makes it possible to detect the multiple modes. Either only the NMAX_FREQ are retained 
the lowest frequencies contained in the maximum interval specified by the user, is 
one calculates all the values of this interval (if NMAX_FREQ = 0). 
· if  
OPTION = “NEAR”, the frequencies given by key word FREQ, are considered 
like the approximate values of the sought eigenvalues. 
Note: 
· of course, as one already specified (cf [§2.8]), this operator is to be used only for 
to determine or refine some eigenvalues. For a wider research it is necessary 
to use operator MODE_ITER_SIMULT, 
· with the “CLOSE” option one cannot calculate multiple modes. 
· it is an expensive algorithm because it calls much upon the test of Sturm and thus with its 
associated factorizations. 
· the terminals of the intervals of research are provided by FREQ or following CHAR_CRIT 
the initialization of TYPE_RESU. 
We now will detail the various algorithms (and their paramètrages) which are put in 
place in the first part of the process. 
Handbook of Reference 
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3.2  
Localization and separation of the eigenvalues 
3.2.1 Method of bisection 
As one already saw previously, the corollary 5bis of the law of Inertia of Sylvester (cf [§2.5]) 
allows to determine the number of eigenvalues contained in an interval given while carrying out 
two decompositions LDLT. This criterion can thus result in refining the interval until not including 
that an eigenvalue. This piloting being set up, one passes from one iteration to the other by using it 
principle of the dichotomy. 
On a starting interval [has, B], one thus operates in the following way, knowing  
( 
pm has) and 
( 
pm b): 
1 
Calculation of * = (+). 
2 
has 
B 
Calculation of  
( 
pm *). 
If 
( 
pm *) = 
( 
pm has) (resp. p ( 
m b) then 
to start again on [*, B] (resp. [, a*]), 
If not 
to start again on [, a*] 
and on [*, B], 
End if. 
Algorithm 4: Method of Bisection 
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The process is stopped if one cut out more NMAX_ITER_SEPARE time the interval of departure, or if 
 
 
- B has 
for a given interval, one has  
SEPARATE PREC 
 
 
 
 
 
* 
_ 
(in this case one does not refine any more 
seek in this interval). 
One obtains finally a list of frequencies. In each interval defined by the arguments of this 
list, is an eigenvalue having a certain multiplicity. Like approximation of this value 
clean, the medium of the interval is taken. 
Note: 
· one could have used as criterion the change of sign of the characteristic polynomial, but 
in addition to the fact that it is very expensive to evaluate, it does not make it possible, just as it is, to 
detect them 
multiplicities, 
· the initialization of the process can be carried out in an empirical way according to the needs for 
the user. To include part of the spectrum one can also use the régionnements 
plan complexes theorems of Gerschgörin-Hadamard (on A, A T…). Accordingly, 
the method of bisection can prove more effective than a QR in the presence of cluster. Its 
convergence, although linear, is indeed raised by ½ whereas that of QR can tend 
towards 1 [bib11]. 
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has 
* 
B Interval of will tra 
the 1st division 
p () 
has 
has 
* 
B 
* 
B 
the 2nd division 
p () 
has 
 
 
B 
B 
has 
 
 
B 
has 
* 
* 
* 
the 3rd division 
p () 
 
 
 
has 
B 
has 
 
B 
has 
B 
has 
* 
* 
* 
* 
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B 
the 4th division 
Appear 3.2.1-a: Method of bisection 
These approximated eigenvalues can be improved by a unidimensional minimization 
seeking to cancel the characteristic polynomial ( 
p) = dét (A - B). But only the calculation of one 
value of this determinant requires NR! operations. 
3.2.2 Method of the secant 
The method of the secant is a simplification of the method of Newton-Raphson. With the stage 
unspecified K, knowing a value K and by approximating the nonlinear function ( 
p) by its 
tangent in this point, one determines the next value k+1 as being the intersection of this line 
with the axis of, and so on, according to the iterative diagram 
p () 
K -  
 
K -1 
K +1 = K - ( 
p K) ( 
 
p  
 
K) - ( 
p k-1) 
k-1 
k+1 
K 
Appear 3.2.2-a: Method of the secant 
The tangent being approximated by a difference finished in order not to have to calculate of derived from 
( 
p), only the estimate of the polynomial is necessary. 
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k+1 - K 
It is considered that one reached convergence when  
< 
 
PREC_ ADJUSTS and, in addition, one 
K 
limits itself to NMAX_ITER_AJUSTE iterations if this criterion is not reached. 
Note: 
This method has a quadratic convergence when it is close to the solution, in the case 
opposite, it can diverge. From where interest to combine the method of bisection with this 
approach.  
We now will detail the algorithm of the powers opposite (coupled to an acceleration of 
Rayleigh) constituting the second part of the process. 
3.3  
Method of the powers opposite 
3.3.1 Principle 
To determine the eigenvalue of the problem generalized A U = B U nearest in module to 
, one applies the method of the powers to operator (A - 
- 
 
1 
B) B. In fact, one only builds 
the factorized matrix (this notation should not be confused that symbolizing the “shift and invert” 
WITH = (A - 
) 
B -1B 
 
 
 
) A = (A -) 
B and that amount dealing with the generalized problem 
(-1 
1 
With) Drunk = 
U 
- 
. Method of the powers opposite converging proritairement towards 
µ 
!"$ 
eigenvalues of stronger module (in µ), one will thus capture the closest to the shift. 
The principle is as follows, knowing an estimate of the sought eigenvalue and on the basis of one 
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initial vector standardized y0, one builds a clean vector series approximate (yk) by 
K 
recurring formula 
For F 
K = 1,… anger 
~ 
With yk = B yk-1, 
~ 
µk = yk, 
~ 
yk 
yk = 
, 
µk 
Fine buckles. 
Algorithm 5: Method of the powers opposite 
With 1, the 2… first eigenvalues (of clean vector ui) closest in module to, 
it is shown that one has a linear convergence of y 
U 
K  
1 and one quadratic convergence of 
1 
~ 
yk (I) 
µ 
1 
K  
and 
 
I = 1. .n (the factor of convergence of these continuations is of 
1 - 
yk-1 (I) 
( 
) 
1 - 
1 -  
the order of  
). 
min I -  
i1 
Handbook of Reference 
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Note: 
· this result is not acquired (with the factor of convergence near) only when the eigenvalue 
dominant (here that nearest in module to the shift) is single. In the contrary case, 
results remain however possible, even in the complex framework, but the analysis 
rigorous of the convergence of this algorithm is still incomplete [bib6], [bib23], 
· in theory, these results require that the initial vector is not orthogonal with 
clean subspace on the left required. In practice, the rounding errors avoid it 
problem (cf [bib11] pp500-509), 
· even if the estimate of the eigenvalue is coarse, the algorithm provides one quickly very 
good estimate of the clean vector, 
· the major disadvantage of this method is that it is necessary to carry out a factorization of A for 
each eigenvalue to calculate. 
In general one works in euclidian norm or infinite standard, but to facilitate calculations 
post-modal one seeks here B-to standardize the clean vectors (when B is indefinite, one works 
with the associated pseudo-standard). The basic algorithm can be rewritten while posing Z = By 
0 
0 
For K = 1… to make 
With yk = zk-1, 
z~k = B yk, T. 
( 
y 
Z 
y 
K 
K 1 
K) = 
- 
yT. z~, 
K 
K 
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T 
~ 
K = 
( 
sign Y.Z 
K 
K), 
z~  
Z 
K 
K = K 
, 
1 
yT. z~ 2 
K 
K 
Fine buckles. 
Algorithm 6: Method of the powers opposite with B-pseudo-standard 
1 
Let us note that (yk)  
. This presentation avoids the products matrix-vector by the matrix B 
1 - 
during the calculation of the scalar products and already the coefficient of Rayleigh of the following 
paragraph precedes. 
It is observed that the factor of convergence is all the more small as the spectral shift is close 
sought eigenvalue and thus which A - B is close to the singularity. That is not in fact not 
prejudicial with the process because the error made by solving the system is “mainly” in 
direction generated by the clean vector which is the sought direction. That means that at the time of 
resolution of A y = Z 
K 
K -1, one does not find the solution exact y K but only the rounding errors 
lead to solution close to the form ~ 
y = y + W 
K 
K 
. This one is proportional to the solution 
exact, but as standardization is arbitrary, all happens correctly [bib18]. 
Note: 
This bad conditioning, far from having an unfavourable effect, improves even convergence of 
the algorithm. 
This algorithm is thus used to improve the clean vector associated with the value approximated with 
phase 1. To refine this estimate of the eigenvalue, a quotient of Rayleigh is introduced. 
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3.3.2 Method of iteration of the quotient of Rayleigh 
Let us recall that the quotient of Rayleigh applied to the generalized problem is defined by the number 
R (X), with X a vector not no one of N, such as: 
xT A X 
R (X) = xTB X 
This quotient has the remarkable property of stationnarity in the vicinity of any clean vector and 
to reach a extremum (local) which is the corresponding eigenvalue: for each X fixed, R (X) 
minimize (A - B) X. 
2 
What we can translate by “if X is an approximation of a clean vector of the system 
With X = B X, then R (X) is an approximation of the eigenvalue associated vector X ", and 
reciprocally, we saw that if one had a good estimate of an eigenvalue, 
method of the iterations opposite made it possible to obtain a good estimate of the clean vector 
corresponding. 
From where the idea to combine these two properties by considering the algorithm of iteration reverses 
with 
spectral shift for which one revalues, with each iteration, the eigenvalue via the quotient of 
Rayleigh. One then obtains the algorithm known as of iterations of the quotient of Rayleigh (in B-
pseudo-standard) 
For K = 1… to make 
(A - R (yk-1)) Byk = zk-, 1 
z~k = B y, 
K T. 
R ( 
y 
Z 
y 
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K 
K 1 
K) = 
- + 
T 
~ 
R (yk-1), 
y. Z 
K 
K 
T 
K = 
( 
sign Y. z~ 
K 
K), 
z~ 
Z 
K 
K =  
, 
K 
1 
yT. z~ 2 
K 
K 
Fine buckles.  
Algorithm 7: Method of iterations of the quotient of Rayleigh with B-pseudo-standard 
For the standard modal problem, one can show [bib18] that the convergence of this algorithm is 
cubic if the operator of work is normal (a matrix A is known as normal if AA*=A*A. 
It is thus the case of the operators square, antihermitiens or unit) (a fortiori in the case 
square) and at best quadratic in the other cases. 
If one used this method without modifying it, it would be necessary for each iteration of the process of 
improvement 
of each eigenvalue, to carry out a factorization LDLT, which would be very expensive. From where the 
idea of 
not to even carry out (this strategy of the coupling of methods to the complementary characteristics 
antagonists is often used in numerical analysis. For example, in optimization, the method of 
Levenberg-Marquadt couples one steepest-descent and a Newton) this shift of Rayleigh, that if one 
is in a vicinity (arbitrary concept to define) solution. 
Handbook of Reference 
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Notice 
Within a framework plus general, certain authors introduced an algorithm known as “of Bi-iterations of 
T 
y With X 
quotient of Rayleigh”. Based on the stationnarity of the Bi-quotient R (X, 
B 
y) = T 
in the vicinity 
y B X 
clean vectors on the right and on the left, it provides (in nonsquare) the two types of vectors 
clean. Its cost is however crippling because it requires twice more factorizations 
(cf B.N. Parlett, 1969 [bib18]). 
3.3.3 Establishment in Code_Aster 
This spectral shift is activated only if the key word OPTION of the key word factor CALC_MODE is 
initialized 
in “RAYLEIGH”. By defect, one has “DIRECT” and the shift is then traditional (total correction rather 
that progressive of the eigenvalue). The algorithm set up in the code cuts out as follows 
(in B-pseudo standard): 
· Initialisation of the eigenvalue starting from the estimate of the first phase: . 
· Calcul of an initial vector y0 random checking the limiting conditions. 
· B - orthonormalisation of y0 compared to the modes previously calculated (if it is a mode 
multiple according to the first phase) by Gram-Schmidt Modified (since the development 
of this operator, more effective and more robust methods of orthogonalisation are 
spread, such as Gram-Schmidt Modified Iterative (IGSM) used in 
MODE_ITER_SIMULT (cf [Appendix 3] and B.N.Parlett [bib18])) (GSM). 
·  
T 
Calculation of 0 = sign (y0 By0). 
· For  
k=1,  
NMAX_ITER to make 
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To solve (A -  
B) yk =  
 
B y 
K -1 
K -1. 
B-orthonormalisation (possible) of yk. 
T 
y B y 
Calculation of the correction of the eigenvalue C 
K 
K 
= 
-1 . 
T 
yk B y K 
If yT B y 
K 
K 
1 PREC 
-1 -  
then 
 
= 
+ C, 
exit; 
If not 
If OPTION = “RAYLEIGH” and if C  
 
01 
. then 
 
= 
+ C; 
End if. 
End if. 
Fine buckles. 
Algorithm 8: MODE_ITER_INV 
The standard of maximum error acceptable PREC and the maximum number of authorized iterations 
NMAX_ITER 
are arguments of the key word factor CALC_MODE. 
Handbook of Reference 
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Note: 
· the clean vector B-being normalized, one considers to have reached convergence when the value 
absolute of the unsuitable scalar product is close to the unit, 
· to avoid taking an B-orthogonal initial vector with the sought eigenvalue one uses 
a method of pulling random for the components of this vector, 
· in addition to be able to determine multiple or close modes, one uses one 
B-orthogonalisation with the already calculated modes, 
· the option “of acceleration” of the algorithm by quotient of Rayleigh being expensive, it is not 
used with each iteration that if one is in the vicinity of the required eigenvalue. 
3.3.4 Posting in the file message 
In the file message, the results are posted in the form of table 
Position 
Frequency Deadened 
Dichotomy 
Method 
Secant 
Method 
Opposite 
modal 
sow 
Numbers 
Numbers 
Precision Numbers 
Precision 
iterations 
iterations 
iterations 
* 
* 
0. 
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* 
* 
* 
* 
* 
Table 3.3.4-a: Trace MODE_ITER_INV in the file message 
------------------------------------------------------------------------ 
THE NUMBER OF DDL 
TOTAL EAST: 192 
LAGRANGE EAST: 84 
THE NUMBER OF ACTIVE DDL EAST: 66 
------------------------------------------------------------------------ 
CHECKING OF THE FREQUENCY SPECTRUM (CONTINUATION OF STURM) 
The NUMBER OF FREQUENCIES IN the BAND (1.00000E-02, 6.00000E-02) IS 4 
------------------------------------------------------------------------ 
MODAL CALCULATION: METHOD Of ITERATION OPPOSITE 
OPPOSITE SECANT DICHOTOMY 
NUMBER FREQUENCY (HZ) AMORT NB_ITER/NB_ITER/PRECISION/NB_ITER/PRECISION 
4 1.97346E-02 0.00000E+00 4 6 2.97494E-07 4 1.22676E-07 
5 2.40228E-02 0.00000E+00 4 5 4.21560E-05 3 4.49567E-09 
6 4.40920E-02 0.00000E+00 3 5 2.19970E-05 3 2.62910E-09 
7 5.23415E-02 0.00000E+00 3 5 2.34907E-07 5 1.32212E-07 
------------------------------------------------------------------------ 
CHECKING A POSTERIORI OF THE MODES 
------------------------------------------------------------------------ 
Example 4: MODE_ITER_INV 
With the “CLOSE” option, the columns “Dichotomy” and “Secant” do not appear, while with 
the option “SEPARATED”, only the “Secant” column disappears. The last column precision 
gathers 
intermediate data and does not represent, as for the other modal operator 
MODE_ITER_SIMULT, the standard of error of the residue. It is an artifact which will be 
brought to disappear. 
Let us recapitulate now the paramètrage of operator MODE_ITER_INV. 
Handbook of Reference 
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3.3.5 Summary of the paramètrage 
Key word factor 
Key word 
Default value 
References 
“DYNAMIC” TYPE_RESU 
“DYNAMIC” 
[§2.1] 
“MODE_FLAMB” 
[§2.1] 
CALC_FREQ 
FREQ 
[§3.1] 
CHAR_CRIT 
[§3.1] 
OPTION “SEPARATE” 
“ADJUSTS” 
[§2.1] 
“ADJUSTS” 
[§3.1] 
“NEAR” 
[§3.1] 
NMAX_FREQ 
0 
[§3.1] 
NMAX_ITER_SEPARE 
30 
[§3.2.1] 
PREC_SEPARE 
1.E-04 
[§3.2.1] 
NMAX_ITER_AJUSTE 
15 
[§3.2.2] 
PREC_AJUSTE 
1.E-04 
[§3.2.2] 
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NPREC_SOLVEUR 
8 
[§2.6] 
NMAX_ITER_SHIFT 
5 
[§2.6] 
PREC_SHIFT 
0.05 
[§2.6] 
SEUIL_FREQ 
1.E-02  
[§2.9] 
CALC_MODE 
OPTION “DIRECT” 
“DIRECT” 
[§3.3.3] 
“RAYLEIGH” 
[§3.3.3] 
PREC 
1.E-05 
[§3.3.3] 
NMAX_ITER 
30 
[§3.3.3] 
VERI_MODE 
STOP_ERREUR “YES” 
“YES” 
[§2.9] 
“NOT” 
THRESHOLD 
1.E-02 
[§2.9] 
Table 3.3.5-a: Summary of the paramètrage of MODE_ITER_INV 
Note: 
· in V5, the user can specify the class of membership of its calculation by initializing it 
key word TYPE_RESU. According to this value, one informs vector FREQ or CHAR_CRIT, 
· one finds all the “tripaille” of parameters related to the preprocessings of the test of Sturm 
(NPREC_SOLVEUR, NMAX_ITER_SHIFT, PREC_SHIFT) and with postprocessings of checking 
(SEUIL_FREQ, VERI_MODE), 
· at the time of the first passages, it is strongly advised to modify only them 
principal parameters noted in fat. The others relate to more the mysteries of 
the algorithm and they were initialized empirically with values standards. 
Handbook of Reference 
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4  
Method of subspace (MODE_ITER_SIMULT) 
4.1 Introduction 
If one only wishes to calculate the p clean elements of a generalized problem of order N where 
N << p (for example, p smaller eigenvalues or all eigenvalues included/understood in 
a given interval), one saw that it was preferable to have resorts to methods of subspace. They 
are based on the analysis of Rayleigh-Ritz which consists in effectively projecting the problem 
considered 
on under space of dimension m (p < m < N) and to seek certain clean elements of it 
problem projected (much easier to treat) using robust algorithms (QR or QL for 
Lanczos and IRAM, Jacobi for the method of Bathe and Wilson). 
The criteria of effectiveness of the aforesaid projection are: 
· small size of the space of projection (directly related to calculation complexities and memory), 
· facility of its construction, 
· the robustness of orthogonal projection (in the nonsquare case, of oblique projections 
were developed by F. Chatelin [bib2], 
· the setting in the canonical shape of the projected matrix, 
· the good approximation of the part of the initial spectrum sought by that of the projected operator, 
· and, of course, the minimization of calculation complexities and memory and that of the effects of 
round-offs 
(those are especially related to the problems of orthogonality raised by the 3rd point). 
One will first of all present the analysis of Rayleigh-Ritz before detailing three methods resulting from 
this 
analyze: method of Lanczos, that known as of Sorensen (WILL GO) and that of Bathe and Wilson. 
4.2  
Analyze of Rayleigh-Ritz 
Let us consider the standard modal problem of order N, A U = U, and the subspace H of N 
generated by a orthonormée base (Q, Q,…, Q 
1 
2 
m). The latter constitutes the matrix 
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orthogonal Q 
T 
m allowing to define the operator of projection P 
= Q Q 
m 
m 
Mr. method of 
Galerkin used by this analysis consists in solving the following problem 
 
m 
 
= m 
×  
 
( 
~ 
~ 
~ 
U Q X, 
, 
 
X 
, ~u) 
With 
to find ( 
) 
such as 
To find 
× H such as 
 
* 
~ 
 
 
Q WITH 
Q X 
m 
m 
= X 
P 
 
m (~ ~~ 
 
With - U) = 0 
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~ 
The research of the elements of Ritz (, ~ 
U) which thus interest cost to us to find the modes 
clean of the matrix of Rayleigh B = QT AQ 
m 
m 
Mr. the eigenvalues remain unchanged in 
two formulations, on the other hand knowing a clean vector X of Bm one must go up with space all 
entirety via the transformation ~ 
U = Q X 
m 
. The step can thus be summarized in the form: 
· Choix of a space H and a base (h1, H2,…, hm) represented per H. 
· Orthonormalisation of the base 
R 
0 
· Matrice of Rayleigh 
N 
X 
H 
= 
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Qm 
m  
~ 
· Clean Eléments of Bm: (, X) 
~ 
· Eléments of Ritz: (, ~ 
U = Q X 
m), 
~ 
· Test of error with the residue: R = Au~ - u~ 
. 
Algorithm 9: Procedure of Rayleigh-Ritz 
Note: 
· the elements of Ritz are in fact the clean modes of the matrix (of order NR) of 
the approximation of Galerkin Cm = Pm A Pm, 
· calculation complexity of this process, the order at worst of O (m2 (4n+m)) (much less 
with a good space, cf Lanczos and IRAM), are without common measurement with that of a good 
QR (O (N2)) or that of an iteration of the quotient of Rayleigh encapsulated in a process 
heuristics (the cost of factorizations is prevalent on that of the products matrix-vector 
algorithm itself) such as that developed in MODE_ITER_INV (>> pn3). But 
it is quite clear that these methods are more complementary than concurrent. 
To consider the error made by using the clean elements of the Bm matrix there is the result 
according to. 
Theorem 6 
That is to say (, U) a clean element of the matrix diagonalisable (it is the case of the normal matrices and 
of 
nondefective matrices (matrices of which all the eigenvalues have even arithmetic multiplicity and 
~ 
geometrical) A and, Bm the matrix of Rayleigh associated, then this one admits an eigenvalue  
checking 
, U 
( - 
~ 
I P 
(I - P 
m) U 
m) U 
-  
2 
P U 2 
Pmu 
m 
2 
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H 
~ ~ 
where is a number dependent on, A and P 
, U 
Mr. 
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In the square case the numerator of this increase is squared. The associated clean vector, ~ 
U, 
check as for him 
(I - P) U 
( 
sin, ~ 
U U)  
m 
2 . 
P U 
m 
2 
Proof: 
Cf [bib11] pp531-537. 
 
It is shown that for m rather large, can be raised by a number which does not depend that on A and on 
min I -. The estimate of the second member (I - Pm) U depends on the choice of the subspace. 
 
J 
2 
I J 
Note: 
The number min I - (and its alternatives) is omnipresent in the analyses of errors, of 
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J 
I J 
convergence or of conditioning spectral. One sees, once more, the importance of 
separation of spectrum of work on the good numerical behaviour of the algorithms. 
Of course, to take account of spectral information already obtained, even to improve it or filter it, 
one reiterates this procedure of Rayleigh-Ritz by modifying the subspace of projection. One will connect 
then the construction of this new space (recurring of the precedent) and this process of projection. Two 
types of spaces (each one attached to distinct methods) are most often used. 
4.3  
Choice of the space of projection 
Two choices of space of projection H are most often set up: 
· The first, that of the method of Bathe and Wilson (cf [§7] METHOD = “JACOBI”), 
consist in choosing under space H of dimension m then to build successively: 
H = A H 
1 
H = A H = A2 H 
2 
1 
 
... 
H 
I 
I = A H I - = A H 
1 
 
This method, which holds at the same time of generalization in form block of the method of  
powers and of the truncation of the algorithm QR, conduit with an impoverishment of space 
of work: dim H dim H 
I 
i-1. Not to always find the same clean mode 
dominating it is necessary to insert in the process a reorthogonalisation (with all the problems 
of calculation complexity and round-offs that that implies). 
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· The second, that of the method of Lanczos (cf [§5], METHOD = “TRI_DIAG”) and of IRAM 
(cf [§6], METHOD = “SORENSEN”) starting from an initial vector y consists, to build 
continuation of spaces of Krylov (Hi) I = 1, m where Hi is the space generated by the family of vectors 
(y, Ay,…, Have-1y). This last is called the space of Krylov of A and order I initiate by y: 
H = K (A, y) Vect 
i-1 
I 
I 
(y, Ay,…, A y). 
They check the following property: dim H dim H 
I 
I +1. Contrary to the preceding choice, one 
thus a certain enrichment of the workspace has. In addition, it will be seen that they 
allow to project in an optimal way within the meaning of the criteria defined previously. 
Historically, the first type of space was very much used in mechanics of the structures. But for 
to decrease calculation complexity related on the size of the subspaces and the orthogonalisations, one 
prefers to them 
from now on methods of the Lanczos/Arnoldi type. 
Note: 
One meets an impressive variety of algorithms using a space of the first type. They 
are called “'iterations of subspace”, “iterations orthogonal” or “iterations 
simultaneous ". Beyond the various terms, it should especially be retained that these adaptations 
the strategies of restartings (technique concern consisting in starting again an algorithm 
modal with an initial vector comprising spectral information already. Typically, one chooses 
a linear combination of the clean vectors or already exhumed vectors of Schur 
(cf [§5.4.2]), techniques of acceleration (technical consisting in replacing the matrix of work 
With by a matric polynomial P (A) which with the characteristic to be of great amplitude in the areas 
spectral of interest (cf [§6.4]) and of factorization implemented to enrich the workspace. 
There are even versions based on the powers opposite making it possible to calculate p more 
small modes (cf [bib11] pp538-45, [bib23] pp49-54). 
For these methods of projection, by supposing that initial space H is not too poor according to 
the p dominant directions, the factor of convergence of the ième mode When they are arranged 
classically, i.e. by order descending of module (when they are classically arranged, 
i.e. by order descending of module) at the end of K iterations is written: 
K 
 
 
O 
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m+ 
 
1 
. 
 
 
 
I 
 
 
It expresses two phenomena clearly: 
· the priority convergence of the dominant modes, 
· improvement of these convergences (and thus of their standards of error for a number 
iterations fixed) when the size of the subspace increases. 
To transform the modal problem generalized into a standard problem one A resorts to 
spectral transformations. They also make it possible to direct the research of the spectrum and to improve 
convergence (cf [§2.7]). 
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4.4  
Choice of the spectral shift 
To calculate the smallest eigenvalues close to a given frequency or all the values 
clean included/understood in a given frequency band, one carries out a spectral shift of 
generalized problem. That is to say the value of shift, one transforms initial problem A U = B U into 
a shifted standard problem. 
With B U 
1 = µ U with A = A - B and µ = -  
This transformation spectral, known as of “simple shift”, is used in the method of Bathe and Wilson. 
As the process detects the smallest eigenvalues in µ, those gradually are captured 
who are closest to (in module). 
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One carrying out the reverse transformation (“shift and invert”) it occurs 
1 
With U = U 
 
µ with A = (A - 
-1 
B) B 
 
 
and µ = - 
It is the problem dealt with with Lanczos and IRAM which makes it possible to calculate the greatest 
eigenvalues 
µ thus the eigenvalues closest to the shift (in module). 
In order MODE_ITER_SIMULT, there are three ways of choosing this shift (for buckling, 
transposition at the levels of critical loads is immediate): 
·  
= 0, one seek the smallest eigenvalues of the starting problem. This corresponds to 
OPTION = “PLUS_PETITE” under the key word factor CALC_FREQ. 
2 
·  
= 0 with 0 = (  
2 f0), one seeks the frequencies close to the frequency FREQ = f0. 
(OPTION = “CENTER”). 
0 + 
2 
2 
·  
= 
1 with 0 = (  
2 f0) and 1 = (  
2 f1), one seeks all the frequencies 
2 
included/understood in the band [F, F 
0 
1] (OPTION = “BAND” with FREQ = {f0, f1}). 
The number of frequencies to be calculated is given in general by the user using NMAX_FREQ under 
the key word factor CALC_FREQ. But for the option “BANDAGES”, it is automatically given in 
using the corollary 5bis (cf [§2.6]). 
Note: 
It is pointed out that the factorization of the matrix of work, just like the tests of Sturm of the option 
“BAND” are dependent on numerical instabilities when the shift is close to an eigenvalue. 
Palliative treatments, paramètrables by the user, were established (cf [§2.6], [§2.9]). 
Handbook of Reference 
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5  
Method of Lanczos (METHOD = “TRI_DIAG”) 
5.1 Introduction 
This algorithm, developped at the point by Lanczos [bib10] in 1950, was hardly used until the medium 
of 
the Seventies. First of all very simple and effective, it is the seat nevertheless of great instabilities 
numerical being able to cause the capture of phantom modes! Those are dependent mainly on 
problems of maintenance of orthogonality enters the vectors generating the space of Krylov.  
comprehension of this type of behavior vis-a-vis arithmetic finished computers was long with 
to exhume. 
Since, many palliative solutions were born and an abundant literature covers the subject. 
Let us quote for example the work of J.K. Cullum [bib3] and Al which is entirely devoted to him, that of 
B.N. Parlett [bib18] and the brought up to date and exhaustive synthesis of J.L. Vaudescal [bib23] (pp55-
78). 
In the continuation of this paragraph, we first of all will delay we on the theoretical framework of 
operation of the algorithm. Then, before detailing the alternative installation in Code_Aster,  
we will stick to the realistic framework of arithmetic finished. 
5.2  
Theoretical algorithm of Lanczos 
5.2.1 Principle 
Its perimeter of application covers the couples operator with work (pseudo) produced scalar ensuring 
the hermiticity of A. It makes it possible to repeatedly build a matrix of Rayleigh Bm of size 
flexible, tridiagonale and square (with a true scalar product, if not it loses this 
last property). This particular form largely facilitates the calculation of the modes of Ritz: with QR 
one loses an order busy magnitude then, when one seeks p clean modes while projecting on one 
subspace of size m, O (pm2) with O (20pm) [bib6]. 
The algorithm consists in gradually building a family of vectors of Lanczos q1, q2,…, qm 
while projecting orthogonally, with the iteration K, vector A qk on the two preceding vectors qk and 
qk-1. The new vector becomes qk+1 and thus, gradually, one ensures structurally 
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the orthogonality of this family of vectors. The iterative process is summarized thus. 
Q = 0 
0 
, 0 = 0. 
Calculation of Q/Q 
1 
1 = 1. 
For K = 1, m to make 
Z = A Q 
 
- 
K 
 
Q 
, 
k-1 
K -1 
= 
K 
(Z, qk), 
v = Z - Q, 
K 
K 
= v, 
K 
If K 0 
then 
v 
Q 
= 
, 
K +1 
K 
If not 
Déflatio; 
N 
End if. 
Fine buckles. 
Algorithm 10: Theoretical Lanczos 
Handbook of Reference 
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While noting, EM the mième vector of the canonical base, the vector residue of the factorization of 
Lanczos is written R 
= Q 
and 
m 
m 
m+1 Mr. 
B 
m 
m 
N 
With 
Qm 
= 
Qm 
+ 
0 
m 
N 
m 
R 
T 
m=m qm+1em 
Appear 5.2.1-a: Factorization of Lanczos 
The matrix of Rayleigh takes the form then (in complex with a square scalar product) 
1  
0 
0  
 
1 
 
1  
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... 
0 
B 
 
2 
 
m =  
. 
0 
... 
... 
 
 
m 
 
-1 
 
0 
0 
m 
-1 m  
By construction, this algorithm ensures us of the following results (into arithmetic exact): 
· them  
(qk) k=1, m constitute an orthonormal family, 
· they generate the space of Krylov of order m initiated by q1, 
K (A, Q 
-1 
1) = Vect 
m 
m 
(Q, A Q,…, A Q 
 
1 
1 
 
1), 
· they make it possible to build a matrix Bm tridiagonale, square and of flexible size, 
· the spectrum of Bm does not admit that the m dominant simple modes on which q1 has one 
component. 
Note: 
· the algorithm thus does not allow, in theory, the capture of multiple modes. That can 
to be explained by noticing that any matrix of irreducible Hessenberg (a matrix A is 
said of Hessenberg higher (resp. lower) if Have, j= 0 for i>j+1 (resp. j>i+1). It is 
of more irreducible if Have 1, I 
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0 I 
+ 
) (thus a fortiori a matrix tridiagonale) does not admit that  
simple modes, 
· the cost of an iteration is weak, about that of a product matrix-vector A qk, that is to say 
for the m first iterations a calculation complexity of O (Nm (c+5)) (with C the number 
means of nonnull terms on the lines of the matrix of work). In addition, complexity 
necessary memory is weak bus one does not need to build A in entirety, one has right need 
to know its action on a vector. This characteristic is very interesting for 
to solve problems of big sizes [bib23], 
· in general the sphere of activity directs the choice of a vector of initial Lanczos, this one must by 
example to belong to a space of acceptable solutions (checking constraints, 
conditions limit…) like with the image unit of the operator. This last point is important 
because it makes it possible more quickly to enrich modal research while not being limited to the core, 
· the algorithm of Lanczos is only one means of approaching the subspaces of Krylov. Its 
generalization with the nonsymmetrical configurations is called algorithm of Arnoldi (cf [§6.2]). 
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5.2.2 Estimates of errors and convergences 
Because of particular form of Bm, the extraction of the required elements of Ritz is simplified, and in 
more, the following result allows us quickly (via a product of two realities!) to estimate theirs 
qualities. 
Property 7 
~ 
The euclidian norm of the residue of the element of Ritz (, ~ 
U = Q X 
m) is equal to 
~ 
R 
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= (A 
~ 
T 
- I) U =  
E X 
2 
2 
m 
m 
Proof: 
Commonplace by taking the euclidian norm of the factorization of Lanczos 
WITH Q X 
Q B X 
Q 
and 
= 
+ 
X 
 
m 
m 
m 
m m+1 m where qm+1 is normalized with the unit. 
 
Note: 
A result plus general, independent of any method of resolution, us ensures that for 
~ 
each clean mode (, X) of Bm, there exists a clean mode (, U) of A such as: 
R 2 
- ~  
2 
 
with = min  
T 
I - ~ 
~ 
~ 
U With U 
( 
R 
sin U, ~u) 
I  
 
2 
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Therefore, more than minimization of the residue, the criterion of stop of the methods of the Lanczos/
Arnoldi type 
m < makes it possible to approach the original spectrum as well as possible. These increases are not 
accessible 
that in the square case. 
In the case general (and in particular nonnormal) they are more difficult even impossible with 
to build without additional information (level of nonnormality, “defectivity”.). 
The estimate of the residue is not then any more the good criterion to estimate the quality of the 
approximated modes. 
Let us interest being maintained in the quality of convergence of the algorithm. Let us particularize 
theorem 6 
for this algorithm. By limiting the standard of error of (I - Pm) U one obtains increases 
2 
following: 
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Theorem 8 
That is to say (I, ui) the ième clean mode dominating of A diagonalisable, there exists a mode of Ritz 
then 
(~,~ 
I ui) such as: 
2 
~ 
2  
 
 
J -  
 
N 
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-2 
I - I  
 
 
m 
T - I (I) 
j<i J - I  
( 
 
J - N  
sin 
, ~u 
 
 
-1 
ui I) 
 
 
 
 
m 
T - I (I) 
j<i J - I  
- 
I 
i+1 
with I = 1 + 2  
, T 
- 
the semi (X) polynomial of Tchebycheff of semi degree, the constant of 
1+i 
N 
 
theorem 6 and = 
your ( 
N Q, U 
1 
I). 
P U 
m I 2 
Proof: 
Cf [bib11] pp554-557. 
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These increases indicate (cf [bib23] pp59-63) that: 
· if the initial vector does not have any contribution along the clean vectors, one cannot capture 
the aforementioned modes (+), 
· one  
has  
firstly convergence of the extreme modes and as much better than the spectrum 
is separate (these methods are less sensitive to the clusters than the methods of the types 
reiterated powers), without compressing of eigenvalues (famous “the clusters”), 
· the error decrease when m increases (like the reverse of the polynomial Tm-I (X), therefore like 
the reverse of exponential), 
· the estimate on the eigenvalues is better than that their associated own vectors. 
Note: 
The convergence of the method was studied by P. Kaniel then improved (and corrected) by 
S.C. Paige; One will find a synthesis of these studies in the paper of Y. Saad [bib20]. 
Let us look at now how behaves the algorithm into arithmetic finished. We will see that it 
is the seat of surprising phenomena. 
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5.3  
Practical algorithm of Lanczos 
5.3.1 Problem  
of orthogonality 
At the time of implementation the effective of this algorithm, one realizes that very quickly the vectors 
of 
Lanczos lose their orthogonalities. The matrix of Rayleigh is not then any more the matrix projected of 
the initial operator and the captured spectrum are sullied more and more with errors. A long time this 
phenomenon 
inescapable was allotted wrongly to the effects of rounded the arithmetic one finished. In 1980, D.C. 
Paige showed 
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that the loss of orthogonality was especially ascribable with the convergence of a clean mode. Thus, 
as of 
that one captures a mode dominating, one disturbs the fitting of the preceding vectors of Lanczos.  
following result expresses this paradox clearly. 
Property 9 (Analysis of Paige) 
By taking again the notations of algorithm 10 and by noting the precision machine, with the iteration k+1 
the orthogonality of the new vector of Lanczos is expressed in the form: 
vTq + A 
I 
 
qT Q 
2 
K 1 I 
(I K 
+ 
= 
) 
K 
Proof: 
Cf [bib26]. 
 
The problem occurs in fact during the standardization of the new vector of lanczos qk+1. When it 
mode converges, according to property 7, that comes from the smallness of the coefficient K and thus in 
spite of 
theoretical orthogonality (v T IQ = 0 (I K)), effective orthogonality is far from being acquired 
(qT Q 
K +1 I >> (I K)).  
The digital processing of these problems has been the research object many for thirty years 
and of many palliative strategies were developed. The choice of such or such method depends 
type of required spectral information and average data processing available, the synthesis of 
Besides JL.Vaudescal proposes a very good overflight of these alternatives (cf [bib23] pp66-78): 
· Algorithme of Lanczos without reorthogonalisation, developed by J.K. Cullum and 
R.A. Willoughby [bib3] which consists with expurger the calculated spectrum of its phantom modes of 
studying interlacings of the eigenvalues of the matrix of work and one of its 
submatrices. This alternative admits a weak overcost calculation and memory to determine them 
eigenvalues, but it complexes (sometimes largely) the research of the vectors 
clean. 
· Algorithmes of Lanczos with total reorthogonalisation (B.N. Parlett) or selective 
(J. Scott) which consists with each step with réorthogonaliser the last vector of Lanczos obtained 
compared to all the already calculated vectors or simply compared to the vectors of Ritz 
converged (this alternative thus makes it possible to control the loss of orthogonality dynamically 
acceptable). These alternatives are much more expensive in complexity calculation (them 
automatic réorthogonalisations) and memories (storage of the preceding vectors) but 
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they prove more effective and more robust. 
In the alternative of Newmann-Pipano [bib14] (METHOD = “TRI_DIAG”) of Code_Aster, it is 
strategy of reorthogonalisation supplements which was selected: the vector qk+1 is thus not 
completely 
calculated as in the theoretical algorithm. 
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Note: 
· these problems of loss of orthogonality occur with all the more of acuity that the size of 
subspace increases. It is an additional argument for the installation of one 
iterative process limiting this size (cf [§5.4.2]), 
· these strategies are declined vectoriellement or per blocks, they are established in 
simple or iterative algorithms. The explicit latter being able to profit from restarts or 
implicit, controlled or automatic. Alternative IRAM profits thus from an implicit restart 
calculated automatically, 
· the central point of these algorithms is consisted the method of orthogonalisation put in 
place. All the process is dependent on its success and its robustness. With 
orthogonal of type Housholder or Givens, very expensive transformations but very 
robust, one prefers from now on the algorithms of the type Gram-Schmidt Itératifs (IGSM) which are 
a better compromise between effectiveness and complexity calculation (cf [Appendix 2]). It is it besides 
choice which was made for the alternatives of Lanczos/Arnoldi installation in the code, 
· the alternative of selective reorthogonalisation compared to the converged modes returns to 
to carry out an implicit deflation by restriction on the operator of work not to have with 
to recompute (cf [§3.1]). 
5.3.2 Capture multiplicities 
It was seen that in theory the algorithm of Lanczos did not allow, some is his strategy of 
reorthogonalisation, the theoretical capture of multiple modes. In practice, for once, effects 
from round-off come to the rescue and “powder” with small components along almost 
all clean vectors. One can thus capture multiplicities, however they can be 
erroneous and require a complementary postprocessing of checking. 
Note: 
In fact, only a version per blocks (G. Golub & R. Underwood, 1979) can allow us one 
correct detection of the multiplicities, at least as long as the size of the blocks is sufficient. This 
version was wide (Mr. Sadkane [bib22], 1993) with the algorithm of Arnoldi but it would be a pity 
to deprive itself of the alternative of Sorensen (IRAM) who is more effective and more robust. 
5.3.3 Phenomenon of Lanczos 
The success of this algorithm rested at the beginning on what is called the “phenomenon of Lanczos”. 
This conjecture predicts that for a sufficiently large size of subspace (m >> N) one is 
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able to detect all the spectrum (with load to thereafter distinguish the “good grain from the ryegrass”) of 
the operator of work. Taking into account weak the pre-necessary report of “basic” Lanczos 
(grosso-modo a matrix tridiagonale and some vectors), this is particularly interesting for 
to treat hollow systems of very big sizes (other algorithms of reiterated the powers type or 
QR require them it knowledge of all the matrix of work). 
We now will detail (a little) some elements whose interest largely exceeds the framework 
of this algorithm. 
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5.4 Treatments  
complementary 
5.4.1 Detection of spaces invariants 
In algorithm 10, the nullity of the coefficient l-1 prevents the standardization of the new vector and 
an additional treatment called of deflation requires. The subspace of calculated Krylov is then under  
space invariant and its spectrum is thus exact. In other words, the l-1 first eigenvalues 
exhumed by the algorithm of support (QR or QL) are those of A. 
To continue, it is then necessary to choose a new random vector observing the limiting conditions, 
the orthogonaliser with all the already calculated vectors of Lanczos and to build a second family of 
vectors of Lanczos that one orthogonalise compared to the first family constituting space: 
H = K (A, Q 
1 
1) = Vect 
L - 
L 
L 
(Q, A Q,…, A Q 
 
1 
1 
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1) . 
The matrix tridiagonale obtained with the following form: 
1  
 
 
1 
 
 
... 
0 
1 
2 
 
 
... 
... 
0 
 
 
 
Bm =  
0 L 
L 
 
 
 
L L 
 
+1 
... 
 
 
0 
... 
... 
M-1 
 
 
 
M-1 m  
The intermediate factorization of Lanczos (with the order L) is written: 
WITH Q = Q B 
 
L 
L 

file:///Z|/process/refer/refer/p1520.htm (3 of 19)10/2/2006 2:53:34 PM



file:///Z|/process/refer/refer/p1520.htm

L 
The values (K, K) k=1, L are obtained starting from the first random vector and the values 
(K, K) k=l+1, m are obtained starting from a second random vector. To detect the nullity of the term 
extra-diagonal the numerical criterion is used 
L 
PREC_ LANCZOS 
-1  
L then l-1 = 0, 
where PREC_LANCZOS is initialized under the key word factor CALC_FREQ. 
Note: 
· a more robust criterion retained by large mathematical bookshops EISPACK [bib26], 
LAPACK [bib26] and ARPACK [bib27] use the preceding diagonal term, a parameter 
flexible C and the precision machine, 
 
L 1 < C 
- 
(l-1 + L) 
 
it is this criterion which at summer appointed for IRAM (but the user cannot modify the parameter C, 
this one is fixed at a standard value by the code), various messages preventing besides 
the user of the detection of a space invariant. 
· Obtaining such a space is completely sympathetic nerve since it ensures us of very 
good quality of the first modes. Moreover, one reduces the size of the problem by dividing it into 
two parts: one solved, the other to solve. Many techniques seek with 
to reproduce artificially this phenomenon (cf [§3.1], [§5.3.1]). 
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5.4.2 Strategies of restartings 
To limit the endemic problems of orthogonalisation, to limit to them pre-necessary report and 
to take dynamically into account spectral information already obtained, of the strategies of 

file:///Z|/process/refer/refer/p1520.htm (4 of 19)10/2/2006 2:53:34 PM



file:///Z|/process/refer/refer/p1520.htm

restartings were coupled with the algorithm of Lanczos. It loses its “simple” character and becomes 
“iterative”. One reiterates the “restarts” until satisfying the desired criteria of convergence. The algorithm 
does not undergo the convergence of the modes imposed by theorem 8 and it can support intéractivement 
that of certain modes. 
In theory however, plus the size of the subspace is large, better is convergence. One 
compromise is thus to find between the size of the subspace and the frequency of the restartings. 
Various vectors of restartings can be used, being generally written like a sum 
balanced p required clean modes (Y. Saad 1980) 
p 
Q = Q X 
1 
I 
m I 
. 
I =1 
Indeed, if one starts again with an initial vector pertaining to the subspace invariant generated by 
sought modes, one is then sure to obtain (with a good algorithm of orthogonalisation) a standard 
residual about the precision machine and of the almost exact clean modes. In addition to the decision  
to start the restarting, all the problems lie in the search for these weights I. Us 
will see that with IRAM, the restarts set up via implicit polynomial filters solve 
elegantly and automatically this question. 
Note: 
· this philosophy of the restarts was initiated by W. Karush (1951), 
· restartings based on the vectors of Schur associated with the spectral decomposition 
sought seem more stable (J. Scott 1993), 
· of the criteria of effectiveness was required to decide restart appropriateness (B. Vital 
1990), 
· instead of a simple linear combination of clean vectors, one can determine a vector 
of restarting via polynomials (Tchebycheff in reality and Faber in complex) allowing 
to center modal research in such or such zone. One speaks then about polynomial accelerations 
explicit [bib22]. 
The following paragraph will show some of the concepts presented hitherto to clarify 
alternative installation in the code. 
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5.5  
Establishment in Code_Aster 
5.5.1 Alternative of Newmann & Pipano 
This alternative developed by Mr. NEWMAN & A. PIPANO [bib3], [bib14], in 1977, is a method of 
Simple Lanczos, into arithmetic real, with total reorthogonalisation (via a GSM). It uses it 
crossbred “shift and invert” traditional of the scalar pseudo-product introduced by the shifted matrix (A-
B). 
(A) 
B - 
 
1 
1 
B U = 
U 
!# " 
# 
$ 
## 
µ - 
With 
!"$ 
 
 
(X, y) = yt (A) 
B X, 
with = 
( 
sign X, X), 1 
X = (X, X) 2. 
This choice returns the couple operator of work - symmetrical scalar product and it are adapted to the 
matrices 
particular of the mechanics of the structures. One can thus deal with problems: 
· of free structure and fluid structure (A can be singular), 
· of buckling (B is indefinite). 
The scalar pseudo-product introduced by the shifted matrix is thus regular (answers this 
prerogative cf [§2.6], [§2.9]) and it makes it possible to seek vectors of Lanczos (A - B) - orthogonal. 
The total gonalisation is carried out only if it proves to be necessary and this criterion is paramètrable. 
Note: 
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· B-orthogonality and a fortiori that with the Euclidean direction cannot be but the fruit any more of 
particular configurations. This does not modify the properties of orthogonalities of the modes 
clean (cf proposal 2), 
· as one already announced [§1.7] it exists a whole zoology of couples operator - product 
scalar, this one being only one possibility among others. Thus, the libraries [bib29] 
traditional propose to deal with the problems of buckling in “buckling mode” via the same one 
“shift and invert” and the scalar pseudo-product introduced by A. But because of introduction 
quasi-systematic of Lagranges, this matrix becomes indefinite even singular, which 
disturb the process largely. The same causes produce the same effects when 
for a calculation of dynamics, one uses the scalar B-product. 
The price to be paid for this profit in robustness is the loss of possible symmetry of the matrix of 
Rayleigh 
1 1 
0 
0  
 
 
1  
... 
0 
=  
B 
2 
I 
I I 
 
 
m =  
with 
. 
0 
... 
... 
m 1 
- 
I = sign (Q, Q 
I +1 
I +1) 
 
 
0 
0 
M-1 m  
Handbook of Reference  
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After balancebeing balanced and putbeing put in the form of Hessenberg higher, Bm is diagonalisée by 
one 
implicit method QL if it remains in spite of very symmetrical or by a method QR if not 
(cf [Appendix 1]). The difference in cost calculation between these solveurs remains negligible vis-a-vis 
the costs of 
réorthogonalisations. The diagram of established Lanczos becomes then: 
Random pulling of qinit. 
q~ 
-1 
1 = (A -  
) 
B 
(qinit (I) .ulagr (I)) .i 
q% = A 
1 
(q~1 (I) .ubloq (I)) .i 
1 = 
( 
sign qT 
%1 (A -) 
B q%1) 
1 
- 
Q = Q 
2 
1 
1% qT 
1% 1 (A -  

file:///Z|/process/refer/refer/p1520.htm (8 of 19)10/2/2006 2:53:34 PM



file:///Z|/process/refer/refer/p1520.htm

) 
B q%1 
Q = 0, =, 
0 = . 
0 
0 
0 
0 
For K = 1, m to make 
Z = A Q - 
 
 
 
Q 
, 
K 
k-1 
k-1 
k-1 
= T 
K 
qk (A -) 
B Z, 
v = Z - Q, 
K 
K 
K 
Réothogonalisation from 
v 
report/ratio with Q 
(I) 
(IGSM), 
I =1, K 
T 
K = v (A -) 
B v, 
T 
K = 
( 
sign v (A -) 
B v), 
If K 
then 
0 Kv 
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qk+1 = 
, 
1 
K 2 
If not 
Deflation; 
End if. 
Fine buckles. 
Algorithm 11: Alternative of Newman-Pipano 
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The reorthogonalisation is carried out thanks to an alternative “house” of the Method of Gram-Schmidt 
Iterative (IGSM) according to the following process: 
For I = 1, K 
has 
T 
= qk+1 (A - B) Q, 
 
I 
If (qT 1 (A) 
B Q 
K 
I 
PREC_ORTHO 
+ 
- 
 
) then 
For J = 1, NMAX_ITER_ORTHO 
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X = Q 
T 
K +1 - (qk +1 (A -) 
B IQ) IQ, 
B = xT (A -) 
B IQ 
 
If (B PREC_ORTHO) then 
Q 
X 
K +1 = 
, 
I + 1 I 
 
, exit; 
If not 
If (B has) then 
Q 
X 
K +1 = 
, 
= B has; 
If not 
Failure, emission of a message of alarm, 
I + 1 I 
 
, exit; 
End if. 
End if. 
Fine buckles in J. 
End if. 
Fine buckles out of I. 
Algorithm 12: Procedure of reorthogonalisation of “TRI_DIAG” 
Note:  
After some tests, it seems that this alternative specific to the code is less effective than 
the IGSM of the type Kahan-Parlett [bib18] selected for the IRAM (cf [Appendix 2]). 
5.5.2 Paramètrage 
To be able to activate this method, it is necessary to initialize the key word METHOD with 
“TRI_DIAG”. In addition, 
the size of the subspace of projection is determined, either by the user, or empirically to leave 
formula: 
m = min (my ( 
X 4 p, p + 7), nddl-credits) 
where 
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p 
is the number of eigenvalues to calculate, 
nddl-credits 
is the number of degrees of active freedom of the system (cf [§2.2]) 
The user can always impose to him even dimension by indicating it with the key word 
DIM_SOUS_ESPACE of the key word factor CALC_FREQ. 
Parameters of the total reorthogonalisation, PREC_ORTHO and NMAX_ITER_ORTHO, the number 
maximum of iterations QR, NMAX_ITER_QR, and the criterion of deflation (cf [§5.4.1]), 
PREC_LANCZOS, are 
accessible by the user under the key word factor CALC_FREQ. When this phenomenon of deflation 
product, a specific message specifies its row L. 
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5.5.3 Warning on the quality of the modes 
Let us recall that this alternative is not iterative. From the number of desired frequencies, one 
estimate the dimension of the subspace of calculation and one hopes that the clean modes of the problem 
projected standard will be a good approximation of those of the generalized problem. One checks has 
posteriori the validity of the results (cf [§2.9]) but one does not have any active control on this precision. 
If they are not satisfactory, one has as only only resorts to carry out a new test in 
increasing the dimension of the subspace. 
Note: 
· the method WILL GO that we will approach proposes a flexible and dynamic control of 
precision of the results, it is an iterative method, 
· in V5, in parallel of the modal position and the eigenvalue (in frequency if one is in 
dynamics), one posts from now on the standard of the residue of the initial problem calculated in 
postprocessing (after having standardized the clean vectors ad infinitum (in order to exhume 
clean vectors “neutral” with respect to the string of standardizations which they can undergo at the time 
calculations of the modal parameters of the structure (factors of participation…)). 
5.5.4 Perimeter  
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of use 
Attention, this method is usable one to the only deal with quadratic problem. In the event of error 
at the time of the initialization of the key word METHOD, calculation stops and a trace is left in the files 
of 
exit. 
In V5, an algebraic method calculating the null eigenvalues of the modal problem 
generalized was introduced. Physically those correspond to the movements with energy of 
null deformation of a free structure (cf [bib25] TP n°2). Except the numerical difficulties of 
handling of quasi-null quantities, because of their multiplicities, their capture correct was until 
often problematic present for Lanczos established in Code_Aster: phantom modes 
appeared corresponding to missed multiplicities! 
This algorithm of detection of the modes of rigid body, which one activates by initializing OPTION with 
“MODE_RIGIDE” (default value `WITHOUT `), intervenes in preprocessing of modal calculation 
properly 
known as. It is based on the analysis of the matrix of rigidity and breaks up into three phases: 
· detection of the null pivots of this matrix, 
· blocking of these pivots, 
· resolution of a linear system whose are solutions the associated clean vectors.  
During the process of Lanczos it is enough consequently to orthogonaliser, progressively with their 
determination, basic vectors with the latter. 
However, the introduction of the method WILL GO reduced the interest (if it is not as comparison) of 
one 
such option (which is not free in calculation complexity since it requires inversions of systems). 
What good is it to deprive itself of such an algorithm which is by no means affected by the presence of 
these modes 
a little particular multiples! 
This method remains nevertheless useful as solution of help in the event of failure of IRAM (that 
can occur in the presence of clusters in the vicinity of the terminals or for operators 
pathological (badly conditioned, nonnormal, defective…) who should however be rather rare 
(that often reveals a badly posed problem). One can also plan to encapsulate it in one 
auxiliary operator (like IMPR_STURM). 
Note: 
The quadratic treatment of problem is incompatible with options “MODE_FLAMB” and 
“MODE_RIGIDE”. 
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5.5.5 Posting in the file message 
The example below resulting from the list of case tests of the code (sdll112a) recapitulates the whole of 
the traces 
managed by the algorithm. The iteration count effective QR (or QL) can be only identical for 
all eigenvalues. It is an artifact of information which will be brought to disappear. 
------------------------------------------------------------------------ 
THE NUMBER OF DDL 
TOTAL EAST: 86 
LAGRANGE EAST: 20 
THE NUMBER OF ACTIVE DDL EAST: 56 
------------------------------------------------------------------------ 
The SELECTED OPTION EAST: PLUS_PETITE 
THE VALUE OF SHIFT IN FREQUENCY EAST: 0.00000E+00 
------------------------------------------------------------------------ 
INFORMATION ON CALCULATION REQUIRES: 
A NUMBER OF REQUESTS MODES: 10 
THE DIMENSION OF REDUCED SPACE EAST: 0 
IT IS LOWER THAN THE NUMBER OF MODES, ONE TAKES IT EQUALIZES A 40 
------------------------------------------------------------------------ 
FREQUENCIES CALCULEES INF. AND SUP. ARE: 
FREQ_INF: 1.54569E+01 
FREQ_SUP: 1.01614E+02 
THE FIRST HIGHER FREQUENCY NOT SELECTED EAST: 1.29375E+02 
------------------------------------------------------------------------ 
MODAL CALCULATION: METHOD Of SIMULTANEOUS ITERATION 
METHOD OF LANCZOS 
NUMBER FREQUENCY (HZ) STANDARD Of ERROR ITER_QR 
1 1.54569E+01 1.29798E-12 4 
2 1.54569E+01 7.15318E-13 4 
3 3.35823E+01 3.98618E-13 4 
4 3.35823E+01 4.25490E-12 4 
5 4.73076E+01 4.26463E-12 4 
6 4.73076E+01 1.43391E-12 4 
7 5.45850E+01 9.52006E-12 4 
8 8.80156E+01 3.45489E-13 4 
9 1.01614E+02 6.13949E-12 4 
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10 1.01614E+02 3.18663E-12 4 
------------------------------------------------------------------------ 
CHECKING A POSTERIORI OF THE MODES 
IN the INTERVAL (1.54182E+01, 1.16326E+02) 
IT THERE A WELL 10 FREQUENCY (S) 
------------------------------------------------------------------------ 
Example 5: MODE_ITER_SIMULT with “TRI_DIAG” 
Now let us recapitulate the paramètrage available of operator MODE_ITER_SIMULT with this 
option METHOD = “TRI_DIAG”. 
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5.5.6 Summary of the paramètrage 
Key word factor 
Key word 
Default value 
References  
“DYNAMIC” TYPE_RESU 
“DYNAMIC” 
[§2.1] 
“MODE_FLAMB” 
[§2.1] 
METHOD “TRI_DIAG” 
“SORENSEN” 
[§5.5.3] 
OPTION “MODE_RIGIDE” 
“WITHOUT” 
[§5.5.4] 
“WITHOUT” 
[§5.5.4] 
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CALC_FREQ 
FREQ 
[§4.4] 
CHAR_CRIT 
[§4. 4] 
OPTION “PLUS_PETITE” 
`PLUS_PETITE '' 
[§4.4] 
“BAND” 
[§4.4] 
“CENTER” 
[§4.4] 
NMAX_FREQ 
10 
[§4.4] 
DIM_SOUS_ESPACE 
Calculated 
[§5.5.2] 
PREC_ORTHO 
1.E-12 
[§5.5.1], [§5.5.2] 
NMAX_ITER_ORTHO 
1.E-04 
[§5.5.1], [§5.5.2] 
PREC_LANCZOS 
1.E-04 
[§5.5.1], [§5.5.2] 
NMAX_ITER_QR 
15 
[§5.5.1], [§5.5.2] 
NPREC_SOLVEUR 
8 
[§2.6] 
NMAX_ITER_SHIFT 
5 
[§2.6] 
PREC_SHIFT 
0.05 
[§2.6] 
SEUIL_FREQ 
1.E-02 
[§2.9] 
VERI_MODE 
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STOP_ERREUR “YES” 
“YES” 
[§2.9] 
“NOT” 
[§2.9] 
PREC_SHIFT 
5.E-03 
[§2.9] 
THRESHOLD 
1.E-06 
[§2.9] 
STURM “YES” 
“YES” 
[§2.9] 
“NOT” 
[§2.9] 
Table 5.5.6-a: Summary of the paramètrage of MODE_ITER_SIMULT with “TRI_DIAG” 
Note: 
· in V5, the user can specify the class of membership of its calculation by initializing it 
key word TYPE_RESU. According to this value, one informs vector FREQ or CHAR_CRIT, 
· one finds all the “tripaille” of parameters related to the preprocessings of the test of Sturm 
(NPREC_SOLVEUR, NMAX_ITER_SHIFT, PREC_SHIFT) and with postprocessings of checking 
(SEUIL_FREQ, VERI_MODE), 
· at the time of the first passages, it is strongly advised to modify only them 
principal parameters noted in fat. The others relate to more the mysteries of 
the algorithm and they were initialized empirically with values standards, 
· in particular, to improve quality of a mode, the only flexible parameter is 
dimension of the subspace, DIM_SOUS_ESPACE. 
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50/78 
6  
Algorithm WILL GO (METHOD = “SORENSEN”) 
6.1 Introduction 
We saw that one of the crucial problems of the method of Lanczos is the loss of orthogonality 
inescapable of its basic vectors (cf [§5.3.1]). A generalization of this algorithm to the case not 
square imagined by W.E. Arnoldi [bib31] in 1951 makes it possible to solve partially this 
problems. It was given to the style of the day by Y. Saad [bib32] in 1980 and one abundant 
literature covers the subject. Put aside the article founder and papers of Y.Saad and Mr. Sadkane [bib22], 
one recommends the brought up to date and exhaustive synthesis of J.L. Vaudescal [bib23] (pp79-112). 
This method being at the base of algorithm IRAM known as “of Sorensen” (IRAM for `Implicit 
Restarted Arnoldi Method'), we first of all will detail his operation, its 
behaviors and its limitations. Thereafter, we will determine the stakes to which IRAM must answer 
(and it does it in the majority of the standard cases!) and we will consider its theoretical mysteries 
and numerical. We will conclude by the summary from effective sound paramètrage in Code_Aster and 
for an example of file message. 
6.2 Algorithm  
of Arnoldi 
6.2.1 Principle 
Its perimeter of application covers all the couples operator with work (pseudo) produced 
scalar. During this opening is the filling of the matrix of Rayleigh which becomes 
form Hessenberg higher. It is not very prejudicial, because one can thus apply to him 
directly algorithm QR (the first stage of a good QR, except balancing, consists in reducing 
the matrix of work in the form of Hessenberg. That makes it possible to gain an order magnitude at the 
time of  
the resolution itself (cf [Appendix 1]), from where a profit about O (10m3/3). 
The algorithm is very similar to that of Lanczos, it consists in building a family gradually 
of vector of Arnoldi q1, q2,…, qm while projecting orthogonally, with the iteration K, vector A qk on 
K vectors precedent. The new vector becomes qk+1 and thus, gradually, one ensures 
the orthogonality of this family of vectors. 
With the difference of Lanczos, the orthogonality of the new vector compared to all the precedents is 
thus explicitly and not assured implicitly. This one is managed by the algorithm of Gram-Schmidt 
Modified (GSM) (cf appendix 2) which proves sufficiently robust in the majority of the cases. 
While noting, EM the mième vector of the canonical base, the vector residue of the factorization of 
Arnoldi 
R is written 
= B 
Q 
and 
m 
m+1, m 
m+1 Mr. 
B 
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m 
m 
N 
With 
Qm 
= 
Qm 
+ 
0 
m 
R 
T 
N 
m 
m=bm+1, m qm+1em 
Appear 6.2.1-a: Factorization of Arnoldi 
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The iterative process is summarized as follows: 
Calculation of Q/Q 
1 
1 = 1. 
For K = 1, m to make 
Z = A Q, 
 
K 
For L = 1, K to make (GSM) 
B = 
lk 
(Z, ql), 
Z = Z - blk ql, 
Fine buckles; 
B + 
= Z, 
K 1, K 
If B + 
0 then 
K 1, K 
v 
Q 
= 
K +1 
, 
bk+1, K 
If not 
Deflation; 
End if. 
Fine buckles. 
Algorithm 13: Theoretical Arnoldi 
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The matrix of Rayleigh is written then: 
B 
B 
... 
B 
11 
12 
m 
1 
 
B 
B 
... 
B 
 
B 
21 
22 
2m 
 
 
m =  
. 
0 
... 
... 
bm-1, m  
 
 
0 
0 
B 
 
m, m 
B 
-1 
mm  
Except the shape of this matrix and a less acuity with the problems of orthogonality, this algorithm 
us ensures the same theoretical and numerical properties that Lanczos. However if one 
let grow indefinitely the size of the subspace until convergence of the eigenvalues 
wished, the effects of round-off despite everything will take again the top and one goes to the front of 
large troubles. 
From where need, as for Lanczos, to make this process iterative via restartings. 
Note: 
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· this method can be seen like an implicit alternative of the algorithm of Lanczos with 
total reorthogonalisation (cf [§5.3.1]), 
· the implicit orthogonalisation of the algorithm can be led by more expensive algorithms 
but more robust such as QR or IGSM. This is strongly necessary when the operator of 
work presents a too strong defect of normality, 
· because of structure of Bm, memory complexity is requested than with Lanczos, by 
against complexity calculation remains of the same order of magnitude O (Nm (c+3+m)) (with C it 
numbers average nonnull terms on the lines of the matrix of work), 
· to improve this first point, Y. Saad [bib32] showed that the structure of Hessenberg 
higher can see to cancel its extreme on-diagonals if one carries out only partially 
reorthogonalisation, 
· the vectorial algorithms having a tendency natural to miss by the multiplicities, one prefers 
often to use a version blocks (Mr. Sadkane [bib22], 1993). But the size of those influence 
on the quality of the results, for this reason one prefers the vectorial versions to them or 
blocks of IRAM, 
· the choice of the vector of initial Arnoldi is carried out same manner as for Lanczos. 
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6.2.2 Estimates of errors and convergence 
With regard to the evaluation of the quality of approximation of the clean modes obtained, there is one 
as simple and effective criterion as for Lanczos. 
Property 10 
~ 
The euclidian norm of the residue of the element of Ritz (, ~ 
U = Q X 
m) is equal to 
R = (A 
~ 
T 
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- ~ I) U = B 
E X 
2 
m + 
2 
1, m 
m 
Proof:  
Commonplace by taking the euclidian norm of the factorization of Arnoldi 
WITH Q X = Q B X + 
Q 
and 
B 
X 
 
m 
m 
m 
m +1, m 
m +1 m and as qm+1 is normalized with the unit. 
 
Always by focusing us on the standard of the additional projector (I - Pm) U one can 
2 
to generalize the theorem of convergence 8 with the nonsquare case. 
Theorem 11 
That is to say (1, u1) the first (traditional arrangement, by order descending of module) clean mode 
N 
dominating of A diagonalisable and is Q = 
U 
1 
K K the initial vector of Arnoldi broken up on 
K =1 
~ 
base clean vectors, it exists a mode of Ritz then (, ~ 
1 u1) such as: 
~ 
2 
 
m 
1 - 1  
1  
 
1 
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N 
 
with = 
, the constant of theorem 6, =  
K 
and 
P U 
1 
 
m I 2 
K =1, K 1 
1 
1 
m + 
- 
1 
 
m +1 
 
m 
K -  
 
1 
 
 
1 =  
- 
. This result is declined in the same way on the other modes. 
 
 
J = K =, K J 
K 
 
2 
2 
J  
Proof: 
By taking again to the demonstration of Y. Saad ([bib33] pp209-210) and the result of theorem 6. 
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Key: 
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These increases very different from those obtained with Lanczos guide the same ones however 
phenomena: 
· if the initial vector does not have any contribution along the sought clean vectors, one cannot 
to capture (I +), 
· one  
has  
firstly convergence of the peripheral modes of the spectrum, and this, of as much 
better than it is separate (property of m 
I), 
· the decrease of the error is proportional to the increase in m (property of m 
I). 
Note: 
· when an eigenvalue is badly conditioned I + then it should be increased m so that 
m 
I decreases, 
· of the similar results was exhumed in the case of a defective operator (cf Zia 94 [bib23]). 
Extremely from this lesson, we now will recapitulate the stakes to which must answer 
IRAM. 
6.3  
stakes 
The algorithm tent will bring an elegant remedy for the recurring problems raised by the others 
approaches: 
· minimization of the space of projection: it proposes with minima m > p+1 instead of the m= 4p 
of Lanczos, 
· optimal management of the overcosts of orthogonalisation establishing a compromise enters the size of 
subspace and the frequency of the restartings, 
· transparent, dynamic and effective management of these restarts, 
· taken into automatic account of spectral information, 
· fixing  
 
pre-necessary report and of the quality of the results. 
There is thus more question to be posed concerning the strategy of reorthogonalisation, the frequency of 
restarts, their establishments, criteria of detection of possible phantom modes… “super-IRAM” 
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charge of all! 
In short, it gets: 
· one  
better  
total robustness, 
· of  
complexities calculations O (4nm (m-p)) and memories O (2np+p2) improved (especially by 
report/ratio in simple Lanczos such that of Newmann & Pipano) for a fixed precision,  
· a more rigorous capture of the multiplicities, clusters and rigid modes of body 
(thus less parasitic modes!). 
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Note: 
· on this last point, only a version per blocks of IRAM or a version incorporating of the “purging 
and lock” (techniques of capture and filtering, cf D. Sorensen & R.B. Lehoucq, 1997) can 
us to guarantee a correct detection of the spectrum of a standard operator (i.e not too badly 
conditioned), 
· it seems, that in practice in Code_Aster, the report/ratio in calculation complexity between IRAM and 
Lanczos/Bathe & Wilson are with minima of order 2 in favour of the first. With sizes of 
reasonable problems (a few tens of thousands of ddls and p= O (100)) this one can 
to go up up to 10 (without the encapsulation of MACRO_MODE_MECA). In certain cases 
semi-industrial, it made it possible to unroll a search for spectrum which had failed with 
Jacobi and who were inaccessible with Lanczos (taking into account the time limits), 
· a class of algorithm known as of “Jacobi-Davidson” (cf R.B. Morgan 1990) seems even more 
promising to treat pathogenic cases. It uses an algorithm of the Lanczos type that it 
packaged via a method of Rayleigh. 
In the following paragraph we will clarify the operation of IRAM. 
6.4  
Algorithm “Implicit Restarted Arnoldi” (WILL GO) 
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This algorithm was initiated by D.C. Sorensen [bib30] in 1992 and makes real great strides for the 
resolution 
great modal systems on parallel supercomputers. Its framework of application is very with 
fact general. It deals with as well the real problems as complex, square or not. It is summarized in 
a succession of factorizations of Arnoldi whose results control automatically 
static and implicit restartings, via polynomial filters modelled by implicit QR. 
First of all it carries out a factorization of Arnoldi of order m= p+q (in theory Q = 2 is enough, in 
practical q= p is preferable. It is this last default value besides which was retained 
(cf [§6.5.3]) of the matrix of work. Then once this preprocessing carried out it reiterates a process of 
filtering of the part of the undesirable spectrum (numerically and méthodologiquement, it is easier 
to exclude to incorporate). 
It starts by determining the spectrum of the matrix of Rayleigh (via indétronable QR) and it in 
dissociate the nondesired part (while referring to the criteria fixed by the user) which it uses then 
like shift to set up a series of Q QR implicit with simple shift (cf [Appendix 1]).  
factorization is written then: 
In Q+ 
Q+ B+ 
= 
+ R Q 
 
m 
m 
m 
m 
where Q+ = Q Q 
+ 
T 
m 
m 
, B = Q B Q 
m 
m 
and Q = Q Q 
Q 
1 2 .. 
Q the unit matrix associated the QR. Afterwards 
to have updated the matrices, one truncates them until the order p 
In Q+ = Q+ B+ + R+ 
 
p 
p 
p 
p 
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and thus, at the price of Q news iterations of Arnoldi, one can find a factorization of Arnoldi of order 
m which is viable. All the subtlety of the process rests on this last sequence. Let us note: 
Q 
( 
~ 
WITH) = (A - 
Id 
 
 
p+i), 
i=1 
the matric polynomial of order Q generated by the operator of work. In fact, the implicit QR have acts  
on the p first lines of the matrix of Arnoldi, Rayleigh and residue, so that 
factorization complementary to order Q produces the same effect as a factorization of order m 
initiated by the vector 
~ 
Q = ( 
With) Q 
1 
1 . 
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The initial vector was implicitly modified (it does not have construction and effective application there of 
polynomial) so that it generates the desired modes preferentially and this, by withdrawing them 
components considered to be “unsuitable”. As one already pointed out (cf [§5.4.2]) this type of restart 
allows to decrease the residue by reducing the components of the initial vector following the modes 
undesirable. Into arithmetic exact, there would be immediately Rm = 0 and the process would stop there! 
Iteration after iteration, one thus improves quality of the modes sought while resting on 
auxiliary modes. Of course this one is estimated at each stage and conditions the opportunity of 
to simulate another restart or not. The process can be summarized (very macroscopically!) like 
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follows: 
Factorization of Arnoldi of order m: AQ = Q B + R. 
m 
m m 
m 
For K = 1, NMAX_ITER_SOREN to make 
~ ~ 
~ 
~ 
~ 
To calculate 
1 
, 2 
… p 
, p+1… p+q, 
! " 
# 
$ 
# 
! " 
# #$ 
# 
Preserved for Used like 
améliorat ion 
shifts 
QR with implicit shifts, 
Update Q, B and R 
m 
m 
m, 
Truncation of these matrices has the order p, 
AQ = Q B + R AQ = Q B + R, 
p 
p p 
p 
m 
m m 
m 
Quality estimate of the p modes.  
Fine buckles. 
Algorithm 14: Method WILL GO (known as of Sorensen) 
The maximum number of iterations is controlled by key word NMAX_ITER_SOREN of the key word 
factor 
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CALC_FREQ. 
It should be noticed that the Arnoldi algorithm is prudently supplemented by a reorthogonalisation 
total (started that if that proves to be necessary). This overcost is all the more acceptable as it is 
established via algorithm IGSM of Kahan-Parlett (cf [Appendix 2]) which is particularly effective. 
All this makes it possible to ensure us of the good behaviour of projection with respect to the initial 
spectrum. 
In addition, the evaluation of the quality of the modes is not carried out simply by building p 
residues R 
= (A 
~ 
- ~ I) U 
I 
I 
I 
via property 10. One already mentioned that in the case not 
2 
2 
square, they could not suffir with this task, in particular in the event of strong defect of normality. For of 
to discharge, without having recourse to other information (to obtain a criterion exact it would be 
necessary to be able 
to consider conditionings spectral of spaces invariants and the angles which they make between them. It 
who is sometimes difficult to obtain, even a posteriori!) a priori, the preceding property is used 
supplemented by a criterion due to Z.Bai et al. [bib34] 
~ 
B 
T 
+1, 
E X < my ( 
X B, PREC_SOREN 
m 
m 
m 
m 
) 
where is the precision machine and PREC_SOREN is a key word initialized under CALC_FREQ. The 
user has 
thus a quality control (partial) of the modes, that of which it did not lay out with the other methods  
established in the code. Taking into account the various standards used, this error is different from 
that resulting from the total postprocessing (cf [§2.9]) which is posted in the columns results. 
Handbook of Reference 
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Note: 
· the technique of polynomial acceleration used is more effective than that of Tchebycheff, 
since the latter is explicit and requires m produced matrix-vector, 
· to avoid the deterioration of the vectors of Ritz (and thus of the approximate clean vectors) by 
eigenvalues of very large modules (partners with the core of B in “shift and invert”) 
a filtering of the type Ericsson & Ruhe [bib35] was established. More robust techniques 
exist but they require information a priori concerning in particular the blocks of 
Jordan associated with the core with the operator (cf Meerbergen & Spence, 1996), 
· this algorithm can be seen like the truncated shape of implicit algorithm QR of 
J.C.F. Francis (cf [Appendix 1]). 
The following paragraph will clarify the choices which led to the alternative installation in the code. 
6.5  
Establishment in Code_Aster 
6.5.1 ARPACK 
The package of origin [bib29] (ARPACK for ARnoldi Package) coding the method is available in 
freeware on Internet. These originators, D.Sorensen, R.Lehoucq and C.Yang of Rice University of 
Houston, wanted it at the same time: 
· simple of access (FORTRAN77, “reverse communication”), 
· flexible (it is based on libraries LINPACK, LAPACK [27] and BLAS [bib36] (BLAS 
is the acronym for BASIC Linear Algebra Subprograms)), 
· and rich in functionalities (decomposition of Schur, shifts flexible, many 
spectral transformations). 
Its effectiveness is multiplied by ten by the use of very optimized BLAS from level 2 and 3 and by the 
setting in 
place “reverse communication”. The user is thus a Master of his structures of data and 
of its procedures of treatment concerning the operator and the scalar product of work. It is him which 
provides to routines ARPACK this type of information. That thus makes it possible to manage as well as 
possible, with 
tools and the procedures ASTER, the products matrix-vector, factorizations, resolutions of 
system… 
6.5.2 Adaptations of the algorithm of Sorensen 
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To deal with generalized modal problems, this package proposes a whole series of 
spectral transformations, in reality or complex, square or not. Into square, the algorithm of 
Sorensen is based on the couple Lanczos-QL (IRLM for Implicit Restarted Lanczos Method).  
two approaches (square or not) are not designed besides to treat pseudo-products 
scalars related to indefinite matrices. 
Precisely, for at the same time circumscribing numerical problems involved in their properties 
enough 
heterogeneous in the code and, in addition, to ensure itself of a better total robustness, we have 
chosen to work in nonsymmetrical (IRAM with Arnoldi and QR), on the couple operator of 
following scalar work-product: 
(A - 
) 
B - 
 
1 
1 
B U = 
U 
!# " 
# 
$ 
## 
µ -  
With 
!"$ 
 
(X, y) = yTx 
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One could have dealt with the problems of buckling in “buckling mode” via the same “shift and invert” 
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and 
the scalar pseudo-product introduced by A. But because of quasi-systematic introduction of 
Lagranges, this matrix becomes indefinite even singular, which disturbs the process largely. 
The same causes produce the same effects when, for a calculation of dynamics, one A resorts to 
scalar B-product. Rather than to modify all the package while introducing a scalar pseudo-product, 
we thus chose a simple scalar product “Euclidean” more robust and much less 
expensive. 
It was thus necessary to modify the procedures of “reverse-communication” of the package, because it 
did not envisage 
this option (with matrices standards one classically prefers to enrich the components with one 
matric scalar product, even in nonsymmetrical). Contrary to the alternative of Newmann & 
Pipano (cf [§5.5.1]) introduced for Lanczos, we deliberately placed ourselves in one 
nonsymmetrical configuration. But in order to avoid as much as doing it can the problems of 
orthogonality 
recurring, even into symmetrical, we would have chosen the version of IRAM using Arnoldi. 
The disadvantage of this step is that it is necessary, in preliminary postprocessing of IRAM, 
B-orthonormaliser approximate clean vectors to find property 2 numerically 
exploited by the modal recombinations. This stage does not disturb the base of clean modes 
exhumed and it is very effectively carried out via the IGSM of Kahan-Parlett. 
The taking into account of the limiting conditions and, in particular of the double dualisations, was led 
as for Lanczos according to the procedure describes in [§2.2]. In particular, once the vector 
initial in acceptable space one is applies the operator of work to him. This traditional process 
allows to purge the vectors of Lanczos (and thus the vectors of Ritz) of the components of the core. 
In addition, in certain configurations for which the number of frequencies requested p 
is equal to the number of ddls active (cf [§2.2]), one owed bluffer the algorithm which stopped in error 
fatal! Indeed, it detected generally well space invariant awaited (from size p), but because of 
particular structure of the clean vectors associated Lagranges (cf proof of property 4, [§2.5]) 
it had much evil to generate an initial vector which is proportional for them. 
One would have needed particular treatments taking account of the classification of these Lagranges, 
which 
would have been all the more expensive as they are not fundamentally necessary to solve it 
problem requested! All the spectral information being already present at deepest of the algorithm, 
it is not thus the sorrow to complete the two remaining iterations (when the user asks 
p = nddl-credits, one imposes m= p+2 automatically). It is enough to short-circuit the natural wire of 
the algorithm, to withdraw the interesting modes of Ritz and post-to treat them to return in space 
initial. 
Note: 
This type of case of figure in which one seeks a number of clean modes very near to 
ddls numbers leaves the “ideal” perimeter of use of this type of algorithm (cf [§2.8]). A good 
QR would be without any doubt more effective, but it is a good means of testing the algorithm. 
6.5.3 Paramètrage 
To be able to activate this method, it is necessary to initialize the key word METHOD with 
“SORENSEN”. Size of 
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subspace of projection is determined, either by the user, or empirically from 
formulate: 
m = min (my ( 
X 2p, p + 2), nddl-credits) 
where 
p 
is the number of eigenvalues to calculate, 
nddl-credits 
is the number of degrees of active freedom of the system (cf [§2.2]) 
The user can always impose to him even dimension by indicating it with the key word 
DIM_SOUS_ESPACE of the key word factor CALC_FREQ. 
The parameter of the IGSM of Kahan-Parlett (cf [Appendix 2]) PARA_ORTHO_SOREN, the maximum 
number 
iterations of the total process, NMAX_ITER_SOREN, and the criterion of quality control of the modes,  
PREC_SOREN, are accessible by the user under the key word factor CALC_FREQ. When this last 
key word is null, the algorithm initializes it with the precision machine (= 2.22.E-16 on SGI). 
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6.5.4 Posting in the file message 
The example below resulting from the list of case tests of the code (ssll103b) recapitulates the whole of 
the traces 
managed by the algorithm. One finds in particular, for each critical load (or frequency), 
the estimate of its quality via the standard of error. 
Here, IRAM reiterated only only once and used 30 IGSM (in its first phase). The resolution 
total consumed 91 products (makes some, less than that because of “implicit” introduction of the product 
Euclidean scalar) matrix-vector and 31 inversions of system (just increase because the operator of 
work is already factorized). 
------------------------------------------------------------ 
THE NUMBER OF DDL 
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TOTAL EAST: 68 
LAGRANGE EAST: 14 
THE NUMBER OF ACTIVE DDL EAST: 47 
------------------------------------------------------------ 
The SELECTED OPTION EAST: PLUS_PETITE 
THE VALUE OF SHIFT CRITICAL LOAD EAST: 0.00000E+00 
------------------------------------------------------------ 
INFORMATION ON CALCULATION REQUIRES: 
A NUMBER OF REQUESTS MODES: 10 
THE DIMENSION OF REDUCED SPACE EAST: 30 
============================================= 
= METHOD OF SORENSEN (CODE ARPACK) = 
= VERSION: 2.4 = 
= DATE: 07/31/96 = 
============================================= 
A NUMBER OF RESTARTINGS = 1 
A NUMBER OF PRODUCTS OP*X = 31 
A NUMBER OF PRODUCTS B*X = 91 
A NUMBER OF REORTHOGONALISATIONS (STAGE 1) = 30 
A NUMBER OF REORTHOGONALISATIONS (STAGE 2) = 0 
A NUMBER OF RESTARTINGS OF A NULL V0 = 0 
------------------------------------------------------------ 
CRITICAL LOADS CALCULEES INF. AND SUP. ARE: 
CHARGE_CRITIQUE_INF: -9.96796E+06 
CHARGE_CRITIQUE_SUP: -6.80007E+05 
------------------------------------------------------------ 
MODAL CALCULATION: METHOD Of SIMULTANEOUS ITERATION 
METHOD OF SORENSEN 
NUMBER CRITICAL LOAD NORMALIZES ERROR 
1 -6.80007E+05 5.88791E-12 
2 -7.04572E+05 1.53647E-12 
3 -7.09004E+05 1.16735E-12 
4 -7.10527E+05 1.72306E-12 
5 -7.11205E+05 2.41783E-12 
6 -7.11542E+05 7.88981E-13 
7 -7.11703E+05 5.71621E-13 
8 -1.50492E+06 1.17776E-11 
9 -6.02258E+06 2.42221E-11 
10 -9.96796E+06 3.55014E-12 
------------------------------------------------------------ 
CHECKING A POSTERIORI OF THE MODES 
IN the INTERVAL (- 1.00178E+07, - 6.76607E+05) 
IT THERE A WELL 10 LOAD (S) CRITICAL (S) 
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------------------------------------------------------------ 
Example 6: MODE_ITER_SIMULT with “SORENSEN” 
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Note: 
The introduction of this method made it possible to balance many cards of anomalies related to 
multiplicities, of the clusters or research of eigenvalues of orders of magnitude very 
different on which Lanczos and Bathe & Wilson stumbled. 
Now let us recapitulate the paramètrage available of operator MODE_ITER_SIMULT with this 
option METHOD = “SORENSEN”. 
6.5.5 Summary of the paramètrage 
Key word factor 
Key word 
Default value 
References  
“DYNAMIC” TYPE_RESU 
“DYNAMIC” 
[§2.1] 
“MODE_FLAMB” 
[§2.1] 
METHOD “SORENSEN” 
“SORENSEN” 
[§6.4] 
CALC_FREQ 
FREQ 
[§4.4] 
CHAR_CRIT 
[§4. 4] 
OPTION “PLUS_PETITE” 
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`PLUS_PETITE '' 
[§4.4] 
“BAND” 
[§4.4] 
“CENTER” 
[§4.4] 
NMAX_FREQ 
10 
[§4.4] 
DIM_SOUS_ESPACE 
Calculated 
[§6.5.3] 
PREC_SOREN 
0. 
[§6.4], [§6.5.3] 
NMAX_ITER_SOREN 
20 
[§6.4], [§6.5.3] 
PARA_ORTHO_SOREN 
0.717 
[§6.5.3], [Appendix 2] 
NPREC_SOLVEUR 
8 
[§2.6] 
NMAX_ITER_SHIFT 
5 
[§2.6] 
PREC_SHIFT 
0.05 
[§2.6] 
SEUIL_FREQ 
1.E-02 
[§2.9] 
VERI_MODE 
STOP_ERREUR “YES” 
“YES” 
[§2.9] 
“NOT” 
[§2.9] 
PREC_SHIFT 
5.E-03 
[§2.9] 
THRESHOLD 
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1.E-06 
[§2.9] 
STURM “YES” 
“YES” 
[§2.9] 
“NOT” 
[§2.9] 
Table 6.5.5-a: Summary of the paramètrage of MODE_ITER_SIMULT with “SORENSEN” 
Note: 
· in V5, the user can specify the class of membership of its calculation by initializing it 
key word TYPE_RESU. According to this value, one informs vector FREQ or CHAR_CRIT, 
· one finds all the “tripaille” of parameters related to the preprocessings of the test of Sturm 
(NPREC_SOLVEUR, NMAX_ITER_SHIFT, PREC_SHIFT) and with postprocessings of checking 
(SEUIL_FREQ, VERI_MODE), 
· at the time of the first passages, it is strongly advised to modify only them 
principal parameters noted in fat. The others relate to more the mysteries of 
the algorithm and they were initialized empirically with values standards, 
· in particular, to improve quality of a mode, the fundamental parameter is 
dimension of subspace DIM_SOUS_ESPACE. 
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7  
Method of Bathe and Wilson (METHOD = `JACOBI) 
7.1 Principle 
The method of Bathe and Wilson is a method of simultaneous iterations which consists in extending 
the algorithm of the iterations opposite. One works starting from the problem shifted A X = (-) B X. 
One distinguishes four parts in the algorithm [bib1], [bib4]: 
· to choose  
p initial vectors independent X, X,…, X 
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1 
2 
p and to build matrix X that they 
generate, 
· to calculate the clean elements in the subspace of Ritz while solving 
(A - B 
T 
T 
I 
) ui = 0 where A = Q AQ and B = Q BQ. One returns then to space 
initial (for the clean vectors) via the transformation X = qu where U = { 
[ui}], 
· to test the convergence of the clean modes I. 
7.2  
Tests of convergence 
The method of Bathe and Wilson converges towards p smaller eigenvalues provided that the p 
initial vectors are not B-orthogonal with the one of the clean vectors. In addition, matrices 
With and B tend towards diagonal matrices. For this reason and as the matrices are full, 
one uses the method of Jacobi (cf [Appendix 3]) to find the elements clean of the subspace of 
Ritz. 
To test the convergence of the eigenvalues, one classifies them after each iteration by order 
growing in absolute value and one looks at if, for each eigenvalue, the following test is checked 
k+1 K 
K 
PREC BATHE 
+ 
- 
 
1 
_  
where the exhibitor K indicates the iteration count. If after NMAX_ITER_BATHE iterations, one does 
not have 
converged for all the eigenvalues, a message of alarm is transmitted in the file message. 
7.3  
Establishment in Code_Aster 
7.3.1 Dimension of the subspace 
If one wishes to calculate p eigenvalues, it is recommended to use under space of dimension Q 
higher. One will check convergence only for the R smaller eigenvalues where p R Q. It 
seem that r= p is not sufficient: one can find the good eigenvalues but the vectors 
clean are not correct (convergence is slower for the clean vectors than for 
eigenvalues). R = (p + Q)/2 seems a good choice. For Q one usually takes [bib1] 
Q = 
( 
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min p + 8, 2 p). 
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7.3.2 Choice of the initial vectors 
To choose Q initial vectors, one operates in the following way: 
With 
· first vector such as X 
II, 
I 
1 = Bii 
· for the other vectors of 2 with (Q -) 
1 
0 
 
0 
 
 
1 
- - line 2 
 
I 
 
 
 
X = 1 
- - line I 
X 
2 
1 Q -1 = 0 
 
,... 
 
 
 
 
0 
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0 
 
 
 
With 
where I are the indices the corresponding to smallest successive values of  
II, 
Bii 
· last  
vector  
xq, random vector. 
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7.3.3 Parameters in Code_Aster 
To be able to use the method of Bathe and Wilson, order MODE_ITER_SIMULT should be chosen 
and to select METHOD = “JACOBI”. Two parameters relating to convergence directly 
method are accessible under the key word factor CALC_FREQ using the key words 
PREC_BATHE and NMAX_ITER_BATHE. One finds there also those managing the internal method 
of resolution 
modal, PREC_JACOBI and NMAX_ITER_JACOBI. 
Key word factor 
Key word 
Default value 
References 
“DYNAMIC” TYPE_RESU 
“DYNAMIC” 
[§2.1] 
“MODE_FLAMB” 
[§2.1] 
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METHOD “JACOBI” 
“SORENSEN” 
[Appendix 3] 
CALC_FREQ 
FREQ 
[§4.4] 
CHAR_CRIT 
[§4. 4] 
OPTION “PLUS_PETITE” 
`PLUS_PETITE '' 
[§4.4] 
“BAND” 
[§4.4] 
“CENTER” 
[§4.4] 
NMAX_FREQ 
10 
[§4.4] 
DIM_SOUS_ESPACE 
Calculated 
[§7.3.1] 
PREC_BATHE 
1.E-10 
[§7.2] 
NMAX_ITER_BATHE 
40 
[§7.2] 
PREC_JACOBI 
1.E-12 
[Appendix 3] 
NMAX_ITER_JACOBI 
12 
[Appendix 3] 
NPREC_SOLVEUR 
8 
[§2.6] 
NMAX_ITER_SHIFT 
5 
[§2.6] 
PREC_SHIFT 
0.05 
[§2.6] 
SEUIL_FREQ 
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1.E-02 
[§2.9] 
VERI_MODE 
STOP_ERREUR “YES” 
“YES” 
[§2.9] 
“NOT” 
[§2.9] 
PREC_SHIFT 
5.E-03 
[§2.9] 
THRESHOLD 
1.E-06 
[§2.9] 
STURM “YES” 
“YES” 
[§2.9] 
“NOT” 
[§2.9] 
Table 7.3.3-a: Summary of the paramètrage of MODE_ITER_SIMULT with “JACOBI” 
Note: 
· in V5, the user can specify the class of membership of its calculation by initializing it 
key word TYPE_RESU. According to this value, one informs vector FREQ or CHAR_CRIT, 
· one finds all the “tripaille” of parameters related to the preprocessings of the test of Sturm 
(NPREC_SOLVEUR, NMAX_ITER_SHIFT, PREC_SHIFT) and with postprocessings of checking 
(SEUIL_FREQ, VERI_MODE), 
· at the time of the first passages, it is strongly advised to modify only them 
principal parameters noted in fat. The others relate to more the mysteries of 
the algorithm and they were initialized empirically with values standards. 
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8  
Conclusion - Synthesis 
The optimal perimeters of use of the modal operators of Code_Aster can be dissociated. 
When it is a question of determining some eigenvalues (typically a half-dozen) or 
to refine some estimates, operator MODE_ITER_INV is completely indicated. He gathers 
heuristic algorithms and those of type powers (cf [§3]), which were historically developed 
first to solve generic modal problems. He couples a phase of localization of 
eigenvalues (via a technique of bisection and a method of the secant) with an improvement 
of these estimates and a calculation of the clean vectors associated by a method of iterations opposite 
(crossbred, or not, of quotient of Rayleigh). 
On the other hand, to capture a significant part of the spectrum, one A resorts to 
MODE_ITER_SIMULT. 
This last federates the methods known as of “subspace” (Lanczos [§4], [§5], IRAM [§6], Bathe & 
Wilson 
[§7]) which projects the operator of work in order to obtain an approximated spectrum of more reduced 
size (treated 
then by a total method of type QR or Jacobi, cf [Appendix 1] and [Appendix 3]). In addition to theirs 
numerical qualities (reduced calculation complexities and memory, facilitated coupling of techniques of 
deflation, of restarting and acceleration…) and mathematics (good convergence, controls 
quality of the spectrum of the projected operator…), it should be noted that they necessarily do not 
require 
knowledge of the operator of work but that of its action on a vector (this characteristic is 
very useful to treat large systems but it is not used in Code_Aster where one assembles 
all matrices before treating them). 
Until now, these algorithms stumbled regularly on the same shelves: detection 
correct of multiple modes, modes of rigid body and a general way, treatment of 
packed spectrum. All this led to the appearance of “phantom” modes sometimes badly easy to detect 
(modes corresponding to multiplicities missed and being able to generate correct residues with the 
direction 
of Aster, and this, more especially as the criteria of the post-modal checks were sometimes permissive 
(residue in 10-2 instead of the 10-6 current), decontaminated even insufficient (test of Sturm limited to 
the values 
clean positive)) who cause distortions of results downstream from calculation, during projections on 
base modal. To be been free from the recurring problems to this type of approach, one thus proposed 
to enrich MODE_ITER_SIMULT (starting from V5) by the algorithm WILL GO (“Implicit Restarted 
Arnoldi” 
[§6]). 
This alternative of Arnoldi, initiated by D.C. Sorensen in 1992, makes real great strides for the 
resolution of 
great modal systems on parallel supercomputers. Its framework of application is completely 
general, it deals with as well the real problems as complex, square or not. It is summarized in one 

file:///Z|/process/refer/refer/p1540.htm (5 of 19)10/2/2006 2:53:36 PM



file:///Z|/process/refer/refer/p1540.htm

succession of factorizations of Arnoldi whose results control restartings automatically 
statics and implicit, via polynomial filters modelled by implicit iterations QR. 
The algorithm tent will bring an elegant remedy for the recurring problems raised by the others 
approaches. There is not any more a question to be posed concerning the strategy of reorthogonalisation, 
frequency of the restarts, their establishments, the criteria of detection of possible phantom modes… 
In short, numerically, IRAM gets a better total robustness while improving them 
calculation complexities and memory (especially compared to simple Lanczos such as that of Newman & 
Pipano) for a fixed precision. 
From a functional point of view, the establishment of this method allowed a profit in calculation 
complexity 
(observed) with minima of order 2. From now on, the user has a real control on the quality of the modes 
via one 
suitable parameter setting. One, moreover, did not reinforce the severity of the post-modal checks and 
extended them 
applicability. 
The use of IRAM (by defect in MODE_ITER_SIMULT) is thus with advising in all them  
case of figures, including for the search for some eigenvalues (one can even draw part 
excellent properties of the method of the powers opposite concerning the calculation of vectors 
clean and, to refine the result, by starting again MODE_ITER_INV with for estimate values 
clean exhumed by MODE_ITER_SIMULT). Beyond their numerical specificities and 
functional calculuses which are included in this document, one can synthesize the modal methods of 
Code_Aster in the shape of table below (the default values are materialized in 
fat). 
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Disadvantages 
Perimeter 
of application 
MODE_ITER_INV 
1st phase 
(heuristics) 
Calculation of some 
Bisection 
“SEPARATE” 
modes 
Calculation of some 
Bisection + 
“ADJUSTS” 
Better precision 
Cost calculation 
modes 
Secant 
Improvement of 
Initialization by 
“NEAR” 
Resumption of values 
No the capture of 
some estimates 
the user 
clean estimated 
multiplicity 
by another 
process. 
Cost calculation of this 
phase quasi-no one 
2nd phase 
(method of 
powers properly 
said) 
Basic method 
Powers 
“DIRECT” 
Very good 
Not very robust 
opposite 
construction of 
clean vectors 
Option of acceleration 
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Quotient of 
“RAYLEIGH” 
Improve 
Cost calculation 
Rayleigh 
convergence 
MODE_ITER_SIMULT 
Calculation of part of 
Bathe & Wilson 
“JACOBI” 
Not very robust 
spectrum 
Lanczos 
“TRI_DIAG” 
Not very robust 
(Newman- Pipano) 
IRAM (Sorensen) 
“SORENSEN” 
Increased robustness. 
Better 
calculation complexities and 
memory. 
Control 
quality of the modes. 
Table 8-a: Summary of the modal methods of Code_Aster 
IRAM made it possible to balance all the software anomalies related to the generalized modal problems, 
but it seems that alone its variation per blocks or a version incorporating of the “purging and 
lock” [bib23] can guarantee to us “an quasi-infallible” detection of the spectrum of a standard operator 
(i.e too badly not conditioned). 
A class of algorithm known as of “Jacobi-Davidson” [bib37] seems even more promising to treat 
pathogenic cases. It uses an algorithm of the Lanczos type that it packaged via a method 
of Rayleigh. 
Let us conclude by noting that the algorithm WILL GO was not extended yet to the quadratic case in 
modal operators of the code [R5.01.02]. 
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Appendix 1 General information on algorithm QR 
A1.1 Principle 
The algorithms of the type QR (cf [§2.8]) were had a presentiment of per H. Rutishauser (1958) and 
were formalized 
jointly by J.C. Francis and V.N. Kublanovskaya (1961). This fundamental method is 
often implied in the other approaches adapted better to deal with the problems of large 
sizes (in particular methods of projection). 
For K = 1,… to make 
H = Q R (factorization QR), 
K 
K 
K 
H 
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= R Q; 
K +1 
K 
K 
Fine buckles. 
Algorithm 1.1: Theoretical QR 
The process leads repeatedly towards a matrix triangular HK higher (or triangular 
by blocks) whose diagonal terms are the eigenvalues of the initial operator H= H1. The notation 
H is not in fact not innocent, because there is any interest with transforming beforehand orthogonally ( 
manner to modify only the shape of the shifté operator and not his spectrum) the operator of work A 
in the form of higher Hessenberg, that is to say into arithmetic real 
H = QT AQ 
1 
0 
0 
This can be carried out via various orthogonal transformations (Householder, Givens, 
Gram-Schmidt…) and their cost (about O (10n3/3)) negligible is compared with the profit that they 
allow to realize with each iteration of the total process: O (N2) (with Householder or 
Fast-Givens one more precisely has O (2n2) against O (4n2) with simple Givens) against O (n3). It 
profit of an order magnitude can be even improved when the operator is tridiagonal symmetrical 
(it is the case of Lanczos with a true scalar product): O (20n). 
Convergence towards a simple triangular matrix is carried out only if all the eigenvalues 
are distinct modules and that if the initial matrix is not “pathologically” too poor in 
clean directions. The convergence of the ième mode (arranged classically by order descending of 
modulate) is carried out then in: 
J 
max 
, 
J I 
I 
 
what can prove very slow if no complementary process is implemented. 
Note: 
· determination of the spectrum of the matrix of Rayleigh with the alternative of Newmann & Pipano  
(cf [§5.5.1]) is carried out via a QR (or a QL into symmetrical) simple of this type (with, with 
precondition, balancing). The only parameter accessible by the user is the maximum number 
acceptable iterations NMAX_ITER_QR, 
· for IRAM (cf [§6.4]), this calculation is carried out via a method QR with double explicit shift 
whereas the polynomial filters managing the restarts use a QR with double implicit shift. 
By prudence, no parameter is accessible for the user in Code_Aster! 
· one should not confuse the method, algorithm QR, and one of its conceptual tools, 
factorization QR, 
Handbook of Reference 
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· this class of algorithm is very much used to determine the complete spectrum of an operator, 
because it is very robust (it is the reference in this field). However it is very 
greedy memory from there what places makes its use crippling on great systems, 
· the perimeter of application of algorithm QR is much more general that that of Jacobi 
(it is the second standard algorithm providing all the spectrum of an operator for can 
that one is ready to entirely store it) who is limited to the square matrices. 
To accelerate the convergence of the simple algorithm which can be very slow (in the presence of 
clusters 
for example) a multitude of alternatives, based on the choice of shifts answering certain criteria, 
were born. 
A1.2 strategy of the shift 
This strategy consists in causing artificially a phenomenon of deflation (cf [§3.1], [§5.4.1]) 
within the matrix of work. That offers triple favours: 
· of  
to be able to isolate a real eigenvalue even two combined complex eigenvalues, 
· all  
in  
reducing the size of the problem to be treated, 
· and  
in  
accelerating convergence. 
In its version with simple explicit shift, the method is rewritten then in the following form: 
For K = 1,… to make 
To choose the shift µ, 
Sk = HK - µ I, 
S = Q R (factorization QR), 
K 
K 
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K 
H 
= R Q + µ; 
K +1 
K 
K 
I 
Fine buckles. 
Algorithm 1.2: QR with simple explicit shift 
Note: 
This process spreads intuitively with several shifts. One builds then, for each 
total iteration K, as many auxiliary matrices Sik of shift µi. 
The convergence of the process is largely improved in the direction where under-diagonal terms 
cancel themselves asymptotically in: 
J - µ 
max 
. 
J I 
I 
- µ 
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In theory, if this shift µ is eigenvalue of the problem, then deflation is exact. In practice, them 
effects of round-off disturb this phenomenon, it is what is called the property of direct instability of 
the algorithm. The principal difficulty lies in the choice of (or of) the shifts. In addition, one does not 
keep  
not the same shift for all the iterations. One must change some when it is associated a value 
clean converged. Indeed, it will have numerically caused its ousting of the spectrum of work in 
causing a deflation with the preceding iteration. 
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Since the Sixties a whole zoology of shifts developed. While simplest 
use the last diagonal term Hn, N, that of J.H. Wilkinson [bib24] consists in determining 
analytically the eigenvalue µ of the diagonal block 
H 
H 
n-1, n-1 
n-1, N  
H 
H 
 
N, n-1 
N, N  
nearest to this term. This technique makes it possible to even obtain a quadratic convergence 
cubic (in the symmetrical case) and it proves particularly effective to capture modes 
double or of the distinct eigenvalues of the same module. However this strategy can appear 
ineffective in the presence of combined complex clean modes. 
The same author then proposed an alternative including a double shift corresponding to both 
complex eigenvalues µ1 and µ2 (beforehand given) of the accused block. But in addition to 
numerical difficulties with réfreiner appearance of invading complex components (which in theory 
do not take place to be), one has in addition much evil to preserve the character of “Hessenberg 
higher” of the matrix of work. As well as possible, that slowed down the convergence of algorithm QR, 
with 
worse, that distorts its operation completely. 
In order to stage with these underhand numerical disadvantages, J.C. Francis developed a version with 
double implicit shift. It is very well clarified in [bib6] (pp377-81) and one will be satisfied just here 
to summarize philosophy of it. 
To minimize the effects of round-offs, it would be necessary to constitute the auxiliary matrix resulting 
Sk directly 
simultaneous application of the two shifts µ1 and µ2 
S = H2 - (1 
µ + µ2) H + (µ1µ2) I 
K 
K 
K 
before factorizing it in form QR and building the new one reiterated Hk+1 
S = Q R 
K 
K 
K, 
H + = QTH Q 
K 
K 
K 
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K. 
1 
But only the cost of the initial assembly (about O (n3)) the tactics make inoperative. This 
alternative, based on the Q-implicit theorem, consists in applying to the matrix of work of 
particular transformations of Householder allowing to find a matrix of Hessenberg 
“primarily” equalizes in Hk+1, i.e. of the type: 
~ 
H 
1 
1 = E H 
E 
E 
K + 
K +1 
with = dia ( 
G ± 1. ± 
. ) 
1 . 
The matrix of work thus preserves, at lower cost, its particular structure and its spectrum. 
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All these alternatives are in fact very sensitive to the techniques of balancing established for 
préconditionner the initial operator. The following paragraph will summarize this technique of “setting 
with 
the scale” (“balancing” for the Anglo-Saxons) of the terms of the matrix of work which is very 
employee in modal calculation. 
A1.3 Balancing 
It is a question of mitigating the effects of round by attaching the perimeter of expansion of the 
terms of 

file:///Z|/process/refer/refer/p1540.htm (17 of 19)10/2/2006 2:53:36 PM



file:///Z|/process/refer/refer/p1540.htm

the operator of work, i.e. to prevent that they do not become too small or, on the contrary, too large.  
On this subject, E.E. Osborne [bib17] (1960) noticed that generally the error on the calculation of 
clean elements of A is about A 2 where is the precision machine. It proposed then 
to transform the initial matrix into a matrix 
~ 
With = D A 
1 D (with D a diagonal matrix), 
such as: 
~ 
With << A. 
2 
2 
In fact one calculates a succession of matrices repeatedly 
With = D-1 A 
 
D 
K 
K -1 
K -1 
K -1 
such as: 
With  
 
With 
K 
K 
F 
 
checking have 
= have with have and has 
2 
2 
I, respectively, the ième column and line of Af. 
Note: 
· this technique was generalized to any matric standard induced by the discrete standard of lq 
Q 
with lq the whole of complex continuations (one) N such as one <, 
N 
· its employment is very widespread in scientific computation and in particular among the direct 
solveurs of 
system of linear equations. 
The base of calculation of the computer, noted, intervenes in the determination of the terms of matrices 
Dk. 
In order to minimize the rounding errors, the elements of Dk are chosen so that they are powers 
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of this base. 
Are Rk and Ck the p standards (in practice p= 2 is often taken), respectively line and 
column I of the Ak-1 matrix (I is selected in such way that I - 1 K - 1 [N]). By supposing that 
R C 
K 
K 0, one shows whereas there is a single entirety signed such as: 
2 -1 R 
< K 2 +1. 
Ck 
Either F =, one defines matrix Dk such as: 
 
Id + (-) 
1 E and 
p 
p 
p 
p 
F 
I I 
if (Ck F) + (R K/F) < C + R 
D 
(K K) 
K = Id 
 
 
if not 
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where 0 < 1 is a constant and I.E.(internal excitation) the ième canonical vector. One builds then 
repeatedly: 
D 
 
 
= D D 
K 
K 
K -1, 
 
, 
WITH = D-1A 
D 
 
K 
K 
K -1 K. 
by initializing D0= Id. the process stops as soon as D 
Id 
K = 
. 
Note: 
· before carrying out balancing, a research of the isolated eigenvalues is carried out in 
detecting the presence of lines and quasi-null columns (all the terms are null, except 
that placed on the diagonal). When there are some one can, by carrying out permutations 
suitable, to put the matrix of work in the following form blocks: 
* 
* 
 
 
 
* 
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Y 
Z 
 
 
0 
* 
 
 
 
 
 
 
0 
X 
T 
 
 
 
 
 
 
* 
* 
 
 
 
0 
0 
* 
 
 
 
0 
* 
It is then necessary to carry out balancing only on the central block X because the terms 
diagonal of the two higher triangular matrices are eigenvalues of the matrix 
of work. 
· 
p = 1 
= 0 9 
. 5 
 
in Code_Aster, one chose  
and  
(cf [bib19]), 
· before applying method QR, one starts by balancing the matrix of work and then, 
one transforms it in the form of Hessenberg higher. Once calculation QR carried out, one 
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go up vectors of Ritz to the clean vectors via the reverse of the transformations 
orthogonal due to the setting in Hessenberg form and balancing. It is this process which 
is set up as well in Lanczos in IRAM. However in addition to the fact that it 
require the storage of these orthogonal matrices, it is also and especially extremely 
sensitive to the effects of round-offs. Thus, it would be largely preferable to estimate the vectors 
clean via a method of the powers opposite initialized by the eigenvalues 
exhumed. 
A1.4 method QL 
Factorization QL of a matrix A consists with orthonormaliser its vectors columns of 
starting with the last (contrary to algorithm QR which begin with the first) thus giving 
a matrix L triangular lower regular. It is shown besides that algorithm QL applied to 
invertible operator A is equivalent to algorithm QR applied to A-* (transposed matrix 
combined reverse of A). 
The method installation in Code_Aster is identical to the method of simple shift of 
J.H. Wilkinson seen previously by adapting the search for this shift to the minor 2x2 highest. 
Note: 
Contrary to QR which captures the eigenvalues by order ascending of module, one obtains here 
preferentially dominant modes, then others, by order descending of module. 
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Appendix 2 Orthogonalisation of Gram-Schmidt 
A2.1 Introduction 
One saw on several occasions in this document that the quality of orthogonalisation of a family of 
vectors is crucial for the good unfolding of the algorithms and the quality of the modes obtained. 
This task is besides to permanently realize from where the importance of a fast algorithm. 
The simple algorithms of orthonormalisation are deduced from the traditional process of Gram-Schmidt  
but they are often “conditionally stable” (the quality of their work depends on 
matric conditioning of the family with orthonormaliser). This defect of robustness can prove 
problems to treat situations particularly badly conditioned. One prefers to them then 
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more expensive but robust algorithms, containing projections or of rotations: transformations 
spectral of Householder and Givens. 
In practice, for the establishment of the method WILL GO in Code_Aster, we retained one 
iterative version of the process of Gram-Schmidt (the IGSM of Kahan-Parlett [bib18]) It carries out 
one 
good compromise between the robustness and calculation complexity since it is unconditionally 
stable and orthogonaliser allows except for the precision machine, in, to the maximum, twice more 
time that traditional Gram-Schmidt (GS). 
In the following paragraphs we will detail the operation of the basic algorithm, thus 
that that of these two principal alternatives. First was installation in MODE_ITER_INV and 
second is used in MODE_ITER_SIMULT. Comparative very percussion of these methods is 
declined in [bib23] (pp33-36) starting from a very simple example. 
A2.2 Algorithm of Gram-Schmidt (GS) 
Being given K vectors independent of N, (xi) 
one wishes to obtain K orthonormal vectors 
I =1, K 
(compared to an unspecified scalar product) (yi) 
space which they generate. In others 
I =1, K 
terms, one wishes to obtain another orthonormal family generating same space. The process 
of traditional orthonormalisation of Gram-Schmidt is as follows: 
For I = 1, K to make 
For J = 1, I -1 to make 
Calculation of rji = (y, X 
J 
I); 
Fine buckles. 
Calculation of y%i = xi - R y 
ji 
J, 
J =, 
1 i-1 
Calculation of II 
R = y%i, 
y% 
Calculation of y 
I 
I = 
; 
II 
R 
Fine buckles. 
Algorithm 2.1: Algorithm of Gram-Schmidt (GS) 
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This process is simple but very unstable because of the rounding errors, which causes to produce 
nonorthogonal vectors. In particular when the initial vectors are almost dependent 
that creates important variations magnitude in the second stage of the process 
%y = X - R y 
I 
I 
ij 
J 
J =, 
1 i-1 
From a numerical point of view, the management of these variations is very difficult. 
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Note: 
· the problem is completely similar to that met by the inversions of systems put in 
place in the code (cf [§2.6]), 
· by noting Q the matrix generated by (yi) 
, one explicitly was thus built 
I =1, K 
factorization QR of the initial matrix X related to (xi) 
. It is in fact the goal of very proceeded 
I =1, K 
of orthogonalisation. 
A2.3 Algorithm of Modified Gram-Schmidt (GSM) 
In order to évincer these instabilities numerical one reorganizes the preceding algorithm. Mathematically 
equivalent with the preceding process, this one is then much more robust because it avoids the variations 
of 
magnitude important between the vectors handled in the algorithm. 
In the initial process, the orthogonal vectors yi are obtained without taking account of the i-1  
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preceding orthogonalisations. With Modified Gram-Schmidt, one orthogonalise more 
gradually by taking account of preceding deteriorations according to the process below. 
For I = 1, K to make 
%yi = X, I 
For J = 1, I -1 to make 
Calculation of rji = (y, J %yi), 
Calculation of %yi = %yi - R y; 
ji 
J 
Fine buckles. 
Calculation of II 
R = %y, 
I 
%y 
Calculation of y 
I 
I = 
; 
II 
R 
Fine buckles. 
Algorithm 2.2: Algorithm of Modified Gram-Schmidt (GSM) 
The orthonormality of the basic vectors is much better with this process and it can be even obtained with 
the precision machine and except for a constant (depend on the conditioning of X). However, for 
to treat situations particularly badly conditioned, this “conditional” stability can prove 
quickly problematic, from where the recourse to the following iterative algorithm. 
Note: 
GSM is twice more effective than a method of Householder to obtain a factorization 
QR of the initial matrix X. It requires only O (2nk2) operations (with N the number of lines 
matrix). 
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A2.4 Algorithm of Iterative Gram-Schmidt (IGSM) 
To ensure itself nevertheless of orthogonality except for the precision machine, one recommends to 
realize 
one second orthogonalisation. And if, at the end of the latter, orthogonality is not assured it 
is not any more the sorrow to start again, the handled quantities are then certainly very close and 
their variations oscillate around zero. This approach is based on a theoretical analysis due to 
W. Kahan and taken again by B.N. Parlett [bib18] (cf pp105-110). 
For I = 1, K to make 
%yi = X, I 
For J = 1, I -1 to make 
Calculation of rji = (y, J %yi), 
Calculation of ~yi = %yi - R y, 
ji 
J 
If  
~yi %y then 
I 
%yi ~y, I 
Exit buckles in J; 
If not 
Calculation of r~ji = (y, ~y 
J 
I), 
Calculation of ~~yi = ~yi - ~r y, 
ji 
J 
If  
~ 
~ 
yi ~ 
y then 
I 
%yi ~~y, I 
Exit buckles in J; 
If not 
%y 0, 
I 
Passage to I following; 
End if. 
Fine buckles. 

file:///Z|/process/refer/refer/p1550.htm (7 of 19)10/2/2006 2:53:36 PM



file:///Z|/process/refer/refer/p1550.htm

Calculation of II 
R = %y, 
I 
y 
Calculation of y 
I 
I = %; 
II 
R 
Fine buckles. 
Algorithm 2.3: Algorithm of Iterative Gram-Schmidt of type Kahan-Parlett (IGSM) 
During the use of IRAM in Code_Aster, the criterion is paramètré by the key word 
PARA_ORTHO_SOREN (cf [§6.5]). It is shown that its interval of validity is [1.2e, 0.83-] with 
precision machine and one generally allot value 0.717 to him (by defect). 
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Note: 
· more the value of the parameter is large, less the reorthogonalisation starts, but 
that affects the quality of the process, 
· contrary to the version “house” developed for Lanczos (cf [§5.5.1]) here criteria 
stops concentrate on the standards of the vectors orthogonalized rather than on the products 
scalars inter-vectors which tend more to reflect the effects of round-off. That, joined to 
suppression of the iterations higher than two, therefore useless, can explain the addition 
of effectiveness of the version of Kahan-Parlett, 
· according to D.C.Sorensen the paternity of this method is rather to allot to J. Daniel and Al 
(paper of 1976 subjected to Mathematics of Computation, vol.30, pp772-795). 
Appendix 3 Method of Jacobi 
A3.1 Principle 
Method of Jacobi [bib4], [bib6], [bib11] allows to calculate all the eigenvalues of one 
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generalized problem whose matrices are definite positive and symmetrical (the matrices obtained with 
each iteration by the method of Bathe &Wilson check these properties; cf [§7]). It consists with 
to transform matrices A and B of problem A U = B U into diagonal matrices, while using 
successively orthogonal similar transformations (matrices of rotation of Givens).  
process can be schematized in the following way: 
A1 = A 
B1 = B 
A2 = QT A Q 
1 
B2 = QTB Q 
1 
1 
1 
1 
1 
... 
Ak = QT Ak- Q 
1 
Bk 
T 
K - 
K - 
K - 
= Q 
B 
Q 
1 
1 
1 
K -1 
K -1 
stamp 
stamp 
Ak  
 
AD 
Bk  
 
Data base 
K 
diagonal 
K  
diagonal 
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Algorithm 3.1: Process of Jacobi 
-1 
AD 
The eigenvalues are given by = AD (data base) that is to say = II and stamps it clean vectors 
Bdii 
check: 
1 AD 
 
 
11 
 
 
D 
1 2 
K 
1/A 
 
X = Q Q… Q… 
22 
 
 
 
 
D  
 
1/Ann  
Each Qk matrix is selected so that a term (I, J) nondiagonal and not no one of Ak or of 
Bk is null after the transformation (for the choice of this term, cf [§0]). 
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A3.2 Some choices 
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In this algorithm, one realizes that the important points are as follows: 
· Comment to choose the terms to be cancelled? 
· Comment to measure the diagonal character of the matrices when K tends towards the infinite one? 
· Comment to measure convergence? 
A3.2.1 nondiagonal Terms to cancel 
For the choice of the terms to be cancelled, there are several methods: 
· the first consists with each stage K, to choose the largest element modulates some not 
diagonal of the Ak matrix or Bk and to cancel it by carrying out a rotation (cf [§0]). This choice 
ensure the convergence of the method of Jacobi but is relatively expensive (search for  
the maximum element), 
· the second solution consists in successively cancelling all the nondiagonal elements of 
these matrices while following the natural order Ak,…, Ak, Ak 
K 
13 
1n 
23,… . When one arrives at Year-1, N, one 
start again the cycle. This method converges slowly. 
An alternative of this method, consists very of following the natural order of the terms, to cancel 
only those which are higher than a given precision K. At the end of a cycle, one decreases 
value of this criterion and one starts again. It is this strategy which is used in Code_Aster. 
A3.2.2 Test of convergence 
To test the convergence and the diagonal character of the matrices, one operates thus. It is checked that 
all 
coupling coefficients defined by: 
Aij 
Bij 
F 
= 
F 
= 
I J 
Aij 
Bij 
AiiA jj 
BiiB jj 
are lower than a given precision (diagonal character of the matrices). One also controls 
convergence of the eigenvalues via the indicator 
K 
K 1 
I 
- - 
I 
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F = max 
 
I 
K -1 
I 
 
so that there remains lower than a given precision jaco. 
Handbook of Reference 
R5.01 booklet: Modal analysis 
HI-75/01/001/A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Algorithm of resolution for the generalized problem 
Date:  
02/03/01 
Author (S): 
O. BOITEAU 
Key: 
R5.01.01-C Page: 
77/78 
A3.2.3 Algorithm in Code_Aster 
The algorithm implemented in Code_Aster is summarized with: 
Initialization of the matrix of the vectors specific to the matrix identity. 
Initialization of the eigenvalues. 
To define the precision of necessary dynamic convergence. 
To define the precision total glob. 
For each cycle k=1, n_ max jaco 
K 
To define the dynamic tolerance: K = (dyn), 
L = 0, 
For each line i= 1, N 
For each column j= 1, N 
K, L 
K, L 
Aij 
Bij 
Calculation of the coupling coefficients F K L, = 
F K L, = 
I J, 
Aij 
K, L 
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K, L 
Bij 
K, L K, L 
Aii A jj 
Bii B jj 
If F K L 
With, or F K L 
K 
ij 
B, then 
ij 
Calculation of the coefficients of the rotation of Givens, 
Transformation of the Ak matrices, L and Bk, L, 
Transformation of the clean vectors, 
L = L + 1 
End if. 
Fine buckles. 
Fine buckles. 
K, L 
With 
Calculation of the eigenvalues K 
II 
I = 
K, L. 
Bii 
K 
K 1 
I 
- - 
I 
 
Calculation of F = max 
 
- 
I 
K 1 
. 
I 
 
K, L 
K, L 
Aij 
Bij 
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Calculation of the total coupling coefficients F = max 
F = max 
With 
B 
I, J 
K, L 
K, L 
I, J 
K, L K, L 
WITH A 
B B 
I J 
II  
jj 
I J 
II 
jj 
If F  
and 
F  
and 
F 
With 
glob 
B 
glob 
glob then 
Correction of the clean modes (let us divide by Bkii), 
Exit; 
End if. 
Fine buckles. 
Algorithm 3.2: Method of Jacobi established in Code_Aster 
One notes n_ max jaco the maximum number of allowed iterations. 
Note: 
The matrices A and B being symmetrical, only the half of the terms is stored in form 
of a vector. 
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A3.2.4 Stamps rotation 
One seeks with each stage to cancel the terms being in position I and J (I J) of the matrices 
Ak, L 
, 
and Bk L by multiplying them by a matrix of rotation which with the following form: 
G = 1 L = 1, N; G = has; G 
ll 
ij 
ji = B 
+1 
+ 
other terms being null. One wishes to have Ak, L 
= Bk, L 1 
ij 
ij 
= 0 what leads to: 
 
has K, L 
K, L 
K, L 
With 
 
II + (1 + b) A has 
+ B 
ij 
With jj = 0 
has K, L 
K, L 
K, L 
Bii + 
 
 
(1+ A B) B + B 
ij 
B jj = 0 
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because Ak, L +1 
WP Ak, L G 
Bk, l+ 
= 
1 
and 
= GTBk, L G. If the two equations are proportional one a: 
K, L 
With 
has = 0 and B 
ij 
= - K, L 
With jj 
if not: 
C 
C 
= 2 B has = - 1 
D 
D 
with: 
C 
K, L 
K, L 
K, L 
K, L 
= A B - B A 
C 
K, L 
K, L 
K, L 
K, L 
1 
II 
ij 
II 
ij 
2 = A jj Bij - B jj Aij 
2 
K, L 
K, L 
K, L 
K, L 
C 
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C 
C = A 
B 
- B A 
D 
3 
3 
3 
jj 
II 
jj 
= 
+ 
( 
sign c3) 
C C 
II 
1 2 
2 
 
 
2 + 
Note: 
· if D = 0 then one is in the case proportional, 
C 2 
· if the matrix B is definite positive then  
3 
C C 
1 2 
 
 
2 + 
is positive [bib11] what gives one well 
feel with parameter D. 
Summary A3.2.5 of the paramètrage 
To reach the parameters which intervene in the method of Jacobi, the user must select 
following key words: 
·  
dyn key word PREC_JACOBI under the key word factor CALC_FREQ,  
·  
n_ max jaco key word NMAX_ITER_JACOBI under the key word factor CALC_FREQ. 
The total precision glob is equal to the precision of convergence required in the method of 
Bathe and Wilson. There is thus glob = bath (cf [§7]). 
Handbook of Reference 
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1 Introduction 
1.1  
Position of the problem 
Dynamic analysis or the study of the stability of the balance of a mechanical structure led, in 
tally of the linearized theory, to solve the matric differential equation of the second order 
where 
M 
is the matrix of mass and inertia of the structure, 
G 
is the matrix induced by the gyroscopic effect (case of the revolving machines), 
is a significant real parameter number of revolutions, 
 
C 
is the matrix of damping induced by dissipative forces. 
K 
is the matrix of rigidity of the structure, 
E 
is the matrix of viscous damping interns structure, 
F 
is the external force (which is null in the case of the search for balance). 
1.2  
Properties of the matrices 
The matrices considered are with real coefficients. 
Classically, one considers: 
M 
is symmetrical (semi) definite positive, 
G 
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is antisymmetric, 
C 
is symmetrical, 
K 
is symmetrical not necessarily definite positive, 
E 
is antisymmetric. 
Dice at the time, one realizes that the simultaneous presence of the matrix of damping and the matrix 
of gyroscopic effect destroys the symmetry or the antisymetry of the term speed; pareillement 
internal damping producing an antisymmetric matrix, destroyed the property of symmetry of 
stamp rigidity. 
In addition, the introduction of linear relations modifies the character of positivity of the matrices:  
stamp K is indefinite (with positive or negative eigenvalues). 
1.3  
Problem with the eigenvalues associated 
The sought solutions are form (separation of the variables of space and time). 
U (T) = E t.x with IC and X ICN 
 
 
 
What leads us to the quadratic problem with the eigenvalues according to: 
the solution U (T) can be rewritten in the form: 
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that one can put in matric form: 
U (T) = [X] [E T] [K] 
 
where 
[X] 
is the modal matrix 
[N X 2n] 
[E T] is a diagonal matrix 
[2nx2n] 
 
[K] 
is a matrix unicolonne 
[2nx1] 
Proposal: 
The modal matrix [X] perhaps used like stamps transformation to uncouple N 
equations of the quadratic problem of origin, its 2n columns are not linearly 
independent. 
Note: 
One determines [X], using the two following identities: 
U (0) = [X] [K] 
1.4  
Some traditional particular cases. 
These particular cases were lengthily studied (cf for example [MEI.67], [ROS.84]) 
M 
G 
C 
K 
E 
values 
vectors 
clean 
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2  
Reductions with a linear form 
One is interested in the possibilities of reduction of the quadratic problem in a generalized problem 
equivalent. 
The principles of reduction are applicable to unspecified matrices, and if we consider it 
problem in (M, C, K) is only to simplify the talk. 
2.1  
Reductions with a linear form 
There are several traditional methods to transform the quadratic problem into a problem 
generalized with the eigenvalues. 
We will develop the method which consists in introducing speed like auxiliary variable: 
For that we introduce an additional equality: 
Z (T) - Z (T) = 0 
where Z is a matrix not identically null. 
Our initial system can then be rewritten in the matric form in a space of dimension 
double of initial space 
And the problem with the eigenvalues associated is in its opposite form 
By supposing K and Z regular, the problem with the eigenvalues generalized thus obtained can 
formally to put itself in the standard form: 
Notation: one poses y = X 
 
The standard form associated the quadratic problem is independent of the matrix réguliére Z 
chosen. 
Definition 
One will call linear reduction of the quadratic problem, any generalized problem of which all them 
clean elements ((X, y)) check: 
, 
 
(X) is clean solution of the quadratic problem, 
·  
, 
and My = MX (condition of coupling) 
· 
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Proposal: 
If ((X, y) T) is a solution of the linearized equation and if Z is regular then (, X) is solution of 
Pr, 
oblème quadratic. 
 
This result is immediate. 
2.1.1 A particular choice for matrix Z: ±M 
 
one takes for matrix Z the matrix - M of the initial system, dice at the time the linearized system (A.z = 
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B.z) 
· 
is written: 
µ 
If the matrices M, C and K are symmetrical and Si the matrix M is regular, this linear reduction 
allows to build a symmetrical generalized problem. 
 
one takes for matrix Z the matrix M of the initial system, dice at the time the linearized system (A.z = B.
z) 
· 
is written: 
µ 
If M and K are definite positive then B is also, but matrix A is not symmetrical. 
Proposal: 
If one chooses Z = ± M (matrix not identically null) and if (, (X, y) T), with X not no one, is solution 
clean of the equation generalized then (, X) is solution propr  
E of the quadratic problem. 
 
2.1.2 Particular case of the positive matrix M definite 
If the matrix of mass is definite positive then it a decomposition of Choleski admits 
M = QT.Q 
If one introduces the linear transformation U (T) = Q-1.q into the basic equation of the quadratic problem 
after pre-multiplyhaving multiplied it by Q-T = (Q-1) T, one obtains: 
and while defining v =  
the preceding equation, leads us to the standard problem with the values 
clean A.v = .v with 
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2.1.3 Case of the symmetrical reduction for a singular matrix M 
In this paragraph we suppose the matrices M, C and K symmetrical. 
If M is singular and if the eigenvalue is semi simple then it Q exists an orthonormal matrix 
such as. 
0 
Indeed, the eigenvalue being semi-simple, the core of M admits a base made up of vectors 
clean. This base is C 0 
omplétée and orthonormalized. The matrix Q admits for vectors columns them 
vectors of this base. 
Let us note that M11 is symmetrical (bus M is) and regular. 
One introduces then a regularization of the matrix M represented by the matrix MR. and defined by: 
where M22 is a regular symmetrical matrix (for example the matrix identity). 
Property: 
The generalized problem associated the matrices 
 
is a symmetrical linear reduction of the quadratic problem. 
Demonstration: 
 
symmetry is ensured by construction. 
· the “tildées” matrices check  
· 
thus  
, that is to say still  
However if  
associated the eigenvalue of the generalized problem one is a clean vector has 
 
MR. y = MX, therefore My = M  
MX. The condition of coupling is established. 
 
 
 
Let us suppose that under-vector X of the clean vector  
that is to say no one. Then the equation 
· 
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MR. y = MX led to y = 0 bus MR. is regular, which is absurd. 
 
The condition X 0 is thus established. 
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Note: Interpretation of the regularized matrix MR.: 
This symmetrical linear reduction is distinguished from that presented previously by 
substitution of M per MR. in matrix A. 
If M is singuliére, this substitution forces the vector to have a component there 
null in the core Mr. Ainsi the symmetrical linear reduction led to a generalized problem 
posed in under space of  
IR2n such as y ker M - {0}. 
 
 
If K is regular, the preceding generalized problem admits a form reverses standard 
equivalent. 
2.2  
Property of orthogonality of the clean vectors 
It is immediate to show that the complex clean modes check the properties of orthogonality 
exits of the following generalized problem if the matrices A and B are symmetrical: 
If one develops the preceding expressions, by taking account of the linear reductions used one 
obtains the expressions: 
Note: 
 
The first equality is independent of the regularity of M, 
· the second equality is obtained directly if M is regular and is established if not in 
· 
using the basic change of the regularization of Mr. 
The modes of the quadratic problem are thus not M, C or K orthogonal. 
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3  
Method of determinant 
3.1 General. 
The search for zero of the characteristic polynomial, a quadratic problem to the eigenvalues, 
pose the problems inherent in the polynomials of the complex variable with complex values. 
Not having relation of order in IC, usual methods, at two points, of dichotomy type 
or secant are inapplicable. 
We present here the “popular” method more for research of zero of polynomials of 
variable complexes with complex values, the method of Muller. 
3.2  
Method of Muller. 
The method suggested by Muller [MUL.56] is an iterative method using as curve  
of interpolation a parabola with horizontal axis. 
This method is relatively easy to implement but it lends itself badly to research 
zeros of real functions with real roots, because it plunges the interpolation in the complex plan and this 
even on the basis of actual values. 
Its interest is related to the class of this method “the methods by curves of interpolation”, namely: 
 
sureté of the method by dichotomy, since research is carried out in a ball “ 
· 
reducing " gradually, 
that only the calculation of the function is necessary (calculation of not derived as in 
· 
method of Newton), 
 
convergence is connected with a quadratic convergence. 
· 
The most widespread method of the methods by curves of interpolation is the method at two points 
known as 
secant. 
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3.2.1 Development of the method 
Let us note F (Z) = a0zn + a1zn-1 +… + year the algebraic equation which one seeks the zeros, have are 
them 
complexes and we suppose a0 not no one. 
The quadratic formula of interpolation of Lagrange gives us: 
Li (F (Z)) = b0z2 + b1z +b2 
and we consider the curve which passes by the last three points (reiterated): 
(zi, F (zi)), (zi-1, F (zi-1)), (zi-2, F (zi-2)) 
and thus the coefficients b0, b1 and b2 check: 
and while posing  
and  
and  
Handbook of Reference 
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one can rewrite the formula of interpolation of Lagrange 
the new point is: zi+1 = Z 
One can solve the quadratic equation in, we obtain then: 
 
by taking the reverse of the traditional solution of a quadratic equation: 
with  
From i+1, one obtains: 
hi+1 = i+1 hi, 
 
zi+1 = zi + hi+1 which is one zero of the equation. 
The sign of the denominator is then taken of such kind that it is of larger possible module and thus of 
such kind that i+1 is of larger possible module, and finally zi+1 will be the root nearest to 
 
zi 
Note: 
Muller [MUL.56] proposes a process of initialization while using: 
“arbitrary” values z0 = -1. , z1 =1., z2 = 0. 
and values 
year + year-1+ year-2 
for F (z0) 
year - year-1+ year-2 
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for F (z1) 
year 
for F (z2) 
This choice of values then results in considering: 
L2 (F (Z)) = = year + year-1z +an-2z2 
who is an approximation of F (X) in the vicinity of the origin. 
The advantage of this process of starting is that it does not require any evaluation of the polynomial F 
(X) and 
that it is thus fast. 
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3.2.2 Convergence of the method 
Proposal: To consider that convergence is assured as soon as  
for given is one 
acceptable criterion. 
 
Let us show initially that during the unfolding of the algorithm three the reiterated successive ones are 
distinct. 
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If it were not the case, by supposing that zi = zi-1 and that xi 1st are reiterated for which one has 
convergence and thus  
. 
If it is supposed that Z 
 
I = zi-2, one would then have I and i+1 identically null and thus one would have zi+1= zi 
 
 
from where contradiction. 
Then into constant that the difference between two reiterated can only decrease, one obtains the result 
announced. 
3.2.3 Application of the method for research of eigenvalues 
3.2.3.1 Development 
That is to say to determine the eigenvalues of the system (2M+ K+C) X = 0, 
We thus seek the zeros of the polynomial Ca  
ractér 
istic that we note 
F (Z) = dét (z2M + zK + C) 
To calculate in sequence the zeros of the polynomial, we use a technique of deflation. 
Consequently the polynomial considered is: 
where  
are K zeros already calculated. 
The use of the algorithm is immediate, and we benefit from this adaptation to formulate it 
way légérement different. 
Let us note  
the value of the function to be interpolated at the point zi at the time of the research from the kth zeros. 
It is then practical, for the implementation, to reveal a few intermediate quantities: 
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reiterated the li+1 sought being solution of: 
with 
One deduces some: 
the sign of the denominator being taken so that li+1 (and thus hi+1) are of smaller module 
possible 
consequently  
To converge towards the eigenvalues with positive imaginary part (and thus at positive frequency), one 
takes  
Notice on deflation: 
When the eigenvalues appear per combined pairs, it is also necessary to eliminate 
combined found eigenvalues and which physically corresponds to a negative frequency 
3.2.3.2 Cost of the method in term of factorization 
With each iteration of the method one makes: 
Matrix algebra part (evaluation of the characteristic polynomial) 
 
a linear combination of three matrices 
O (N2) 
· a LDLt factorization of the combination die 
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O (nb2), B width of 
· 
bandage 
 
the product of the diagonal terms divided by deflation 
O (N) 
· 
Method part: 
 
operations of the method with properly spoken 
O (1) 
· 
Moreover it is advisable to add, as an assumption of responsibility (since it is a method at three points) 
twice the evaluation part of the characteristic polynomial. 
Broadly this method costs (i+2) factorizations, for a solution calculated out of I iterations. 
The cost of this method is such, that it must be to hold for small systems (case of development) 
or when it is important to have a very high degree of accuracy on the sought frequency. 
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4  
Methods of opposite iteration 
The method of iteration opposite extends immediately to the quadratic problem by using its form 
“linearized”. 
The linearization of the quadratic problem not being single, there exist several alternatives. 
4.1  
Method of iteration opposite suggested by Wilkinson 
Wilkinson [WIL.65] proposes to bring back the quadratic problem to the following standard problem 
By supposing M invertible, and by posing y = X 
 
Being given an approximation of the sought eigenvalue, one can define the iterative process 
according to: 
 
Matric equation, we deduce a system from equations to two unknown (ys+1, xs+1) and by 
combination of this system we deduce the expression from ys+1 and xs+1. 
4.2  
Alternative developed by Jennings  
When M and/or K are singular, one obtains a stable and equivalent quadratic equation in 
introducing an auxiliary parameter  
for a spectral shift of. 
 
While replacing by  
in the quadratic equation, one obtains the quadratic problem in: 
 
µ 
While noting  
the dynamic matrix which is regular by construction, one 
bring back to the standard problem such as it is proposed by Wilkinson while posing y = X 
µ 
This equation is stable in the direction where for strictly positive. 
This process thus makes it possible “to regularize µ < 
“the 1 
orders of magnitude of the matrices M, C, and K through 
stamp dynamic D (). 
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4.3  
The algorithm of iteration reverses Aster 
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4.3.1 Implementation 
This algorithm is available in Aster by operator MODE_ITER_INV. 
That is to say a 0 approximate value of the sought eigenvalue, one builds the dynamic matrix D () that 
 
 
one factorizes in LDLt form. 
One initializes the iterative process by the vectors according to: 
x0 = {(1, 0)} 
y0 = 0 x0 
 
the iterative process to obtain the nth one reiterated: 
 
Standardization of xn-1 and yn-1 to avoid the overflows of capacity: 
· 
 
Resolution of: 
· 
 
Calculation of yn starting from xn: 
· 
Evaluation  
of  
N: 
· 
 
This diagram can be put in the matric form: 
4.3.2 Criterion  
of stop 
We use a simple result [GOH.&al.86] relating to the polynomials of matrices of the form: 
D () = m2 + C +K 
 
 
 
That is to say O an eigenvalue of the operator D () and xo an associated clean vector not no one 
checking D (O) xo 
 
 
 
= 0 then we have the equality: 
The criterion of stop is done on the relative variation of 0 
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5  
Lanczos method applied to the quadratic problem 
In this chapter we suppose the matrices M, C and K real symmetrical, so that the problem 
quadratic associated to a linear form symmetrical Az = Bz can be tiny room 
 
where 
 
MR. is a regular matrix deduced from M which coincides with M if the latter is regular. 
One seeks to develop the arithmetic method preserving real one overall in order to obtain 
a problem reduces real. 
5.1  
Choice of a problem to be approached 
5.1.1 Form reverses standard 
One seeks an approximation of the couples (, X) of clean parts of the quadratic problem which 
correspond to the close eigenvalues  
of a shift = +i complexes given. 
The approximation of Galerkin of Pr  
oblème spectral of an operator 
 
S in  
an S  
ous-space of Krylov km 
= span (r0, Sr0. , Sm-1 r0) makes it possible to approach the clean couples of elements of the operator S 
corresponding to the eigenvalues of larger modules. 
The passage to the standard form reverses after spectral shift of generalized problem 
preceding, provides the spectral problem: 
 
(A - B) - 1 B Z = Z 
 
 
This problem admits the same clean vectors as the problem generalized and of the eigenvalues  
bound to those of the problem generalized by the relation: 
 
Thus, an approximation of Galerkin of the spectral problem of the operator: 
S = (A - B) - 1 B =  
 
in under space of Krylov km = span (r0, Sr0. , Sm-1 r0) provides the approximation of the couples 
clean parts of the quadratic problem sought. 
5.1.2 Strategies of shift 
The operator S preceding being complex, it calls in a natural way the use of the arithmetic one 
complex. It is nevertheless possible to use the arithmetic real one to approach the couples 
clean elements in which one is interested. It is enough to use a real operator of the same vectors 
clean and whose eigenvalues of larger module correspond to those of the problem 
quadratic closest to. 
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Technique of double déc 
 
alage spectral by and proposed by Francis within the framework of the method 
QR makes it possible to build such an operator 
 
noted to him also S: 
S = [(A - B) (A B)] - 1 B = [AB-1A - 2 A + I I2 B] - 1 B 
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The major disadvantage of this technique is the filling of the matrix 
AB-1A - 2 A + I I2 B if B is not diagonal. 
 
 
Parlett and Saad [PAR.SAA.87] propose an alternative which uses the real part or the imaginary part 
of operator (A - B) - 1B: 
 
S+ = Re [(A - B) - 1B] 
 
S = Im [(A - B) - 1B] 
 
whose respectively noted eigenvalues + and - are related to the eigenvalues of the problem 
µ 
µ 
 
quadratic by the relations: 
+ and carry out the maximum of their module in the vicinity of and. 
µ 
µ 
 
This approach preserves the arithmetic real one overall and avoids the disadvantage of the technique of 
Francis, if the calculation of a vector S± v, where v are real, is carried out into arithmetic complex. 
By noting that: 
Re [(A - B) - 1B] = [(A - B) - 1 + (A B) - 1] B 
 
 
Im [(A - B) - 1B] =  
[(A - B) - 1 - (A B) - 1] B 
 
 
This approach can be interpreted like a technique of double shift summons, by opposition 
with the approach of the double produced shift suggested by J-C.F. Francis. 
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5.2 Method  
of approximation 
From now on S will indicate one of the real operators S+ or S, one of its eigenvalues and P 
µ 
stamp of a scalar pseudo-product (i.e. a symmetrical bilinear form not necessarily 
defined positive). 
5.2.1 Approximate problem and algorithm of Lanczos 
When S is car-assistant for the pseudo scalar product induced by P, i.e. 
(U, AV) P = (With, v) P U, v IR2n, 
 
 
the method of Lanczos is used to generate a base of under space of Krylov km. 
The spectral problem is then approached by projection P-orthogonal on km and the problem reduces thus 
obtained is represented in the base of the vectors of Lanczos by a real matrix tridiagonale of order 
Mr. 
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The method of Lanczos extended to the scalar pseudo-products is defined by the formulas of 
recurrence following cf [R5.01.01]: 
 
ro = arbitrary 
· 
 
O =, qo =  
· 
 
0 
0 
1 = Sign ((ro, ro) P)  
1 =  
 
 
0 
 
for J = 1, 2,…, m 
· 
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J 
= 
(qj, Sqj) P 
 
rj 
= 
Sqj - J J qj- j-1 J qj-1 
 
 
j+1 
= 
sign ((rj, rj) P) 
j+1 = 
 
qj+1 = 
If one notes Qm the matrix 2nxm vectors of Lanczos qj these formulas write in the form 
matric real following: 
Q T 
m P Qm = Jm = diag (1,…, m) 
 
 
S Qm - Qm Jm Tm = m+1 m+1 rm EM T with EM T = (,…, 1) 
 
 
0 
0 
Tm the real matrix tridiagonale symmetrical m X m: 
The product Jm Tm is a nonsymetric matrix tridiagonale dice that Jm is not proportional to 
identity. 
The two preceding matric relations make it possible to write: 
Q T 
m P [S Qm - QmJmTm] = 0 
The application of this relation to a couple ((m), S (m)) IC X ICm of clean elements of the operator 
represented by the matrix J 
µ 
 
MTM gives: 
Q T 
(m)  
m P [S Qm S (m) -  
Qm S (m)] =  
µ 
0 
who characterizes the couple ((m), Z (m) = Qm S (m)) IC X IC2n like approximation of Galerkin by 
µ 
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projection P-orthogonal on km of a clean couple of element of the operator S. 
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5.2.2 Choice of a pseudo scalar product 
The symmetry of matrices A and B ensures 
that bilinear forms associated the matrices Re [(A - B) - 1] - 1, Im [(A - B) - 1] - 1 and B is 
scalar pseudo-product, 
 
 
that the operator left real S+ (respectively imaginary part S) is autoadjoint for 
scalar pseudo-product induced by Re [(A - B) - 1] - 1ou by B (respectively by Im [(A - B) - 1] - 1 or by 
B). 
 
 
The pseudo-products scalar induced by Re [(A - B) - 1] - 1 and Im [(A - B) - 1] - 1 is extensions of 
scalar product used in the alternative of Pipano-  
Neuman of the algor 
 
ithme Lanzcos. 
If the matrix M is singular, the pseudo scalar product induced by B makes vectors 
where y Ker M, of the quasi-null vectors. This disadvantage exists them also in the case of 
pseudo-Pr 
 
oduits scalar of Pipano-Neuman type (in particular if the matrix of the scalar pseudo-product  
admits eigenvalues of null sum), but the occurrence of such an event is rare in 
practical. 
5.3  
Application to the quadratic Problem 
The use of this approach requires, with the method of Lanczos, the calculation of the real vectors Sz and 
Pz for Z IR2n. 
 
5.3.1 Operator  
spectral 
That is to say the dynamic matrix D () associated the spectral shift = + I defined by: 
 
2 
 
 
D () =  
M + C + K 
 
 
 
If D () is regular then the complex operator (A - B) - 1B can be written in the form 
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The calculation of Sz for S = Re [(A - B) - 1B] and S = Im [(A - B) - 1B] can be carried out without 
destroying 
structure digs matrices if the rear one 
ithmetic complex be  
T partially used in the algorithm: 
 
Preparation into arithmetic complex 
· 
to form  
D () = 2 M + C + K 
- to factorize  
D (  
) under  
form LDLT 
 
- 
Calculation of Sz 
 
· 
 
u1 = Cx u2 = MX u3 = My 
in IR 
- u4 = D () - 1 u1+ u2 +u3 
in IC 
- 
 
 
 
according to the choice of the operator one obtains: 
- 
S+ Z = Re [(A - B) - 1B] Z =  
 
S Z = Im [(A - B) - 1B] Z =  
 
Handbook of Reference 
R5.01 booklet: Modal analysis 
HI-75-7816/A 

0 
D 
1 
K 
X 

file:///Z|/process/refer/refer/p1570.htm (20 of 29)10/2/2006 2:53:38 PM



file:///Z|/process/refer/refer/p1570.htm

1 
0 
C 
1 
2 
 
2 
M 
1 
N 
1 
 
 
M 
M 
C 
 
 
K 
With 
 
B 
 
= 
M 
R 
 
- 
 
2 
O 
y 
 
 
 
-1 
M 
0 
 
-  
0 
 
M 
R 
C 

file:///Z|/process/refer/refer/p1570.htm (21 of 29)10/2/2006 2:53:38 PM



file:///Z|/process/refer/refer/p1570.htm

- M 
-1 
B  
B  
ù 
X 
 
- 
-1 
 
M 
-1 
 
 
+ 
 
M 
- M 
C  
+ 
-2 
 
M  
 
, 
IR 
K  
 
+ 
Z 
y 
E  
D 
K 
 
Z 
y 
R  
C 
 
= 
 
M  
 
=  

file:///Z|/process/refer/refer/p1570.htm (22 of 29)10/2/2006 2:53:38 PM



file:///Z|/process/refer/refer/p1570.htm

B 
-  
 
Z  
Code_Aster ® 
Version 
2.0 
Titrate:  
Algorithms of resolution for the quadratic problem 
Date:  
19/06/92 
Author (S): 
D. SELIGMANN, R. MICHEL 
Key: 
R5.01.02-A 
Page: 
20/26 
5.3.2 Operator of pseudo scalar product 
 
Choice P = B 
· 
This choice is valid for the operators obtained in real left approach or part 
imaginary. 
Calculations can be carried out without assembly of B and into arithmetic real. 
 
Choice P = Re [(A - B) - 1] -1 
· 
 
This choice corresponds to the partly real approach of the operator S. 
If the dynamic matrix D (), where is the real part of is regular then the real operator 
(A - B) - 1B is defined by:  
 
, 
 
and the scalar pseudo-product is written: 
Re [(A - B) - 1] - 1 = (A - B) + 2 B (A - B) - 1B 
 
 
 
 
Consequently the calculation of Pz can be carried out like that of Sz while using exclusively 
the arithmetic real one. 
This approach requires the use of an auxiliary real matrix to store factorized 
the dynamic matrix D (). 
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Choice P = Im [(A - B) - 1] -1 
· 
 
This choice corresponds to the partly imaginary approach of the operator S. 
Formally we have: 
Im [(A - B) - 1] -1 = [(A - B) B-1 (A B) + 2 B B-1 B] 
 
 
 
 
The matrix B is regular under the condition necessary and sufficient that M is it and 
One obtains then: 
Im [(A - B) - 1] -1  
 
If M is singular, one can establish this equality by defining pseudo-opposite  
of B 
by  
 
The calculation of Pz can then be carried out without assembling the matrix P explicitly and while using 
exclusively the arithmetic real one. 
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5.3.3 Cost of the Lanczos phase 
The cost report corresponds to the allowance of additional vectors (3 realities and 1 complex or real) 
and with the allowance of the dynamic matrices used for the calculation of the operators S and P. 
The following table summarize these allowances 
= 0 
= IR* 
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= I I IR 
= I IC 
 
 
 
 
+  
Approach 
S 
K IRnxn 
D () IRnxn 
D () ICnxn 
D () ICnxn 
part 
P = B 
- 
- 
- 
- 
real 
P = Re (A -1) - 1 
- 
- 
K IRnxn 
D () IRnxn 
 
Approach 
S 
 
 
D () ICnxn 
D () ICnxn 
part 
P = B 
- 
- 
Imaginary 
P = Im (A -1) - 1 
- 
- 
 
The cost in operation is divided into a fixed blow and a blow depend on the number of vector of Lanczos 
to calculate. 
The fixed cost corresponds to factorization LDLT of the additional matrices (carried out in 
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the arithmetic associated one) and is worth O (b2n) if B is the bandwidth common to the matrices M, C 
and K. 
The calculation of a vector of Lanczos requires: 
 
2 scalar products of vector of IR2n: 
2 
O (2n) 
· 1 linear combination of 3 vectors of IR2n: 
3 
O (2n) 
· the calculation of Sz: 
· 
3 products matrix-vector in IRn: 
3 
O (2bn) 
1 linear combination of 3 vectors in ICn: 
3 
O (2n) 
1 descent-increase in ICn: 
O (2bn) 
1 scalar product - vector in ICn: 
O (N). 
 
The calculation of Pz 
· 
For P = b: 
3 products matrix-vector in IRn: 
O (2bn) 
For P = Re (A -1) - 1: 
 
5 products matrix-vector in IRn: 
5 
O (2bn) 
2 combinations linear of 3 vectors of IRn: 
6 
O (N) 
1 descent gone up in IRn: 
O (2bn) 
1 linear combinations of 5 vectors of IRn: 
5 
O (N) 
For P = Im (A -1) - 1: 
 
6 products matrix-vector in IRn: 
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6 
O (2bn) 
2 linear combinations of 4 vectors of IRn: 
8 
O (N) 
Broadly the cost of the Lanczos phase is out of O (b2n) + 10 m O (2bn). 
5.4  
Implementation in Aster 
The matrices M and C are symmetrical semi-definite positive and the matrix K is symmetrical regular 
indefinite. The pseudo scalar product retained corresponds to the extension of that proposed by Neuman 
and 
Pipano [R5.01.01]. 
This algorithm is available in Aster by operator MODE_ITER_SIMULT. 
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22/26 
5.4.1 Parameters of the implementation 
The spectral problem with real operator is parameterized by: 
 
value of the spectral shift IC, 
· the choice of Re (A -1B) 
 
or of Im (A -1B) 
· 
 
 
The pseudo scalar product is then Re (A -1) - 1 or Im (A -1) - 1 and allowances and factorizations of 
 
 
additional matrices are carried out has minimum in type and a number, this in agreement with the table 
paragraph [§5.3.3]. 
5.4.2 Under space of approximation 
The vector r0 IR2n generating under space of approximation breaks up into  
where 
 
RN; the choice selected consists in posing = 0 and drawing by chance the components from,  
 
while imposing to him null components in ker Mr. 
If the dimension of under space is not specified, it is calculated by the empirical formula: 
m = 2 Min (max (p+7), 2p, N) 
where p is the number of couples of elements suitable to approach. 
the dimension of the subspace of approximation are doubled because the couples of clean elements 
complexes arise per combined pairs. 
5.4.3 Strategy of reorthogonalisation 
The use of arithmetic with finished precision, deteriorates the properties of orthogonality of the vectors 
of 
Lanczos and with them the rate of convergence of the approximate couples. 
The strategy of complete reorthogonalisation ensures the orthogonality of all the vectors of Lanczos, and 
the algorithm then has a behavior close to that into arithmetic exact. 
This strategy of reorthogonalisation forces to preserve the vectors P.qj j= 1,…, Mr. 
The reorthogonalisation of the vectors is carried out by the process of Gram-Schmid modified cf. 
[R5.01.01]. 
5.4.4 Implementation of the Lanczos phase 
The selected implementation is that described in [R5.01.01] within the framework of the generalized 
probléme. 
El E is summarized by: 
Entries  
: 
· 
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the matrices P and S: i.e. the matrices M, C and K and factorized the LDLT of the matrices 
- 
dynamic additional. 
 
m the number of vectors to be generated, 
- r0 the vector generating under space of Krylov, 
- precision of orthogonalisation and the number maximum of authorized reorthogonalisation. 
- 
Handbook of Reference 
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HI-75-7816/A  

file:///Z|/process/refer/refer/p1570.htm (29 of 29)10/2/2006 2:53:38 PM



file:///Z|/process/refer/refer/p1580.htm

(  
m 
(  
) 
m  
) 
 
J 
, 
µ 
X 
 
 
N 
S  
 
X 
J 
S 
 
= 
O 
 
Q 
m 
 
S 
J 
 
 
 
Code_Aster ® 
Version 
2.0 
Titrate:  
Algorithms of resolution for the quadratic problem 
Date:  
19/06/92 
Author (S): 
D. SELIGMANN, R. MICHEL 
Key: 
R5.01.02-A 
Page: 
23/26 
Exits  

file:///Z|/process/refer/refer/p1580.htm (1 of 19)10/2/2006 2:53:38 PM



file:///Z|/process/refer/refer/p1580.htm

: 
· 
 
vectors of Lanczos (q1, q2,…, qm), 
- the diagonal (1, 2,…, m) and on-diagonal (1, 2,…, m) of the matrix tridiagonale 
- 
 
 
 
 
Tm 
 
the vector (1, 2,…, m) of the pseudo scalar products of the vectors of Lanczos. 
- 
 
 
Algorithm: 
· 
 
Generation of the first vector q1 and coefficients 1, 1 and 1 
- 
 
 
 
Buckle generation of qj, J, J and J for J = 2,…, m 
- 
 
 
For J = 2,3,…, m to make 
Calculation of the direction of qj 
Standardization of qj, calculation of J and storage of Pqj 
 
Réorthogonalisation so necessary compared to qj for I = 1,…, j-1 
Reactualization of qj, J, J and J in the event of reorthogonalisation, 
 
 
Calculation of J and J 
 
 
5.4.5 Restoration of the approximations for the quadratic problem 
Approximations  
clean couples of the quadratic problem result from 
clean couples  
JmTm matrix by: 
 
extraction of the “high” part of the vector. 
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· 
choice  
of, root of the flexible quadratic equation  
with  
who checks the condition of 
· 
coupling M [O N] Qm  
=  
M  
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Appendix 1 Interpretation of the complex eigenvalues 
In the case of a symmetrical damping and in internal absence of damping, relations 
orthogonalities and owing to the fact that the clean elements appear per combined pairs, one has the 
relations 
following: 
If one notes  
, one can then define: 
and one can write the eigenvalue complexes in the following form: 
for which one can give a physical interpretation of the eigenvalue 
The imaginary part represents the oscillatory part of the solution 
is the pulsation of the i-ème mode 
the real term represents the dissipative character of the system 
is the damping of the i-ème mode, 
is the reduced damping of the i-éme mode. 
Physical interpretation of the clean vectors: 
 
The physical significance of the existence of a clean vector complexes, lies in the fact that if 
· 
structure vibrates on a clean mode, its various degrees of freedom do not vibrate with the same one 
phase ones compared to the others. 
The modal bellies and nodes do not correspond of the stationary points, but 
· 
move during the movement. 
Note: 
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one finds the traditional formulation of the deadened systems with 1 degree of freedom 
· 
 
are real and are many quantities intrinsic with a mode (modal quantities) and 
· 
dependent on the standardization of the mode. 
We point out that the modes of the quadratic problem do not diagonalisent the matrices M, K and 
C. 
Notice on the real term of the eigenvalue: 
If the real part of the eigenvalue is negative, then the clean mode is a movement 
· 
deadened periodical of pulsation  
If the part R 
 
éelle of the eigenvalue is positive, then the clean mode is a movement 
· 
periodical of amplitude increasing and thus unstable. 
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Appendix 2 linear Reductions 
form 
problem 
quadratic 
generalized 
(1) 
generalized 
(2) 
standard 
(1) 
standard 
(2) 
Note: to obtain the forms standards it is necessary to suppose: 
 
M and K réguliéres for the form (1) 
· M regular for the form (2) 
· 
Handbook of Reference 
R5.01 booklet: Modal analysis 
HI-75-7816/A 

Code_Aster ® 
Version 
4.0 
Titrate:  
Modal parameters and standard of the clean vectors 
Date:  
10/09/97 
Author (S): 

file:///Z|/process/refer/refer/p1580.htm (9 of 19)10/2/2006 2:53:38 PM



file:///Z|/process/refer/refer/p1580.htm

B. QUINNEZ J.R. LEVESQUE 
Key: 
R5.01.03-A 
Page: 
1/12 
Organization (S): EDF/IMA/MMN 
Handbook of Reference 
R5.01 booklet: Modal analysis 
R5.01.03 document: 
Modal parameters and standard of the clean vectors 
Summary: 
In this document, one describes: 
· various possibilities in Code_Aster to normalize the clean modes, 
· important modal parameters associated the clean modes. 
Handbook of Reference 
R5.01 booklet: Modal analysis 
HI-75/97/022/A 

Code_Aster ® 
Version  
4.0 
Titrate:  
Modal parameters and standard of the clean vectors 
Date:  
10/09/97 
Author (S): 
B. QUINNEZ J.R. LEVESQUE 
Key: 
R5.01.03-A 
Page: 
2/12 
Contents 
1 Definition of the problem to the eigenvalues .......................................................................................... 3 
1.1 General 
information ...................................................................................................................................... 3 
1.2 Generalized problem ........................................................................................................................ 3 
1.3 Quadratic problem ..................................................................................................................... 4 
2 Standard of the clean modes of the generalized 
problem .............................................................................. 5 
2.1 Components of a clean mode ..................................................................................................... 5 
2.2 Euclidian norm ........................................................................................................................... 5 
2.3 “Larger component with 1 normalizes” ............................................................................................. 6 
2.4 Mass or unit generalized rigidity ................................................................................. 6 normalizes 

file:///Z|/process/refer/refer/p1580.htm (10 of 19)10/2/2006 2:53:38 PM



file:///Z|/process/refer/refer/p1580.htm

3 Standard of the clean modes of the quadratic problem ........................................................................... 7 
3.1 Euclidian norms and “larger component with 1” .................................................................... 7 
3.2 Mass or unit generalized rigidity ................................................................................. 7 normalizes 
4 modal Parameters associated for the generalized problem .................................................................. 8 
4.1 Generalized sizes .................................................................................................................. 8 
4.1.1 Definition ................................................................................................................................ 8 
4.1.2 ................................................................................................................................ Use 9 
4.2 Effective modal masses and unit effective modal masses .............................................. 9 
4.2.1 Effective modal masses .................................................................................................... 9 
4.2.2 Property ............................................................................................................................... 10 
4.2.3 Unit effective modal masses ................................................................................... 10 
4.2.4 .............................................................................................................................. Use 10 
4.2.5 Directions privileged in Code_Aster .......................................................................... 10 
4.3 Factors of participation ............................................................................................................... 11 
4.3.1 Definition .............................................................................................................................. 11 
4.3.2 Property ............................................................................................................................... 11 
4.3.3 .............................................................................................................................. Use 11 
4.4 Unit vector displacement ........................................................................................................ 11 
5 modal Parameters associated for the quadratic problem ............................................................. 12 
6 Bibliography ........................................................................................................................................ 12 
Handbook of Reference 
R5.01 booklet: Modal analysis 
HI-75/97/022/A 

Code_Aster ® 
Version  
4.0 
Titrate:  
Modal parameters and standard of the clean vectors 
Date:  
10/09/97 
Author (S): 
B. QUINNEZ J.R. LEVESQUE 
Key: 
R5.01.03-A 
Page: 
3/12 
1  
Definition of the problem to the eigenvalues 
1.1 General 
That is to say the problem with the eigenvalues according to: 
To find 
(,) C × Cn/(2 B + C+ A) = 0 
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éq 1.1-1 
where A, C, B are positive symmetrical real matrices of order N. 
Two cases are distinguished: 
· quadratic problem: C 0, 
· generalized problem: C = 0. 
is called eigenvalue and clean vector. In the continuation, one will speak about clean mode for and 
one will introduce the concept of Eigen frequency. 
To solve this problem, several methods are available in Code_Aster and one returns it 
reader with the documents [R5.01.01] and [R5.01.02]. 
1.2 Problem  
generalized 
The generalized problem can be written in the form: 
To find 
(,) × N/(- 2 B + A) = 0 
éq 1.2-1 
One introduces two other sizes which make it possible to characterize the clean mode: 
= = (  
2 F) 
éq 1.2-2 
where 
: own pulsation associated the clean mode, 
F: Eigen frequency associated the clean mode. 
One also shows that the clean modes are A and B orthogonal, i.e.: 
iT A J 
iT 
I 
= 
 
ij 
With  
 
éq 1.2-3 
iT B J 
iT 
I 
= ij 
B  
 
 
where (I J 
, 
) are two clean modes. 
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1.3 Problem  
quadratic 
The quadratic problem [éq 1.1-1] can be put in another form of size doubles (one speaks about 
linear reduction [R5.01.02]): 
To find 
( 
0 B - B 0  
,) C × Cn/  
+  
 
= 0 
éq 1.3-1 
B 
 
C 
0 
With  
! 0 B! 
- B 0  
One poses in the continuation: B = 
With 
B 
 
C 
= 0 A. 
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Like matrices A, C, B are real, the values and clean modes imaginary are combined 
two to two. 
One introduces three other sizes which make it possible to characterize the clean mode: 
 
(  
2 F) 
= + I B has = - 
+ I = - 
+ I (  
2 F) 
éq 1.3-2 
1 - 2 
1 - 2 
where 
: own pulsation associated the clean mode, 
F: Eigen frequency associated the clean mode, 
: reduced damping. 
0 B 
- B 0  
It is also shown that the clean modes are  
orthogonal, i.e.: 
B 
 
C and  
 
 
 
0 
With 
( 
iT 
J 
iT 
J 
iT 
I 
iT 
I 
I + J) B + C = ij (2 I B + C) 
 
éq 1.3-3 
-  
iT 
J 
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iT 
J 
2 
iT  
I 
iT 
I 
I J B +  
With = ij 
 
 
(- I B + A) 
where ( 
I 
J 
I, J) are the eigenvalues respectively associated with the clean modes (,). 
Note: 
the clean modes are thus not A, B or C orthogonal. 
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2  
Normalizes clean modes of the generalized problem 
One supposes to have calculated a couple (,) solution of the problem [éq 1.2-1]: is the eigenvalue 
associated the clean mode. One considers for the moment only the case of the generalized problem. 
In Code_Aster, order NORM_MODE [U4.06.02] makes it possible to impose a type of standardization 
for the whole of the modes. 
2.1  
Components of a clean mode 
That is to say a clean mode of components (J) 
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. 
j= N 
1, 
Among these components, one distinguishes: 
· the components or degrees of freedom called “physics” (they are for example the degrees 
of freedom of displacement (DX, DY, DZ), degrees of freedom of rotation (DRX, DRY, DRZ), it 
potential characterizing an irrotational fluid (PHI),…), 
· the components of Lagrange (the parameters of Lagrange are unknown factors 
additional which is added with the “physical” problem initial so that the conditions with 
limits are checked [R3.03.01]). 
In Code_Aster, one has three families of standards: 
· standard  
Euclidean, 
· standard: “larger component with 1” among a group of degrees of freedom defined, 
· standard masses or unit generalized rigidity. 
They successively are described. 
Previously, one defines L a family of indices which contains m terms: 
L = {L, K =, 1m with 1 L} 
N and 1 m N 
K 
K 
. 
2.2 Normalizes  
Euclidean 
1/2 
m 
2  
The following standard is defined:  
= (  
2 
lk) 
K 1 
= 
 
1 
 
1 
 
One then obtains the normalized vector “ 
: " = 
 
“J = 
J J =, 1  
N. 
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2 
 
2 
 
In Code_Aster, two standards of this family are available: 
· NORME=' EUCL': L corresponds to the whole of the indices which characterize a degree of 
physical freedom, 
· NORME=' EUCL_TRAN': L corresponds to the whole of the indices which characterize a degree 
of physical freedom of displacement in translation (DX, DY, DZ). 
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2.3  
“Larger component with 1 normalizes” 
The following standard is defined:  
= max  
 
L 
K =, m 
K 
1 
1 
 
1 
 
One then obtains the normalized vector “ 
: " = 
 
“J = 
J J =, 1  
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N. 
 
 
 
 
In Code_Aster, five standards of this family are available: 
· NORME=' SANS_CMP=LAGR': L corresponds to the whole of the indices which characterize one 
physical degree of freedom,  
· NORME=' TRAN': L corresponds to the whole of the indices which characterize a degree of 
physical freedom of displacement in translation (DX, DY, DZ), 
· NORME=' TRAN_ROTA': L corresponds to the whole of the indices which characterize a degree 
of physical freedom of displacement in translation and rotation (DX, DY, DZ, DRX, DRY, DRZ), 
· NORME=' AVEC_CMP' or “SANS_CMP”: L is built either by taking all the indices which 
correspond to types of components stipulated by the user (for example the standard 
displacement following axis X: “DX”) (NORME=' AVEC_CMP'), is by taking the complementary one 
of all the indices which correspond to types of components stipulated by the user 
(NORME=' SANS_CMP'), 
· NORME=' NOEUD_CMP': L corresponds to only one index which characterizes a component of one 
node of the grid. The name of the node and the component are specified by the user 
(key words NOM_CMP and NODE of order NORM_MODE [U4.64.02]). 
By defect the modes are normalized with standard “SANS_CMP=LAGR”. 
2.4  
Mass or unit generalized rigidity normalizes 
1/2 
That is to say a positive definite matrix of order N. The following standard is defined:  
= (T  
E 
E) 
1 
 
1 
 
One then obtains the normalized vector “ 
: " = 
 
“J = 
J J =, 1  
N 
 
. 
E 
 
E 
 
In Code_Aster, two standards of this family are available: 
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· NORME=' MASSE_GENE': E = B. In a traditional problem of vibration, B is the matrix 
of mass. 
· NORME=' RIGI_GENE': E = A. In a traditional problem of vibration, A is the matrix 
of rigidity. 
Note: 
For a rigid mode of body, one a:  
=  
E 
To = 0 
Handbook of Reference 
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3  
Normalizes clean modes of the quadratic problem 
3.1  
Euclidian norms and “larger component with 1” 
For the quadratic problem, one has the same standards as for the generalized problem.  
clean modes being complex, one works with the square product. Various standards 
“traditional” become: 
1/2 
m 
 
· square standard:  
= (L  
2 
L 
where is combined of, 
K 
K) 
 
lk 
lk 
K 1 
= 
 
/ 
1 2  
· standard “larger component with 1”:  
= max L = 
 
max 
L 
L 
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(the value 
K, 
1 m 
K 
K, 
1 (  
 
 
K 
K) 
= 
= m 
 
 
absolute in the real field becomes the module in the complex field). 
3.2  
Mass or unit generalized rigidity normalizes 
With regard to the standard “masses or generalized rigidity”, denomination by analogy with 
generalized problem, one uses as matrix associated with the standard, that which intervenes in the writing 
quadratic problem put in the reduced form [éq 1.3-1]. 
One has then: 
· standard masses generalized: 
T 
T 
!  
T 
T 0 
B  
! =  
B  
=  
 
= 2 TB + T 
, 
, 
C, 
B 
( ) 
( )  
 
 
 
 
B C 
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^  
= 1  
! #B, 
· standard generalized rigidity: 
T 
T 
!  
T 
T - B 
0  
! =  
With  
=  
 
= -2 TB 
+ T 
, 
, 
With 
, 
With 
( ) 
( ) 
 
 
 
 
 
0 
With 
 
 
" 
1 
= 
 
 
. 
! With 
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4  
Modal parameters associated for the generalized problem 
One in the case of places a traditional generalized problem of vibration. One a: 
·  
With = K is the matrix of rigidity, 
·  
B = M is the matrix of mass. 
That is to say a couple (,) solution of the problem: 
(- 2 M +K) = 0 
éq 4-1 
In the continuation, one defines successively the following sizes: 
· sizes  
generalized, 
· effective modal mass and unit effective modal mass, 
· factor of participation. 
To know the names of the parameters associated with the clean modes and how y to reach in 
structure of data RESULT mode_meca, one returns the reader to the document [U5.01.23]. 
4.1 Sizes  
generalized 
4.1.1 Definition 
Two generalized sizes are defined: 
· Masse generalized of the mode: m 
T 
= M, 
· Rigidité generalized of the mode: K 
T 
= K. 
These quantities depend on standardization on. These sizes are accessible in the concept 
RESULT of the type mode_meca [U5.01.23] under names MASS_GENE, RIGI_GENE. 
Notice 1: 
One with the following relation between the pulsation (or the frequency) of the mode and the mass and 
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rigidity 
generalized of the mode: 
T 
K  
K 
= = (  
2 F) = 
= . 
T  
M m 
Notice 2: 
From the physical point of view, the generalized mass (which is a positive value) can be interpreted 
like the mass moving: 
m 
T 
2 
= M = where is the density of the structure. 
The kinetic energy of the structure vibrating according to the mode is equal then to: 
1 
1 
E = 
2 
m 
2 
T 
C 
= 
Mr. 
2 
2 
The potential energy of deformation associated with the mode is equal to: 
1 
1 
E = 
K 
T 
p 
= 
K. 
2 
2 
Handbook of Reference 
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4.1.2 Use 
During a calculation by modal recombination [R5.06.01], one seeks a solution of the equation of 
dynamics: 
Mx$ + Cx$ + Kx = F (T), 
in the form X =  
I 
I (T) where I is the clean mode real associate with the eigenvalue I, 
i= m 
1, 
solution of the generalized problem (in general one has m N (N is the number of degree of freedom) 
because one 
does not take into account that part of the modal base): 
(- M 2 
I 
I + K) = 0 
The generalized vector = (I) 
is solution of: 
i= m 
1, 
~ 
~ 
~ 
M $ ~ 
+ C $ + K = F (problem of order m) with: 
~ 
M = (~M 
iT 
J 
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iT 
J 
ij) = ( 
M) 
~ 
C = (~Cij) = (C) 
~ 
. 
K = (~K 
iT 
J 
iT 
ij) = ( 
K) 
~ 
F = (~fi) = (F) 
The modes of vibration of the generalized problem are K and M orthogonal [R5.01.01]. Matrices 
~ 
~ 
M and K are then diagonal and are consisted of the rigidities and masses generalized of each 
~ 
mode. The matrix C is usually full if one does not make additional assumptions on C 
[R5.05.04]. 
4.2  
Effective modal masses and unit effective modal masses 
4.2.1 Effective modal masses 
That is to say U D an unit vector in direction D. In each node of the Ud vector having them 
components of displacement (DX, DY, DZ) one a: 
(DX = X, DY = y, DZ = Z 
D 
D 
D) where (X, y, Z 
D 
D 
D) are the cosine Directors of the direction D (one has 
 
thus: x2 + y 2 + z2 
D 
D 
D = 1). 
For example, if D is direction X, the vector U D has all its components DX equal to 1 and its 
other components equal to 0. 
One defines the effective modal masses in the direction D by: 
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(T 
 
2 
Mr. Ud) 
m D, = ( 
. 
T 
M) 
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4.2.2 Property 
Statement: 
The sum of the effective modal masses in a direction D is equal to the total mass mtotale 
structure. That is written: 
(iT 
 
2 
Mr. Ud) 
m 
=  
where N is the total number of modes associated with 
, 
=1, ( 
= 
iT 
I 
I D 
I 
N 
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M) 
m 
total 
i=1 N 
, 
problem [éq 4-1] 
4.2.3 Unit effective modal masses 
By using the preceding property, one defines the unit effective modal masses: 
2 
T 
MR. U 
~ 
1 
( 
D) 
m, D = 
, 
m 
T 
total 
(M) 
and one a:  
~ 
m 
 
= 1 
I 
. 
, D 
i=, 
1 N 
Modal masses ~ 
m, D and m D, are independent of the standardization of the mode of vibration. 
4.2.4 Use 
“Empirical” relation: 
At the time of a study “seismic request of a structure in a direction D” by a method of 
modal recombination, one must preserve the modes of vibration which have a unit effective mass 
important and it is considered that one has a good modal representation if for the unit of the modes 
preserved one a: 
~ 
m 0 9 
I 
, . 
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, D 
i=, 
1 N 
This empirical relation is stated in the RCC_G (Rules of design and construction 
applicable to the Civil Engineering). 
4.2.5 Directions privileged in Code_Aster 
In Code_Aster, one has three directions which are those of the reference mark of definition of the grid: 
·  
D = direction X, 
·  
D = direction Y, 
·  
D = direction Z. 
The effective modal masses and the unit effective modal masses are accessible in 
concept RESULT of the type mode_meca [U5.01.23] under names MASS_EFFE_DX, 
MASS_EFFE_DY, 
MASS_EFFE_DZ, MASS_EFFE_UN_DX, MASS_EFFE_UN_DY, MASS_EFFE_UN_DZ. 
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4.3  
Factors of participation 
4.3.1 Definition 
One defines other parameters called factor of participation: 
(T 
Mr. Ud) 
p D, = ( 
. 
T 
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M) 
This parameter depends on the standardization of the mode of vibration. 
As for the effective masses, one has three directions D which are those of the reference mark of 
definition of the grid. 
The factors of participation are accessible in the concept RESULT of the mode_meca type 
[U5.01.23] under names FACT_PARTICI_DX, FACT_PARTICI_DY, FACT_PARTICI_DZ. 
4.3.2 Property 
Statement: 
The factors of participation associated with a direction D check the following relation: 
(iT 
2 
iT 
MR. U 
2 
D) 
MR. U  
2 
m 
=  
 
M  
, 
where N is 
=1, ( 
D 
iT 
I 
= 
 
 
iT 
I 
iT 
I 
I 
 
= 
D 
I 
N 
M) 
( 
) 
M 
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(p) m 
total 
i=1 N 
,  
 
i=1 N  
, 
the total number of modes associated with the problem [éq 4-1]. 
This result is obtained easily by expressing the factor of participation according to the modal mass 
effective and by using the result stated with [§ 4.2.3]. 
4.3.3 Use 
These parameters are used in particular to calculate the response of a structure subjected to one 
seism by spectral method. One returns the reader to the document [R4.05.03]. 
4.4  
Unit vector displacement 
In what precedes, a unit vector of displacement Ud was considered which relates to only them 
degrees of freedom of translation (DX, DY, DZ). This concept can be extended to rotations in 
considering the following definition. One defines a matrix U of dimension (N ×) 
6. If all nodes 
grid support 3 degrees of freedom of translation and 3 others of rotation, the matrix U is 
formed of the stacking of the matrices uktr (6 ×) 
6 following (the index K corresponds to the node of 
D 
number K): 
1 0 0 
0 
(Z 
 
K - zc) 
- (yk - yc) 
 
 
0 1 0 - (zk - zc) 
0 
(xk - xc)  
 
 
K 
0 0 1 
(yk - yc) - (xk - xc) 
0 
utr =  
 
0 0 0 
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1 
0 
0 
 
 
 
0 0 0 
0 
1 
0 
 
 
0 0 0 
0 
0 
1 
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where (X, y, Z 
K 
K 
K) are the co-ordinates of the node and (X, y, Z 
C 
C 
c) are the co-ordinates of the center 
instantaneous of rotation. 
One can thus define effective modal masses, factors of participation associated with 
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degrees of freedom of rotation. 
For the moment, the calculation of these parameters is not available in Code_Aster. 
5  
Modal parameters associated for the quadratic problem 
One writes the quadratic problem in the form: (2M + C + K) = 0. 
For the quadratic problem, one calculates only three parameters which correspond to the sizes 
generalized following: 
· generalized mass (real quantity): 
m 
T 
= M, 
· generalized rigidity (real quantity): 
K 
T 
= K, 
· generalized damping (real quantity): 
C 
T 
= C. 
Attention, if one normalizes the clean mode with the standard “masses generalized”, one does not have 
in the case 
quadratic: m = 1. One can make the same remark concerning generalized rigidity. 
By using the relations of orthogonality and the fact that the clean elements appear per pairs 
combined, one can write the following relations: 
TC  
C 
2  
2 (2 F) 
= 
= 2 
( 
Re) = - 
= - 
, 
TM m 
1 - 2 
 
1 - 2 
 
T 
2 
K  
K 

file:///Z|/process/refer/refer/p1590.htm (14 of 20)10/2/2006 2:53:39 PM



file:///Z|/process/refer/refer/p1590.htm

2 
 
 
2 
 
(2 F) 
= 
= = 
= 
. 
TM m 
2 
2 
 
1-  
1 -  
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Organization (S): EDF/IMA/MMN 
Handbook of Reference 
R5.02 booklet: Thermics 
Document: R5.02.01 
Algorithm of linear thermics transitory 
Summary: 
One presents the algorithm of transitory thermics linear established within order THER_LINEAIRE 
[U4.33.01]. The various options of calculation necessary were presented in the elements of structure 
plans, axisymmetric and three-dimensional [U1.22.01], [U1.23.01] and [U1.24.01]. 
Handbook of Reference 
R5.02 booklet: Thermics 
HI-75/95/020/A 

Code_Aster ® 
Version 
3 
Titrate:  
Algorithm of linear thermics transitory 
Date:  
04/05/95 
Author (S): 
J.P. LEFEBVRE 
Key: 
R5.02.01-A 
Page: 
2/12 
Contents 
1 Expression of the equation of heat in linear thermics ................................................................ 3 
1.1 Equation of heat ..................................................................................................................... 3 
1.2 Fourier analysis .............................................................................................................................. 3 
1.3 Equation of heat in the case of the linear model of thermics ............................................. 3 
2 Boundary conditions, loading and initial condition ........................................................................ 4 
2.1 Imposed temperatures ................................................................................................................. 4 
2.2 Linear relations ........................................................................................................................... 4 
2.3 Normal flow imposed ......................................................................................................................... 4 
2.4 Exchange .......................................................................................................................................... 5 
2.5 Exchange wall ................................................................................................................................. 5 
2.6 Voluminal source ............................................................................................................................ 5 
2.7 Initial condition .............................................................................................................................. 5 
3 variational Formulation of the problem ................................................................................................. 6 
4 variational Formulation of the problem with condition of exchange between two walls .......................... 
6 

file:///Z|/process/refer/refer/p1590.htm (16 of 20)10/2/2006 2:53:39 PM



file:///Z|/process/refer/refer/p1590.htm

5 Discretization in time of the differential equation ................................................................................ 7 
5.1.1 Precision of the method ......................................................................................................... 7 
5.1.2 Stability of the method ........................................................................................................... 8 
5.1.3 Application to the equation of heat ..................................................................................... 9 
6 space Discretization .......................................................................................................................... 10 
7 Implementation in Code_Aster .................................................................................................... 11  
7.1 Introduced equations ..................................................................................................................... 11 
7.2 Principal thermal options calculated in Code_Aster ..................................................... 12 
7.2.1 Boundary conditions and loadings ................................................................................ 12 
7.2.2 Calculation of the elementary matrices and transitory term ......................................................... 12 
Handbook of Reference 
R5.02 booklet: Thermics 
HI-75/95/020/A 

Code_Aster ® 
Version 
3 
Titrate:  
Algorithm of linear thermics transitory 
Date:  
04/05/95 
Author (S): 
J.P. LEFEBVRE 
Key: 
R5.02.01-A 
Page: 
3/12 
1  
Expression of the equation of heat in linear thermics 
1.1  
Equation of heat 
One places oneself in open of ¤3 of regular border. 
In any point of, the equation of heat can be written: 
T (R, T) 
- div (( 
Q R, T)) + S (R, T) = C 
p T 
with: 
Q 
vector heat flow (directed according to the decreasing temperatures), 
S 
heat per unit of volume dissipated by the internal sources, 
C 
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voluminal heat with constant pressure, 
p 
T 
temperature, 
R 
variable of space, 
T 
variable time. 
This equation translates the phenomenon of change of the temperature (only through 
phenomenon of diffusion, convection having been neglected) in any point of opened and at any moment. 
It 
in theory an infinity of solutions admits, but the data of the initial conditions and variation of 
boundary conditions in the course of time determines the evolution of the phenomenon perfectly. 
1.2  
Fourier analysis 
In thermal conduction, the Fourier analysis provides an equation connecting the heat flow to the gradient 
temperature (normal vector on the isothermal surface). This law reveals, in its form 
more general, a tensor of conductivity. In the case of an isotropic material, this tensor is reduced to one 
simple coefficient, the thermal coefficient of conductivity. 
Q (R, T) = - T (R, T) 
For the elements of anisotropic thermics one will refer to Implantation of the elements 2D and 2D 
Axisymmetric in mechanics and thermics [R3.06.02]. 
1.3  
Equation of heat in the case of the linear model of thermics 
By combining the two equations above, one obtains: 
T (R, T) 
- div (- T (R, T)) + S (R, T) = CP T 
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2  
Boundary conditions, loading and initial condition 
One describes here only the boundary conditions thermal leading to linear equations in 
temperature, which excludes the conditions of the radiation type. 
2.1 Temperatures  
imposed 
The conditions of the Dirichlet type, are usually treated by dualisation in Code_Aster 
(cf [R3.03.01]), but they can also be eliminated in certain cases (loads kinematics). 
T (R, T) = T (R, T) 
1 
on 
1 
 
where T R T 
1 (,) is a function of the variable of space and/or time. 
2.2 Relations  
linear  
It is of the conditions of the Dirichlet type, making it possible to define a linear relation between the 
values of 
the temperature: 
· between two or several nodes: with an equation of the form 
N 
I iT (R, T) = (T) 
i=1 
· between couples of nodes: with an equation of the form 
1 
N 
2 
N 
1i iT (R, T) + 2i iT (R, T) = (T) 
/ 
/ 
I 1 
12 
= 
I 1 
21 
= 
where 12 and 21 are two under-parts of the border which one binds two to two the values of 
temperature. This type of boundary condition makes it possible to define conditions of periodicity. 
2.3  
Imposed normal flow 
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It is of the conditions of the Neumann type, defining flow entering the field. 
- Q (R, T) .n = F (R, T) 
on 2 
where F (R, T) is a function of the variable of space and/or time and N the normal indicates with 
border 2. 
Handbook of Reference 
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2.4 Exchange 
It is of the conditions of the Neumann type modelling the convectifs transfers on the edges of 
field. 
- Q (R, T) .n = H (R, T) (T (R, T) 
ext. 
- T (R, T)) 
on 3 
where T 
R T 
ext. (,) is a function of the variable of space and/or time representing the temperature of 
external medium, and H (R, T) is a function of the variable of space and/or time representing it 
coefficient of convectif exchange on border 3. 
2.5 Exchange  
wall 
It is of the conditions of the Neumann type bringing into play two pennies left the border in opposite. 
This type of boundary condition models a thermal resistance of interface. 
T 
 
1 
 
= H (R, T) (T (R, T) - T (R, T)) on  
N 
N 
2 
1 
12 
1 normal external to 12 
1 
T 
 
2 

file:///Z|/process/refer/refer/p1600.htm (1 of 25)10/2/2006 2:53:39 PM



file:///Z|/process/refer/refer/p1600.htm

 
= H (R, T) (T (R, T) - T (R, T)) on  
N 
N 
1 
2 
21 
2 normal external to 21 
2 
(N = - N 
1 
2 in general) 
2.6 Source  
voluminal 
It is the term S (R, T) function of the variable of space and/or time. 
2.7 Condition  
initial 
It is the expression of the field of temperature at the initial moment T = 0: 
T (R,) 
0 = T (R) 
0 
where T R 
0 () are a function of the variable of space. 
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3  
Variational formulation of the problem 
We will restrict ourselves here to present the problem with only the boundary conditions of 
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imposed temperature [§2.1], of imposed normal flow [§2.3] or of exchange [§2.4]. Conditions with 
limits of exchange wall [§2.5] are treated with [the §4] and those with linear relations [§2.2] are brought 
back 
without difficulties with that of [§2.1]. 
That is to say open of ¤3, border = 1 2 3. 
The weak formulation of the equation of heat is: 
T 
T 
C 
.v D + T 
. v 
D -  
. 
= 
. 
 
 
 
v D 
S v D 
p 
 
 
 
T 
N 
 
 
 
 
where v are a sufficiently regular function cancelling itself uniformly on 1. With the conditions with 
following limits: 
T 
= T (R, T) 
on  
 
1 
1 
T 
 
= Q (R, T) 
on  
N 
2 
T 
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= H (R, T) (T (R, T) - T) 
 
 
 
on 
N 
ext. 
3 
The variational formulation of the problem is: 
T 
C 
.v D +  
 
T 
. v 
D + hT.v D = S .v D + q.v D + HT .v D 
p 
 
 
 
 
 
 
 
T 
ext. 
 
 
3 
 
2 
3 
4  
Variational formulation of the problem with condition  
of exchange between two walls 
One considers the “simplified” problem where does not appear any more source term and where 
boundary conditions 
are only of imposed the temperature type and exchanges wall. 
That is to say open of ¤3, border = 1 12 21. 
The boundary conditions are in this case: 
 
T 
= T (R, T 
 
1 
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) 
on 1 
 
T 
 
1 
 
= H (R, T) (T (R, T 
2 
) - T (R, T)) 
on  
N 
1 
12 
 
1 
T 
 
2 
 
= H (R, T) (T (R, T 
1 
) - T (R, T 
 
)) 
on  
N 
 
2 
21 
2 
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In substituent in the weak formulation of the equation of heat, one obtains: 
T 
C 
.v D 
p 
 
+  
 
T 
. v 
D 
 
T 
 
 
+ 
H (T 
- T) .v D 
/ 
12 + H (T - T) .v D 
 
 
 
 
 
/ 
0 
12 
21 
21 
 
21 = 
12 
12 
21 
where v are cancelled uniformly on 1. 
This type of boundary conditions reveals new terms connecting degrees 
of freedom located on the two borders in relation. 
5  
Discretization in time of the differential equation 
A traditional way to discretize a first order differential equation consists in using one 
- method. Let us consider the following differential equation: 
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y (T) =  
 
(T, y (T)) 
T y () = y 
 
 
0 
0 
- Method consists in discretizing the equation by a diagram with the finished differences 
1 (y - y) = (T, y) + 1 
N 1 
+ 
N 
N 1 
+ 
N 1 
(-) (T, y) 
T 
+ 
N 
N 
where yn+1 is an approximation of y (tn) 
+1, yn being supposed known 
and is the parameter of the method, [ 
0 ] 
1 
, . 
Note: 
if = the 0 diagram is known as explicit, 
if the 0 diagram is known as implicit. 
5.1.1 Precision of the method 
Let us suppose there sufficiently regular (at least 3 times differentiable), by a development of Taylor 
at the point tn one obtains: 
t2 
 
y (T 
) y (T) 
T 
y' (T) 
y '' (T) O (t2 
N 1 
N 
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N 
N 
) 
+ - 
= 
+ 
+ 
2 
and 
(T, y (T)) 
1 
1 
+ ( 
n+ 
n+ 
1 -) (T, y (T)) 
N 
N 
= y' (T) 
1 + ( 
n+ 
1) y' (T) 
N 
= 
y' (T 
) 
n+1 + (y' (T 
) 
1 - y' (T)) 
n+ 
N 
= 
y' (T) 
2 
N +  
T 
y '' (T) + O (T 
) 
N 
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The solution thus checks roughly: 
1 ( 
2 
y (tn 1) - y (T 
+ 
N)) 
1 
= (T, y (T)) + 1 
N 1 
+ 
N 1 
(-) (T, y (T 
+ 
N 
N)) + ( 
-) T y '' (T) + O 
N 
(T) 
T 
2 
1 
1 
The diagram is of order 1 in time if, and of order 2 if = (diagram of Crank-Nicolson). 
2 
2 
5.1.2 Stability of the method 
Let us consider the following differential equation: 
y' = - y 
 
T 0 R 
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y () 0 = y 
 
0 
By using it - method in this differential equation one obtains: 
1 - 1 
(-) T 
 
y 
y 
1 
0 N NR 
n+ = 
-1 
1+ T 
N 
 
That is to say still: 
1 - 1 
(-) X 
y 
RN (T 
) y 
with R (X 
n+1 = 
0 
) = 
1+ X 
 
The approximate solution yn must be limited (the exact solution of the initial problem being it), which 
imposes 
the following condition: 
R (T 
) 1 
By studying the variations of the function R (X), one notes easily that: 
· if  
12 the condition is checked whatever the T, the diagram is unconditionally 
stable; 
2 
· if  
< 12 the condition is checked that if T  
, the diagram is conditionally 
1 
( - 2) 
stable. 
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In order THER_LINEAIRE [U4.33.01], the parameter is a data being able to be provided 
by the user, the default value is fixed at 0.57. This value with the reputation at Department MMN 
to be preferable with the value of Crank-Nicolson (0,5) and “optimal” for the quadratic interpolations, 
but we did not find trace of the justifications. 
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5.1.3 Application to the equation of heat 
Let us use it - method in the variational formulation of the equation of heat, where one posed: 
T + = T (R, T + T 
) T = T (R, T) h+ = H (R, T + T 
) 
H = H (R, T) 
F + = F (R, T + T 
) F - = F (R, T) T+ = T (R, T + T 
) T = T (R, T 
ext. 
ext. 
ext. 
ext. 
) 
s+ = S (R, T + T 
) 
S = S (R, T) 
T + 
1 = T (R, T 
1 
+ T 
) 
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T - 
1 = T (R, T) 
1 
Let us introduce following spaces of functions: 
V = 
1() 
/ = 
+ 
( , ) 
t+ 
{v H 
v 
T R T 
1 
1 
} 
V = 
1() 
/ = 
- 
( , ) 
T 
{v H 
v 
T R T 
1 
1 
} 
V 
1 
0 = {v H () v = 0 
1 
} 
The field T - 
V 
 
+  
T being supposed known, one seeks T 
Vt+: 
T + - T -  
C 
v D 
+ 
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- 
p 
 
+  
(T 
 
. v + (1) T 
 
. v 
) D 
 
 
T 
 
 
 
-  
(F + + (1) F -) v d2 
-  
(h+ T + 
- 
- 
+ 
+ 
- 
- 
 
 
ext. + (1 -) H Text - H T 
- (1) H T) v d3 
2 
3 
=  
(s+ + (1) S) v D 
 
 
 
v V 
0 
While posing: 
(HT) = h+T + + (1) HT - 
ext. 
ext. 
ext. 
F = F + + (1) F - 
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one obtains finally: 
CP T+ v D + T+ 
 
. v 
D + h+ T+ v D 
 
 
 
T 
 
3 
 
 
3 
CP 
= 
T - v D - (1)  
- 
 
T. v D + F v D 
 
 
 
T 
 
2 
 
 
2 
 
+ ((HT 
- - 
+ 
- 
ext.) - (1) H T) v d3 + (S + (1) S) v D 
 
3 
 
v V 
0 
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6 Discretization  
space 
That is to say pH a division space, let us indicate by NR the number of nodes of the grid, pi 
function of form associated with node I. One indicates by J the whole of the nodes belonging to 
border 1. 
Are: 
V H = 
=  
( ) 
; 
= 
+ 
( , ) 
1 
 
t+ 
{v 
v p X 
v 
T X T 
J J 
I 
I 
J 
J 
} 
i=, 
1 NR 
V H = 
=  
( ) 
; 
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= 
- 
( , ) 
1 
 
T 
{v 
v p X 
v 
T X T 
J J 
I 
I 
J 
J 
} 
i=, 
1 NR 
V H 
0 = {v = v p (X) 
; 
v = 0 
J J 
I 
I 
J 
} 
i=, 
1 NR 
Let us pose: 
C 
 
K T 
p 
= 
T p p D 
+ T p. p 
 
D + h+ T p D 
ij I 
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T I I J 
H 
I 
I 
J 
H 
I 
I 
H 
 
3 
H 
H 
H 
3 
C 
 
L 
p 
= 
T - p D - (1) T 
-. p 
 
D + 
F p D 
J 
 
 
 
 
T 
J 
H 
J 
H 
J 
H 
 
2 
H 
H 
H 
2 
+ ((HT  
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) - (1) HT -) p D 3 + 
 
(s+ + (1) S) p D 
ext. 
J 
H 
 
J 
H 
H 
3 
H 
By dualisant the boundary conditions in imposed temperature ([R3.03.01]), one reveals 
the operator B defined by: 
0 if J J 
(Bv) J = v 
 
if 
J J 
J 
 
One obtains finally the following system: 
NR 
 
K T 
T  
ij I 
+ (B) = L 
J 
 
J 
J 
i=1 
 
(B T) = T (X, T) 
J 
1 
J 
J 
J 
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7  
Implementation in Code_Aster 
7.1 Equations  
introduced 
Order THER_LINEAIRE [U4.33.01] makes it possible to treat the equation in the transitory case such 
that it is described above, but it also makes it possible to solve the stationary problem which is reduced 
with the following equation: 
- div (T) = S 
in  
and boundary conditions following: 
T 
= T (R, T 
1 
S) 
on  
 
1 
T 
 
= Q (R, T) 
on  
N 
S 
2 
T 
 
= H (R, T) (T (R, T) - T) 
 
 
 
on 

file:///Z|/process/refer/refer/p1600.htm (19 of 25)10/2/2006 2:53:39 PM



file:///Z|/process/refer/refer/p1600.htm

N 
ext. 
S 
3 
ts being the moment taken to evaluate the boundary conditions of the equation. 
In the transitory case, it is necessary to provide an initial state, this initial state (field of temperature) 
can be selected among the following: 
· a field which can uniform or unspecified be created by order AFFE_CHAM_NO, 
· a field result of a stationary problem describes by the equations above, the moment of 
calculation is taken at the first moment defined in the list of realities describing the discretization 
temporal defined by the user, 
· a field extracted the result of a transitory problem. 
The discretization in time (value of T) must be provided in the shape of one or more lists 
moments. These lists are created by the user by order DEFI_LIST_REEL [U4.21.04]. 
A thermal transient can be calculated by carrying out several calls to the order 
THER_LINEAIRE [U4.33.01] by enriching the same concept of the evol_ther type while providing to 
to leave the second call the initial moment of resumption of calculation (to obtain T -) and possibly 
the final moment. 
The fields of temperatures resulting from a calculation contain at the same time the value with the nodes 
of the grid and 
with the nodes of Lagrange. During a resumption of calculation, it is possible to vary the type of 
boundary conditions, the field used to initiate new in-house calculation is then tiny room to 
only nodes of the grid. The concept result of the evol_ther type will contain fields then with 
nodes being based on different classifications. The operators of Code_Aster interpolate 
then only with the nodes of the grid when classification differs. 
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7.2  
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Principal thermal options calculated in Code_Aster 
7.2.1 Boundary conditions and loadings 
TEMP_IMPO 
DDLI_R 
T +* D 
 
1 + 
v D 
 
 
 
DDLI_F 
1 
1 
1 
DDLI_R 
*T D 
1  
DDLI_F 
1 
1 
FLUX_REP 
CHAR_THER_FLUN_R 
qv D 
 
CHAR_THER_FLUN_F 
2 
2  
EXCHANGE 
CHAR_THER_COEF_R 
h+ T+ v D 
 
 
CHAR_THER_COEF_F 
3 
3 
CHAR_THER_TEXT_R 
((HT) - (-) H T -) v D 
 
1 
 
CHAR_THER_TEXT_F 
ext. 
3 
3 
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ECHANGE_PAROI 
RIGI_THER_PARO_R 
h+ T+ 
T + 
/ - 
v D 
( 
) 1  
RIGI_THER_PARO_F 
/ 
12 
21 
12 
12 
CHAR_THER_PARO_R 
(1- ) - ( - - - ) 
H T 
T 
v D 
CHAR_THER_PARO_F 
/ 
/ 
21 
12 
 
1 
12 
12 
 
SOURCE 
CHAR_THER_SOUR_R 
(s+ ( 
) S 
+ - 
) v D 
 
1 
 
CHAR_THER_SOUR_F 
 
7.2.2 Calculation of the elementary matrices and transitory term 
RIGI_THER 
+ .  
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T 
v D 
 
MASS_THER 
CP T v D 
 
+ 
T 
 
 
CHAR_THER_EVOL 
CP T v D - (1) T 
. v 
D 
 
 
T 
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solids in the presence of non-linearities of the properties of the materials (heat-storage capacity and 
conductivity), or of 
boundary conditions (heat exchange of radiation type). One presents here the formulation and the 
algorithm 
employee, this last being close to that related to operator STAT_NON_LINE [R5.03.01]. Various options 
of calculation necessary were presented in the plane, axisymmetric elements of structure and 
three-dimensional [U3.22.01], [U3.23.01] and [U3.24.01]. 
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1  
Expression of the equation of heat in thermics not 
linear 
1.1  
Equation of heat for a motionless solid 
In all this document, one treats only it thermal of the solid bodies, even if the change of 
liquid/solid phase is taken into account. There is thus no heat transfer by convection but 
only by conduction. 
The first principle of thermodynamics connects the temporal variation of total energy dEtotale of one 
system included/understood in a volume of control to the work of the external efforts W and heat 
Q received by this same system: 
of 
= D (E 
+ E 
) = W 
+ Q 
total 
intern 
kinetics 
 
éq 1.1-1 
By injecting the theorem of the kinetic energy in this equation, one reveals thus 
power of the interior efforts, function of the field speed [bib1]: 
! Einterne =! Q - P (U) 
I 
éq 1.1-2 
For the resolution of the problem of thermics, the system is supposed without movement. Power 
interior efforts pi (U) is thus null. Indeed, in the majority of the applications concerned, them 
thermal phenomena and mechanics are uncoupled; density power density dissipated by 
plastic deformations, pi = C.! plastic, is neglected in front of the heat exchanged on the surface or 
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other voluminal heat sources. 
The equation [éq 1.1-2] which expresses the variation of heat in volume is written then: 
D 
S  
 
E D = Q! = (rvol - div Q D 
éq 1.1-3 
dt  
 
) 
S 
S 
where one noted: 
E 
internal energy, 
 
density, 
rvol 
the voluminal rate of contribution external of heat, 
Q 
the vector heat flow. 
Moreover, since the solid is motionless, for any volume of control ( 
T) =, one obtains then 
the local equation of conservation of heat: 
of 
 
= R - div Q 
éq 1.1-4 
dt 
flight 
If all the system is actuated by a rigid movement of body, an additional term 
appears in the member of left, utilizing the speed of the solid and the gradient of energy. 
This situation is treated by order THER_NON_LINE_MO [R5.02.04]. 
Handbook of Reference 
R5.02 booklet: Thermics 
HI-75/99/013 - Ind A 

Code_Aster ® 
Version 
5.0 
Titrate:  
Nonlinear thermics 
Date:  
22/06/00 

file:///Z|/process/refer/refer/p1610.htm (2 of 27)10/2/2006 2:53:40 PM



file:///Z|/process/refer/refer/p1610.htm

Author (S): 
C. DURAND 
Key: 
R5.02.02-A 
Page: 
4/16 
In the case of a reversible transformation, the equation [éq 1.1-4] becomes, with the assistance of the 
second 
principle of the thermodynamics which makes it possible to write in our case of 
= TdS: 
intern 
T S! = R - divq 
éq 1.1-5 
flight 
and finally the equation of heat in its traditional form: 
C T! = R - div Q 
éq 1.1-6 
P 
flight 
S 
with the heat-storage capacity with constant pressure defined by: C = T 
P 
T 
P 
As it is explained in chapter 1.4, it can be advantageous to write the term of left of the equation 
[éq 1.1-6] with the enthalpy which does not depend whereas temperature: 
! 
= R - div Q 
flight 
éq 1.1-7 
T  
where (T) = 
C dT 
P 
T0 
1.2  
Fourier analysis 
In thermal conduction, the Fourier analysis provides an equation connecting the heat flow to the gradient 
temperature (normal vector on the isothermal surface). This law reveals, in its form 
more general, a tensor of conductivity. In the case of an isotropic material, this tensor is reduced to one 
coefficient (being able to depend on the temperature), thermal conductivity: 
Q (X, T) = - (T) T 
(X, T) 
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éq 1.2-1 
1.3  
Equation of heat in the case of the model of thermics 
non-linear transient 
By combining the equations [éq 1.1-5] and [éq 1.2-1], one obtains: 
D 
R 
div ((T) T 
flight - 
- 
) = 
éq 1.3-1 
dt 
or, if the heat-storage capacity does not depend on the temperature: 
dT 
R 
- div (- (T) T 
) = C 
flight 
p 
éq 1.3-2 
dt 
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1.4  
Numerical advantage of the formulation in enthalpy for 
problems with phase shift. 
The relation between enthalpy and heat-storage capacity is: 
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T 
(T) = 
C (U) of 
 
p 
T0 
When this function enthalpy presents abrupt variations, it is more precise to handle (T) 
that its derivative. Indeed, paces characteristic of these functions in the vicinity of the melting point 
are as follows: 
Enthalpy 
Liquid 
C 
H (T) 
C 
H 
2 
p 
has 
L 
have 
R 
late 
nte 
C (T) 
p 
1 
C (T) 
p 
2 
Solid 
Solid 
H (T) 
Liquid 
1 
Temperature 
Temperature 
During an iteration, either because the thermal transient is violent, or because the beach of 
phase shift very small (pure substance), two the is reiterated successive ones of the temperature can 
to be located discontinuity on both sides. The evaluation of the slope of the function enthalpy with 
vicinity of the melting point will be very false if one considers C (T 
p 
1), C (T 
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p 
2) or an average 
balanced of both. On the other hand, the slope of the right-hand side in dotted lines is always an 
approximation 
correct of D dT at the melting point. 
2  
Boundary conditions, loading and initial condition 
One will refer to [R5.02.01] for the boundary conditions thermal and the loadings leading 
with linear equations in temperature like for the initial condition. 
2.1  
Non-linear normal flow 
It is of the conditions of the Neumann type, defining flow entering the field. 
- Q (X, T) .n = G (X, T) on the border  
éq 2.1-1 
where G (X, T) is a function of the temperature and possibly of the variable of space X and/or of 
time T and N indicates the normal external with the border, Q is the vector heat flow (directed 
according to the decreasing temperatures). 
This expression makes it possible to introduce for example conditions of the type exchanges with a 
coefficient 
of convectif exchange depend on the temperature: 
- Q (X, T) .n = G (X, T) = H (X, T) (T (X, T) 
ext. 
- T) 
éq 2.1-2 
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2.2  
Non-linear normal flow - condition of the radiation type ad infinitum 
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A particular case of the boundary conditions preceding is the radiation ad infinitum of gray body which 
results in a particular case of function G (X, T): 
- Q (X, T) .n = [(T (X) +. 
273 ) 
15 4 - ( 
4 
 
T + 
. 
273 ) 
15 ] 
éq 2.2-1 
The characteristics to be defined at the time of the definition of this loading are emissivity, the constant 
of 
Stefan-Boltzmann =5,73.108 usi and the temperature ad infinitum. 
T (R) and T are then expressed in degrees Celsius. 273.15°C is the temperature of the absolute zero. 
3  
Variational formulation of the problem 
We will restrict ourselves here to present the problem with only the boundary conditions of 
imposed temperature [R5.02.01 §2.1], of imposed normal flow [R5.02.01 §2.3], of exchange 
[R5.02.01 §2.4], of nonlinear flow [§2.1] and radiation [§2.2]. 
That is to say open of R3, border = 1 2 3 4 5. 
One must solve the equation [éq 1.1-4] in T on ×] 0, T [with the boundary conditions: 
T 
= Td (R, T) 
on  
 
1 
T 
(T) 
= F (R, T) 
on  
 
N 
2 
T 
(T) 
= H (R, T) (T (R, T) - T 
 
) 
on  
N 
ext. 
3 
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éq 3-1 
 
T 
(T) 
= G (R, T) 
on  
N 
4 
 
T 
(T) 
= 
4 
4 
 
[(T +. 
273 ) 
15 - (T + 
. 
273 ) 
15] on  
 
N 
5 
and with, possibly, of the initial conditions T (T =) 
0. If these last are not specified, one 
solves as a preliminary the stationary problem, i.e. the equation [éq 1.3-1] without the term of evolution 
temporal. 
That is to say a v sufficiently regular function cancelling itself on 1, while noticing: 
D  
 
(T) .v D 
! (T) .v D 
 
=  
dt  
 
 
T 
 
éq 3-2 
(T) T 
.v D = - div ((T) T 
) .v D + (T) 
.v D 
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N 
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the weak formulation of the equation of heat can then be written: 
D  
 
T 
 
(T) .v D 
(T) T 
. v 
D - (T) 
.v D = R 
.v D 
 
+  
 
 
éq 3-3 
dt 
N 
flight 
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One deduces the variational formulation from it from the problem: 
D (T) .v D + (T) T .v d+ hT.vd 
 
 
 
3 = 
dt 
 
 
3 
R .v D + F .v D 
éq 3-4 
2 + 
H T .v D 
 
 
 
3 + 
flight 
ext. 
 
2 
3 
g.v D 
4 
4 
27315 
27315 
4 + 
 
 
[. (T +. ) - (T +. )] .vd5 
4 
5  
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4  
Discretization in time of the differential equation 
4.1  
Introduction of - method 
A traditional way to discretize a first order differential equation is it - method. 
Let us consider the following differential equation: 
! y (T) = (T, y (T)) 
 
éq 4.1-1 
y () 
 
0 = y0 
- Method consists in discretizing the equation [éq 4.1-1] by a diagram with the finished differences 
1 (y - y) = (T, y) + 1 
N 1 
+ 
N 
N 1 
+ 
N 1 
(-) (T, y) 
 
éq 4.1-2 
T 
+ 
N 
N 
where yn+1 is an approximation of y (tn) 
+1, yn being supposed known and is the parameter of 
method, [0] 
1 
, . 
Note: 
if = the 0 diagram is known as explicit, 
if the 0 diagram is known as implicit. 

file:///Z|/process/refer/refer/p1610.htm (11 of 27)10/2/2006 2:53:40 PM



file:///Z|/process/refer/refer/p1610.htm

4.2  
Application to the equation of heat 
Let us use it - method in the variational formulation of the equation of heat, where one posed: 
T + = T (R, T + T 
) 
T - = T (R, T) 
h+ = H (R, T + T 
) 
H = H (R, T) 
F + = F (R, T + T 
) 
F - = F (R, T) 
T + = T (R, T + T 
) T - = T (R, T) 
 
ext. 
ext. 
ext. 
ext. 
R + = R (R, T + T 
) R - = R (R, T) T d+ = T D (R, T + T 
) T D = T D (R, T 
flight 
flight 
flight 
flight 
) 
G + = G (R, T +) 
G - = G (R, T -) 
where T D (R, T) represents the temperature imposed on the border of the field, according to time and 
space. 
Let us introduce following spaces of functions: 
V 
1 
D 
= 
 
() 
/ = 
+ 
t+ 
{v H 
v 
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T 
1 
} 
V 
1 
D 
= 
 
() 
/ = 
- 
T 
{v H 
v 
T 
1 
} 
V 
1 
0 = {v H () v = 0 
1 
} 
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The field T - 
V 
 
+  
v V 
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T being supposed known, one seeks T 
Vt+ such as 0: 
(T +) - (T -) v D 
+  
((T +) T + 
 
. v 
+ (1 -) (T -) T - 
 
. v 
) D 
 
 
 
T 
 
 
 
-  
(F + + (1 -) F -) v d2 
-  
(h+ T + + ( 
- 
- 
+ 
+ 
- 
- 
 
 
ext. 
1 -) H Text - H T - (1 -) H T) v d3 
2 
3 
-  
(G + + (1 -) G -) v D 
- 
4 
=  
(R + + (  
 
flight 1) rvol) v D 
4 
 
éq 4.2-1 
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Not to weigh down the writing excessively and insofar as the process is identical to the different one 
terms, one did not make appear the term of radiation in these equations (integral on 5). 
While posing: 
(HT) = h+T + + (1 -) HT - 
ext. 
ext. 
ext. 
F = F + + (1 -) F - 
R = R + + (1 -) R + 
flight 
flight 
, 
one obtains finally: 
(T +) v D + (T+) T+ 
 
. v 
D + h+ T + v D 
 
 
 
 
T 
 
3 
 
 
3 
- G (T +) v d4 = L (v, T -) 
 
1 
éq 4.2-2 
4 
v V 
0 
where one posed: 
(T -) 
L (v, T -) = 
v D - 1 
(-) (T -) T - 
 
. v D + F v D 
1 
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T 
2 
 
 
 
2 
 
éq 4.2-3 
+ ((HT) - 1 
(-) HT -) v D + R v D + 1 
(-) G (T -) v D 
ext. 
3 
 
 
4 
 
3 
 
 
4 
 
At one moment of calculation given, this term is known. Indeed, only the temperature at the previous 
moment, 
T -, as well as the known values at the moment running of function of time, intervene. 
If the distribution of temperature in the system at the initial moment is not provided, one 
solves the stationary problem. The terms of evolution disappear, = 1; the field of temperature 
to the initial moment is given by: 
(T t=0) T t= 
 
0. v 
D + ht=0 T t=0 v D 
0 
3 
- 
G (T t=) v D 
 
 
 
4 
 
 
3 
 
4 
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= 
F t=0 v D 
0 
0 
0 
2 
+ ht= T t= v D 3 
+ rt= v D 
 
 
ext. 
 
 
éq 4.2-4 
2 
 
3 
 
 
v V 
0 
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The problem is written finally in the condensed form: 
Oneself 
T - - known tr 
ouver 
,  
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+ 
T 
V 
T 
V 
+ such as 
 
 
 
T 
T 
 
éq 4.2-5 
v V 
 
has (v, T +) = L (v, T 
 
 
- 
0 
1 
) 
5  
Space discretization and adaptation of the algorithm of 
Newton with the problem 
The principle of the method of Newton is very detailed in [R5.03.01], one will expose only them here 
adaptations specific to the nonlinear algorithm of thermics. 
5.1 Discretization  
space 
That is to say pH a division space, let us indicate by NR the number of nodes of the grid, pi 
function of form associated with node I. One indicates by J the whole of the nodes belonging to 
border 1. 
Are: 
V H 
D 
= 
=  
( ) 
; 
= 
+ 
( , ) 
 
t+ 
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{v 
v p X 
v 
T 
X T 
J 
J 
I 
I 
J 
J 
} 
i=, 
1 NR 
V H 
D 
= 
=  
( ) 
; 
= 
- 
( , ) 
 
éq 5.1-1 
T 
{v 
v p X 
v  
T 
X T 
J 
J 
I 
I 
J 
J 
} 
i=, 
1 NR 
V H 
0 = {v = v p (X) 
; 
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v = 0 
J J 
I 
I 
J 
} 
i=, 
1 NR 
The problem [éq 4.2-5] can be replaced by the problem discretized with a finished number of unknown 
factors 
according to: 
Oneself 
T - 
H 
- known tr 
ouver 
,  
 
+ 
T 
V 
T 
V H 
+ such as 
 
 
 
T 
T 
 
éq 5.1-2 
v 
V H 
 
has (v, T + 
0 
) = L (v, T 
 
 
- 
H 
H 
1 
H 
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) 
that one can as write, with the same formalism as STAT_NON_LINE [R5.03.01], in form 
vectorial: 
 
vT R (T+, t+) = vT L (T, t+) v 
such as B 
v = 0 
 
éq 5.1-3 
B T+ 
 
 
= Td (T +) 
where the operator B expresses the boundary condition of imposed temperature T + 
V H 
t+. It is defined by: 
0 if J J 
(Bv) J = v 
 
éq 5.1-4 
J 
if 
J J 
 
The case where the application R is linear is treated by order THER_LINEAIRE [R5.02.01]. 
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The dualisation of the boundary conditions, detailed in [R3.03.01], led to the nonlinear problem 
in T+: 
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R 
 
(T+, t+) + BT + 
= L (T, t+) 
 
éq 5.1-5 
B T+ 
Td 
 
+ 
= 
 
 
(T) 
The unknown factors are the couple (T+, + 
), where + represents the “multipliers of Lagrange” of 
boundary conditions of Dirichlet. 
To solve the system [éq 5.1-5] amounts cancelling in (T+, + 
) 
+ 
+ 
I 
I 
the vector F (T,), called residue, 
defined by: 
L (T, + 
T) - R (T+, + 
T) - BT + 
 
F (T+, + 
) =  
 
 
Td 
éq 5.1-6 
( + 
T) - B T+ 
 
The method of Newton consists in building a vector series {xn} converging towards the solution 
N 
of F (X) = 0 using the tangent linear application of F. 
5.2 Calculation  
stationary 
The variational problem is that of the equation [éq 4.2-4]. To note: in stationary calculation, enthalpy 
does not intervene in application R. 
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One introduces the matrix of the tangent linear application of the function R (Tn): 
R 
K N = T Tn 
That of the function F (Tn, N 
) is then: 
K N 
 
BT  
 
 
B 
0 
 
 
 
In the case of stationary calculation, one must reiterate starting from a uniform value of initialization of 
the field 
of temperature; in fact T0 = 0 in any node. The first iteration of calculation, known as iteration 
of prediction, consists in solving the following system: 
K 
(T) BT T 
- H T - R (T) - BT  
0  
1 
0 
0 
0 
 
 
=  
 
éq 5.2-1 
B 
0 
D 
1 - 0 
 
 
T 
 
- BT 
 
 
 
0 
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As one can see it in the equation of the stationary problem [éq 4.2-4], the temperature does not appear 
not with the second member: are written L and not L (T) 
0 . 
If the problem is linear, R (T) = K (T) T = K. T 
0 
0 
0 
0. All the terms in T0 disappear by 
simplification. The solution is obtained in an iteration by inversion of a system identical to that 
described in [R5.02.01 §6]. 
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The following iterations are iterations of Newton, with reactualization or not of the matrix 
tangent K. 
K 
(T) BT T 
+ - T 
T 
I 1 
I  
L - R (T) - B  
(I) 
I 
I 
 
 
=  
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éq 5.2-2 
B 
0 I 
1 
+ - I 
 
0 
 
 
 
 
 
For the iteration of prediction, the writing of the lower subsystem of the equation [éq 5.2-1], afterwards 
simplification, ensures us that B T 
T 
1 = 
D. The reiterated first and all the following thus check them 
conditions of Dirichlet. 
Brackets around the index of iteration in the expression K (T) 
(I) mean that one can 
to reactualize or not the tangent matrix with the wire of the iterations. 
Note: 
The temperature of T0 initialization has of influence only for one nonlinear stationary calculation. In 
being of about size of the awaited temperatures, it would make it possible “to leave” less 
far from the solution that a null field everywhere; and thus the iteration count would decrease. Today, 
it is not possible to enter a value of T0. The vector temperature is initialized, into hard, to zero. 
5.3 Calculation  
transient 
For the first iteration of the step of time, known as iteration of prediction, one “makes like if” it 
problem describes in [éq 5.1-5] was linear. This formulation must make it possible to obtain directly 
solution to a linear problem of thermics. But here, the situation is a little different from calculation 
stationary because of the formulation in enthalpy. The linearization of [éq 5.1-5] gives: 
R 
 
(T, t+) + K (T, t+) (T+ - T) + BT + 
= L (T, t+) 
 
éq 5.3-1 
B T+ 
Td + 
 
 
= 
(T) 
What amounts solving, for the problem presented in matric form: 
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K 
(T) BT T+ 
1  
L 
(T, + 
T) + K (T) T - R (T) 
 
=  
D 
 
B 
+ 
0 
 
éq 5.3-2 
T (+ 
T) 
 
1  
 
The function enthalpy is known with a constant of integration close which appears in the relation flexible 
R (T) 
- 
- 
- 
+ 
with K (T) T. This same constant is found in the expression of L (T, T). One can 
then to eliminate it while leading to the system from equations according to: 
K 
- 
T 
+ 
~ 
(T) B T1  
L 
(T, + 
T) 
 
= D 
 
B 
+ 
0 
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éq 5.3-3 
T (+ 
T)  
 
1  
 
~ 
where L (T, T +) is the second member calculated with the heat-storage capacity and not the enthalpy 
(option 
CHAR_THER_EVOLNI [§6.2]). 
Lastly, as for the stationary case seen in the preceding chapter, the following iterations are 
iterations of Newton: 
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K (T, T +) BT T+ 
1 - T+ L (T, t+) - R (T, T + 
 
) - BT  
(I) 
i+ 
I 
I 
I 
 
 
=  
 
éq 5.3-4 
 
B 
+ 
+ 
 
0 i+1 - I  
0 
 
 
This time, on the other hand, L (T, T +) is calculated with the enthalpy and not the heat-storage capacity 
to be 
coherent with R (T+) 
I 
. 
5.4 Convergence 
Since time intervenes in the form of the tangent matrix, and also the step of time, one 
prefer systematically to bring up to date this one at the beginning of each step not not to degrade too 

file:///Z|/process/refer/refer/p1620.htm (1 of 16)10/2/2006 2:53:41 PM



file:///Z|/process/refer/refer/p1620.htm

much 
speed of convergence. On the other hand, freedom is left with the user control his frequency of 
calculation during a step of time. 
With each iteration, one can carry out the search for an optimum step of progression towards the 
solution by 
some iterations (2 or 3) of linear research. This method is described in detail in [R5.03.01]. 
Calculation famous is converged when the vector residue is null [éq 5.1-6]: 
L (T, T +) - R (T+ + 
T + 
 
I, T 
) - B 
I 
F (T+ + + 
 
 
 
I, 
I, T 
) =  
éq 5.4-1 
Td (T +) 
 
- B T+ 
 
I 
 
The lower part of the vector is always null (conditions of Dirichlet). One thus checks: 
L (T, + 
T) - R (T+ 
T 
I, + 
T) - B 
+ 
I 2  
éq 5.4-2 
L (T, + 
T) - BT + 
I 2 
The user also has the possibility of stopping the iterations on an absolute criterion: 
L (T, + 
T) - R (T+ 
T 
I, + 
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T) - B 
+i 
 
 
éq 5.4-3 
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6  
Principal calculated options of non-linear thermics 
in Code_Aster 
6.1  
Boundary conditions and loadings 
One will refer to [R5.02.01] for the boundary conditions and the loadings linear. 
(1 - ) ( - ) 
Flow not 
G T v D 
CHAR_THER_FLUNL 
4 
linear 
4 
 
 
[(T +. 
273 ) 
15 4 - ( 
- 
4 
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1 -) (T + 
. 
273 ) 
15 ] 
Radiation 
v D 
CHAR_THER_RAYO_R 
4 
CHAR_THER_RAYO_F 
4 
 
6.2  
Calculation of the elementary matrices and transitory term 
Inertia 
CP 
thermics, 
MTAN_RIGI_MASS 
v.v D + 
(T) v. v 
D 
 
 
+ 
conductivity 
T 
 
 
 
4 + 
Radiation 
(T + 27315 3 
. ) v.v D 
 
 
MTAN_THER_RAYO_R 
4 
MTAN_THER_RAYO_F 
4 
 
hv.v D 
Coefficient 
 
MTAN_THER_COEF_R 
4 
of exchange 
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MTAN_THER_COEF_F 
4 
dg 
Flow not 
MTAN_THER_FLUXNL 
- 
+ 
(T) v.v d4 
linear 
dT 
4 
Term 
(T -) 
transient 
CHAR_THER_EVOLNI  
v D - (1 -) (T -) T -. v D 
 
 
 
T 
 
 
 
CpT - v D - (1) (T) T 
. v 
D 
 
 
 
T 
 
 
 
6.3  
Calculation of the residue 
1 
I 
I 
I 
RESI_RIGI_MASS 
(T) v  
D + ((T)) T. v 
D 
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T 
 
 
I 
Radiation 
(T + 
. ) v D 
 
27315 4 
 
RESI_THER_RAYO_R 
4 
RESI_THER_RAYO_F 
4 
 
(h+ Ti) v D 
Coefficient 
 
 
RESI_THER_COEF_R 
3 
of exchange 
RESI_THER_COEF_F 
3 
Flow not 
RESI_THER_FLUXNL 
- 
I 
( 
) 
 
linear 
G T v D 3 
3 
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Nonlinear thermics in pointer 
Summary 
One presents the formulation and the algorithm of the problem of convection-diffusion in nonlinear 
thermics 
stationary introduced within order THER_NON_LINE_MO [U4.33.04]. 
The goal is to solve the equation of heat in a mobile reference frame related to a loading and moving 
in a given direction and at a speed. 
Nonthe linearities of the problems come as well from the characteristics of material which depend on 
temperature, that boundary conditions of the radiation type. 
The problems of this type can be dealt with with models using of the finite elements of structure plans, 
axisymmetric and three-dimensional. 
Handbook of Reference 
R5.02 booklet: Thermics 
HI-74/98/007/A 

Code_Aster ® 
Version 
4.0 
Titrate:  
Nonlinear thermics in pointer 
Date:  
25/03/98 
Author (S): 
F. WAECKEL, B. NEDJAR 
Key: 
R5.02.04-A 
Page: 
2/12 
Contents 
1 Presentation of the problem ...................................................................................................................... 
3 
2 Boundary conditions. Problem of reference to solve ................................................................... 5  
3 variational Formulation of the problem ................................................................................................. 6 
4 Treatments of nonthe linearities ............................................................................................................... 7 
4.1 Treatment of nonthe linearity related to the 

file:///Z|/process/refer/refer/p1620.htm (8 of 16)10/2/2006 2:53:41 PM



file:///Z|/process/refer/refer/p1620.htm

enthalpy ............................................................................... 7 
4.2 Treatment of nonthe linearities related on the nonlinear condition of Fourier and conductivity 
thermics ........................................................................................................................................ 8 
5 Algorithm established in Code_Aster ............................................................................................... 9 
6 Principal options of calculation in Code_Aster ............................................................................... 10 
7 Bibliography ........................................................................................................................................ 11 
Handbook of Reference 
R5.02 booklet: Thermics 
HI-74/98/007/A 

Code_Aster ® 
Version 
4.0 
Titrate:  
Nonlinear thermics in pointer 
Date:  
25/03/98 
Author (S): 
F. WAECKEL, B. NEDJAR 
Key: 
R5.02.04-A 
Page: 
3/12 
1  
Presentation of the problem 
The equation of heat has strong not linearities under certain conditions. It is the case 
when the material undergoes phase shifts: those are accompanied by abrupt 
variation of the characteristic sizes (heat-storage capacity, enthalpy). This nonlinearity is 
all the more accentuated when the problem of convection-diffusion is dealt with, where the term appears 
of 
transport depend on the function enthalpy. The goal of this modeling is to treat this last 
problem in steady operation (stationary case). 
In all the cases, one supposes that the field speed is known a priori. The case of a mobile solid 
is rather frequent in practice. It relates to in particular the applications of welding or the treatment 
of surface which brings into play a heat source moving in a direction and at a speed 
data. The problem of thermics is then studied in a reference frame related to the source. 
The problem with the derivative partial results from the equation of the total heat balance on any field  
who is written: 
D 
D = 
Qd - 
q.n D 
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dt  
 
 
éq 1-1 
accumulation 
creation + input-output 
In this equation, represents a related, interior field with the studied system, which one follows 
in its movement, the specific enthalpy of material represents and indicates its mass 
voluminal. Q is a voluminal heat source, Q is the heat flow through the border  
(N being the external normal), and D/dt is the particulate derivative. 
The first term of [éq 1-1] is written (see for example [bib1]): 
D 
( ) 
 
D =  
+ div 
 
 
(V) D 
éq 1-2 
dt 
T 
 
 
 
 
 
 
or, taking into account the conservation of mass  
+ div (V) = 
 
 
 
 
0 [bib1]: 
T 
 
 
D 
 
D = 
 
+ V.grad D 
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éq 1-3 
dt 
 
 
 
T 
 
 
 
 
 
where V is the Flight Path Vector of displacement of the field. V is indicated under the single-ended 
spanner word 
CONVECTION of orders AFFE_CHAR_THER and AFFE_CHAR_THER_F. 
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The second term of the second member of [éq 1-1] is written, taking into account the theorem of the 
divergence 
and of the Fourier analysis (Q = - K (T) gradT): 
q.n D = D Q 
iv D = - div 
 
 
(K (T) gradT) D 
éq 1-4 
 
 
 
 
where T is the temperature and K (T) is the thermal conductivity of material, function of the temperature. 
The equation [éq 1-1] having to be satisfied for any field, it comes then: 
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+ V.grad - div (K (T) 
T 
grad) 
 
= Q, in, 
éq 1-5 
T 
Note: 
Let us note that the traditional case with, K (T) = K (constant) and V = 0, and where the specific 
enthalpy is 
a linear function of the temperature, (T) = CT gives again the traditional equation good known: 
T 
C 
- =, in  
 
K T 
Q 
, 
T 
where is the Laplacian and C (constant) represents the specific heat. 
The problem with the derivative partial treaty by order THER_NON_LINE_MO [U4.33.04], consists 
to solve the equation [éq 1-5] in the stationary case (directly at the permanent state) with 
boundary conditions on the border. 
This problem is formally written in the following form: 
V.grad ( 
U T) - div (K (T) gradT) = Q, in, 
éq 1-6 
+ boundary conditions 
on 
where we adopted the notation, valid for all the continuation, ( 
U T) = (T) where is constant, 
defining the voluminal enthalpy. 
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2  
Boundary conditions. Problem of reference to be solved 
One will refer, for example, with [R5.02.01] for more information on the boundary conditions 
thermics of the type Dirichlet, Neumann and linear Fourier, and with [R5.02.02] for the conditions with 
limits of the nonlinear normal flow type (nonlinear Fourier). 
Of enthalpic formulation, the stationary problem of thermics thus consists in solving in one 
field of border on. 
V.grad ( 
U T) - div (K (T) gradT) = Q, in, 
éq 2-1 
T 
 
with K (T) 
= (T - T 
ext. 
) on  
N 
1, 
éq 2-2 
T 
K (T) 
= q0 
on  
 
, 
éq 2-3 
N 
2 
T 
K (T) 
= (T) 
on  
N 
3, 
éq 2-4 
T = T0 
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on 
4 
, 
éq 2-5 
where: 
·  
T0: is the temperature imposed on 4; 
·  
q0: is the normal flow imposed on 2; 
·  
: is the coefficient of heat exchange; 
·  
Text: is the outside temperature; 
·  
(T): is the normal flow of nonlinear Fourier type (radiation). 
The equations [éq 2-2], [éq 2-5] the boundary conditions of the types represent, respectively: 
Linear Fourier, Neumann, nonlinear Fourier and Dirichlet. 
The problem of reference [éq 2-1], [éq 2-5] is strongly nonlinear because of nonthe linearities on 
K (T), ( 
U T) (phase shift) and (T) (radiation). 
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3  
Variational formulation of the problem 
That is to say open of R 3, border = 1 2 3 4 such as, 
for I J and I, J = 1,…, 4, one a: I J =. 
That is to say still a sufficiently regular function which is cancelled on 4: 
V = {regular and = 0 
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. 
4 
} 
Let us multiply by the two members of the equation [éq 2-1], then integrate on. An integration by 
parts gives then: 
Q D = V.grad ( 
U T) D - 
div 
 
 
(K (T) gradT) D 
 
 
 
 
 
= V.grad ( 
T 
U T) D + 
K (T) gradT.grad D - 
K (T) 
D 
 
 
 
 
 
N  
 
 
-4 
éq 3-1 
since is null on 4. 
From where, by taking account of the boundary conditions [éq 2-2], [éq 2-3] and [éq 2-4], the 
formulation 
variational of the problem of reference which is given by the following equation: 
V 
K (T) gradT.grad D + V.gradu (T) D + 
T 
D - (T) D 
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1 
 
3 
éq 3-2 
= Q D + 
T D 
+ q0 D 
 
ext. 
, 
 
 
 
1 
2 
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4  
Treatments of nonthe linearities 
In the sight of the numerical resolution of the nonlinear problem that we consider, it is necessary of 
to treat all nonlinearities. 
In our case, let us quote the strong not linearity related to the function enthalpy ( 
U T) which takes into account it 
solid-liquid phase shift, as well as nonthe linearity related to the possible presence of one 
boundary condition of nonlinear normal flow (radiation). 
Let us recall that in the traditional case of the problems of transitory thermics nonlinear without 
convection, i.e. V = 0, several methods of resolution is proposed in the literature. There exists 
as well methods using of the enthalpic formulations as methods using of 
formulations in temperature, all having for goal as well as possible to treat nonthe linearity related to the 
enthalpy 
(phase shift). 
We return the reader to the reference [bib5] for a summary of the principal methods met 
in the literature. However, let us note that because of the difficulty related to the presence of the term of 
transport '' V.grad ( 
U T) '' in the problem, none of these methods will be employed in 
continuation. 
As in any iterative process, the goal of the numerical diagram in sight is to find a field of 
temperature T n+1 with the iteration N + 1, the field of temperature T N, solution of the iteration 
the preceding one. 
4.1  
Treatment of nonthe linearity related to the enthalpy 
In order to treat this nonlinearity, the strategy employed in this study was inspired by a technique 
of resolution of the free problems of borders [bib3], which, in the beginning was proposed in [bib4]. 
Let us consider the function enthalpy ( 
U T) as being given in a reciprocal form: 
Temperature function of the enthalpy (opposite of the function ( 
U T)). In other terms one will have to treat 
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relation following Temperature-enthalpy: 
T = (U) 
éq 4.1-1 
The reason of this choice will be clearer in what follows. Indeed we will have to deal with problem with 
two fields: a field of temperature and a field enthalpy. Discretization of the function 
opposite [éq 4.1-1] allows to increment the field enthalpy according to the current field of 
temperature (and not the reverse) as follows: 
The development with the first order of the function (U) is as follows, 
T n+1 
(one) (one) (un+ 
= 
+ 
1 
 
' 
- one), 
éq 4.1-2 
where 'is the derivative of the function defined by [éq 4.1-1] compared to its argument. 
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In order to take into account this nonlinearity, and from [éq 4.1-2], one replaces un+1 by one 
approximation according to the unknown field of temperature T n+1 in the following way: 
un+1 one 
(Tn+ 
- 
= 
1 
 
- (one), 
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éq 4.1-3 
where is a parameter of relieving, constant on all the field and during all the iterative process, 
1 
representing the term  
. 
'(one) 
Because of the nonconvexity of the function (U), this parameter of relieving necessarily must 
to check the following condition [bib2], [bib3]: 
1 
 
éq 4.1-4 
max '(N 
U) 
N 
1  
In practice one takes = 
. 
max '(N 
U) 
N 
By taking of account the approximation [éq 4.1-3], discretization of the second term of the equation 
[éq 3-2] is expressed in the following way: 
V.gradun+1 D = V.gradun D + 
V.gradT n+1 
 
 
 
D 
- 
V.grad 
 
 
 
 
(one) D, 
 
 
 
 
éq 4.1-5 
4.2 Treatment of nonthe linearities related to the condition of Fourier not 
linear and with thermal conductivity 
Nonthe linearity related to the condition of normal flow nonlinear is treated by considering it 
development with the first order of the function (supposed sufficiently regular) (T) which is given 
by: 
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(Tn+1) (Tn) (Tn) (Tn+ 
= 
+ 
1 
' 
- T N), 
éq 4.2-1 
where (.)'the derivative of the function indicates (.) compared to its argument. 
It appeared necessary to decide of a strategy of discretization of the term “K (T) grad T” in 
the equation [éq 3-2] in order to be able to treat this nonlinearity for the stationary problem that us 
let us consider. For that, we adopted the following approximation: 
K (Tn+1) 
T n+1 
K (Tn) 
T n+1 
[K (Tn) K (Tn- 
= 
- 
- 
1 
grad 
grad 
)] gradTn 
éq 4.2-2 
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This discretization is in fact a simplification of the development to the first order of the term 
K (T) gradT. It is effective being in particular because of the low not linearity of the function 
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K (T) in practice. 
Note: 
Also let us note that the following purely explicit approximation: 
K (Tn+1) 
T n+1 
K (Tn) 
T n+ 
 
1 
grad 
grad 
, 
also give satisfactory results. This observation was checked from several 
numerical experiments. 
5  
Algorithm established in Code_Aster 
The numerical diagram employed for the resolution of the problem of reference [éq 2-1], [éq 2-5] is 
deduced from the variational formulation [éq 3-2] and from the treatment of the various not linearities, 
[éq 4.1-5], 
[éq 4.2-1], [éq 4.2-2], discussed in the preceding section. 
The algorithm of resolution is consisted the sequence of two successive operations with each 
iteration of calculation. 
Knowing the fields solutions with iteration N: T N with the nodes and one at the points of Gauss, one 
seek the solutions T n+1 
un+1 
and 
with the iteration N + 1 as follows: 
V, 
K 
(Tn) gradTn+1.grad D + V.grad 
 
T n+1 D 
 
 
 
 
+ 
T n+1 D 
 
- '(Tn) Tn+1 D 
 
 
1 
3 
= Q D 

file:///Z|/process/refer/refer/p1630.htm (5 of 17)10/2/2006 2:53:41 PM



file:///Z|/process/refer/refer/p1630.htm

+ 
T D + 
Q D 
 
ext. 
0 
 
éq 5-1 
 
 
 
1 
2 
+ ((Tn) - '(Tn) Tn) D + [K (Tn) - K (Tn-1)] gradTn.grad D 
 
 
3 
+ 
V. 
grad 
 
(one) D - V.gradun D 
 
, 
 
 
un+1 
one 
(Tn+ 
= 
+ 
1 
 
- (one) 
éq 5-2 
With each iteration, a linear problem of convection-diffusion is solved to obtain the field with  
nodes T n+1 [éq 5-1], and then a simple on-the-spot correction is carried out to obtain the field with 
points of Gauss un+1 [éq 5-2]. 
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The criterion of stop adopted in Code_Aster utilizes at the same time the two fields solutions: 
the field of temperature, and the field enthalpy. 
The algorithm continues the iterations as long as at least one of the relative variations of reiterated is 
higher than the corresponding tolerance given by the user: 
 
1/2 
 
1 
2  
(T n+ - T N 
I 
I) 
 
 
i=1. , nddl 
 
> tole 1 
 
1/2 
 
1 2  
(T n+ 
I 
) 
 
 
i=1. , nddl 
 
 
1/2 
 
1 
2  
(un+ - T N 
I 
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I) 
 
 
i=1. , npg 
 
> tole 2 
 
1/2 
 
1 2  
(un+ 
I 
) 
 
 
i=1. , npg 
 
where nddl is the total number of the degrees of freedom to the nodes, and npg is the total number of the 
points of 
Gauss. 
tole 1 is indicated under the key word crit_temp_rela key word factor convergence of the operator 
ther_non_line_mo. 
tole 2 is indicated under the key word crit_enth_rela key word factor convergence of the operator 
ther_non_line_mo. 
6  
Principal options of calculation in Code_Aster 
One presents below the principal options of Code_Aster specific to the unfolding of 
the algorithm [éq 5-1], [éq 5-2] above. On the other hand, we will not mention the options not 
specific of Code_Aster and which is used in calculation: 
· Boundary conditions: 
Linear Fourier 
RIGI_THER_COET_R 
n+ 
RIGI_THER_COET_F  
T D 
 
1 
 
 
1 
Nonlinear Fourier 
' 
(Tn) n+1 
RIGI_THER_FLUTNL  
T 
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D 
 
3 ((Tn) (Tn) Tn 
- 
 
' 
) 
CHAR_THER_FLUTNL  
D 
 
3 
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· Elementary Matrices and second member: 
N 
n+1 
RIGI_THER_TRANS 
K 
(T) gradT .grad D 
 
n+ 
RIGI_THER_CONV_T 
V. gradT 
D 
 
1 
 
 
- 
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CHAR_THER_TNL 
[K (Tn) - K (Tn 1)]gradTn.grad D 
 
+ V. 
grad (one) D - V.gradun D 
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Summary:  
 
Operator STAT_NON_LINE [U4.51.03] of Code_Aster allows a quasi-static request in the case of  
to integrate various types of non-linearities coming from the behavior of material or of large  
geometrical transformations. One describes the total algorithm of resolution here employed. The 
integration of the relations  
of behavior themselves is described in other documents, like [R5.03.02] for the élasto- 
plasticity, to which one will be able to refer for examples. For calculations in great transformations  
geometrical, one will be able to consult for example the document [R5.03.20] on nonlinear elasticity 
into large  
displacements, or the document [R5.03.21] on the thermoelastoplasticity with isotropic work 
hardening.  
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1 Presentation  
 
1.1  
General information on the relations of behavior  
 
STAT_NON_LINE is the operator of Code_Aster making it possible to carry out mechanical 
calculations not  
linear when the effects of inertia are neglected.  
 
Calculation relates a priori only to the variables mechanical (displacements, constraints, variables  
interns) by excluding any coupling with other physical phenomena (thermics,…). By  
consequent, associated fields influencing the mechanical behavior (thermal fields,  
metallurgical) are calculated as a preliminary by other operators (THER_LINEAIRE [U4.33.01],  
THER_NON_LINE [U4.33.02]), even by other codes (SYRTHES, SATURN,…).  
 
This assumption suffers an exception with regard to modeling  
thermo-hydro-mechanics (modeling known as “THM”) for which milked STAT_NON_LINE  
the whole of the coupled problem of the equations of diffusion of thermics, the pressure of  
fluid and of mechanical balance [R7.01.10].  
 
In STAT_NON_LINE, two families of behaviors are available:  
 
·  
that which corresponds to the key word factor COMP_ELAS (Elastic Behavior) led to  
through equilibrium equation to a nonlinear system depending explicitly on the field  
displacements U compared to the configuration of reference, and parameterized by the moment of  
calculation (through inter alia the thermal evolution). For more details, one will be able  
to defer, for example, with the document [R5.03.20] concerning elasticity into large  
transformations (hyper-elasticity), or the document [R5.03.21] on the thermoelastoplasticity with  
isotropic work hardening,  
 
·  
the other family, which corresponds to the key word factor COMP_INCR (Incremental Behavior),  
is associated relations of behavior expressed by a differential equation  
implicit (for example elastoplasticity, viscoplasticity, hypo-elasticity). In this case,  
relation of behavior is integrated as presented for example in [R5.03.02]: in  
connecting an increment of displacement U calculated starting from a mechanical state given (the state  
mechanics being represented by a field of displacements U, a stress field  
and a field of variables intern) with the stress field at the moment T of calculation.  
The equilibrium equation thus leads to a nonlinear system out of U, but which is also  
parameterized by the moment of calculation through the facts of the case (variation of the loading  
mechanics and thermal evolution for example).  
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In both cases, one calculates the solution gradually. It is theoretically not  
essential in the nonlinear elastic case, but it may be that nonthe linearity of the solution  
sought either too strong for the algorithm of resolution used, and that it is essential, for  
numerical reasons, to operate step by step.  
 
It is necessary nevertheless to have for the spirit the fundamental difference between the two 
approaches. The elastic case  
suppose the existence of a state of reference per report/ratio to which the elastic strain is written: this  
state corresponds in a state without forced deformation nor. It is the “absolute” value of the loading 
which  
create the deformation. The incremental case is based on the state previously calculated and “forgets” 
all  
reference to the former states except that given by the internal variables. In this case, it is  
variation of the loading which modifies the state of the system: in particular, one needs a variation of 
the field of  
temperature to create thermal deformations.  
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1.2  
Position of the nonlinear quasi-static problem  
 
Consequently [§1.1], it is seen that it is legitimate to consider that the nonlinear problem that one  
draft has like unknown factor a displacement and is parameterized by time. That is to say thus the 
problem not  
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linear quasi-static according to:  
 
 
vTR (U, T) = vTL (T) 
v such as Bv = 0 
 
 
Drunk = ud (T) 
 
 
 
where:  
 
·  
T represents the variable of moment,  
·  
U the field of displacement taken starting from a configuration of reference,  
·  
L the mechanical loading to which the structure is subjected (pressure, imposed force,…),  
·  
the relation Drunk = ud (T) corresponds to the boundary conditions imposed in displacements  
(imposed displacements, connections between degrees of freedom,…) : B is a linear operator of  
the space of the fields of displacements on a space of functions defined on part of  
edge of the structure, ud is a function given on this part,  
·  
R represents the internal forces of the problem of quasi-static mechanics nonlinear  
(in the linear case, there are R (U, T) = Ku, where K is the matrix of rigidity of the structure).  
The notation R (U, T) is a short cut which one will use in the continuation.  
 
In fact, more precisely, R (U, T) is connected to the stress field by the operator of  
work of virtual deformations QT [§ 2.2.1] according to the relation:  
 
R (U, T) QT 
= 
(U):  
éq  
1.2-1  
 
In small displacements, QT is independent of displacements; for the large ones  
displacements, to refer to [R5.03.20]. Subsequently, one will place oneself on the assumption  
small displacements and small deformations.  
 
The stress field I at the moment Ti is written (U, T, T, H) 
I 
I I 
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i-1, if one notes Ti the field of  
temperatures and Hi-1 last history of the structure. For the elastic behaviors, the history  
does not intervene: the Hi-1 unit is thus empty. For the incrémentaux behaviors, the history is  
the whole of the states (fields of displacements, constraints and variables intern) at the moment  
precedent: H 
= 
1 
{U 
I 
I 1, I 1, I 
, T 
- 
- 
- 
-1 I} 
1 .  
 
In the case general, the dependence of the operator R is, as we saw in [§1.1],  
implicit compared to time: it results from the integration of the relation of behavior in  
time (for the problems of elastoplasticity for example). The dependence clarifies compared to  
time is very rare: it in particular in the case of appears relations of fascinating behavior in  
count a phenomenon of work hardening by time known as time-hardening.  
Handbook of Reference  
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The dualisation of the boundary conditions of Drunk Dirichlet = ud (T) led to the problem  
according to [R3.03.01]:  
R 
 
(U, T) + BT = L (T) 
 
 
éq  
1.2-2  
Drunk = ud (T) 
 
 
 
The unknown factors are now at any moment T the couple (U,), where represents the “multipliers  
of Lagrange " of the boundary conditions of Dirichlet [R3.03.01]. Vector BT is interpreted like  
opposite of the reactions of support to the corresponding nodes.  
 
The formulation of the quasi-static problem consists in expressing the balance of the structure (forces  
external interns = forces) for a succession of moments of calculation {Ti} 
who parameterize it  
1i I 
loading:  
R 
 
(U, T) + BT 
= L (T) 
I I 
I 
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I 
 
éq  
1.2-3  
Drunk 
= ud (T) 
 
 
I 
I 
 
what amounts cancelling in (U, T) 
I 
I I the vector F (U, T) defined by:  
 
R (U, T) + BT - L (T) 
F (U, T) =  
 
 
Drunk - ud (T) 
 
 
The state of the structure in t0 is supposed to be known. One carries out I increments (or not) of load 
definite  
as follows:  
 
not  
charge n° 
1 
2 
I 
moment 
t0 T1 t2 
. . . 
Ti-1 Ti  
 
The unknown factors are calculated in an incremental way by the total algorithm of resolution (even for  
elastic behaviors). From (ui-1, i-1), solution satisfying Ti-1 balance, one  
determine ui and I, which will make it possible to obtain the Ti solution:  
 
U 
 
= U 
+ U 
I 
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I 
 
-1 
I 
 
 
 
I = I +  
-1 
I 
 
The increments ui and I are initially estimated by linearizing the problem compared to time  
around (ui, T 
-1 
i-1 i-1) (phase known as of prediction or Euler [bib 3]). Then a method is used  
of NEWTON or one of its alternatives to solve the equation [éq 1.2-3] in an iterative way (one  
calculate a continuation (one, N 
I 
I)).  
 
For the incremental relations of behavior, one needs to know out of Ti-1 it  
stress field i-1 and the field of variables intern i-1 (cf [R5.03.02] for one  
example).  
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Method of resolution  
 
2.1  
Principle of the method of NEWTON  
 
The method of NEWTON is a traditional method of resolution of the equations of the type:  
 
F (X) = 0  
 
where F is a vector function (nonlinear) vector X.  
 
It consists in building a vector series {xn} converging towards solution X. To find  
N 
the new one reiterated xn+1, one approaches F (xn+1) by a development limited to order 1 around xn, 
and  
one expresses that F (xn+1) must be null:  
 
0  
N 1 
+ 
N 
'N 
N 1 
= ( 
) ( ) + 
+ 
F X 
F X 
F (X) (X 
- xn),  
 
that is to say:  
 
-1 
F 'xn xn+1 - xn 
= - F xn 
or xn+1 = xn - [F ' 
( )( 
) 
( ) 
(xn)] F (xn)  
 
Recall:  
 
F '(xn) is the tangent linear application associated the function F. The derivative as in point X  
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in the direction H is defined like:  
 
' 
F (X + H) - F (X) 
F (X) H = lim 
.  
0 
 
 
The matrix of F '(X) in the bases chosen for the vector spaces concerned  
be called the matrix jacobienne F as in point X.  
 
When F is related to an Euclidean vector space with actual values, F '(X) is one  
linear form, and one can show that there is a vector (single), noted F (X) and called it  
gradient of F, such as:  
 
F '(X) H = HT F 
(X) (produced scalar of H and the gradient).  
 
When one is close to the solution, the convergence of the method of NEWTON is quadratic (it  
numbers of 0 after the comma in the double error with each iteration: 0.19 - 0.036 - 0.0013 -  
0.0000017 for example). But this method (using the true tangent) has several disadvantages:  
 
·  
it requires the calculation of the tangent to each iteration, which is expensive (especially in  
case where a direct solvor is used),  
·  
if the increment is large, the tangent (known as coherent or consistent) can lead to  
divergences of the algorithm,  
·  
it can not be symmetrical, which obliges to use particular solveurs.  
 
For this reason one can use other matrices in the place of the tangent matrix:  
stamp elastic, a tangent matrix obtained before, the symmetrized tangent matrix,…  
[§2.2.1].  
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2.2  
Adaptation of the method of NEWTON to the problem arising  
 
2.2.1 Resolution without boundary conditions dualized  
 
If one initially forgets the boundary conditions of Dirichlet, one must solve one  
system of the form:  
 
R (U, T) = Lméca 
I I 
I 
,  
 
where Lméca 
I 
indicate the mechanical loading at the moment Ti.  
 
Using the notations of [§ 2.1], that reverts cancelling the vector function F defined by:  
 
F (U, T) = R (U, T) - Lméca 
I I 
I I 
I 
 
 
The nodal forces R can symbolically be noted QT, where QT is the matrix associated with  
the operator divergence (expression of the agricultural work of virtual deformations), with  
(U, T, T, H). One a:  
I 
I 
I 
i-1 
 
(QT) = 
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(U): (W) D 
 
 
K 
K 
 
 
(L) = 
F W D + 
T W D 
 
 
 
 
I K 
I 
K 
I 
K 
 
 
where  
·  
wk indicates the basic function associated with the kth degree of freedom with the structure,  
·  
F indicates the voluminal forces applying at the moment T to,  
I 
I  
·  
T indicates the surface forces applying at the moment T to the border of.  
I 
I 
 
The matrix Q depends on displacements U in great displacements [R5.03.20].  
 
The application of the method of NEWTON results in solving a linear succession of problems of the 
type  
(N is the number of the iteration of NEWTON, I that of the variable of moment):  
 
KN un+1 = Lméca - RN 
I 
I 
I 
I,  
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where un+1 is noted 
un+ 
= 
1 - one 
I 
I 
I the increment of displacement between two iterations of NEWTON  
successive. The matrix K N 
N 
N 
I is the matrix of tangent rigidity in ui and vector IH represents them  
forces intern with the nth iteration of NEWTON of I ème not of load. The Lméca quantity - R N 
I 
I  
represent the not balanced forces, which one can also call the “residue”.  
 
The matrix K nor is the matrix of the tangent linear application of the function F, it is thus worth:  
 
F 
R 
Lméca 
KN 
I 
I = 
= 
- 
 
.  
U 
 
 
N 
U 
N 
U 
(U T,) 
(U T 
N 
I I 
I, I) 
(U T 
I, I) 
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In the absence of following forces [§2.2.3], the second term is null. The matrix K nor is thus the 
derivative  
at the plain point of the nodal forces (or interns) compared to displacements:  
 
R 
Kni =  
 
U (one T 
I, I) 
 
A small error in the evaluation of the residue can have serious consequences, because it is its 
calculation  
exact which guarantees, if one converges, that it will be towards the sought solution. On the other 
hand, it is not  
always necessary to use the true tangent matrix, whose calculation and factorization are expensive.  
For example, an alternative of the method uses the elastic matrix K 0.  
 
Method using the true tangent matrix K nor (known as also coherent or consistent matrix)  
be called the method of NEWTON; methods using of other matrices (such as for example  
stamp elastic K 0) are called modified methods of NEWTON. The choice enters a matrix  
tangent (the last obtained or a preceding matrix) is carried out in Code_Aster by  
the intermediary of the key word STAMPS: “TANGENT” or “RUBBER BAND” of the key word 
factor NEWTON. Moreover,  
it is possible to use a matrix of discharge, i.e. of a matrix with internal variables  
constants (the evolution of nonthe linearities is thus not taken into account in this matrix), in  
below of a certain step of time, for certain laws of behavior. One will refer to  
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documentation [U4.51.03] for the use of this functionality.  
 
The method of NEWTON with consistent tangent matrix can be illustrated simply using  
diagram of the figure [Figure 2.2.1-a].  
 
R 
Li 
L-R2 
2 
R L-R1 
1 
R 
R0 
0 
1 
U 
U 
2 
U 
U 
I 
I 
I 
I 
U 
1 
U 
2 
U  
I 
I 
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2.2.2 Resolution with boundary conditions dualized  
 
When one takes into account the conditions of imposed displacements, the system to be solved is 
written:  
 
R 
 
(U, T) + BT 
= Lméca 
I I 
I 
I 
 
 
Drunk 
= ud 
 
 
I 
I 
 
One will use the symbol to note the increments since the preceding balance (out of Ti-1) of  
displacements, of the parameters of Lagrange, the loading and imposed displacements:  
 
U = U - U 
I 
I 
i-1 
= -  
 
I 
I 
i-1 
 
 
Lméca = Lméca - Lméca 
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I 
I 
i-1 
ud = ud - ud 
I 
I 
i-1 
 
Knowing (U 
, ) 
i-1 
1 
I 
, the couple (U,) 
I 
I will be determined by the resolution of the system:  
 
R 
 
(U 
+ U 
, T) + BT ( 
+) = Lméca + Lméca 
i-1 
I 
I 
i-1 
I 
i-1 
I 
 
éq  
2.2.2-1  
B (U 
+ U 
) = ud + ud 
 
 
i-1 
I 
i-1 
I 
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One will use a method of NEWTON to solve this system. However, the experiment shows  
that the convergence of the method of NEWTON is strongly dependent on a judicious choice on  
the initial estimate: “more the initial estimate is close to the solution, plus the algorithm converges 
quickly”.  
To start the iterative process of the method, it is thus useful to determine “a good” increment  
initial (u0, 0) 
I 
I. For that, one linearizes compared to time the continuous problem: it is what one  
call the phase of prediction (or of initialization). One connects with the loop of the iterations of  
NEWTON which makes it possible, with convergence, to obtain the values of (U,) 
I 
I, and thus those of  
(U 
) 
I, I.  
 
2.2.2.1 Phase of prediction  
 
One linearizes the system [éq 2.2.2-1] compared to time around (U 
, ) 
i-1 
1 
I 
; by taking account of  
the balance obtained at the moment Ti-1, one obtains the equations making it possible to calculate 
values  
predictive (u0, 0) 
I 
I:  
 
R 
R 
u0 BT0 
+ 
= Lméca - 
T 
 
 
U 
I 
I 
I 
 
I 
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T 
 
U 
 
I 
T 
-1 
i-1 
Drunk = ud 
 
I 
I 
 
R 
= (): (T T (T)) 
 
indicate the total differential of R 
Q U 
, 
compared to T. This notation  
T Ti-1 
 
T 
particular be to draw the attention to the fact that  
= 
+ 
 
as one sees it in  
T 
T 
T T 
continuation.  
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Therefore, while using [éq 1.2-1] and dependence from report/ratio with time and compared to  
temperature:  
 
 
 
T 
 
T  
Q 
 
 
0 
0 
 
 
Q: 
+ 
: U + BT  
= Lméca - QT: 
T 
- QT: 
T 
 
 
 
U 
U 
I 
I 
I 
I 
I 
 
T 
T 
 
 
ui-1 
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U 
 
T 
T 
I 
I 
I 
- 
- 
- 
1 
1 
1 
B 
U 
= ud 
 
I 
I 
 
If the constraints depend on other variables, such as for example of proportions Z of  
various metallurgy i.e. phases (T, T (T), Z (T)) , one sees appearing to the second member  
 
the term corresponding: QT: 
Z 
. It is supposed thereafter that the effects  
I 
Z Ti-1 
metallurgical [R4.04.02] are integrated into the second member representative of the effects  
thermics. Moreover, one currently does not hold account for the phase of prediction of  
dependence clarifies constraints compared to time. Lastly, dependence of  
stamp QT compared to displacements is neglected on the assumption of small  
QT 
displacements: the term  
, known as term of geometrical rigidity, thus disappears from  
U ui-1 
the preceding equation.  
 
With obvious notations, the system of equations obtained is also written:  
 
K 
 
 
u0 
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+ BT 
0 
 
= Lméca + Lther 
i-1 
I 
I 
I 
I 
 
 
éq  
2.2.2.1-1  
B u0 
 
= 
ud 
 
 
I 
I 
 
Let us note that one can replace the Ki-1 matrix formally, derived from R compared to U in ui-1  
by the elastic matrix K 0.  
 
For the developers, let us specify that the calculation of the tangent matrix at the time of the phase of 
prediction  
is carried out via the option of calculation RIGI_MECA_TANG [§ 2.2.2.3].  
 
The effective increment of loading Li appearing to the second member includes/understands two 
terms:  
 
·  
the mechanical increment of loading Lméca 
I 
, composed of the dead loads  
(independent of the geometry, like gravity) and of the following loads (dependent  
geometry, like the following pressure [R3.03.04]). Actually, there is cases (it  
first increment of load, for example) where méca 
L 
is unknown: this Lméca fact is  
I 1 
- 
I 
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rather calculated by the relation  
méca 
L 
= méca 
L 
- T 
Q  
- T 
B, which returns exactly to  
I 
I 
I 1 
- 
I 1 
- 
even, in the case running, by taking account of balance with the increment (i-1). One  
will notice whereas the expression utilized the multipliers of Lagrange to the increment  
(i-1), which is sometimes unknown (with the first increment of load, for example). But linearity  
boundary conditions in imposed displacements, which results in the fact that the matrix  
B is constant, allows in this case an abuse language: one poses = 0 and  
I 
0 
truth 
0 truth 
=  
+  
I 
I 1 
- 
(the true exhibitor corresponds to the variables appearing indeed  
I 
in the system of equations above) and one solves:  
 
0 
T 
0 
 
K U + B = méca 
L 
+ 
ther 
L 
- T 
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Q  
I 1 
- 
I 
I 
I 
I 
I 1 
 
- ,  
0 
 
Drunk = D 
U - U 
B 
I 
I 
I 1 
- 
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·  
the increment of loading says “thermal” (and metallurgical [R4.04.02]) Lther 
I 
, resulting from  
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derivation of the nodal forces compared to the temperature and which is an estimate of the effect  
of a variation in temperature. Indeed, if one notes K the module of compression  
hydrostatic and the thermal dilation coefficient, the increment of loading  
“thermal” is written (since R = QT and ther = - 3K T 
I where I is the matrix  
I D 
D 
identity):  
 
 
Lther = - QT: 
T = QT: 3 K T 
I,  
I 
I 
I 
T 
D 
Ti-1 
 
In the elastic case, they are the nodal forces associated a thermal dilation (it  
is not strictly speaking a loading, that is assimilated rather to the effect of a deformation  
initial). This estimate is used in the phase of prediction and the criterion of stop. If  
thermal dilations make leave the structure of the elastic range (plasticity by  
example), this estimate will be corrected at the time of the iterations of NEWTON.  
 
 
Note:  
 
A particular case relates to the use of an excitation of the type TYPE_CHARGE: Meaning “DIDI”  
Differential Dirichlet, i.e. compared to the initial state. That consists, for the conditions with  
D 
limits of the blockings type, to impose, not B U = U, but B (U - U) = ud 
0 
. In this case, it  
system to be solved in the phase of prediction for the new increment of load is:  
 
 
K u0 + T 
B 0 = méca 
L 
+ 
ther 
L 
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- T 
Q  
i-1 
I 
I 
I 
I 
i-1  
 
Bu0 = D 
U 
I 
I 
 
 
2.2.2.2 Buckles on the iterations of NEWTON  
 
One must find the values (U,) 
I 
I of the increments of displacements and parameters of Lagrange  
since the values (U 
, ) 
i-1 
1 
I 
obtained with preceding balance (urgent Ti-1). One takes as  
initial values (u0, 0) 
I 
I obtained at the end of the phase of prediction, before beginning them  
iterations of the method of NEWTON.  
 
With each iteration, one must solve a system allowing to determine (un+1 n+1 
, 
), increments  
I 
I 
displacements and parameters of Lagrange since the result (one 
N 
, ) 
I 
I of the iteration  
the preceding one:  
 
KN 
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un+1 + BT 
N 
+1 = Lméca - R (one) - BT N 
I 
I 
I 
I 
I 
I 
 
 
éq  
2.2.2.2-1  
B un+ 
 
 
1 
I 
= 0 
 
with R (one) = QT N 
N 
N 
I 
I, constraints I being calculated starting from ui displacements by  
the intermediary of the relation of behavior of the material [§1.1]. In fact, in the case of them  
incrémentaux behaviors, nor is calculated starting from (i-1, i-1) and of the increment of  
deformation (un+1) induced by the increment of un+1 displacement = one + un+1 - U 
I 
I 
I 
I 
i-1.  
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Stamp “tangent”  
 
As in the phase of prediction, one is not obliged to use the true tangent matrix K nor. In  
private individual, operator STAT_NON_LINE authorizes the use of the elastic matrix K 0, or  
reactualization of the tangent matrix all i0 not of time (key word REAC_INCR) or all n0  
iterations of NEWTON (key word  
N 
REAC_ITER). Thus, the matrix K I perhaps replaced by one  
stamp K 
m 
J, with J I, or a Ki matrix, with m N.  
 
Caution: a “stiff” matrix too does not pose problems of stability but can produce  
a very slow convergence; a “flexible” matrix too can lead to divergence, it is  
advised in this case to make linear research [§ 2.3].  
 
It is difficult to give a rule making it possible to know when one must reactualize the tangent matrix:  
that strongly depends on the degree of nonlinearity of the problem and the size of the increments of 
load.  
 
In discharge, it is recommended either to use the elastic matrix for the phase of prediction  
and of resolution, the elastic matrix for the phase of prediction then the matrix is to use  
tangent for the resolution.  
 
The figures hereafter illustrate the various possibilities of reactualization of the tangent matrix:  
stamp elastic K 0 used with each iteration [2.2.2.2 Figure - has], tangent matrix reactualized with  
each iteration and with each step of time [2.2.2.2 Figure - B], reactualized tangent matrix all them  
i0 not of time (i0 =1 here) [2.2.2.2 Figure - C], and stamps tangent reactualized all the n0 iterations  
of NEWTON (n0 =2 here) [2.2.2.2 Figure - D].  
 
 
R 
Li 
U  
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R 
Li 
U  
Appear 2.2.2.2 - B: use of the true revalued tangent matrix  
with each iteration  
 
R 
Li+1 
L I 
U 
 
Appear 2.2.2.2 - C: use of the tangent matrix  
revalued with each step of time  
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R 
L I 
U 
 
Appear 2.2.2.2 - D: use of the revalued tangent matrix  
all 2 iterations of NEWTON  
 
Method of NEWTON modified (using another matrix that the consistent tangent matrix)  
converge less quickly than the method of NEWTON traditional, but is less expensive. It is  
all the more economic as the number of degrees of freedom of the system is high. This is why one  
can advise, when the system is of big size, to keep the same tangent matrix during  
some iterations. Lastly, let us not forget to announce that in certain cases, it is calculation with  
stamp elastic which is fastest in terms of computing time, even if the iteration count  
carried out is much more important (they are cheap iterations since the matrix is not  
calculated and factorized that only once); moreover, it is the elastic matrix which it is recommended  
to use during the discharges.  
 
As the equation [éq 2.2.2.2 - 1] shows it, it is necessary to carry out with each iteration of NEWTON 
calculation  
possible of the new tangent matrix K N 
N 
T N 
I and of the “nodal forces” R + B 
I 
I: for  
developers, let us specify that these operations are carried out by the option of calculation 
FULL_MECA  
(RAPH_MECA if the tangent matrix is not recomputed).  
 
The tangent matrix obtained by option RIGI_MECA_TANG and the tangent matrix obtained  
by option FULL_MECA are in general calculated differently [§ 2.2.2.3].  
 
Actualization of the unknown factors  
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The actualization of displacements and their increments is done as follows, that of the parameters of  
Lagrange is carried out in an identical way:  
 
un+ 
 
 
1 
= one + un+1 
I 
I 
I 
un+1 
 
= one + un+ 
 
 
1 
I 
I 
I 
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Criteria of convergence  
 
There are three criteria of convergence.  
 
Criterion RESI_GLOB_MAXI consists in checking that the infinite standard of the residue  
T 
N 
Q + T N 
B - méca 
L 
, is lower than the value specified by the user. He is not advised  
I 
I 
I 
 
to use this criterion alone, because one cannot easily have an idea of the absolute orders of magnitude  
acceptable.  
 
 
The criterion of convergence chosen by defect amounts checking that the residue is sufficiently small,  
as previously, and this relative with a quantity representative of the loading (it is it  
criterion RESI_GLOB_RELA):  
 
QT N 
+ BT N 
- Lméca 
I 
I 
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I 
 
,  
éq  
2.2.2.2-2  
Lméca + Lther - BT N 
 
I 
I 
I 
 
 
being desired relative precision given by the user (or the default value of 10-6) and  
 
 
the standard of the maximum.  
 
One can notice that, in the case of use of RESI_GLOB_RELA, the criterion can become  
singular if the external loading Lméca 
Lther 
BT N 
+ 
- 
becomes null. This can arrive in  
I 
I 
I 
case of total discharge of the structure. If such a case of figure arises (i.e loading  
10-6 times smaller than the smallest loading observed until now the increment), the code  
use then criterion RESI_GLOB_MAXI with as value that observed with convergence  
preceding increment. When the loading becomes again not no one, one returns to the criterion  
initial.  
 
The third criterion is criterion RESI_REFE_RELA: the idea of this criterion is to build a force  
nodal of reference, which will be used to estimate term in the long term, the nullity (approximate) of the 
residue:  
 
J 
{ 
} 
ddls 
(T N T N méca 
Q + B - L 
F  
I 
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I 
I 
) 
ref. 
J 
J 
 
More precisely, the nodal force of reference is built starting from the data of an amplitude of  
constraint of reference (in mechanics; in the case of the THM, it is necessary to give one  
reference to each physical phenomenon entering the generalized constraint)  
ref. 
. From  
this amplitude of constraint of reference, one defines the tensor test 
: it is null for all these  
J 
components, except j-ième which is worth ref. 
. One defines then, for each node of each element  
following nodal force (the goal being to give an idea of the importance of a component in a point  
of Gauss of the constraint on the nodal force):  
 
NR 
M 
~ 
1 
E 
R = 
B 
 
 
 
I 
 
test 
I, J 
J 
NR =1 j=1 
 
with NR the number of points of Gauss of the element, M the component count of the tensor of  
constraint; the exhibitor being used to note the evalutation of quantity at the point of Gauss, are them  
weight of the points of Gauss.  
The nodal force of reference is then defined by:  
 
ref. 
~e 
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F 
= min R  
I 
I 
E  
I 
where is the whole of the elements connected to node I.  
I 
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Convergence is issued carried out when all the criteria specified by the user are checked  
at the same time. By defect, one makes a test on the relative total residue (RESI_GLOB_RELA) and 
numbers it  
maximum of iterations of NEWTON (ITER_GLOB_MAXI).  
 
2.2.2.3 RIGI_MECA_TANG and FULL_MECA  
 
It is important to stress that the tangent matrix resulting from option RIGI_MECA_TANG and the 
matrix  
tangent resulting from option FULL_MECA are in general not identical.  
 
Let us suppose that one reached convergence for the moment Ti-1 and that one seeks now with  
to obtain balance for the moment following Ti. The matrix resulting from IH GI _MECA_TANG 
comes from one  
linearization of the equilibrium equations compared to time around (U 
, ) 
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i-1 
1 
I 
i.e around  
balance at the moment Ti-1. It is thus the tangent matrix of the system with convergence at the 
moment Ti-1.  
On the other hand, the matrix resulting from FULL_MECA comes from a linearization from the 
equilibrium equations by  
report/ratio with displacement around (one 
N 
,) i.e around balance at the moment T.  
I 
I 
I 
 
Moreover, one can interpret the differences between RIGI_MECA_TANG and FULL_MECA in 
others  
terms. One can thus show that the matrix resulting from RIGI_MECA_TANG corresponds to the 
operator  
tangent of the problem continuous in time, known as also problem of speed (and connects the speed 
of constraint  
at the speed of deformation), whereas the matrix resulting from FULL_MECA corresponds to the 
operator  
tangent of the problem discretized in time [bib1]. The document [R5.03.02] gives the expression in  
each of the two cases for the relation of elastoplasticity of Von Mises with isotropic work hardening.  
 
It is pointed out that the treatment of a relation of behavior [R5.03.02 § 5] consists with:  
 
·  
to calculate constraints N 
N 
I and the variables intern I starting from the initial state ( 
, ) 
i-1 
i-1  
and of the increment of linked displacement,  
·  
to calculate the nodal forces R N = QT N 
N 
I 
I and reactions of BTi support,  
·  
to calculate (possibly) the tangent matrix (option RIGI_MECA_TANG for the phase of  

file:///Z|/process/refer/refer/p1650.htm (5 of 26)10/2/2006 2:53:43 PM



file:///Z|/process/refer/refer/p1650.htm

prediction, option FULL_MECA for the iterations of NEWTON).  
 
 
2.2.3 Case of the following loadings  
 
A following loading (in mechanics) is a loading which depends on the geometry of the structure,  
as for example the pressure which is exerted in the direction opposed to the normal (or the forces  
of inertia in a reference mark not galiléen). Thus, when the structure becomes deformed with the 
evolution of  
charge, the loading, expressed in an absolute reference mark, is transformed. The loads which do not 
depend  
no the geometry of the structure are called dead or fixed loads (for example,  
gravity). To indicate that a load must be treated like a following load in  
STAT_NON_LINE, one indicates TYPE_CHARGE: “SUIV” under key word EXCIT.  
 
A mechanical loading Lméca (T) comprising following loads is written Lfixe () + Lsuiv 
T 
(U, T)  
(the fixed exhibitor indicates here the died loads, and suiv the following loads). The system of 
equations  
to solve becomes then:  
 
R 
 
(U, T) + BT 
= Lfixe (T) + Lsuiv (U, T) 
I I 
I 
I 
I I 
 
 
Drunk 
= ud 
 
 
I 
I 
 
Operations of derivation allowing to write the phase of prediction and the iterations of the method  
of NEWTON thus utilize the derivative of Lsuiv compared to displacements U.  
Handbook of Reference  
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The phase of prediction becomes:  
 
 
Lsuiv 
( 
 
K 
) u0 
 
BT 
0 
 
Lfixe Lsuiv Lther 
 
I - 
+ 
= 
+ 
+ 
1 
U 
I 
I 
I 
I 
I 
 
U 
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I 
 
-1 
B 
 
u0 
 
= 
ud 
 
I 
I 
 
and the iterations of NEWTON consist in solving the system:  
 
 
Lsuiv 
( 
 
KN - 
) un+1 + BT 
n+ 
1 = Lfixe + Lsuiv (one) - R (one) - BT N 
 
I 
 
U 
I 
I 
I 
I 
I 
I 
 
one 
 
I 
B 
un+ 
 
1 
I 
= 0 
 
Thus, with the beginning of each step of load (prediction) and with each iteration of NEWTON, one must  
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to calculate a matrix of “rigidity” (- Lsuiv/U) and a Lsuiv vector one 
( 
) related to the loadings  
one 
I 
I 
follower.  
 
The only loads which can be treated like following loads in the current state of  
operator STAT_NON_LINE are:  
 
·  
pressure for modelings 3D, 3D_SI, D_PLAN, D_PLAN_SI, AXIS, AXIS_SI,  
C_PLAN, C_PLAN_SI [R3.03.04],  
 
·  
the loading of gravity for elements CABLE_POULIE [R3.08.05], elements with three  
nodes comprising a pulley and two bits of cables: the force of gravity being exerted on  
the element depends on the respective lengths of the two bits,  
 
·  
the centrifugal force in great displacements, which for a number of revolutions is given  
by:  
 
[OM]  
D 
= 
[(OM + 
 
) 
;  
0 
 
D 
 
 
U] 
 
 
·  
the loading of gravity for all modelings THM of the porous environments not  
saturated [R7.01.10]: indeed, the density depends on the nodal variables U, p and T  
to take account of the relations of behavior of the géomatériaux one.  
 
2.3 Seek  
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linear  
 
Linear research here exposed relates to linear research in the absence of piloting. For  
description of linear research in the presence of piloting, one will refer to documentation  
[R5.03.80].  
 
2.3.1 Principle  
 
The introduction of linear research into operator STAT_NON_LINE results from a report:  
method of NEWTON with consistent matrix does not converge in all the cases of figure,  
in particular when one leaves too much far from the solution. In addition, the use of matrices other 
than  
stamp tangent consistent can, when they are too “flexible”, lead to divergence.  
linear research makes it possible to be guarded against such divergences.  
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It consists in considering (un+1, n+1 
I 
I 
), either like the increment of displacements and of  
parameters of Lagrange, but as a direction of research in which one will seek with  
to minimize a functional calculus (the energy of the structure). One will find a step of advance in this  
direction, and the actualization of the unknown factors will consist in making:  
 
 
un+1 = one + un+1 
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I 
I 
I 
n+1 = N + n+ 
 
 
1 
I 
I 
I 
 
 
In the absence of linear research (by defect) the scalar is of course equal to 1.  
 
2.3.2 Minimization of a functional calculus  
 
In order to be better convinced of the founded good of linear research, one can interpret the method 
of  
NEWTON like a method of minimization of a functional calculus (if matrices  
tangents are symmetrical). We insist on the fact that the equations obtained are  
rigorously those of the method of NEWTON exposed in [§2.2] and that only the way of y  
to arrive is different.  
 
“The talk the dualisation of the boundary conditions of Dirichlet and we place Forget” to simplify  
on the assumption of the small deformations. The functional calculus is considered:  
 
J: V  
IR 
 
U J (U) = W ((U)) D F .u D t.u D 
 
 
 
 
where the density of free energy W makes it possible to connect the tensor of the constraints to the 
tensor of  
W 
deformations linearized by the relation =.  
 
The functional calculus J being convex, to find the minimum of J is equivalent to cancel its gradient, 
that is to say:  
J (U) .v = 0 v V,  
 
what is exactly the Principle of Virtual Work since:  
J (U) .v = (U): (v) D - F .v D t.v D 
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Thus, to solve the equations resulting from the Principle of Virtual Work (bases problem formulated 
in  
[§1.2]) is equivalent to minimize the functional calculus J which represents the energy of the 
structure (energy  
decreased intern of the work of the external forces F and T).  
 
2.3.3 Method of minimization  
 
Minimization is made in an iterative way, classically in two times with each iteration:  
 
·  
calculation of a direction of research along which one will seek reiterated according to,  
·  
calculation of the “best” step of advance in this direction: un+1 = one +.  
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In a problem of minimization, the natural idea is to advance in the direction opposed to the gradient  
functional calculus, which is locally the best direction of descent since this direction is  
normal with the lines of isovaleurs and directed in the direction of the decreasing values [Figure 2.3.3-
a].  
 
U N 
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- J (U N) 
J (U) = cste 
 
Appear 2.3.3-a  
 
However, it is possible to improve the choice of the direction of descent by using this method  
of gradient in a metric news. It is what will enable us to find the equations  
traditional of the method of NEWTON [§2.3.4].  
 
Let us take the simple example of a problem with two variables X and there for which the functional 
calculus with the form  
of an ellipse whose minimum is in (/a, /b):  
 
1 
1 
J (X, y) = 
ax2 + by2 - X - y  
2 
2 
 
While choosing like direction of descent the reverse of the gradient of J, one passes from one 
reiterated to the following  
(only let us reason on X) by:  
 
xn+1 = xn - (axn -),  
 
who does not point towards the solution since the normal in a point of an ellipse does not pass in 
general  
not by the center of the ellipse [Figure 2.3.3-b].  
 
y 
 
B 
 
X 
has 
 
Appear 2.3.3-b  
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On the other hand, if a change of variables is carried out so that the isovaleurs of J become  
circles [Figure 2.3.3-c]:  
 
 
X = has X 
 
 
y = B y 
 
 
 
1 
 
 
X y = 
X 2 + y2 - 
X - 
y 
 
J (,) 
( 
) 
2 
has 
B 
 
y  
 
B 
 
X  
has 

file:///Z|/process/refer/refer/p1650.htm (14 of 26)10/2/2006 2:53:43 PM



file:///Z|/process/refer/refer/p1650.htm

 
Appear 2.3.3-c  
 
The use of the opposite direction of the gradient of J then makes it possible to obtain the solution in 
one  
iteration:  
 
 
 
 
X n+1 
X N 
X N 
xn+ 
= 
- 
- 
= 
 
1 
( 
) 
= 
has 
has 
has  
 
Thus, the use of the method of gradient in the metric news allows a convergence  
immediate. In a more complicated case (functional calculus convex but different from an ellipse),  
convergence is not instantaneous but the change of variables makes it possible to reduce appreciably  
the iteration count necessary.  
 
2.3.4 Application to the minimization of energy  
 
To simplify, one will place oneself in the discretized linear case where the functional calculus J is 
worth:  
 
1 
J (U) = 
uTK U - uTL  
2 
 
O one notes K the matrix of rigidity of the structure, and L the vector of the imposed loadings.  
Handbook of Reference  
R5.03 booklet: Nonlinear mechanics  

file:///Z|/process/refer/refer/p1650.htm (15 of 26)10/2/2006 2:53:43 PM



file:///Z|/process/refer/refer/p1650.htm

HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Quasi-static nonlinear algorithm  
 
 
Date:  
06/07/05  
Author (S):  
P. BADEL, J. LAVERNE, NR. TARDIEU Key  
:  
R5.03.01-D Page  
: 21/28  
 
 
To minimize J, we will use the same method of descent as previously while making with  
precondition a completely similar change of variables. The matrix K being symmetrical defined  
positive, its eigenvalues are real positive: one can thus define the “square root” of K that  
K will be noted (also symmetrical). One poses U = 
K U, the minimization of J is then  
equivalent to that of:  
 
1 
J (U) = 
U U - U 
K -1 
T 
T 
L 
2 
 
 
By taking as direction of descent the opposite direction of the gradient of J, one obtains:  
 
un+1 
one 
one 
K - 
= 
- 
- 
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1 
( 
L)  
 
Maybe, while returning to the initial variables:  
 
un+1 
one 
K - 
= 
- 
1 (K one - L)  
 
Or:  
 
K (un+1 - one) = 
L - K one  
 
One finds the equations of the method of NEWTON: the matrix K is Hessienne of  
functional calculus J (matrix of the derived second) and the second member is the difference of the 
loading  
and of the nodal forces, also called residue.  
 
Thus method of NEWTON perhaps interpreted like resulting from the minimization of energy  
structure via a method of gradient applied after a change of metric.  
 
2.3.5 Determination of the step of advance  
 
Let us return to the real problem, that of the resolution of R (U, T) = L 
I I 
I. This problem can be interpreted  
like the minimization of:  
 
W 
T 
(ui) - ui Li,  
 
where W (ui) corresponds to the discretization, on the basis of function of form, of energy interns  
structure  
((U))  
W D.  
 
 
One calculated by the method of NEWTON an increment of un+1 displacement 
I 
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who, in the problem  
of minimization, is interpreted like a direction of research. One will calculate the step of advance  
in this direction allowing to minimize the value of the functional calculus:  
 
Min {W N 
(U +  
n+ 
U 1) - 
N 
L (U +  
n+1 
I 
I 
I 
I 
ui)}  
R 
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To find the minimum of this scalar function of that one will note F (), one seeks the point where  
its derivative is cancelled (that amounts making orthogonal the final residue and the direction of 
research):  
 
F '() = [N T 
+1 
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T 
N 
n+ 
U 
1 
I 
] [Q (ui +ui) - Li] = 0  
 
(F '() is the projection of the residue on the direction of research)  
 
With the notations of [§2.2.2] and by taking of account reactions of support, the scalar equation with  
to solve to determine the step of advance, is written:  
 
[T 
un+1] [QT (a un+1) BT (N n+ 
+ 
+ 
+ 
1) - Lméca 
I 
I 
I 
I 
I 
I 
] = 0  
 
So that the determination of is not too expensive, one uses a method of secant of which it  
numbers maximum iterations is fixed by the user. The method of secant can be interpreted like  
a method of NEWTON where the derivative at the point running is approached by the direction joining it  
not running and the preceding point:  
 
p - p-1 
p-1 p 
G - p p 
G -1 
p+1 = p 
p 
- 
G 
= 
p 
p-1 
p 
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p 
G - G 
G - G -1 
,  
 
where G p was noted 
F 
p 
= ' ( ) .  
 
One leaves 0 = 0 and 1 = 1. The method of secant has an order of convergence of about 1.6  
[bib2]. It is represented schematically on the figure [Figure 2.3.5-a].  
 
1 
G = F '() 
4 
0 
1 
 
3 
2 
0 
 
Appear 2.3.5-a  
 
At the end of linear research, one brings up to date displacements and parameters of Lagrange by:  
 
 
un+1 = one + un+1 
I 
I 
I 
n+1 = N + n+ 
 
 
1 
I 
I 
I 
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The test of convergence carries:  
 
·  
on the maximum number of iterations of linear research indicated by the user under  
key word ITER_LINE_MAXI of the key word factor NEWTON (the default value 0 inhibits  
linear research, and is worth 1 then),  
·  
on criterion RESI_LINE_RELA given by F (). F () 
0, where is worth by defect 0.1.  
 
Linear research is to some extent a “policy insurance” allowing of  
to secure against serious divergences of the method of NEWTON. When direction of  
seek (un+1, n+1 
I 
I 
) is “bad” (if the tangent matrix is too flexible, by  
example), the linear algorithm of research leads to a low value of, which avoids  
of going “in the decoration”. It is not necessary to do many iterations in the method  
of secant (2 or 3 are enough to avoid the catastrophes) because each one is rather expensive (it  
is necessary to recompute the internal forces) and there is not the ambition to find with each iteration of  
NEWTON the really optimal one.  
 
2.4 Algorithm  
of  
STAT_NON_LINE  
 
One will use like previously index I (like “moment”) to note the number of an increment of  
charge and exposing it N (like “newton”) to note the number of the iteration of NEWTON in progress.  
The algorithm used in operator STAT_NON_LINE can then be written way schematically  

file:///Z|/process/refer/refer/p1650.htm (21 of 26)10/2/2006 2:53:43 PM



file:///Z|/process/refer/refer/p1650.htm

following:  
 
(u0,0) and 0 known  
 
Buckle over moments Ti (or increments of load): loading L = L 
I 
(Ti)  
 
·  
(ui-1, i-1) known  
·  
Prediction: calculation of u0 
0 
I and I  
·  
Buckle on iterations of NEWTON: calculation of a continuation (one, N 
I 
I)  
-  
(N 
N 
N 
I, I) and (U,  
I 
I) known  
-  
Calculation of the matrices and vectors associated with the following loads  
-  
Expression of the relation of behavior  
-  
calculation of constraints N 
N 
I and of the variables intern I starting from the values  
i-1 and i-1 with preceding balance (Ti-1) and of the increment of displacement  
one = one - U 
I 
I 
i-1 since this balance  
-  
calculation of the “nodal forces”: Qn + BT N 
I 
I  
-  
possible calculation of the matrix of tangent stiffness: K N = K (one 
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I 
I)  
-  
Calculation of the direction of research (un+1, n+1 
I 
I 
) by resolution of a system  
linear  
-  
Iterations of linear research:  
-  
Actualization of the variables and their increments:  
un+ 
 
 
1 = one + un+1 
 
un+1 
 
= one + un+1 
I 
I 
I 
I 
I 
I 
 
and 
 
 
n+1 
N 
n+1 
n+1 
N 
n+ 
 
 
1 
I 
= I + I 
 
I 
= I + I 
-  
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·  
Filing of the results at the moment Ti  
 
U 
= U 
+ U 
I 
i-1  
I 
 
 
I = I +  
-1 
I 
 
 
 
I 
 
 
I 
 
It is noticed that there are three overlapping levels of iterations: a loop external on the steps of time,  
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a loop of iterations (known as total) of NEWTON and subloops possible for  
linear research (if it is asked by the user) and certain relations of behavior  
requiring iterations (known as interns), for example for elastoplasticity in plane constraints.  
 
 
3 Piloting  
 
One will refer to documentation [R5.03.80].  
 
 
4 Large  
deformations  
 
4.1 Objective  
 
Until now, we made the assumption that displacements and deformations remained moderate  
so as to respect the assumption of the small disturbances. This assumption becomes null and void in  
many cases and the method of resolution of the problem must then integrate the evolution of  
geometry of the problem, to handle a particular kinematics and to use an adequate formulation of  
the law of behavior.  
 
In practice, the assumption of the small deformations can be applied as long as the square of  
modulus of deformation remains lower than the precision of calculations considered. In the same 
way,  
the assumption of small rotations can be applied as long as the product enters the square of  
the swing angle and the modulus of deformation remain lower than the precision of calculations  
considered.  
 
Various alternatives exist within Code_Aster; our objective is not here to do one of them  
detailed presentation and we return to the various documents treating specifically each  
problems:  
 
·  
Relation of nonlinear elastic behavior in great displacements: [R5.03.20],  
·  
Beams in great displacements: [R5.03.40],  
·  
Voluminal elements of hulls into nonlinear geometrical: [R5.07.05],  
·  
Elasto (visco) plasticity, metallurgy and great deformations: [R4.04.03],  
·  
Elastoplastic modeling with isotropic work hardening in great deformations: [R5.03.21].  
 
The objective is here to present a general functionality of the code which allows a simple treatment of  
problems great deformations: argument PETIT_REAC of the key word DEFORMATION under  
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key word factor COMP_INCR.  
In the continuation, we will limit ourselves to the case of the great plastic deformations, which allows 
of good  
to include/understand problems PETIT_REAC. We base ourselves for that on [bib4] and on  
documentation [R5.03.21].  
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4.2  
Great plastic deformations  
 
Initially let us point out the requirements of a modeling great plastic deformations  
in mechanics of the continuous mediums in term of equilibrium equations, of kinematic description and 
of  
relation of behavior so as to determine the limitations of modeling PETIT_REAC well.  
 
Equilibrium equations  
 
If one makes the choice write the equilibrium equations on the current configuration and use it  
tensor of constraints of Cauchy, they are summarized with:  
: v  
D = F .v  
D + 
. 
T v  
D 
v  
 
Vad 
 
 
éq  
4.2-1  
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The preceding equation can be written on the configuration of reference; it is besides what is made  
for nonlinear elasticity in great deformations [R5.03.20]. In the case of laws of behavior  
of incremental nature i.e whose evolution is controlled by the current state, this writing loses of sound  
interest. One prefers then the writing [éq 4.2-1], although the current configuration is an unknown 
factor of  
problem.  
 
Kinematic description  
 
For the laws of plastic behavior, one uses commonly like measures deformation it  
rate of deformation D:  
1 
D = (U 
T 
& + U  
2 
&) 
 
Moreover, one defines also the rate of rotation W:  
 
1 
W = (U 
T 
& - U  
2 
&) 
 
Let us stress that in the preceding expressions, the operator gradient is defined on the configuration  
current.  
 
Elastoplastic relation of behavior  
 
Before writing the relations of behavior, we will make three simplifying assumptions:  
 
·  
the elastic strain are small in front of the plastic deformations (what is checked  
generally well in the case of metals). This makes it possible to break up the rate of  
deformation in an additive way in a plastic part and an elastic part:  
 
D = Of + Dp  
 
·  
the plastic deformation is isochoric. This makes it possible to write that the tensors of constraints of  
Kirchhoff (stress measurement adequate to the great deformations) and of Cauchy  
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(intervening in the equilibrium equations) are identical to the first order.  
·  
the behavior is isotropic.  
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Under these assumptions, the laws of behavior in great deformations can be written under one  
form near to the small transformations. Thus for the plasticity of Von-Settings to isotropic work 
hardening  
one obtains:  
 
 
J = 
E 
p 
 
A: (D - D) 
 
F (, p) = - R (p)  
 
 
 
 
éq 4.2-2  
eq 
 
3 
~ 
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Dp = p 
 
& 
2  
 
eq 
where  
 
·  
~ 
is the diverter of,  
·  
A is the tensor of elasticity,  
·  
J indicates it derived from Jaumann of, which takes account of terms of transport defined in  
assistance of the rate of rotation W and which is given by:  
 
J = & - W. +. W  
 
4.3 Functionality  
PETIT_REAC  
 
The principle of modeling PETIT_REAC simply consists in reactualizing the geometry of  
problem during iterations of Newton (and not at the end of each step of time). This means  
that all the quantities intervening in the equations of the problem are evaluated on the configuration  
current. Anything else is not modified compared to the case small disturbances.  
We have just seen which ingredients are necessary to a “clean” integration of a law of  
elastoplastic behavior in great deformations, with the help of three simplifying assumptions.  
Now let us detail the differences which the resolution by PETIT_REAC implies.  
 
Equilibrium equations  
 
Taking into account the geometrical reactualization, the interior efforts, first term of [éq 4.2-1], are  
estimated in an exact way, with the help of the approximation by finite elements. The calculation of the 
efforts  
outsides east him independent of the resolution by PETIT_REAC: the dead loads are calculated  
on the configuration of reference and the loads following on the current configuration. Equations  
with balance are thus dealt in an exact way.  
 
Kinematic description  
 
Kinematic description is the same one as that of the small disturbances. This means that one  
increment of deformation is calculated by:  
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1 
= ((U) + T (U)) 
 
 
 
2 
 
The total deflection is then the sum of each one of these increments of linearized deformation,  
calculated on different configurations. It is thus delicate to give him a physical direction and better  
is worth to use it like an indicator of the level of deformation reached.  
 
Elastoplastic relation of behavior  
 
The difference between the formulation [eq 4.2-2] and the formulation small disturbances lies in  
replacement of derived from Jaumann by the simple derivative in time. The disadvantage of this  
last is due to the fact that it is not incrémentalement objective i.e not invariant by rigid rotation  
structure (for more details, to see documentation [R5.03.21]).  
The use of PETIT_REAC is thus not appropriate to great rotations but it is it with large  
deformations.  
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Integration within Code_Aster  
 
In term of finite elements, the resolution by PETIT_REAC implies with each step of load  
resolution of the same nonlinear system as previously:  
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R 
 
(U, T) + BT 
= L (T) 
I I 
I 
I 
 
 
Drunk 
= ud (T) 
 
 
I 
I 
 
With the difference close the forces intern are formally calculated by:  
 
R (U, T) 
T 
= Q (U):  
I 
I 
I 
 
where the operator Q depends on displacements.  
 
Within this framework, the calculation of the tangent matrix carries out formally to:  
 
R 
 
Q (U) 
K N = 
= Q (U): 
+ 
: 
I 
U 
 
 
N 
U 
N 
U 
(U, T) 
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(U, T) 
(one, T 
I 
I 
I 
I 
I 
I) 
 
 
The first term is the contribution of the behavior, similar to what was presented into small  
transformations, with the difference which this contribution is evaluated here in current configuration.  
second term is the contribution of the geometry which is not present in small transformations.  
Within the framework of resolution PETIT_REAC, this term is not present in the calculation of the 
matrix  
tangent. One thus has:  
 
 
K N = Q (U): 
I 
U (one, tii)  
 
One can announce that the absence of the geometrical contribution in the tangent matrix can sometimes  
to make convergence difficult. Moreover, the presence of important plastic deformations can  
to make the problem quasi-incompressible, because of isochoric nature of these deformations.  
problems of numerical blocking can then appear which can be circumvented by employment  
elements under integrated  
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Summary: 
This document describes the quantities calculated by operator STAT_NON_LINE necessary to the 
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of a dynamic stress [R5.05.05]. 
This description is presented according to the various key words which make it possible the user to 
choose the relation 
of behavior wished. The relations of behavior treated here are: 
· the behavior of Von Mises with isotropic work hardening (linear or not linear) 
· the behavior of Von Mises with linear kinematic work hardening (model of Prager) 
The method of integration used is based on a direct implicit formulation. From the initial state, or to 
leave 
moment of preceding calculation, one calculates the stress field resulting from an increment of 
deformation. One 
also calculate the tangent operator. 
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1 Introduction 
1.1  
Relations of behaviors described in this document 
In operator STAT_NON_LINE [U4.51.03] (or DYNA_NON_LINE [U4.53.01]), two types of 
behaviors can be treated: 
· the incremental behavior: key word factor COMP_INCR, 
· the behavior in nonlinear elasticity: key word factor COMP_ELAS. 
For each behavior one can choose: 
· the relation of behavior: key word RELATION, 
· mode of calculation of the deformations: key word DEFORMATION. 
For more details, to consult the document [U4.51.03] user's manual, the behaviors described 
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here raising only of the key word factor COMP_INCR. 
The relations treated in this document are: 
VMIS_ISOT_LINE: 
Von Mises with linear isotropic work hardening, 
VMIS_ISOT_TRAC: 
Von Mises with isotropic work hardening given by a traction diagram, 
VMIS_CINE_LINE: 
Von Mises with linear kinematic work hardening.  
1.2  
Integration drank 
To solve the nonlinear total problem posed on the structure, the document [R5.03.01] described 
the algorithm used in Aster for nonlinear statics (operator STAT_NON_LINE) and it 
document [R5.05.05] described the method used for nonlinear dynamics (operator 
DYNA_NON_LINE). 
These two algorithms are based on the calculation of local quantities (in each point of integration of 
each finite element) which results from the integration of the relations of behavior. 
With each iteration N of the method of Newton [R5.03.01 § 2.2.2.2] one must calculate the nodal 
forces 
R one 
( ) 
N 
N 
I 
= QT I (options RAPH_MECA and FULL_MECA) constraints I being calculated in 
each point of integration of each element starting from displacements linked via 
relation of behavior. One must also build the tangent operator to calculate Kni (option 
FULL_MECA). 
Before the first iteration, for the phase of prediction, one calculates Ki -1 (option 
RIGI_MECA_TANG). 
The calculation of Ki -1, which is necessary to the phase of initialization [R5.03.01 § 2.2.2.2] 
corresponds to 
calculation of the tangent operator deduced from the problem of speed. 
This operator is not identical to that which is used to calculate Kni by option FULL_MECA, to 
run of the iterations of Newton. Indeed, this last operator is tangent with the problem discretized of 
implicit way. 
One describes here for the relations of behavior VMIS_ISOT_LINE, VMIS_ISOT_TRAC and 
VMIS_CINE_LINE, the calculation of the tangent matrix of the phase of prediction, Ki - 1, then the 
calculation of 
stress field starting from an increment of deformation, the calculation of the nodal forces R and 
stamp tangent Kni. 
Handbook of Reference 
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2  
General notations and assumptions on the deformations 
- 
All the quantities evaluated at the previous moment are subscripted par. 
The quantities evaluated at the moment T + T are not subscripted. 
The increments are indicated par. One has as follows: 
Q = Q T 
(+ T) = Q T () + Q = Q + Q. 
For the calculation of the derivative, one will note: ! 
Q derived from Q compared to time 
 
tensor of the constraints. 
 
operator déviatoire: ~  
ij = ij - 1  
3 kk ij. 
() eq 
3 ~ ~ 
equivalent value of Von Mises:  
= 
eq 
ij ij 
2 
 
increment of deformation. 
With 
tensor of elasticity. 
, µ, E, v, K 
moduli of the isotropic elasticity, respectively: coefficients of Lamé, 
Young modulus, Poisson's ratio and module of compressibility. 
3K = 3 + 2µ 
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modulate compressibility 
 
thermal dilation coefficient average. 
T 
time. 
T 
temperature. 
( ) 
positive part. 
+ 
To calculate the tangent operators, one will adopt the convention of writing of the symmetrical tensors 
of order 2 in the form of vectors with 6 components. Thus, for a tensor a: 
“T 
a= [axx ayy azz 
2axy 
2axz 
2ayz] 
" 
One introduces the hydrostatic vector 1 and stamps it deviatoric projection P: 
“1=t [1 1 1 0 0] 0 
1 " " 
P = Id - 1 1 
3 
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2.1  
Partition of the deformations (small deformations) 
One writes for any moment: 
T () = E T () + HT T () + p T (), 
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with 
E (T) = 
- 
To 1 (T (T)) (T) 
with 
HT (T) = (T (T)) (T (T) - T Id 
ref.) 
or in a more general way: 
HT (T) 
= (T) (T - T - T 
T - T 
def) (ref.) (ref. 
def) 
= # (T) (T - Tref) 
and 
HT (T 
= 0 
ref.) 
A depends on the moment T via the temperature. The thermal dilation coefficient 
(T (T)) is an average dilation coefficient which can depend on the temperature T.  
temperature T is the temperature of reference, i.e. that for which thermal dilation 
ref. 
is supposed to be null if the average dilation coefficient is not known compared to T, one can 
ref. 
to use a temperature of definition of the dilation coefficient average T 
(defined by the key word 
def 
TEMP_DEF_ALPHA of DEFI_MATERIAU) different from the temperature of reference [R4.08.01]. 
· 
$& % 
& 
' 
&& 
What leads to: ! (T) 
- 
To 1 (T (T)) (T)! HT (T)! p 
= 
+ 
+ 
(T) 
This choice is made by preoccupation with a coherence with elasticity: it is necessary to be able to 
find the same solution in 
elasticity (operator MECA_STATIQUE) and in elastoplasticity (operator STAT_NON_LINE) when 
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them 
characteristics of material remain elastic. This choice leads to the discretization: 
= p + A-1 
() + HT 
with: 
A-1 
() = A-1 T + T 
( 
) - 
( +  
) - A 1 T 
( )- 
and 
HT = T 
(+ T 
( 
) T (- T) 
( 
) 
ref. 
- T - 
() T - Tref Id 
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2.2 Reactualization 
In STAT_NON_LINE, under the key word factor COMP_INCR, three modes of calculation of the 
deformations 
are possible: 
· “SMALL” 
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· “SIMO_MIEHE” [R5.03.21] (which carries out calculation in great deformations for one 
isotropic work hardening) 
· “PETIT_REAC” (which is a substitute with calculation in great deformations, valid for the small 
ones 
increments of load, and for small rotations [bib2]). 
This last possibility consists in reactualizing the geometry before calculating: 
X is written 
= X 
N 
N 
O + ui - 1 + ui, the calculation of the gradients of ui is thus made with geometry X 
instead of the initial geometry xo. 
2.3 Conditions  
initial 
They are taken into account via -, p, U. 
In the event of continuation or resumption of a preceding calculation, there is directly the initial state 
-, p, U in  
on the basis of, p, U of preceding calculation at the specified moment. 
Handbook of Reference 
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3  
Relation of Von Mises with isotropic work hardening 
3.1  
Expression of the relations of behavior 
These relations are obtained by key words VMIS_ISOT_LINE and VMIS_ISOT_TRAC. 
For these two relations, the mode of calculation of the deformations is DEFORMATION: “SMALL”: 
 
~ 
· 
 
$%' 
p 
3 
 
! 
= 
- 1 
 
! p 
=! - A -! HT 
2 
eq 
 
eq - R (p) 0 
! p = 0 if eq - R (p) < 
 
0 
 
 
! p 0 if eq - R (p) = 0 
! p: speed of plastic deformation, 
p: cumulated plastic deformation, 
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HT: thermal deformation of origin: HT = (T - ref. 
T). 
Id 
The function of work hardening R (p) is deduced from a simple test tensile monotonous and isothermal 
In this case: 
 
0 
 
eq = L 
0 
L 
 
 
= 0 0  
0 
p = P 
L 
L 
= L - 
. 
E 
 
0 0 0 
L - R (p) 0 
The user can choose a linear work hardening (relation VMIS_ISOT_LINE) or a traction diagram 
data by points (relation VMIS_ISOT_TRAC). 
3.1.1 Relation  
VMIS_ISOT_LINE 
The data of the material characteristics are those provided under the key word factor 
ECRO_LINE or ECRO_LINE_FO of operator DEFI_MATERIAU [U4.43.01]. 
/ECRO_LINE: (D_SIGM_EPSI: AND 
SY: y) 
/ECRO_LINE_FO: (D_SIGM_EPSI: AND 
SY: y) 
ECRO_LINE_FO corresponds if AND and y depend on the temperature and are then calculated 
for the temperature of the point of current Gauss. 
The Young modulus E and the Poisson's ratio are those provided under the key words factors 
ELAS or ELAS_FO. 
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In this case the traction diagram is as follows: 
L 
AND 
y 
E 
L 
I.e.: 
 
 
 
y 
L = E L 
if L < E 
 
 
 
. 
 
y 
 
 
y 
L = y + AND L - 
 
 
E if L E 
Note: 
y is the elastic limit (the choice of falls on it on the user: it can correspond to the end 
of linearity of the real traction diagram, either lawful elastic limit or 
conventional. At all events, one uses here the single value defined under ECRO_LINE). 
When the criterion is reached one a: 
 
( ) 
L - R p 
= 0 , 
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thus 
 
 
 
L  
L - R L - 
 
E = 0, 
from where 
E 
R (p) = 
T E p +  
E - E 
y. 
T 
3.1.2 Relation  
VMIS_ISOT_TRAC 
The data of material are those provided under the key word factor TRACTION: (SIGM: F), of 
operator DEFI_MATERIAU. 
F is a function with one or two variables representing the simple traction diagrams. The first 
variable is obligatorily the deformation, the second if it exists is the temperature (parameter  
of a tablecloth). For each temperature, the traction diagram must be such as: 
· the X-coordinates (deformations) are strictly increasing, 
· the slope between 2 successive points is lower than the elastic slope between 0 and the first point 
curve. 
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The interpolation compared to the temperature is carried out in the following way: 
That is to say the temperature considered, if there is K such as  
[ 
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] 
K, K +1 where K indicates the index of 
traction diagrams contained in the tablecloth, one point by point builds the traction diagram with 
temperature while interpolating compared to the X-coordinates and the ordinates of the points of both 
extreme traction diagrams. 
 
K 
 
K + 1 
 
If is apart from the intervals of definition of the traction diagrams, one extrapolates conformément 
with the prolongations specified by the user in DEFI_NAPPE [U4.31.03] and according to the principle 
precedent. 
Note: 
It is disadvised and dangerous to extrapolate the traction diagrams for values of 
temperature very far away from the extreme temperatures to which the curves are defined. It is 
always preferable to provide traction diagrams for values of temperature framing 
temperatures of calculation. 
If the numbers of points of discretization of the traction diagram to K and K + 1 are different, one 
interpolate between the last point of the poorest curve with all the remaining points of the curve 
richer. Consequently, it is preferable enough to have a number of points of discretization 
homogeneous for the various temperatures. 
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In all the cases, the traction diagram considered is a linear function per pieces: 
 
=  
I +1 - I ( 
) 
[ 
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] 
I + 
- for  
for I + 1 N. 
 
I 
I, I + 1 
I +1 - I 
N being the number of points of interpolation with a linear extrapolation, constant or excluded according 
to 
the choice carried out in DEFI_FONCTION by the user (cf [U4.31.02] for more precise details on 
extrapolation considered). 
 
2 
y = 1 
E 
 
 
1 
2 
 
The first point makes it possible to define: 
y = 1 
E = 1. 
1 
It is this Young modulus who is used in the integration of the relation of behavior. 
One thus has for any I: 
 
p 
I 
= - 
. 
I 
I 
E 
The function of work hardening is then: 
I +1 - I 
R (p) =  
( 
) 
[ 
] 
I + 
p - p for p p 
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. 
p 
I 
I, pi + 1 
I +1 - pi 
The user must also give the Poisson's ratio, and a fictitious Young modulus yg (which is only useful 
to calculate the elastic matrix of rigidity if the key word NEWTON: (MATRIX: “ELASTIC”) is 
present in STAT_NON_LINE) by the key words: 
/ELAS: (NAKED: E: E) 
/ELAS_FO: (NAKED: E: E) 
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3.2  
Tangent operator. Option RIGI_MECA_TANG 
The goal of this paragraph is to calculate the tangent operator Ki - 1 (option of calculation 
RIGI_MECA_TANG 
called with the first iteration of a new increment of load) starting from the results known with 
the moment previous Ti -1. 
For that, if the tensor of the constraints with Ti -1 is on the border of the field of elasticity, one writes 
condition: 
! F = 0 
who must be checked (for the continuous problem in time) jointly in the condition: 
F 
= 0 
with: 
F  
(, p) =  
( ) 
eq - R p. 
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So on the other hand the tensor of the constraints with Ti -1 is inside the field, F < 0, then 
the tangent operator is the operator of elasticity. 
The quantities intervening in this expression are calculated at the moment previous Ti -1, which are them 
only known at the moment of the phase of prediction. One thus obtains: 
! 
F 
F 
F 
F 
F 
F 
F 
= 
! + 
! 
~ 
p = 
! + 
! p = 
( ~ 
2 µ! - 2 µ! P 
) + 
! p 
 
p 
 
p 
 
p 
F 
 
= 
( 
F 
2 µ! - 2 µ! P 
) + 
! p, 
 
p 
F 
because is deviative. 
With 
 
- 
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= 
= (T 
p 
p - 
,  
- 
= 
= (T, = = p (T and p  
= p = ( 
p Ti-1) 
i-1) 
i-1) 
i-1) 
Note: 
One does not hold account in this expression of the variation of the elastic coefficients with 
temperature. It is an approximation, without important consequence, since this operator 
is useful that to initialize the iterations of Newton. On the other hand, dependence of the tangent 
operator by 
report/ratio with the thermal deformations is well taken into account on the level of the total algorithm 
[R5.03.01]. 
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3 ~ 
 
3 ~ 
 
One has then:  
2µ 
! - 2µ! 
' 
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p 
R 
- (p) p = 0 
2  
2 
! 
eq 
eq  
(3 µ) (~ ~ 
. !) 
what leads to: ! p = 
thus 
' 
 
3 µ + R (p 
eq 
) 
 
9µ 
(~ ~ 
. !) 
~ 
 
 
 
if 
 
 
2 
= 
- 
= 
p 
, 
F (, p) 
R p 
0 
! 
' 
 
= 2 3 µ + R (p) 
eq 
( ) 
eq 
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0 , 
if  
- R p < 0 
eq 
 
( ) 
 
 
~ 
! 
p 
= K 
+ 2 µ 
- 
ij 
! kk ij 
 
(! ij! ij) 
Note: 
Information - 
- 
eq - R (p) = 0 is preserved in the form of an internal variable which is worth 1 
in this case and 0 if - 
- 
eq < R (p). 
The tangent operator binds the vector of virtual deformations * to a vector of virtual constraints 
*. 
The matrix of tangent rigidity is written for an elastic behavior: 
 
" " 
(K 1 1 2µ P)  
= 
+ 
and for a plastic behavior: 
 
" " 
(K 1 1 2µ PC S S 
p 
) 
= 
+ 
- 
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with S the vector of the deviatoric constraints associated - defined by: 
St 
= ( ~- - - 
- 
- 
- 
, ~ , ~ , 
~ 
2 
, 
~ 
2 
, 
~ 
 
2 
11 22 33 
12 
23 
31) 
and: 
(3 µ) 2 
1 
CP = (2 3 + 
 
µ 
' 
eq) 
R 
 
 
if - 
eq - R (- 
1 
p) 
 
= 0 
= 0 if not 
In the case of the first increment of loading, therefore if the state at the previous moment corresponds to 
one 
nonconstrained initial state, the tangent operator is identical to the operator of elasticity. 
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3.3  
Calculation of the constraints and the internal variables 
The decomposition of the deformations makes it possible to write: 
= p + (-) + HT 
To 1 
Maybe, by taking the spherical and deviatoric parts: 
~ 
 
p 
 
~ = +  
 
HT 
= 0 
 
because  
~ 
. 
2µ  
tr 
tr = 
 
tr 
HT 
 
 
 
 
 
 
because tr p 
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= 0. 
K 
3 + 
By direct implicit discretization of the relations of behaviour for isotropic work hardening, one 
obtains then: 
3 
- 
- 
~ 
~ 
~ 
~ 
~ 
+  
2 µ 
2 µ  
( 
 
) 
2 µ 
- 
- 
p 
-  
~ 
- 
+ 
= 2 
(- +  
) 
2 µ 
eq 
3 K 
tr = 
tr - 
HT 
- 
+ 3 K tr  
- 3 K tr  
3 K 
(- +  
) - R (- 
p + p 
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) 0 
eq 
p 
 
= 0 if (- +  
) < R p 
p 
 
eq 
( - + ) 
p 
0 
if (- +  
) 
= R p 
p 
 
eq 
( - + ) 
One defines, to simplify the notations, the tensor E such as: 
~ 
µ 
E 
2 
~ - 
~ 
 
= 
+ 2 µ  
E 
- 
and tr = tr. 
2 µ 
Two cases arise: 
·  
(-  
) 
R (- 
+ 
< 
p + p 
 
eq 
) 

file:///Z|/process/refer/refer/p1670.htm (15 of 25)10/2/2006 2:53:44 PM



file:///Z|/process/refer/refer/p1670.htm

in this case 
p 
0 are ~ 
~ 
= - ~ 
~ E 
= 
+ =  
thus 
(~e) < R p 
eq 
( ) 
·  
(-  
) 
R (- 
+ 
= 
p + p 
 
eq 
) 
in this case 
p 0 
thus 
(~e) R p 
eq 
( ) 
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14/26 
One deduces the algorithm from it from resolution: 
· 
~ 
if  
E R p then p 
0 
~ 
~ - 
~ 
~ 
that is to say 
=  
 
E 
= 
+ =  
eq 
( ) 
· if  
~  
eeq > R p 
( ) 
then it is necessary to solve: 
~  
~  
3 
 
 
- + ~  
E = ~ - + ~ + 2 µ p 
2 
( +  
) eq 
thus by factorizing ~ - 
~ 
+ and by taking the equivalent value of Von Mises 
 
3 
2 
p 
 
 
E 
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µ 
 
= + 
 
- 
1 
 
 
 
eq 
 
 
2 ( +  
) ( 
) eq 
eq  
 
+ 
- 
that is to say: 
E = R p + p 
+ 3 
p  
 
eq 
( 
) µ 
because: 
 
- 
eq 
= ( +  
) 
= R (p + p 
) 
eq 
It is a scalar equation out of p, linear or not according to R (p). p is obtained analytically, because 
R is a linear function per pieces. 
· If work hardening is linear (relation VMIS_ISOT_LINE), one obtains directly: 
E -  
p = 
eq 
y - R' p 
R' + 3 µ 
with: 

file:///Z|/process/refer/refer/p1670.htm (18 of 25)10/2/2006 2:53:44 PM



file:///Z|/process/refer/refer/p1670.htm

E E 
R' 
= 
T. 
E - AND 
· If work hardening is given by a traction diagram, one benefits from the linearity 
by pieces to determine p exactly to see [§An1]. 
Once p determined, one calculates by: 
E 
~ 
eq - 3 µ p 
 
- 
~ 
+ 
= 
. ~ 
 
 
 
E 
eeq 
and 
tr (- +  
) = tr E. 
Options RAPH_MECA and FULL_MECA carry out both the preceding calculation, which clarifies it 
calculation of R one 
( ) 
N 
( ) 
N 
N 
I. It is noticed that actually, R ui 
= QT I where I is calculated not in function 
N 
of linked, but of I -1 and ui. 
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Note: 
Particular case of the plane constraints. 
The model of Von Mises with isotropic work hardening (VMIS_ISOT_LINE or VMIS_ISOT_TRAC) is 
also available in plane constraints, i.e. for modelings C_PLAN, DKT, 
COQUE_3D, COQUE_AXIS, COQUE_D_PLAN, COQUE_C_PLAN, PIPE, TUYAU_6M. 
In this case, the system to be solved comprises an additional equation. This calculation is detailed in 
appendix 2. 
3.4  
Tangent operator. Option FULL_MECA 
The option  
N 
FULL_MECA makes it possible to calculate the tangent matrix Ki with each iteration. The operator 
tangent which is used for building it is calculated directly on the preceding discretized system (one notes 
to simplify: ~  
= ~  
- + ~  
, p = p + p) and one writes the expressions only in 
isothermal case. 
· If the tensor of the constraints is on the border of the field, F 
= 0 then one have, in 
differentiating the expression of the law of normality in ~ 
~ - 
~ 
= + : 
3 
~ 
~ 
~ 
 
: ~ 
 
p 
~ 
~ 
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3 
 
2 µ = 2 µ  
 
 
2 µp 
p 
 
p 
 
.~ 
- 
= 
+ 
- 
 
2 
 
 
eq 
 
2 
3 
eq 
eq 
 
 
where p ~  
~ represents infinitesimal increases around the solution in 
incremental elastoplastic problem obtained previously. 
Like: 
3 ~ 
: ~ 
 
' 
= R (p) p 
2 eq 
by carrying out the tensorial product of the first equation by ~ 
one a: 
2 µ ~: ~ ~ 
 
-: ~ = 2 µ. 
p, 
eq 

file:///Z|/process/refer/refer/p1670.htm (21 of 25)10/2/2006 2:53:44 PM



file:///Z|/process/refer/refer/p1670.htm

by eliminating p from the two last equations: 
~ 
~ 
2 µ: ~ 
 
: ~ 
= 
3 µ. 
1 + ' 
R (p) 
· Si on the other hand if the tensor of the constraints is inside the field, F 
< 0, then 
the tangent operator is the operator of elasticity. 
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By expressing p and ~: ~ 
in the first equation, one obtains: 
3 µ p 
2 µ ~ -  
~ = 
 
~ + C .p (~: ~) ~, 
 
+ 
eq 
with: 
9 2 
µ  
R' (p) p 
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1 
C 
= 
1 
2 
- 
 
p 
 
 
 
 
 
R' 
+ 3 µ 
eq 
eq 
(p) 
~ 
The positive part (: ~ 
) allows to gather in only one equation the two conditions: 
+ 
· is  
F 
< 0, which implies p = 0 
· is F 
= 0 
One obtains then: 
2 µ 
C 
 
~ 
 
~ 
p (~: ~) ~ 
= 
- 
+ 
has 
has 
while posing: 
3 µ p 
 
= 1 + R (p has + p 
) 
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The tangent operator binds the vector of virtual deformations * to a vector of virtual constraints 
*. 
The matrix of tangent rigidity is written for an elastic behavior: 
 
" " 
(K 1 1 2µ P) 
= 
+ 
and for a plastic behavior: 
 
2µ 
C 
" " 
p 
 
K 1 1 
P 
S 
 
S  
= 
+ 
- 
 
 
has 
has 
 
with S the vector of the deviatoric constraints associated - defined by: 
St 
= ( ~- - - 
- 
- 
- 
, ~ , ~ , 
~ 
2 
, 
~ 
2 
, 
~ 
 
2 
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11 22 33 
12 
23 
31) 
and: 
1 
~ 
if led to a plasticization and. ~ 
0 
= 0 if not 
It is noted that the tangent operator with the system resulting from the implicit discretization differs from 
the operator 
tangent with the problem of speed (RIGI_MECA_TANG). One finds it while making: p = 0 in 
expressions of C and A. 
p 
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3.5  
Produced internal variables 
The relations of behavior VMIS_ISOT_LINE and VMIS_ISOT_TRAC produce two variables 
interns: p and (useful for the calculation of the tangent operator). 
4  
Relation of Von Mises with linear kinematic work hardening 
4.1  
Expression of the relation of behavior 
This relation is obtained by key word VMIS_CINE_LINE of the key word factor COMP_INCR. 
It is written: 
 
~ 
~ 
~ 
- X 
3 
- 
· 
3 
X 
$%' 
P 
 
 
! 
= 
! p 
- 1 
With 
 
2 
( 
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= 
p 
= 
- 
- 
- X) 
! 
HT 
2 
- X 
eq 
( 
) 
! 
! 
eq 
 
X = C p 
HT = (T - T Id 
ref.) 
( - 
éq 4.1-1 
 
X) -  
0 
eq 
y 
 
! p = 0 if (- X) -  
0 
eq 
y 
 
! p 0 if (- X) -  
= 0 
eq 
y 
 
y is the elastic limit (the choice of falls on it on the user: it can correspond to the end of 
 
linearity of the real traction diagram, either lawful elastic limit or 
conventional… At all events, one uses here the single value defined under ECRO_LINE). 
C is the coefficient of work hardening deduced from the data by a simple tensile test. 
In this case (tensor of constraints uniaxial, tensor of plastic deformations isochoric and 
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orthotropic): 
 
 
 
X 
0 
0 
L 
0 
 
 
 
0 
L 
 
 
 
 
X 
= 0 0  
0 
X = 0 
- L 
0  
 
2 
 
 
0 0 0 
 
 
X 
0 
0 
- L  
 
2  
( 
3 
- X) 
=  
X 
L - 
eq 
L 
2 
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P 
L 
X 
C 
C 
L 
= 
L = 
L -  
 
 
E  
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L 
AND 
y 
E 
L 
The data materials are those provided under the key word factor ECRO_LINE or ECRO_LINE_FO of 
operator DEFI_MATERIAU: 
/ECRO_LINE (D_SIGM_EPSI: AND SY: y) 
/ECRO_LINE_FO (D_SIGM_EPSI: AND SY: y) 
ECRO_LINE_FO corresponds if AND and y depend on the temperature and are then calculated 
for the temperature of the point of current Gauss. 
The Young modulus E and the Poisson's ratio are those provided under the key words factors ELAS 
or ELAS_FO. 
y 
 
y 
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For  
 
 
L > 
 
E 
L 
= y + AND L - 
 
E, 
but one also has: 
3 
 
 
L - 
X L = y 
 
2 
 
 
L  
X L = C L - 
 
 
 
E  
 
from where, by eliminating XL and while identifying: 
E E 
C = 2 
T. 
3rd - AND 
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4.2  
Tangent operator. Option RIGI_MECA_TANG 
The goal of this paragraph is to calculate the tangent operator Ki - 1 (option of calculation 
RIGI_MECA_TANG 
called with the first iteration of a new increment of load) starting from the results known with 
the moment previous Ti -1. 
For that, if the tensor of the constraints with Ti -1 is on the border of the field of elasticity, one writes 
condition: 
! F = 0 
who must be checked (for the continuous problem in time) jointly in the condition: 
F 
= 0 
with 
F = F (- - 
X) = (- 
- 
, ,  
-  
- X) -  
eq 
y 
So on the other hand the tensor of the constraints with Ti -1 is inside the field, F 
< 0, then 
the tangent operator is the operator of elasticity. 
One poses: 
 
- 
- 
1 
 
0 
 
Dev. 
~ - 
- 
if (- X) - 
= (information given by the variable interns) 
 
 
X and  
eq 
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y 
= 
- 
= 0 if not 
The problem of speed is written in this case: 
 
 
2 
1 3 2 µ (~ - X) ~ 
. !) (~ - X) 
 
 
 
 
if 
- X -  
= 0 
p 
 
 
( ) 
! 
y 
= 2 µ 2  
C + 2 µ 
y 
 
 
 
0 
if (- X) - < 0 
y 
 
eq 
 
~ 
! 
p 
 
= K + 2 µ -  
ij 
! kk ij 
 
(! ij! ij) 
The tangent operator binds the vector of virtual deformations * to a vector of virtual constraints 
*. 
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The matrix of tangent rigidity is written for an elastic behavior: 
 
" " 
(K 1 1 2µ P) 
= 
+ 
and for a plastic behavior: 
 
" " 
(K 1 1 2µ PC S S 
p 
) 
= 
+ 
- 
 
with S the vector of the deviatoric constraints associated Dev. defined by: 
St = 
Dev. Dev. Dev. 
Dev. 
Dev. 
Dev. 
( 
) 
11 , 22 , 33 , 
2 12 , 2 23 , 2 31 . 
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2 
µ  
1 
C 
 
 
p 
= 3 
. 
2 y 2 µ + C 
In the case of the first increment of loading, therefore if the state at the previous moment corresponds to 
one 
nonconstrained initial state, the tangent operator is identical to the operator of elasticity. 
4.3  
Calculation of the constraints and variables internal 
The direct implicit discretization of the continuous relations results in solving: 
 
 
~ - 
~  
~ 
~ 
- X 
p 
 
 
3 
 
2 
µ 
= 2 µ + 
- 
 
- 
= 
2 µ p 
 
2 µ 
2 µ  
2 
y 
 
 
C 
X = 
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- 
X 
- 
+ C p 
( 
C 
- 
 
X)  
eq 
y 
p 
 
= 0 if (- X) <  
eq 
y 
 
p 
 
0 if not 
 
tr ( 
K 
- +  
) 
3 
= 
tr - 
tr 
tr 
- 
+ 3 K  
- 3 K HT 
3 K 
 
One still poses: 
~ 
2 µ 
C 
E 
~ - 
~ 
 
= 
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- 
2 µ 
X 
-  
+ 
 
- 
. 
2 µ 
C  
The first equation is also written: 
 
2 
~ 
~ 
µ 
 
3 
~ 
X 
- 
~ 
- 
2 µ + 
p 
-  
= + 
2 µ 
 
2 µ 
 
2 
y 
C 
by cutting off X 
= 
X + C 
p 
 
- 
has each term, one obtains: 
C 
2 
~ 
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~ 
µ 
C 
3 
~ 
X 
- 
- 
~ 
- 
2 µ  
+ 
X 
X 
p 
C 
P 
 
- - 
- 
= - + 
2 µ 
+  
2 µ 
C 
2 
y 
or, by using the law of flow: 
~ 
 
3 
p 
 
E 
= (~ 
 
- X) 1 
+ 
(2 µ + C)  
 
2 
y  
Handbook of Reference 
R5.03 booklet: Nonlinear mechanics 

file:///Z|/process/refer/refer/p1680.htm (12 of 29)10/2/2006 2:53:45 PM



file:///Z|/process/refer/refer/p1680.htm

HI-75/01/001/A 

Code_Aster ®  
Version 
5.0 
Titrate:  
Integration of the elastoplastic relations 
Date:  
20/03/01 
Author (S): 
J.M. PROIX, E. LORENTZ, P. MIALON 
Key:  
R5.03.02-C Page:  
21/26 
One still obtains a scalar equation out of p by taking the equivalent values of Von Mises: 
3 
eeq = y + 
(2 µ + C) p 
 
2 
what gives directly: 
E 
-  
p 
eq 
y 
= 3 (2µ+C) 
2 
2 µ 
And is obtained by: ~ 
~ - 
~ 
= 
 
2 µ 
2 µ 
p 
-  
+ 
 
- 
 
 
2 µ 
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By noticing that: 
3 
~ 
~ 
X 
3 
E 
p 
- 
 
= p 
= p 
2 
 
2 
E 
 
y 
eq 
because 
~ 
~ 
- X 
E 
= 
 
E 
y 
eq 
one thus has: 
E 
2 µ 
2 µ 
(eq - y) 
~ 
~ - 
~ 
= 
+ 2 µ 
- 
+ .~ 
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E 
- 
2 µ 
2 µ + C 
eeq 
The variables intern X are calculated by: 
~ E 
C 
C 
3 
 
X = 
X 
p 
- 
C  
C p 
 
- 
+ 
= 
X 
- 
+ 
C 
C 
E 
2 
eq 
Note: 
Particular case of the plane constraints. 
The direct taking into account of the assumption of the plane constraints in the integration of the model 
of Von 
Settings with linear kinematic work hardening was not made in Code_Aster. 
On the other hand, to take into account this assumption, i.e. to use VMIS_CINE_LINE with 
modelings C_PLAN, DKT, COQUE_3D, COQUE_AXIS, COQUE_D_PLAN, COQUE_C_PLAN, 
PIPE, 
TUYAU_6M, one can use the method of condensation static (due to R. of Borst [R5.03.03]) which 
allows to obtain a plane state of stresses with convergence of the total iterations of the algorithm of 
Newton. 
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4.4  
Tangent operator. Option FULL_MECA 
N 
Option FULL_MECA makes it possible to calculate the tangent matrix Ki with each iteration. The 
operator 
tangent which is used for building it is calculated directly on the preceding discretized system (one notes 
to simplify: ~  
= ~  
- + ~  
, p = p + p) and one writes the expressions only in 
isothermal case. 
1  
~ 
if p > 0 and (- X). ~ 
 
 
0 
Dev. is posed 
= ~  
- X and = 0sinon 
The tangent operator binds the vector of virtual deformations * to a vector of virtual constraints 
*. 
Then the matrix of tangent rigidity is written: 
 
" " 
(K 1 1 2µa PC S S 
2 
p 
) 
= 
+ 

file:///Z|/process/refer/refer/p1680.htm (16 of 29)10/2/2006 2:53:45 PM



file:///Z|/process/refer/refer/p1680.htm

- 
 
with S the vector of constraints associated to Dev. by: 
St = 
Dev. Dev. Dev. 
Dev. 
Dev. 
Dev. 
( 
) 
11 , 22 , 33 , 
2 12 , 2 23 , 2 31 . 
and: 
2 
2 
µ  
1 
C 
 
 
p 
= 3 
.a 
2  
1 
y 2 µ + C 
a1 = 
1 
2 
(µ + C) p 
1 + 32 
y 
3 p  
has 
 
2 
= a1 1 + C 
 
2 
 
y  
4.5  
Produced internal variables 
The variables intern are 7: 
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· it  
tensor  
X stored on 6 components, 
· the scalar variable. 
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Appendix 1 Relation VMIS_ISOT_TRAC: complements on 
integration 
Implicit discretization of the relation of behavior led to solve an equation out of p [§5]. 
eeq - 3 µ p - R p + p 
( 
) = 0. 
One solves the equation exactly while drawing left the linearity per pieces. 
One examines initially if the solution could be apart from the terminals of the points of discretization of 
the curve 
R (p), i.e., if p p is a possible solution. 
N 
For that: 
· if  
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E + 
p 
3 
- p - 
0 
eq 
µ ( 
N) 
N 
then one is in the following situation: 
eq 
R (p + p) 
eeq + 3µp - 
( 
) - 3µ (p - + p) = 0 
p 
p 
N 
+ p 
-  
if the prolongation on the right is linear then: 
that is to say 
- 
N 
 
 
N - 1 
1 
= 
H 1 = 
1 + 
p 
1 
- p 
N - 
N - 
N - 
N - ( 
N - 1) 
p - p 
N 
N - 1 
then: 
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E 
- H 
p 
eq 
N 
= 
- 1 
 
3 
1 
µ 
- 
+ 
N 
-  
if the prolongation is constant: 
E -  
p = 
eq 
N 
3 µ 
-  
if not an error message is transmitted, 
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· if not, the solution p is to be sought in the interval [p, p 
such as: 
I 
I + 1] 
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E 
3 
1 > 
+ 
p - p 
i+ 
eq 
µ ( 
i+1) 
and 
 
E 
 
+ 
p 
3 
- p 
I 
eq 
µ ( 
I) 
E 
- 
eq + 3 µ (p - I 
p) = 0  
E 
- 
eq + µ 
3 (p - p) = 0 
E 
- 
eq + 3 µ (p - I 
p +) = 0 
1 
p 
p 
p 
I 
i+1 
+1 - 
I 
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I 
= 
H 
= 
+ 
p - p 
for I 
= 1 with N - 1 
I 
I 
I I ( 
I) 
p +1 - p 
I 
I 
then, p is such as: 
E 
- H 
p 
eq 
I 
= 
and 
p + p  
, 
3 
[p p 
I 
I + 1] 
+ µ 
I 
Handbook of Reference 
R5.03 booklet: Nonlinear mechanics 
HI-75/01/001/A 

Code_Aster ®  
Version 
5.0 
Titrate:  
Integration of the elastoplastic relations 
Date:  
20/03/01 
Author (S): 

file:///Z|/process/refer/refer/p1680.htm (22 of 29)10/2/2006 2:53:45 PM



file:///Z|/process/refer/refer/p1680.htm

J.M. PROIX, E. LORENTZ, P. MIALON 
Key:  
R5.03.02-C Page:  
25/26 
Isotropic appendix 2 Work hardening in plane constraints 
In this case, the system to be solved comprises an equation moreover:  
= 0. It then is obtained 
33 
following system: 
~ - 
~ 
3 
+  
2 µ  
~ - ~ = 
2 µ p 
2 
(- +  
) eq 
tr = 3 K tr  
(- +  
) - R (- 
p + p) 0 
eq 
p = 0 if (- +  
) < R 
eq 
(- p + p) 
p 0 
if (- +  
) 
= R 
eq 
(- p + p) 
 
= 0 
33 
With this assumption, is not entirely known:  
N 
33 cannot be calculated only starting from ui. 
Note: 
In the case of modelings other than C_PLAN, therefore for example for modelings of hulls 
(DKT, COQUE_3D), the assumptions on the transverse terms of shearing and are defined 
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13 
23 
by these modelings (in general, the behavior related to transverse shearing is linear, elastic and 
uncoupled from the equations above). These terms thus do not take into consideration here. 
One poses =  
Q +  
y with Q entirely known starting from linked and of elasticity, therefore 
0 0 0  
Q 
 
 
 
 
Q 
Q 
y 
33 
= - 
11 +  
and  
= 
- ( 
22 
0 0 0 are unknown. 
1 
) 
 
0 0 y 
Compared to the preceding system, there are an additional unknown factor, Y. 
· If  
(~- ~ 
 
 
) 
R (- 
+ 
< 
p + p 
) then p 
= 0 thus 2 µ ~ = ~, 
eq 
i.e. y = 0. 
· If not, the technique of resolution consists in expressing y according to p. One obtains one then 
nonlinear scalar equation in p. 
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2 µ 
One poses: '~ E 
~ - 
~ 
 
2 µ 
-  
 
Q 
= 
+ 
. In the same way that for integration except plane constraints, one 
2 µ 
obtains:  
y 
~ 
~ 
~- 
~  
3 µ p 
 
 
 
2 µ 
1 
 
E + 
 
 
= +  
+ 
. 
 
 
R (p + p 
) 
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But this expression utilizes an additional unknown factor y: In particular: 
y 
~ 
~ 
~ 
 
- 
~ 
 
3 µ p  
+ 2  
 
 
 
33 
= 
+ 
33 
1 
E 
µ  
33 
 
 
 
33 
 
 
 
 
 
+ 
 
R (p + p 
) 
however y 
~  
33 = 2 y 
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3 
3 K+ 
and tr - 
( +  
) = 3 K tr Q + 3 K+ y + 3 K tr - - 3 K+ HT. 
Like: 
tr + - 
( 
) 
tr + - 
( 
) 
~  
- 
- 
33 + ~  
33 = 33 + 33 - 
= 0 - 
. 
3 
3 
One obtains an equation binding y and p: 
 
~  
 
3 µ p 
 
 
- 
tr E - 3 K y  
E 
+ 2 µ 2 y = 
1 + 
33 
3 
 
R (p + p)  
3 
 
with 
3 K 
tr E = 3 K tr - + 3 K tr Q - 3 K HT. 
That is to say: 
4 µ 
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3 µ p  
~ 
tr  
3 µ 
 
E 
E 
p 
y  
+ K1 + 
 
 
1 
 
 
3 
- 
 
- 
 
 
 
 
R (p + p) 
33 
= - 
- 
+ 
3 
 
 
(RP + p) 
by noticing that: 
~  
tr  
tr  
E 
E 
E 
E 
33 
= 33 - 
= 0 - 
3 
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3 
and by clarifying µ, K, one obtains: 
(31 - 2) p 
y 
E 
= 
~ 
E p + ( 
2 1 -) R (p + p) 33 
to defer in the equation out of p (identical to the preceding cases) 
~  
E + 2 µ ~ y 
( 
) -3µ p R p + p 
( 
) = 0. 
eq 
1 
 
y 
- 
y 
 
 
where expresses itself there according to p since:  
~ 
= 
 
- 1 
 
3  
 
 
2 
The scalar equation out of p thus obtained is always nonlinear. This equation is solved by a method 
of search for zeros of functions, based on an algorithm of secant (cf [R6.03.02]). Once the solution 
p known one calculates there then. 
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Taking into account of the assumption of the constraints 
plane in the nonlinear behaviors 
Summary: 
This document describes a general method of integration of the nonlinear models of behaviors 
(elastoplastic, viscoplastic, damaging,…) in plane constraints. 
This is carried out by a method of static condensation due to R. of Borst. 
This method makes it possible to use modeling C_PLAN, or modelings COQUE_3D, DKT and PIPE 
for all the models of incrémentaux behaviors of STAT_NON_LINE available into axisymmetric or 
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1 Introduction 
One presents here a general method of integration of the nonlinear models of behaviors 
(plasticity, viscoplasticity, damage) in plane constraints. It is activated by the key word 
ALGO_C_PLAN: “DEBORST” of the operand of the incrémentaux nonlinear behaviors 
COMP_INCR of STAT_NON_LINE, for modeling C_PLAN, DKT, COQUE3D and PIPE. 
2  
Difficulty of integration of the nonlinear behaviors in 
plane constraints 
Modeling C_PLAN, (as well as modelings COQUE_3D, DKT, PIPE) supposes that the state of 
constraints room is plane, i.e. that = 0, Z representing the direction of the normal with 
zz 
surface. The tensors of constraints and deformations thus take the following form (in C_PLAN): 
 
 
0  
 
Dn. Dn 
xx 
xy 
 
 
 
K N = BT Dn - 12 21 B 
! 
! 
11 
 
 
0  
 
 
Dn 
 
= xy 
yy 
22 
 
 
 
 
0 
0 
zz 
Note: 
For the hulls, it is necessary to add terms due to transverse shearing (, 
), but 
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xz yz 
those are treated elastically and do not intervene in the resolution of the behavior 
room. 
This assumption implies that the corresponding deformation is a priori unspecified (contrary 
with other two-dimensional modelings where one makes an assumption directly on). It 
zz 
can be given that using the relation of behavior. However the condition = 0 is not 
zz 
alleviating for the integration of the behavior where one calculates an increase in constraint in 
function of the increase in deformation provided by the algorithm of Newton. In the case of 
linear elasticity, the taking into account of this condition is simple and makes it possible to find: 
 
 
= - 
+ 
zz 
(xx yy) 
1 -  
But if the behavior is nonlinear, cannot be calculated only starting from U and 
zz 
does not result simply from the other components of the tensor of the deformations. The catch in 
count EC assumption must then be made (when it is realizable) in a way specific to each 
behavior, and very often brings to additional difficulties of resolution: it is the case in 
private individual for the behavior of Von Mises to isotropic work hardening [R5.03.02]. So 
many models of behavior are not available in plane constraints.  
The method presented here has the large advantage of not requiring any particular development in 
the integration of the behavior to satisfy the assumption of the plane constraints. It is usable 
as soon as the model of behavior is available into axisymmetric or in plane deformations. 
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Page: 
3/6 
3  
Principle of the treatment of the plane constraints by 
method De Borst 
The idea of the method due to R. of Borst [bib1] consists in treating the condition of plane constraints not 
not on the level of the law of behavior but on the level of balance. One obtains thus during 
iterations of the algorithm of total resolution of STAT_NON_LINE of the stress fields which 
tend towards a plane stress field progressively with the iterations: 
N  
zz 
0 
where N indicates the number of iteration of Newton. 
One thus obtains the condition of constraint planes not exactly, but in an approached way, with 
convergence of the iterations of Newton, for each calculated increment. One checks, as specified by 
the continuation, that the component above is lower than a given tolerance. 
The method consists in breaking up the fields (strains or stresses) into a part 
purely planes (specified by a “hat”) and a component according to Z. One then reveals 
explicitly the component zz in the expression of the tangent operator in plasticity: 
!  
!  
=  
, =  
zz 
zz 
 
! 11 
D 
D12 
The tangent operator D =  
D D D becoming D = 
.d 
=  
 
 
 
. 
= 
 
D 
D 
zz 21 
22  
D 
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11 
D 
D12 
where D and D indicate infinitesimal increases, and where by definition  
= 
is 
D 
D 
D  
21 
22  
the coherent tangent matrix with the behavior without the assumption of plane constraints, is in 
axisymetry, is in plane deformation to see for example [R5.03.02] for the models of Von Mises). 
4  
Implementation of the method 
The method consists of each point of integration of each element with: 
1) to use the axysimetric relation of plane behavior or deformation (they are 
identical) to calculate the constraints starting from the deformations, 
2) to carry out a static condensation on the relation stress-strain 
3) to write the infinitesimal increases D and D which are connected above by the operator 
tangent in the form of increase between two iterations in Newton N and n+1: 
D = n+1 N 
- 
n+1 (- 
 
N) n+1 N 
- 
= 
+ 
- 
+ 
= 
- 
and the same for D.A convergence, this variation must tend towards zero. 
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By writing n+1 
N 
= 
+ 
= 
zz 
zz dzz 0 one obtains, for the iteration n+1: 
D 
N 
N 
n+1 
! ! - 
 
- 
 
 
 
+ 
 
+  
11 
 
N 1 
! N 
! N 1! N 
D 
D 12 
D! 
+1 
 
. 
D 
 
= N 
N =  
N 
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= 
N 
N 
 
 
 
 
 
- 
-  
zz  
zz 
zz  
zz 
D 
n+1 
21 
D 22 
D 
 
zz  
what, by using the last equation of this system, enables us to be reduced to: 
! n+1 =! N 
N 
+ D D 
1 
N 1 
D 
 
D 
N 1 
0 
11 ! 
+ 
N 
- 
- 
. 
 
12 ( 
N 
D22) (N 
N 
+ 
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D 
21 
= 
zz 
! + ) 
N 
N 
-1 
N 
N 
D = - D 
 
D 
N 1 
22 
+ 
D 
zz 
( ) 
 
 
( 
21 ! 
+ 
zz 
) 
with the stress field which is written: 
N 
 
D D 
D 
1 
 
. N 
N 
12 
21  
! n+ 
N 
N 1 
N 
12 
N 
= D 
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11 - 
D 
- 
N 
! + + ! 
N 
zz 
 
 
D22  
D 
 
22 
N 
N 
N 
 
 
D 
D 
n+1 
N 
zz 
 
 
=  
- 
+ 21 
N 
- 21 
N 1 
 
zz 
zz 
N 
N 
! 
N 
! + 
 
D 
D 
D 
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22 
22 
22 
By using the preceding expression of the stress field, one finds then: 
LT n+ 
. FD 
1 
LT n+ 
=! . ! FD 
1 
= L 
 
 
= 
 
N 
N 
N 
 
 
 
!  
D. D 
D 
+ 
 
BT  
Dn 
12 
21 
N 
12 
N 
 
11 - 
D! N 1 
 
+ ! 
zz FD 
 
 
 
 
- 
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22 
D 
 
22 
D 
 
 
N 
N 
N 
 
 
 
 
= ! 
D. D 
D 
BT Dn 
12 
21 
- 
! B.dun+1dv +! BT N 
12 
N 
 
 
 
11 
 
! 
zz FD 
 
 
 
- 
 
 
22 
D 
 
 
22 
D 
 
 
Dn 
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= K ndun+1 +! BT 
 
! N 
12 
N 
- 
 
zz FD 
 
 
 
22 
D 
 
It is thus noted that the taking into account of the plane constraints intervenes on two levels: 
· in the matrix of tangent rigidity, by a corrective term (second term of the expression 
below) compared to the expression 2D of the tangent matrix: 
 
Dn Dn 
N 
12 
21  
K N 
BT 
= 
D 
FD 
11 - 
N 
B 
! 
. 
! 
 
D22  
· in the writing of the second member by a corrective term (second term of expression Ci 
below) compared to the expression 2D of the tensor of the constraints: 
 
Dn12 N  
R (one 1) = BT 
+ 
- 
 
FD 
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N 
zz  
! ! N 
 
D22 
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To implement the method De Borst for the unit of the incrémentaux behaviors, it is enough 
thus to calculate these corrective terms and to add them to the constraints and tangent matrices obtained 
by integration 2D (in fact axisymmetric or deformation planes) these behaviors. With this intention, it 
is necessary to store some additional information during iterations of Newton. One thus adds 
(in a transparent way for the user) 4 variables intern with the behavior used. 
The data-processing realization is as follows: 
1) during the iteration n+1 of the algorithm of Newton, one has in entry of the routine calculating it 
behavior: un+1, - 
- 
, and 4 following additional variables internal resulting 
N 
N 
D 
Dn 
preceding iteration: 1 scalar variable - 
zz 
21 
N 
! and 3 variables - 21, 
N 
+ N 
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D 
D 
N 
D 
22 
22 
22 
2) before carrying out the integration of the nonlinear behaviors (which will be made in 
N 
N 
N 
D 
D 
n+1 
N 
 
axisymmetric), one calculates  
zz 
= 
- 
+ 21 
N 
- 21 
N 1 
! 
! + , 
zz 
zz 
 
 
N 
N 
N 
D 
D 
D 
22 
22 
22 
3) One lets the routines of integration of the behavior calculate the constraints as well as 
! n+1 
tangent behavior D from  
as if modeling were axisymmetric or 
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n+1 
zz 
of plane deformation, 
4) one modifies at exit the second member and the tangent matrix (if the reactualization of 
 
Dn Dn  
N 
12 
21 
stamp tangent was asked) so that: K N 
BT 
= 
D11 - 
B 
! 
. 
! FD and 
 
 
N 
22 
D 
 
 
 
Dn 
 
R (one 1) = BT 
+ 
- 12 N 
 
! ! N 
FD, 
 
 
N 
zz 
D22 
 
 
N 
N 
D 
Dn 
5) one stores the new internal variables - 
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zz + 21 
N 
! and - 21. 
N 
N 
D 
D 
N 
D 
22 
22 
22 
To check convergence, one checks, always on the level of each point of integration of each 
finite element if n+1 <, where  
N 1 
+ 
=  
with provided by the user under the key word 
zz 
 
RESI_INTE_RELA. The default value is 10-6. 
At the time of testing the convergence of the total iterations of Newton (defined by RESI_GLOB_RELA 
and  
N +1 
RESI_GLOB_MAXI) one examines whether all the points of integration check the condition  
<. If 
zz 
 
it is not the case, one carries out additional iterations of Newton until complete checking 
of this condition. 
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5  
Aspects practise use 
To use this method, it is necessary to specify under the key word factor COMP_INCR the key word  
ALGO_C_PLAN: “DEBORST”. It is necessary also that modeling (specified in AFFE_MODELE) 
elements concerned with this behavior is “C_PLAN” or a model of the hull type to plasticity 
local: COQUE_3D, DKT, PIPE. 
In practice, that increases (automatically) by 4 the number of internal variables of the behavior. 
For converging well, it is advised to reactualize the tangent matrix if possible (, with all them 
iterations: REAC_ITER: 1, or all N iterations, with N small). 
This method thus allows a great flexibility in use compared to the behaviors: it is enough 
that a behavior is available in axisymetry or plane deformation so that it is too 
usable in plane constraints. 
As for all integrations of models of behaviors nonlinear, it is highly 
advised to give a small criterion of convergence (to leave the default value to 106.). 
6 Bibliography 
[1]  
R of Borst “the zero normal stress condition in plane stress and Shell elastoplasticity” 
Communications in applied numerical methods, Flight 7, 29-33 (1991) 
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Handbook of Reference  
R5.03 booklet: Nonlinear mechanics  
Document: R5.03.04  
 
 
 
 
Relations of behavior élasto-visco-plastic  
of Chaboche  
 
 
 
 
 
Summary:  
 
This document describes the integration of the model of behavior élasto-visco-plastic of J.L. 
Chaboche with  
nonlinear and isotropic kinematic work hardening. Two versions of the model are available in  
Code_Aster:  
 
· a version with one or two variables kinematics, introduced recently, takes into account all them  
variations of the coefficients with the temperature, and has an effect of work hardening on the 
variables  
tensorial of recall. This version also makes it possible to model (in an optional way) the character  
viscous of the material (viscosity of Norton). It is integrated by the solution of only one equation  
nonlinear scalar.  
This model is available in 3D, plane deformation, axisymetry. Modeling in plane constraint  
use a method of condensation static (of Borst).  
· a version with two variables kinematics which exists in Code_Aster since the version 2, which  
does not take into account all the variations of the coefficients compared to the temperature, but 
which was  
used for several studies, and for which one has sets of identified parameters. This  
version is integrated in environment PLASTI. It does not make it possible to model viscosity.  
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It does not take into account of effect of work hardening on the tensorial variable of recall.  
This model is available in 3D, plane strain, plane stress and axisymetry.  
One gives also elements to identify the coefficients of the relation of behavior.  
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1 Models élasto-visco-plastics of J.L. Chaboche  
available in Code_Aster  
 
For the structural analysis subjected to cyclic loadings, work hardenings isotropic (linear  
or not) and linear kinematics traditional [R5.03.02] and [R5.03.16] are not sufficient any more. In  
private individual, one cannot correctly describe the stabilized cycles obtained in experiments on  
a tensile specimen subjected to an alternated imposed deformation or a traction and compression.  
 
If one seeks to precisely describe the effects of a cyclic loading, it is desirable to adopt  
modelings more sophisticated (but easy to use) such as the model of Said Taheri, by  
example, cf [R5.03.05], or if the number of cycles is limited the model of Jean-Louis Chaboche  
who is introduced here.  
 
Actually, the model of J.L. Chaboche can be more or less sophisticated. Developed models  
in Code_Aster either a kinematic variable (VISC_CIN1_CHAB comprise) or two  
(VISC_CIN2_CHAB and CHABOCHE), and of isotropic work hardening.  
 
The choice to use two variables kinematics complicates certainly the model, but makes it possible to 
identify  
correctly uniaxial tests in a broader range of deformations [bib2], [bib7]. One  
certain number of indentifications of the parameters of this model were carried out mainly for  
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the stainless steels A316 and A304 ([bib7], [bib8]).  
 
The models comprise 8 parameters (a kinematic variable) or 10 (two variables  
kinematics), introduced into order DEFI_MATERIAU:  
 
CIN1_CHAB (CIN1_CHAB_FO)  
 
 
 
 
= _F (  
 
 
 
 
 
 
 
 
 
R_0 = R_0,  
 
 
 
 
 
 
 
 
 
R_I  
=  
R_I, (useless  
if  
B=0)  
 
 
 
 
 
 
 
 
 
B  
=  
 
B,  
(defect: 0.)  
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C_I = C_I,  
 
 
 
 
 
 
 
 
 
K  
=  
 
K,  
(defect: 1.)  
 
 
 
 
 
 
 
 
 
W  
=  
 
W,  
(defect: 0.)  
 
 
 
 
 
 
 
 
 
 
G_0  
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=  
G_0,  
 
 
 
 
 
 
 
 
 
A_I  
=  
A_I, (defect  
:  
0.)  
 
 
 
 
 
 
 
 
)  
 
CIN2_CHAB (CIN2_CHAB_FO)  
 
 
 
 
= _F (  
 
 
 
 
 
 
 
 
 
R_0 = R_0,  
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R_I  
=  
R_I, (useless  
if  
B=0)  
 
 
 
 
 
 
 
 
 
B  
=  
 
B,  
(defect: 0.)  
 
 
 
 
 
 
 
 
 
 
C1_I = C1_I,  
 
 
 
 
 
 
 
 
 
C2_I = C2_I,  
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K  
=  
 
K, (defect: 1.)  
 
 
 
 
 
 
 
 
 
W  
=  
 
W, (defect: 0.)  
 
 
 
 
 
 
 
 
 
 
G1_0 = G1_0,  
 
 
 
 
 
 
 
 
 
G2_0 = G2_0,  
 
 
 
 
 
 
 
 
 
A_I  
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=  
A_I  
,  
(defect  
:  
0.)  
 
 
 
 
 
 
 
 
)  
 
The 8 or 10 parameters are real constants. All these parameters can depend on  
temperature (key words CIN1_CHAB_FO or CIN2_CHAB_FO) and the awaited values are of type  
function.  
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If one wants to introduce in addition to viscosity (models VISC_CIN1_CHAB and  
VISC_CIN2_CHAB), it is also necessary to provide in order DEFI_MATERIAU, under the key word  
LEMAITRE (or LEMAITRE_FO) parameters NR and UN_SUR_K, which can depend on  
temperature.  
 
Parameter UN_SUR_M of key word LEMAITRE (respectively LEMAITRE_FO) must obligatorily  
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to be put at zero (respectively with the identically null function). In the absence of one of the key 
words  
LEMAITRE or LEMATIRE_FO, the behavior are supposed plastic.  
 
Model CHABOCHE is a model with two variables kinematics with isotropic work hardening, but  
without the effect of work hardening on the term of recall and without taking into account of the 
variation of C1 and C2  
with the temperature. The characteristics of work hardening are given by 9 constants, introduced  
in order DEFI_MATERIAU:  
 
CHABOCHE = _F  
(  
 
 
 
 
 
 
 
 
 
 
R_0  
=  
R_0,  
 
 
 
 
 
 
 
 
 
R_I  
=  
R_I,  
 
 
 
 
 
 
 
 
 
B = B,  
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K = K,  
 
 
 
 
 
 
 
 
 
W = W,  
 
 
 
 
 
 
 
 
 
 
A1  
=  
A1,  
 
 
 
 
 
 
 
 
 
 
A2  
=  
A2,  
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C1  
=  
C1,  
 
 
 
 
 
 
 
 
 
 
C2  
=  
C2,  
 
 
 
 
 
 
 
 
)  
 
In this case the characteristics do not depend any more a temperature since version 5, because these  
variations were badly taken into account by this model.  
 
The use of these laws of behavior is accessible in orders STAT_NON_LINE or  
DYNA_NON_LINE by key words VISC_CIN1_CHAB, VISC_CIN2_CHAB or CHABOCHE of 
COMP_INCR.  
 
In the continuation of this document, one describes models VISC_CIN1_CHAB precisely and  
VISC_CIN2_CHAB. One presents then the detail of his numerical integration in bond with  
construction of the coherent tangent matrix. One also briefly describes the integration of the model 
with  
two variables kinematics CHABOCHE. Lastly, one also gives some elements for  
identification of the characteristics of material.  
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2 Models  
VISC_CIN1_CHAB and VISC_CIN2_CHAB  
 
2.1  
Description of the models  
 
At any moment, the state of material is described by the deformation, the temperature T, the 
deformation  
plastic p, cumulated plastic deformation p and the tensor of recall X. Equations of state  
then define according to these variables of state the constraint = H Id +  
~ (broken up into  
parts hydrostatic and deviatoric), the isotropic share of work hardening R and the kinematic share X:  
 
H 1 
= 
() = 
(- HT) with HT = (réf 
tr 
K tr 
T-T 
) Id éq 2.1-1  
3 
~ = - HId = µ (~ 
 
- p 
2 
) éq 2.1-2  
R = R (p)  
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éq 2.1-3  
X = ( 
X p p 
) = X 
éq  
2.1-4  
1 (p 
p 
) + X2 (p p 
, 
, 
, ) 
where K, µ, and coefficients of ( 
X p) and R (p) are characteristics of the material which can  
to depend on the temperature. More precisely, they are respectively the modules of compressibility  
and of shearing, the thermal dilation coefficient, functions of isotropic work hardening and  
kinematics. As for T réf, it is about the temperature of reference, for which one considers  
thermal deformation as being null.  
 
Note:  
 
For model VISC_CIN1_CHAB one thus considers only the only tensorial variable X p  
1( ) 
X p = 0. This remains valid for all the continuation: one will describe the two models formally of  
2 ( ) 
the same way, model VISC_CIN1_CHAB resulting from VISC_CIN2_CHAB while supposing  
X p = 0.  
2 ( ) 
 
The evolution of the plastic deformation is controlled by a normal law of flow to a criterion of  
plasticity of von Mises:  
( 
3 ~ ~ 
F, R, X) = (~ - X1 - X2) - R (p) 
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with 
With 
= 
With: With  
éq  
2.1-5  
eq 
eq 
2 
~ 
3 
- X1 - X 
p 
 
& = & F 
= & 
2 
 
 
 
 
 
 
 
 
 
 
 
éq 2.1-6  
2 
(~ - X1 - X2) eq 
&p = & 
2 
= 
&p &p 
: 
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éq 2.1-7  
3 
As for the plastic multiplier & 
, it is obtained by the condition of coherence:  
 
if F<0 or &F < 0 & = 0 
 
 
 
 
 
 
 
 
 
éq 2.1-8  
if 
F 
 
= 0 and &F = 0 & 0 
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Note:  
 
The evolution of variables X and X is given by:  
1 
2 
2 
X = C p, 
1 
1( ) 
3 
1 
2 
X = C p, 
2 
2 ( ) 
3 
2 
 
 
 
 
 
 
 
 
éq 2.1-9  
p 
&  
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1 =  
& -  
1  
 
p p 
1( ) 
& 
p 
&  
 
2 
=  
& -  
2  
 
p p 
2 ( ) 
& 
 
The functions C (p) (p) and R (p) are defined, in accordance with [bib2] by:  
 
R (p) = R  
- 
+ (R  
0 - R) E LP 
C 
1 
1 
 
1 (p) = C 
1 (+ (K -) e-wp) 
C 
1 
1 
2 (p) = C 
2 (+ (K -) e-wp) 
 
0 
p =  
has 
- 
+ 1 - has 
E LP 
1( ) 
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1 ( 
( ) )  
 
0 
p =  
has 
- 
+ 1 - has 
E LP 
2 ( ) 
2( 
( ) ) 
 
The presence of viscosity can model in a simple way (cf Lemaitre and Chaboche [bib2]) in  
replacing the condition of coherence [éq 2.1-8] by:  
 
NR 
F  
& =  
 
 
 
 
 
 
 
 
 
 
éq 2.1-10  
K  
 
 
 
F left positive F (hooks of Macauley)  
K, NR characteristic of viscosity (Norton) of material  
 
Unchanged all the other equations of the model are left. It will be seen that such an introduction of  
viscosity involves only minor modifications of the implicit algorithm of integration of the law of  
behavior.  
 
 
Note:  
 
The definition of X and X in the form [éq 2.1-9]:  
1 
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2 
 
· makes it possible to keep a formulation which takes into account the variations of the parameters with  
temperature without introducing term in & 
T as in [bib.4], in the same way that it  
viscoplastic model of Chaboche. These terms necessary because their are not taken in  
account would lead to inaccurate results [bib4].  
 
· makes it possible to have a coherent writing with the thermodynamic expression of the potential  
plastic [bib2] (p.221).  
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Note:  
 
Significance of the functions C (p), (p), C (p), (p), R (p:  
1 
1 
2 
2 
) 
it is noted that the functions C (p), (p), C (p), (p), R (p intervening in the equations  
1 
1 
2 
2 
) 
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the preceding ones allow all the three to model various nonlinear effects of work hardening.  
The introduction of work hardening, either on the level of the kinematic part, by C (p), or on the level  
term of recall, by the function (p), does not have the same effect on the classification tests  
[bib2]. The use of a model with (p) makes it possible in particular to identify more easily of  
strong cyclic work hardenings. Several work of identification of the coefficients of the models of  
Chaboche were carried out besides on the basis of model with a work hardening represented by  
(p) ([bib5], [bib6]), in particular for stainless steel A316L.  
 
2.2  
Integration of relations VMIS_CIN1_CHAB and VMIS_CIN2_CHAB  
 
To numerically carry out the integration of the law of behavior, one carries out a discretization in  
time and one adopts a diagram of implicit, famous Euler adapted for relations of behavior  
elastoplastic. Henceforth, the following notations will be employed: Has, A and A 
represent  
respectively values of a quantity at the beginning and the end of the step of time considered thus that 
sound  
increment during the step. The problem is then the following: knowing the state at time T - like  
increments of deformation (resulting from the phase of prediction (cf Doc. R STAT_NON_LINE  
[R5.03.01])) and of temperature T, to determine the state of the variables intern at time T as well as  
constraints.  
 
One takes into account the variations of the characteristics compared to the temperature while noticing  
that:  
 
H 
K 
= 
H + K tr (- 
- 
HT)  
éq  
2.2-1  
K 
~ 
µ ~ 
= 
- 
2µ  
p 
E 
2µ p 
- 
+ 
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( ~ 
) ~ 
 
 
- = - 
 
µ 
 
éq  
2.2-2  
with  
~ 
µ 
E 
~- 
~ 
= - + 2  
µ 
µ 
 
Within sight of the equation [éq 2.2-1], one notes that the hydrostatic behavior is purely elastic  
if K is constant. Only the treatment of the deviatoric component is delicate.  
 
In the absence of viscous term, the relation of discretized coherence is:  
 
Elastic mode: F 0 and p = 0  
Plastic mode: F = 0 and p 0  
 
On the other hand, in the presence of viscosity, the condition of coherence is replaced by the equation  
[éq 2.1-10] which, discretized, is written:  
 
NR 
1 NR 
p 
 
F  
p 
 
= 
F = K 
 
 
T 
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In other words, while posing:  
 
1 NR 
~ 
p 
 
F = F - K 
 
 
T 
 
 
the viscoplastic increment of cumulated deformation is determined by:  
 
~ 
: 
 
rubber band 
 
Mode 
F 0 and p = 0 
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~ 
 
 
 
 
 
 
 
 
 
éq 2.2-3  
viscoplast 
 
Mode 
: 
 
ic 
F = 0 and p 0 
 
Finally, by adopting an implicit discretization, the only difference between the laws of behavior  
plastic and viscoplastic lies in the form of the function of load F: a term there is observed  
complementary in the event of viscosity. In fact, incremental plasticity seems the borderline case  
incremental viscoplasticity when K tends towards zero. This convergence was already described by  
J.L. Chaboche and G. Cailletaud in [bib3].  
 
In the continuation of this paragraph, one will thus detail the integration of the viscoplastic law. To find  
the case of the plastic behavior, it is enough to take K = 0 in the equations below (one  
recall that the user to place itself in this case must obligatorily remove key word LEMAITRE  
or LEMAITRE_FO of order DEFI_MATERIAU).  
 
~ 
~ 
2 
2 
2 
- 
- 
= E - C - - C - 
X 
X 
- 2µ p 
 
C  
C  
 
1 
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2 
1 
1 
2 
2 
- ( 1 1 + 2 2) 
3 
3 
3 
 
Equations of flow [éq 2.1-6] and [éq 2.1-7], once discretized, and the condition of coherence  
[éq 2.2-3] are written (by noticing that p =):  
 
2 
2 
2 
2 
~e - C - 
- 
p  
C 
µ 
C 
C 
1 
- 
2 
- 2 
- 
1 
- 
1 
2 
 
1 
2 2 
3 
p =  
3 
3 
3 
3 
p 
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éq 2.2-4  
2 
 
2 
2 
2 
2 
~e - C - 
- 
p 
C 
µ 
C 
C 
1 
- 
2 
- 2 
- 
1 
- 
1 
2 
 
1 
2 2 
 
 
 
3 
3 
3 
3 
 
 
eq 
~ 
~ 
F 0 p 0 F p = 0  
éq  
2.2-5  
 
The treatment of the condition of coherence (preceding equation) is traditional. One starts with one  
test elastic (p = 0) which is well the solution if the criterion of plasticity is not exceeded, it be-with 
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to say if:  
 
~ 
2 
2 
E - 
- 
-  
C 
- 
 
 
1( - 
p) 1 - C2 (- 
p) 
R 
0  
éq  
2.2-6  
3 
3 
2 - (p) < 
eq 
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In the contrary case, the solution is plastic (p > 0) and the condition of coherence is reduced to  
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~ 
F = 0. To solve it, it is shown that one can bring back oneself to a scalar problem by expressing p  
and 1,2 according to p. By gathering the equations of the problem resulting from the discretization  
implicit, the system of equations is obtained:  
 
1 NR 
 
2 
E 
- 
2 
- 
p 
2 
2 
~ 
 
 
- C 1 - C 2 - 2  
µ - C 1 - C 2 = R 
1 
2 
1 
2 
(p) 
p 
+ K 
 
 
éq 2.2-7  
 
3 
3 
3 
3 
eq 
T 
 
2 
E 
- 
2 
- 
p 
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2 
2 
~ 
- C 1 - C 2 - 2  
µ - C 1 - C 
1 
2 
1 
2 
p 
3 
2 
= 
p 
3 
3 
3 
3 
 
 
éq  
2.2-8  
1 NR 
2 
 
R (p) 
p 
+ K 
 
T 
 
= 
p -  
1  
 
p 
1 1  
 
éq  
2.2-9  
= 
p -  
2  
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p 
2 2  
 
In this writing, it should well be noted that p = p + p 
and = - + and that C, are  
I 
I 
I 
I 
I 
functions of p. By considering the three last equations, this linear system out of p and can  
I 
to be solved to express these quantities according to p. Indeed, it is equivalent to:  
 
 
1 NR  
p 
p  
3~e 
- 
- 
 
 
 
R (p) + 3  
µ p + K 
 
= p - 1 
C 1 - C22 - 1 
C 1 - C22  
 
éq  
2.2-10  
T 
 
 
 
2 
 
 
 
1+ p = p - 
- 
 
p 
1( 
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1 ) 
 
1 1  
éq  
2.2-11  
 
+  
p =  
p - 
- 
 
2 (1 
p 
2 ) 
 
2 2  
 
By calculating C11 and C2 2 and by replacing them in the expression of p one obtains one  
expression of p according to p only:  
 
 
C 
 
C 
p 
- p 
1  
C 
1 
1 
1  
 
p 
- 
 
 
1 =  
- 
M 
1 
 
= 
1 (p) 
- M1 (p) 
p 
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1 +  
p 
 
1 +  
p 
1 
1 
1 
1  
 
 
C 
 
C 
p 
- p 
2  
C 
2 
2 
2 
 
p 
- 
 
 
 
éq 2.2-12  
2 =  
- 
M 
2 
 
= 
2 (p) 
- M2 (p) 
p 
 
1 +  
p 
 
1 +  
p 
2 
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2 
2 
2  
 
C p 
with M 
I 
I (p) 
( ) 
= 1+i (p) p 
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By deferring this expression in the expression of p one finds:  
 
p 
1 
 
= 
3p~e - p ((C1 - M11p) - 
1 + (C2 - m2 p) - 
2 ) 
 
 
 
1 NR 
2 
2 
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R (p) + (3µ + M1 + m2) 
 
p 
 
 
 
 
 
p + K 
 
T 
 
 
 
 
 
 
what is simplified in:  
1 
3 
p 
p ~e 
= 
-  
 
 
éq  
2.2-13  
( )  
(pM - 
- 
1 + m2) 
2 
1 
2 
D p 
 
 
with:  
1 NR 
 
D (p) = R (p) + (3µ + M1 (p) + m2 (p) 
p 
p 
+ K 
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T 
 
 
It now only remains to replace p in the expressions of C  
 
1 
1 and C2 
2 for  
to express this term according to p by:  
 
M3 
~ E 
 
C 
1 
= 
p 
- 
- 
- 
1 
1 
-  
 
 
(pM + M 
1 1 
2 2 ) 
M  
p 
 
D 
1 1 
2 
1 
 
- 
 
M3 
~ E 
 
C 
2 
= 
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p 
- 
- 
- 
2 
2 
-  
 
 
(pM + M 
1 1 
2 2 ) 
M  
p 
 
D 
2 2 
2 
2 
 
- 
 
~ 
then to substitute the expression obtained thus that p according to p in the equation F = 0, and  
one obtains a scalar equation out of p to be solved, namely:  
 
~ 
1 NR 
F (p) E 2 
- 
2 
- 
p 
2 
2 
~ 
 
p  
= - C 1 - C 2 - 2 
1 
2 
 
µ - 
1 
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C 1 - C22 - R (p) - K 
 
= 0  
 
3 
3 
3 
3 
eq 
T  
 
what is simplified in:  
1 NR 
R (p) 
p  
+ K 
 
~ 
1 NR 
F (p) 
T  
 
2 
- 
2 
~ 
 
p  
= 
- 
E 
 
 
 
éq 2.2-14  
D (p) 
 
- M1 1 - m2 2 - R (p) - K 
 
= 0 
 
3 
3 
eq 
T  
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This scalar equation out of p is solved numerically, by a method of search for zero of  
function (method of secants which one briefly describes in appendix 2).  
 
Once determined p, one can calculate p using the equation [éq 2.2-13] then 1 and 2 with  
assistance of the equations [éq 2.2-11]. It any more but does not remain to calculate the tensor of the 
constraints, by  
equations [éq 2.2-1] and [éq 2.2-2], and to bring up to date the variables intern 1 and 2.  
 
Note:  
 
· an interesting borderline case (for the validation of this model) is presented by posing = 0. One  
I 
finds itself then exactly in the situation of linear kinematic work hardening (if  
R (p) = y, [R5.03.02]) or of mixed work hardening for R (p) unspecified (cf [R5.03.16]),  
· these models are also available in plane constraints, by a total method  
(static condensation due to R. of Borst) [R5.03.03].  
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2.3  
Calculation of tangent rigidity  
 
In order to allow a resolution of the total problem (equilibrium equations) by a method of  
Newton [R5.03.01], it is necessary to determine the coherent tangent matrix of the problem  
incremental.  
 
This matrix is composed classically of an elastic contribution and a plastic contribution:  
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E 
p 
 
= 
- 2 
 
 
µ 
 
 
éq  
2.3-1  
µ 
with E = + 2µ  
p, which gives again in particular ~e 
~ - 
~ 
= 
+ 2µ 
- 
 
µ 
 
One immediately deduces from it that in elastic mode (traditional or pseudo-discharge), the matrix  
tangent is reduced to the elastic matrix:  
 
 
E 
 
= 
 
 
 
 
 
 
 
 
 
 
éq 2.3-2  
 
For that, one once more adopts the convention of writing of the symmetrical tensors of order 2 pennies  
form vectors with 6 components. Thus, for a tensor a:  
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T 
= [axx ayy azz has 
2axy 
2axz 
2ayz]  
éq  
2.3-3  
 
If one introduces moreover the hydrostatic vector 1 and stamps it deviatoric projection P:  
 
1 =t [1 1 1 0 0] 
0  
 
 
 
 
 
 
 
 
 
éq 2.3-4  
1 
P = Id - 1 1  
 
 
 
 
 
 
 
 
 
 
éq 2.3-5  
3 
where is the tensorial product  
 
Then the matrix of coherent tangent rigidity is written for an elastic behavior:  
 
E 
 
= K 1 1 + 2µ P 
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éq 2.3-6  
 
On the other hand, in plastic mode, the variation of the plastic deformation is not null any more.  
 
~ 
One derives compared to E, knowing that one a:  
 
p 
p ~e 
p 
= 
= 2 µ  
 
P éq  
2.3-7  
 
~ . 
E 
 
~ . 
E 
 
S spaces symmetrical tensors  
P projector on the diverters  
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p 
To calculate ~, one uses the expression of p according to ~ 
E 
E and p:  
 
1 
3 
p = 
p ~ 
 
E -  
 
( )  
(pM - 
- 
1 + m2) 
2 
1 
2 
D p 
 
 
 
what is written in the form:  
 
p = ( 
With p) ~e + B1 (p) - 
- 
1 + B2 (p) 2  
 
Thus:  
 
p 
~ E 
With p 
B p 
B p 
= A p Id 
1 
2 
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~ 
+ 
 
+ 
 
+ 
 
 
E 
( ) 
( ) ( ) 
 
- 
( ) 
 
 
- 
~ E 
~ E 
1 
 
 
 
 
~e 
2 
 
( 
With p)  
( 
With p) ( 
With p) p 
Quantities of the type  
= 
 
~e is calculated using: ~e 
p ~ 
 
E 
 
p 
Finally, it any more but does not remain to calculate the variation of p:  
 
~e 
 
~ 
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One uses for that: F (~ 
p, E 
)= 0  
 
1 NR 
R (p) 
p  
+ K 
 
~ 
1 NR 
F (~ 
T  
E 
- 
 
p  
p, E) 
2 
2 
~ 
= 
- 
 
 
 
 
D (p) 
 
- M1 1 - m2 2 - R (p) - K 
 
= 0 
 
3 
3 
eq 
T  
 
~ 
~ 
~ 
p 
p 
 
F, p ( 
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F 
~ 
, 
~e 
p,) 
~ 
~ 
~ 
, 
p 
 
= - F~e p, 
 
 
= - 
éq  
2.3-8  
, ( 
E 
) E 
E ( 
E) 
 
~e 
 
~ 
 
F, p (~e 
p,) 
 
The detail of calculations is given in appendix 1.  
 
The initial tangent matrix, used by option RIGI_MECA_TANG is obtained by adopting it  
behavior of the preceding step (elastic or plastic, meant by internal variable being worth 0 or  
1) and while making tighten p 
towards zero in the preceding equations.  
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2.4  
Significance of the internal variables  
 
The internal variables of the two models at the points of Gauss (VELGA) are:  
 
· V1 = p: cumulated plastic deformation (positive or null)  
· V2 =: being worth 1 if the point of Gauss plasticized during the increment or 0 if not.  
 
The following internal variables are, for modeling 3D:  
 
· For model VISC_CIN1_CHAB  
-  
V3 = 1xx  
-  
V4 = 1yy  
-  
V5 = 1zz  
-  
V6 = 1xy  
-  
V7 = 1xz  
-  
V8 = 1yz  
· For model VISC_CIN2_CHAB  
-  
V3 = 1xx  
-  
V4 = 1yy  
-  
V5 = 1zz  
-  
V6 = 1xy  
-  
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V7 = 1xz  
-  
V8 = 1yz  
-  
V9 =  
 
2 xx 
-  
V10 =  
 
2 yy 
-  
V11 =  
 
2zz 
-  
V12 =  
 
2 xy 
-  
V13 =  
 
2 xz 
-  
V14 =  
 
2 yz 
 
For modelings C_PLAN, D_PLAN, and AXIS:  
 
-  
V7 = 0  
-  
V8 = 0  
-  
V13 = 0  
-  
V14 = 0  
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3  
Model with two variables kinematics: CHABOCHE  
 
3.1  
Description of the model  
 
This model comprises two tensorial variables which describe the kinematic share of work hardening:  
X = X1 + X2. The equations of the behavior are then:  
H 1 
= 
() = 
(- HT) with HT = (réf 
tr 
K tr 
T-T 
) Id éq 3.1-1  
3 
~ = - HId = µ (~ 
 
- p 
2 
) éq 3.1-2  
R = R (p)  
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éq 3.1-3  
X = X 
p 
p 
1 (p,) + X2 (p,)  
 
 
 
 
 
 
 
 
éq 3.1.4  
where K, µ, and the coefficients of the functions R (p), X1 (p) and X2 (p) are characteristics of  
material which can depend on the temperature. More precisely, they are respectively them  
modules of compressibility and shearing, the thermal dilation coefficient, functions  
of isotropic and kinematic work hardening. As for T réf, it is about the temperature of reference, for  
which one regards the thermal deformation as being null.  
 
The evolution of the internal variables is controlled by a normal law of flow to a criterion of  
plasticity:  
( 
3 ~ ~ 
F, R, X, X) = (~ - X - X) - R (p) 
with 
With 
= 
With: With 
1 
2 
1 
2 
éq  
3.1-5  
eq 
eq 
2 
~ 
p 
 
3 
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- X1 - X 
& = & F 
 
= 
& 
2 
 
 
 
 
 
 
 
 
 
 
éq 3.1-6  
2 
(~ - X1 - X2) eq 
&p = & 
2 
= 
&p: &p  
 
 
 
 
 
 
 
 
 
 
éq 3.1-7  
3 
As for the plastic multiplier & 
, it is obtained by the condition of coherence:  
 
if F<0 or &F < 0 & = 0 
if F 
 
= 0 and &F = 0 & 
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éq 3.1-8  
0 
 
The evolution of variables Xi is given in model CHABOCHE by:  
 
& 
2 
 
X = C  
has (p) & p 
- X 
I 
I 
I 
I &p, I 
, 
 
 
1 2  
3 
 
 
= 
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The functions (p) and R (p) are defined by:  
 
(p) ((K) E wp 
= + 
- 
- 
1 
1 
)  
 
R (p) = R 
- 
+ (R0 - R) E LP 
 
 
 
 
 
 
3.2  
Integration of the relation of behavior CHABOCHE  
 
As for the relations of behavior VISC_CIN1_CHAB and VISC_CIN2_CHAB, one adopts one  
diagram of implicit Euler. One takes into account the variations of the elastic characteristics of  
even way that previously [éq.2.1-1], [éq.2.1-2].  
 
One starts with an elastic test, while taking for stress field:  
~ E 
µ ~- 
~ 
= 
+ 2µ 
- 
 
µ 
who is well the solution of the problem if:  
 
~ 
2 
2 
E - C1 (- 
p) - 1 - C2 (- 
p) - 2 - R (p) < 0  
3 
3 
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In the contrary case, the solution is elastoplastic. It is then necessary to solve the system of equations 
not  
linear according to:  
µ 
 
~ 
~ 
-  
-  
1 - - 2µ 
p = 
- 
( - ) 0  
µ 
 
2 
X1 - 1 
C 1 
(p) p has 
+ C X 
1 
1 p = 0 
3 
 
2 
X2 - 2 
A.c. 2 (p) p 
+ C X 
2 
2 p = 0 
3 
(~ - X1 - X2) - R (p) = 0  
eq 
 
that one can write in a way more contracted in the following form:  
 
G (y 
) 
 
 
 
 
 
H 
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y 
 
X 
F L (y 
) 
( ) 
= 0 = 
 
with 
y 
 
 
1  
 
= 
 
I (y 
)  
X  
 
 
 
2  
J 
(y 
) 
 
p 
 
 
 
 
One solves this system by the method of Newton proposed in environment PLASTI, (described in  
detail in [R5.03.10]), is:  
 
Fl 
 
D (y 
L 
K) = - F (y 
K) 
y 
K 
 
y 
+1 = y 
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+ D 
K 
K 
(y 
K) 
 
While reiterating in K until convergence. This resolution takes place for each point of integration.  
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The resolution requires the calculation of Jacobien of the local system F L. His general expression is 
given  
hereafter; analytical calculations are not detailed in this document.  
 
 
G 
G 
G 
G  
 
 
 
X1 X2 p 
 
 
H 
H 
H 
H 
 
 
 
 
 
X1 X2 p 
 
J =  
I 
I 
I 

file:///Z|/process/refer/refer/p1710.htm (1 of 30)10/2/2006 2:53:47 PM



file:///Z|/process/refer/refer/p1710.htm

I  
 
 
 
 
X1 X2 p 
 
 
 
J 
J 
J 
J  
 
 
 
X1 X2 p 
 
 
 
 
 
3.3  
Operator of tangent behavior  
 
After resolution of the preceding discretized system, the solution obtained is such as  
the equation (F L (y 
) = ) 
0 are checked at the end of the increment. One seeks to evaluate the tangent operator in  
 
 
this point, i.e.  
 
.  
T +t 
 
For a small variation of F L, by regarding this time as variable and not  
parameter, the system remains with balance and one checks dF L = 0, i.e.:  
 
F L 
F L 
F L 
F L 
L 
 
+ 
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+ 
X1+ 
 
F 
X2 + 
 
 
= 0 
 
 
 
 
 
X1 
X2 
 
p 
p 
 
 
This system can be still written:  
 
 
H  
 
 
 
0 
F L 
 
 
(y 
) 
, with 
0  
 
= X 
X = 
 
y 
 
 
 
0  
 
0  
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This system of equations can be put in the form:  
 
K = H  
 
from where the required tangent operator:  
 
 
 
-1 
 
 
K H 
 
= 
 
t+t 
 
One is led to re-use the same matrix jacobienne J as previously to evaluate the operator  
tangent. The calculation of K-1 is carried out numerically by a method of decomposition of Gauss.  
Its expression is detailed in appendix 1.  
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3.4  
Significance of the internal variables  
 
The internal variables of the model at the points of Gauss (VARI_ELGA) are, for modeling 3D:  
 
· V1 = X1xx  
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· V2 = X1yy  
· V3 = X zz 
1  
· V4 = X1xy  
· V5 = X1xz  
· V6 = X1yz  
· V7 = X 2xx  
· V8 = X 2yy  
· V9 = X 2zz  
· V10 = X 2xy  
· V11 = X 2xz  
· V12 = X 2yz  
· V13 = p: cumulated plastic deformation (positive or null)  
 
For modelings D_PLAN, and AXIS,  
 
· V5 = 0  
· V6 = 0  
· V11 = 0  
· V12 = 0  
 
 
4  
Comparison of models VMIS_CIN2_CHAB and CHABOCHE  
 
The principal difference between models VISC_CIN2_CHAB and CHABOCHE relates to the evolution 
of  
variables kinematics.  
 
In case VISC_CIN2_CHAB, one a:  
 
& 
2 
2 
2 
 
X = (&C + C &) = 
&C + C (p) & p 
- I (p) X 
I 
I 
I 
I 
I 
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I 
I 
I 
I &p  
3 
 
3 
3 
 
 
In case CHABOCHE, one a:  
& 
2 
 
X = C  
has (p) & p 
- X 
I 
I 
I 
I &p, I 
, 
 
 
1 2  
3 
 
 
= 
These two models are not equivalent: in particular, variation of the coefficients with  
temperature is not well taken into account in model CHABOCHE.  
In the particular case where the coefficients C are constant, the two models are equivalent. For  
I 
that, it is necessary to choose:  
 
·  
 
0 
I (p) = 
I 
C what implies: I = I 
C, has = 1  
2 
·  
C (p) = C = a.c. 
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I 
I 
I I and W = 0, because of the additional term:  
&C 
3 I which allows  
to take into account the variation of Ci with the temperature and the plastic deformation  
cumulated p.  
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5  
Principle of the identification of the parameters of the model.  
 
In case the simplest (only one kinematic variable, 1 = cste, 1 
C = cste, R (p) = y) them  
coefficients of model 1, 1 
C can be identified on a simple tensile test uniaxial, or  
on a cyclic curve of work hardening.  
 
Indeed in the uniaxial case, the model is reduced in 1D to [bib2]:  
 
dX = C D p 
- X D p 
1 
1 
1 1 
, 
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= ±1  
- X1 = y 
 
that one can integrate (in monotonous loading) in the following way:  
 
C 
 
C  
X 
1 
 
=  
+ X 0 
1 
1 
1 -  
- -  
= ± 
 
 
 
( 
exp 
1 (p 
p 
0 ) , 
1 
1 
1 
 
= + X 
y 
1 
 
C 
whose asymptote of the traction diagram makes it possible to obtain 1 
by:  
1 
C 
 
C  
p X 
1 
1 
1  
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thus y + 
 
1 
 
1  
and whose slope in the beginning provides C (If X 0 
1 
1 = ) 
0 :  
p 0 X 
0 
0 
&1 C1 - y X 
1 1  
X1 = C1 - y X 
1 
 
1  
 
For a model has two variables kinematics, without isotropic work hardening, a traction diagram  
still allows to find these relations:  
 
 
 
C 
C  
p  
1 
2  
y +  
and the slope in the beginning is worth C + C  
 
+ 
1 
2 
1 
2  
 
 
But apart from these simple cases a numerical identification is necessary to obtain them  
parameters. One will be able to make this identification for example on tensile tests compression with  
imposed deformation.  
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Appendix 1 Stamps behavior tangent for the models  
VMIS_CIN1_CHAB and VMIS_CIN2_CHAB  
 
p 
To obtain the tangent behavior in the elastoplastic case, ~ should be calculated [éq 2.3-7].  
E 
One uses for that the expression of p according to ~ 
and p, which is written in the form:  
E 
 
p 
 
3 p ~ 
* 
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- 
= 
* 
 
2D (p) E + B1 (p) 1 + B2 (p) - 
2 
with  
B*i (p) 
M I (p) 
= - p 
 
 
D (p) 
C p 
M 
I 
I (p) 
( ) 
= 
 
1 + I (p) p 
 
1 NR 
 
D (p) = R (p) + (3µ + M1 (p) + m2 (p) 
p 
p 
+ K 
 
 
T 
 
 
The following definitions are pointed out:  
 
R (p) = R 
- 
+ (R0 - R) E LP 
C 
 
- wp 
I (p) = Ci (1 + (K -) 
1 E 
)  
0 
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- LP 
I (p) = I (has + (1 - has) E) 
 
thus:  
 
3 p  
 
p 
 
 
 
 
 
3 p 
2D (p) 
* 
* 
~e 
1 
B (p) 
- 
B2 (p) 
- 
= 
Id 
 
~e 
 
2D (p) + 
+ 
1 + 
2 
~e 
 
~e 
 
~e 
 
( 
With p) 
( 
With p) ( 
With p) p 
Quantities of the type  
= 
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~ 
 
E are calculated using: ~e 
p ~ 
 
E 
These various terms are expressed by:  
 
 
3 p 
 
 
 
2 ( 
D p) 
3 
1 
D (p) 
·  
= I (p) 
 
with I (p) = 
- 
p 
 
p 
2 
( 
D p) D2 (p) 
B* 
I (p) 
M I (p) 
·  
= - 
- 
. 
= 
 
p 
 
D (p) p Semi (p) I (p) Hi (p) 
 
p 
It remains to calculate:  
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~e 
~ 
~ 
F ~e p,  
p 
 
, ( 
E 
) 
One thus uses, following [éq 2.3-8]:  
= - 
~ 
 
E 
 
~ 
 
F, p (~e 
p,) 
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~ 
E 
E 
 
E 
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F ( 
1/ 
1/ 
p ~ 
, ) 
p 
p 
= S 
~ 
~ 
eq (p,) 
NR 
NR 
- R (p) - K 
 
= G (p,) - R (p) - K  
T 
 
T 
 
1 NR 
1 NR 
 
 
 
 
 
 
R (p) 
p 
M 
+ K 
I (p) R (p) 
p 
+ K 
 
 
 
 
 
T 
 
 
 
E 
- 
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- 
T 
 
2 
~ 
 
 
with S = A + B11 + B  
With 
2 2 
= 
= - 
 
D () 
B 
p 
I 
3 
D (p) 
1 NR 
p 
 
Then, by posing v 
R (p) = R (p) + K 
 
:  
T 
 
3 v 
R p S 
v 
R 
~ E 
- 
- 
~e 
WITH + B + B  
G ~e p, 
p 
 
 
, ( 
) 
( ) 
( 
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1 1 
2 2 ) 
2D (p) S 
DS 
= - 
= - 
eq 
= - 
eq 
~ 
E 
 
G 
E 
S 
S 
p (~ 
p,) 
3 
' 
3 
- R p 
2 
3 
, 
v () 
' 
: S, p - v 
R (p) 
' 
: S, p - v 
R (p) 
2 S 
2 
eq 
Seq 
~ 
3 
E 
- 
- 
1 
L (p). + L21 (p) 1 + L22 (p) 2 
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= - 2 
3 
L (p) 
2 
v 
R p 
With p 
with 
1 
L (p) 
( ) 
2 ( ) 
= 
= 
 
2 
D (p) * S 
S 
eq 
eq 
v 
R p 
1 
v 
R p 
1 
21 
L (p) 
( ) 
= D (p) 1B (p) 
L22 (p) 
( ) 
= 
B p 
Seq 
D (p) 2 () Seq 
1 1 
3 
- 
S 
~ E 
- 
- 
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K p NR 
3 
L (p) = 
: (A (p) 
' 
+ 1 
B (p) 
' 
1 + B2 (p) 2) - R (p) - 
 
 
2 Seq 
NT T  
p 
Finally, ~ is put in the form:  
E 
p 
3 p 
3 
= 
Id + 
I 
p 
S 
~e + I 
p 
has 
- 
- 
~ E 
~ 
+ I 
p 
has 
 
E 
1 
2 
 
 
2 ( 
D p) 
( ( ) 
( ) 
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( ) ) 
2 
1 
2 
+ (1 
Hs~e + 1 
Ha - 
1 
1 1 + Ha2 - 
2) -1 
 
+ (2 
Hs ~e + 2 
Ha - 
2 
1 1 + Ha2 - 
2) -2 
with:  
3 
L p 
1  
3 I p L 
p 
I 
21 
S (p) = - 
I (p) 
( ) 
. 
I 
p 
1 
= - 
2 
L3 (p) 
has () 
( ) ( ) 
2 
L3 (p) 
3 I p L 
p 
I 
22 
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a2 (p) 
( ) ( ) 
= - 2 L3 (p) 
3 H p. L p 
3 H p L 
p 
3 H p L 
p 
H1 
1 
1 
1 
1 
21 
1 
1 
22 
S (p) 
( ) ( ) 
= - 
H 
p 
1 
= - 
H 
p 
2 
= - 
 
2 
L3 (p) 
has () 
( ) ( ) 
2 
L3 (p) 
has () 
( ) ( ) 
2 
L3 (p) 
3 H p. L p 
3 H p L 
p 
3 H p L 
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p 
H2 
2 
1 
2 
2 
21 
2 
2 
22 
S (p) 
( ) ( ) 
= - 
H 
p 
1 
= - 
H 
p 
2 
= - 
2 
L 
L (p 
3 
) 
3 (p) 
has () 
( ) ( ) 
2 
L3 (p) 
has () 
( ) ( ) 
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Appendix 2 Resolution of the equation F (p) = 0  
 
It is a question of solving a nonlinear scalar equation by seeking the solution in a confidence interval.  
For that, one proposes to couple a method of secant with a control of the interval of research. That is 
to say  
the following equation to solve:  
 
F (X) = 0 
X [has, B] F (has) < 0 F (b) > 0  
 
 
 
 
éq A2-1  
 
The method of the secant consists in building a succession of points xn which converges towards the 
solution. It is  
defined by recurrence (linear approximation of the function by its cord):  
 
xn 
1 
1 
1 
1 
- xn- 
xn+ 
= xn- 
- F (xn-) 
 
 
 
 
 
éq A2-2  
F (xn) - F (xn-1) 
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In addition, if xn+1 were to leave the interval, then one replaces it by the terminal of the interval in 
question:  
 
if 
 
 
xn+1 < has 
then 
xn+1: = has 
 
 
 
 
 
 
 
 
éq A2-3  
if 
xn+ 
 
 
1 > B 
then 
xn+1: = B 
 
On the other hand, if X n+1 is in the interval running, then the interval is reactualized:  
 
if 
 
 
xn+1 [has, B] and F (xn+1) < 0 
then 
= xn+1 has 
 
 
 
éq A2-4  
if 
xn+1 [has, B] and 
1 
1 
 
 
F (xn+) > 0 
then B = xn+ 
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One considers to have converged when F is sufficiently close to 0 (tolerance to be informed). As for 
both  
first leader characters, one can choose the terminals of the interval, or, if one has an estimate of  
the solution, one can adopt this estimate and one of the terminals of the interval.  
 
Note:  
 
This method functions well if there is only one solution in the interval [has, B]. Without that being  
formally shown, one can note that F () 
0 > 0.  
One seeks then B such as F (b) < 0.  
~e 2 
- 
2  
-  
 
C  
1 1 - 
C2 
R - 
 
 
3 
3 
2  
- (p) 
eq 
One leaves for that B = 
µ 
 
3 
If F (b) is > 0, one multiplies B by 10 and one tests if F (b) > 0, and so on, until finding a value  
B such as F (b) < 0.  
One is sure that there is then at least a solution on [has, B].  
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Handbook of Reference 
R5.03 booklet: Nonlinear mechanics 
R5.03.05 document 
Viscoplastic relation of behavior of Taheri 
Summary 
One presents in this document the establishment of the relation of viscoplastic behavior of Taheri, 
available for the whole of the isoparametric elements (continuous medium 2D and 3D) except for 
plane constraints. After a presentation of the equations of evolution of this law, one describes the system 
obtained 
by implicit discretization; it is shown in particular that it always admits a solution. 
This model is well adapted to describe the response of the austenitic steels under cyclic requests, and 
in particular the phenomenon of progressive deformation. On the other hand, because of its complexity 
(two surfaces of 
charge, semi-discrete internal variable), it does not appear desirable to employ it for applications 
different (monotonous way of loading, for example). 
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1  
Description of the model 
The relation of behavior proposed by Taheri [bib5] makes it possible to describe the response of steels 
austenitic under cyclic requests: it is indeed well adapted to represent it 
phenomenon of progressive deformation. Before stating the equations themselves, one can 
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to specify that this model differs from traditional plasticity (criterion of von Mises with work hardening 
kinematics and isotropic) by two characteristics, sources of difficulties in the numerical formulation. 
On the one hand, the evolution of the dissipative variables rests on two criteria of load instead of one:  
first, traditional, conditions the appearance of plastic deformation, the second makes it possible to keep 
one 
trace “maximum” work hardening reached by material to account for the phenomenon of ratchet. 
In addition, satisfactorily to represent the progressive deformation, an internal variable 
semi-discrete was introduced. Constant when the behavior is dissipative, it evolves/moves only in 
the elastic mode of material. Of original appearance, this model does not rest any less on 
physical bases, always exposed in Taheri [bib5]. It is accessible, in a wide version  
viscoplastic (necessary to describe the behavior under high temperatures), by 
order STAT_NON_LINE under the key word RELATION: VISC_TAHERI. 
1.1 Behavior  
plastic 
A detailed description of the law of behavior is given in Taheri and Al [bib6]. 
Briefly, the state of material is described by its state of deformation, its temperature like 
four internal variables: 
 
tensor of total deflection 
T 
temperature 
p 
cumulated plastic deformation 
p 
tensor of plastic deformation 
p 
constraint of peak, memory of maximum work hardening 
p N 
plastic tensor deformation due to the last discharge (variable semi-discrete). 
The equations of state which express the thermodynamic forces associated according to the variables 
of state are written: 
= K Tr (- HT) + 2 µ (~ - p) 
HT 
Id 
= (T - Tréf) Id 
éq 1.1-1 
p 
 
has 
has 
- B p 1 
R 
R0 (2 

file:///Z|/process/refer/refer/p1710.htm (29 of 30)10/2/2006 2:53:47 PM



file:///Z|/process/refer/refer/p1710.htm

p p 
1 
éq 1.1-2 
3) With ( 
N)  
m E 
S 
= 
+ 
- 
 
 
 
 
 
D 
D 
eq 
 
 
 
 
= - 
- 
 
p 
B p 1 -  
X 
[p p p 
= 
S - 
 
 
 
S  
C 
N] 
C =  
C + C E 
1 
éq 1.1-3 
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~ 
has 
deviatoric part of a tensor has 
R 
isotropic variable of work hardening 
X 
kinematic variable of work hardening 
K, µ 
modules of compressibility and shearing 
 
thermal dilation coefficient 
T réf 
temperature of reference 
S 
constraint of ratchet 
B, R°, A, 
has m, C, C 
 
other characteristics of work hardening of material 
1 
Let us note that the moduli of elasticity and the thermal dilation coefficient are indicated by 
the user by the order DEFI_MATERIAU, key word ELAS, while characteristics of 
work hardening are fixed by key word TAHERI. These characteristics can depend on 
temperature, by employing key words ELAS_FO and TAHERI_FO. Also let us specify that one 
example of identification of the characteristics of work hardening on uniaxial situations is given 
in Geyer [bib2]. 
The evolution of the internal variables is defined by two criteria. The first controls plasticity 
traditional with work hardenings kinematics and isotropic compounds: 
~ 
0 
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X 
F = (~ - X) - R 0 
and 
S 
= 
- 
éq 1.1-4 
eq 
(~ - X) eq 
( ) 
1 
eq 
equivalent standard: has 
(a~: a~ 2 
eq = 32 
) 
F 
criterion of plasticity 
s0 
normal external with the criterion F 
This criterion is matched traditional condition of load/discharge: 
if F < 0 or s0 0 
p = 0 
(elasticity 
! : 
! 
) 
 
éq 1.1-5 
if 
F 
 
= 0 and 
s0 0 
p 0 such as 
> 
! 
! F = 0 
(plasticity 
! : 
) 
And the law of flow associated with the criterion F is: 
3 
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2 
! p = 
! 0 
p S 
and thus 
! p = 
! p 
éq 1.1-6 
2 
3 eq 
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The second criterion controls the evolution of the constraint of peak. Geometrically in the space of 
diverters of the constraints, it translates the fact that the first surface of load (F = 0), represented by 
a sphere of center X and ray R, remains inside a sphere of centre the origin and 
p. It is written simply: 
G = X + R 
p 
eq 
-  
0 
éq 1.1-7 
G criterion of maximum work hardening 
According to the preceding geometrical considerations, the evolution of the constraint of peak is: 
if 
 
 
G < 0 or 
! X 
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p 
eq +! 
R 0 
! = 0 
 
éq 1.1-8 
if 
G = 0 and 
! X 
p 
eq +! 
R > 0! 0 such as! G = 0 
 
 
It should be noticed that in the natural state of material, the constraint of peak is not null but is worth 
initial elastic limit, namely: 
p (init) 
ial 
= (1 - m) R0 
Until now, we did not evoke the evolution of the semi-discrete internal variable p N. In fact,  
it evolves/moves only in elastic mode. More exactly, this variable takes account of the state of 
plastic deformation during the last discharge; in other words, at the beginning of each discharge, this 
variable should take the value of the current plastic deformation instantaneously. However, for 
to preserve a continuous behavior, one regularizes the evolution of p N in the following way: 
In elastic mode: 
p 
p 
 
p 
p 
p 
if  
elasticity classi 
) 
N =  
! = 0 
( 
that 
! = ! 
N 
(N -)  
éq 1.1-9 
if p 
p 
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(pseudo - déchar) 
N  
! 0 tq! F = 0 
Ge 
In plastic mode: 
! pn = 0 
The behavior is thus completely given. Before passing to the introduction of viscosity, 
the observation of two surfaces of load calls an important remark. One could think that 
surface G = 0 is actually activated only in plastic mode. In practice, it of it is nothing. One can 
for example to quote the case of a thermal loading: a cooling involves (generally) one 
dilation of the surface of load F = 0, so that the constraint of peak is brought to evolve/move for 
to preserve G 0, and this same in elastic mode. 
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1.2  
Taking into account of viscosity 
To model the behavior of the stainless steels under cyclic loading when 
temperature is about 550°C, it is not more possible to neglect the terms of creep. To return 
count these effects of viscosity while preserving the properties of the preceding model, a method 
simple consists in making viscous the evolution of the plastic deformation. In other words, viscosity 
intervenes only in plastic mode: no direct influence on the semi-discrete internal variable nor on 
the surface of load G = 0. For that, while following Lemaitre and Chaboche [bib3], one replaces 
condition of coherence [éq 1.1-5] by: 
NR 
 
F 
 
! p =  
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éq 1.2-1 
K p1 M  
F 
positive part of F (hooks of Macauley) 
K, NR, M 
characteristics of viscosity of material 
The characteristics of viscosity of material are indicated in order DEFI_MATERIAU, 
either by key word LEMAITRE if they do not depend on the temperature, or by the key word 
LEMAITRE_FO in the contrary case. In the absence of one of these key words, the behavior is 
supposed plastic. 
Unchanged all the other equations of the model are left. It will be seen that such an introduction of 
viscosity involves only minor modifications of the implicit algorithm of integration of the law of 
behavior. 
1.3  
Description of the internal variables calculated by Code_Aster 
The internal variables calculated by Code_Aster are 9. They are arranged in 
the following order: 
1 
p 
cumulated plastic deformation 
2 
p 
constraint of peak 
3 to 8 
p N 
plastic tensor of deformation due to the last discharge 
(arranged in order xx, yy, zz, xy, xz, yz) 
9 
 
loadmeter/discharge (cf [§2.3]) 
0 elastic discharge 
1 traditional plastic load 
2 plastic load on two surfaces 
3 pseudo-discharge 
As for the tensor of the viscoplastic deformations, it is not arranged among the internal variables but 
can be calculated in postprocessing via the order CALC_ELEM, options 
“EPSP_ELGA” or “EPSP_ELNO”, (cf [U4.61.02]). 
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2  
Numerical formulation of the relation of behavior 
In order to be able to treat within the same framework plasticity and viscoplasticity, one chooses to 
proceed to one 
implicit discretization of the relations of behavior, (cf [R5-03-02]). Let us note moreover that one 
explicit procedure of integration is delicate for two reasons: on the one hand, treatment of the variable 
semi-discrete is necessarily implicit and can lead to numerical oscillations (one 
pseudo-discharge, therefore one solves F = 0, and of the blow, F can be (very weak but) higher than zero, 
from where load with the step following instead of continuing the discharge), and in addition, the 
equation [éq 1.1-2] is not 
not derivable when p = p N. 
2.1  
Implicit discretization of the equations of behavior 
Henceforth, one adopts the convention of following notation. If U indicates a quantity, then: 
U 
quantity U at the beginning of the step of time 
U increment of the quantity U during the step of time 
U 
quantity U at the end of the step of time (not of exhibitor +) 
Let us start by introducing the elastic constraint, i.e. the constraint in the absence of increment 
of plastic deformation. One can notice besides that only the term deviatoric cheek a role in 
the nonlinear part of the behavior: 
E = 
(- HT) + µ (~-p- 
K tr 
2 
) and ~=~e -2µ p 
Id 
éq 2.1-1 
"$# 
$ $% 
$ 
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~ E 
By taking account of the equations of state [éq 1.1-1] and [éq 1.1-3] and of the law of flow [éq 1.1-6], 
one a: 
déf 
~ 
~ 
- 
3 
S 
X 
E 
 
C (p 
p p 
0 
= 
- 
= 
- 
S  
- N) - (2µ + CS) p 
S 
éq 2.1-2 
2 
By noting that s° is not other than S normalized, one deduces some immediately: 
 
3 
~ 
p - 
S + (2 µ + C S) p 
s0 
E 
 
C 
 
-  
p 
 
éq 2.1-3 
 
 
2 
 
 

file:///Z|/process/refer/refer/p1720.htm (8 of 25)10/2/2006 2:53:48 PM



file:///Z|/process/refer/refer/p1720.htm

= 
- (S 
p 
eq 
N) 
"$$$ # 
$ 
% 
$$$$ 
 
Consequently, S is entirely determined by: 
E 
0 
0 
S 
3 
S = S S 
S = 
S 
= 
with 
and 
- 
2 µ 
 
éq 2.1-4 
E 
eq 
eq 
(+ C S) p 
eq 
S 
2 
eq 
Finally, the functions of load are: 
has 
 
has 
0 
p - 
p 
3 
 
F = S - D R + (2 
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0 
S 
3) With  
- N + 
p 
eq 
 
 
 
éq 2.1-5 
2 
 
 
 
eq 
 
 
 
has 
p 
3 
 
has 
p 
0 
0 
2 
p - 
3 
 
G C S 
p 
 
 
S p 
 
S 
D 
N 
R 
( 
 
3) With  
p 
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p 0 
p 
= 
- 
+ 
N 
S 
-  
éq 2.1-6 
 
 
2 
 
+ 
+ 
- 
+ 
 
 
 
2 
 
 
eq 
 
eq 
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7/16 
2.2  
Taking into account of the viscous terms 
In the absence of viscous terms, the relation of discretized coherence is: 
Elastic mode: 
F 0 and 
p 
= 0 
éq 2.2-1 
Plastic mode: 
F = 0 and 
p 
0 
On the other hand, in the presence of viscosity, the condition of coherence is replaced by the equation 
[éq 1.2-1] which, discretized, is written: 
1 
 
NR 
p 
 
F 
 
1 M p 
 
 
 
F 
= K p 
NR 
= 
éq 2.2-2 
T 
K p1 M  
 
 
 
T  
In other words, while posing: 
1 
~ 
1 M 
p 
 
F = F - 
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K p 
NR 
 
 
 
éq 2.2-3 
T 
 
the viscoplastic increment of cumulated deformation is determined by: 
~ 
Elastic mode: 
F 0 and 
p 
= 0 
~ 
éq 2.2-4 
Viscoplastic mode: 
F = 0 and 
p 
0 
Finally, by adopting an implicit discretization, the only difference between the laws of behavior 
plastic and viscoplastic lies in the form of the function of load F: a term there is observed 
complementary in the event of viscosity. In fact, incremental plasticity seems the borderline case 
(without associated numerical difficulty) of incremental viscoplasticity when viscosity K tends towards 
zero. Let us note that this remark was already mentioned by Chaboche and Al [bib1]. 
2.3  
Discretization of the conditions of coherence 
Before discretizing the conditions of coherence and describing the various modes of behavior 
possible, a remark is essential as for the treatment of the semi-discrete variable. Like  
only intervenes “to control” pn, one can always bring back itself during a step of time to: 
p 
p - 
p - 
N 
= N + (1 -)  
0 1 
éq 2.3-1 
The value of is then fixed by the conditions of coherence, which translates the equation of evolution 
[éq 1.1-9] on the continuous level. Such a parameter setting with each step of time makes it possible to 
be freed from 
storage of, in condition well-sure of preserving the values of pn. 
After this opening remark, one can be interested in the conditions of coherence. For the criterion G 
who controls the evolution of the constraint of peak, the discretized form of the condition of coherence 
is: 
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G (, p p,) 0 
p 0 
p G (, p p 
 
 
 
,) = 0 
éq 2.3-2 
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The condition of coherence relating to F is more delicate insofar as it controls the evolution 
plastic deformation in plastic mode of load and evolution of in mode of discharge. 
Once discretized, she is written: 
In plastic mode of load (=) 
1 : 
F (, p p, =) 1 = 0 
p 0 
p F (, p p 
 
, =) 1 = 0 
éq 2.3-3 
In mode of discharge (p = 0): 
F (p, 0 p 
,) 0 
0 1  
F (p, 0 p 
= 
= 
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= 
,) = 0 
éq 2.3-4 
To be able to select the mode of behavior of material, and thus equations to be solved, 
first question is: 
Are we in plastic situation or rubber band? 
In fact, there is a solution in elastic mode (pseudo-discharge > 0 or traditional elasticity 
= 0) if one can find an increment of constraint of peak such as: 
Incremental condition of discharge (scalar equation out of p): 
F (p =, 0 p 
, =) 1 0 
éq 2.3-5 
G (p =, 0 p 
, =) 1 0 
p 
0 
p 
G (p =, 0 p 
, =) 1= 0 
In the event of plastic load, i.e. when there is not p satisfactory [éq 2.3-5], one then has with 
to solve the nonlinear system out of p and p following: 
Plastic mode (nonlinear system out of p and p): 
F (, p p 
, =) 1 = 0 
p 0 
éq 2.3-6 
G (, p p 
, =) 1 0 
p 
0 
p 
G (, p p 
, =) 1= 0 
On the other hand, in elastic situation, two choices are still possible: pseudo-discharge (> 0) or 
traditional elasticity (= 0). The second case being more favorable, one starts by examining whether it is 
not 
not realizable, i.e. if there is an increment of constraint of peak such as: 
Incremental condition of traditional elastic mode (scalar equation out of p): 
F (p =, 0 p 
, = 0) 0 
éq 2.3-7 
G (p =, 0 p 
, = 0) 0 
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p 
0 
p 
G (p =, 0 p 
, = 0) = 0 
Lastly, if it were to be a question of a discharge pseudo-rubber band, it remains to solve the nonlinear 
system in 
and p following: 
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Discharge pseudo-rubber band (nonlinear system in and p): 
F (p =, 0 p 
,) = 0 
0 1 
éq 2.3-8 
G (p =, 0 p 
,) 0 
p 
0 
p 
G (p =, 0 p 
,) = 0 
Let us note as of now that nonlinear systems [éq 2.3-6] and [éq 2.3-8] can be reduced to 
solution of a simple scalar equation if p = 0 makes it possible to obtain a solution. 
One can summarize the algorithm of choice of the equations to be solved by the decision tree below. 
Charge/discharge 
(2.3-5) 
Plastic resolution 
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Elasticity 
(2.3-6) 
traditional/pseudo 
(2.3-7) 
Resolution 
Resolution 
traditional elasticity 
pseudo-discharge 
(2.3-8) 
Appear 2.3-Error! Argument of unknown switch. : Decision tree to choose the mode of 
behavior 
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2.4  
Framing of the solutions 
With the reading of the preceding paragraph, one could note the need for solving (numerically) one 
certain number of scalar equations or nonlinear systems. For that, it is always  
interesting to have an interval on which to seek the solution. On the one hand, a framing of 
solution shows its existence (what strongly reinforces the chances of success of an algorithm of 
resolution!), and in addition, it allows a suitable digital processing, therefore surer. 
Concerning p, one undervaluing is of course 0. In addition, the constraint of ratchet S represents 
a limit beyond which the model does not have any more a smell. In fact, with the examination of 
constant materials 
obtained by identification, cf Taheri and Al [bib6], G becomes indeed negative when p = S if 
the difference between the plastic deformation and the plastic deformation due to the last discharge too 
is not 
important (a few %): 
G (, p p 
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= , 
S) = (C 
p 
p 
+ C1) (- N) 
S 
eq 
" # 
$ % 
$ 
13 
"$ # 
$ $ % 
$ 
3% 
 
 
éq 2.4-1 
0 
 
+ ( 
R 
A has 
has 
1 - m)  
+ (2 
p p 
1 
0 
3 ) 
(- N) -  
"#% 
S 
S 
eq 
 
 
0,75 
& 
 
"#% " # 
$ 
% 
$ 
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20% 
0,5 
0,7 
 
One can also seek one raising for p. By examining the expression of F: 
F (, p p 
,) S 
- D R0 
eq 
 
3 
 
0 
eq - 
(2 µ + CS) p - D R 
éq 2.4-2 
2 
 
3 
 
- (2 µ + C S 
- 
0 
) p - 
(D 
max 
p) R 
2 
One deduces one from them raising for p, such as F (, p p 
,) 0 : 
 
0 
max (p 
)- ( 
D p 
p 
,) R 
p  
3 
éq 2.4-3 
(2 µ + C S 
) 
2 
~e - 
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- 
p - 
p 
 
(CP p 
, ) 
p 
 
-  
 
N 
E 
p 
 
(S 
) 
smax () 
eq 
= max  
éq 2.4-4 
~ 
E - 
p - 
C 
p  
 
 
 
(S 
p 
-  
N) eq 
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In particular, one can give one raising (coarse) p independent of p: 
max 
 
0 
max - (1 - m) R 
pmax = 3 
éq 2.4-5 
(2 µ + C S 
) 
2 
 
p - 
p 
 
- 
- p 
 
 
N 
E max 
E 
[S 
] 
S 
eq 
max = eq + (C1 + C) max [ 
éq 2.4-6 
p - 
S  
- S pn 
 
] eq 
One can then notice that the systems [éq 2.3-6] and [éq 2.3-8] always admit a solution. In 
effect, if for each system, one writes p respectively () 
p 
p and 
() solutions of 
G = 0, then one a: 
· Nonlinear Système of plastic load: 
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F (p =, p 
0 (p = 0), =) 
1 0 and F (p, p 
max (pmax), =) 
1 0 éq 2.4-7 
· Nonlinear Système of pseudo-discharge: 
F (p, 
p 
= 0 ( = ) 
1 , = ) 
1 0 
and 
F (p =, p 
 
 
 
0 (= 0), = 0) 0 éq 2.4-8  
3  
Methods of numerical resolution 
The resolution of the incremental equations confronts us either with a nonlinear scalar equation, or 
with a nonlinear system with two unknown factors. The numerical methods below are exposed 
employees. One also examines the calculation of the tangent matrix, possibly used by 
the total algorithm of STAT_NON_LINE, (cf [R5.03.01]). 
3.1  
Scalar equation: method of secants 
It is a question of solving a nonlinear scalar equation by seeking the solution in an interval of 
confidence. For that, one proposes to couple a method of secant with a control of 
the interval of research. That is to say the following equation to solve: 
F (X) = 0 
X [ 
, 
B] F has (has) < 0 F (b) > 0 
éq 3.1-1 
The method of the secant consists in building a succession of points X N which converges towards the 
solution. 
It is defined by recurrence (linear approximation of the function by its cord): 
N 
n-1 
n+1 
n-1 
N 1 
X - X 
X 
= X 
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- F (X -) 
éq 3.1-2 
F (xn) - F (xn-1) 
Handbook of Reference 
R5.03 booklet: Nonlinear mechanics 
HI-74/97/019/A 

Code_Aster ® 
Version 
4.0 
Titrate:  
Viscoplastic relation of behavior of Taheri 
Date:  
08/09/97 
Author (S): 
E. LORENTZ 
Key: 
R5.03.05-A 
Page: 
12/16 
In addition, if X n+1 were to leave the interval, then one replaces it by the terminal of the interval in 
question: 
if 
 
X n+1 < has 
then 
X n+1: = has 
 
éq 3.1-3 
if 
X n+ 
 
1 > B 
then 
X n+1: = B 
On the other hand, if X n+1 is in the interval running, then the interval is reactualized: 
if 
 
X n+ 
 
1 
[ 
has, B] and F (xn+1) < 0 
then 
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a:= X n+1 
 
éq 3.1-4 
if 
X n+1 [ 
has, B] and 
1 
1 
 
 
F (xn+) > 0 
then 
b:= X n+ 
One considers to have converged when F is sufficiently close to 0 (tolerance to be informed). As 
at the first two leader characters, one can choose the terminals of the interval, or, if one lays out 
of an estimate of the solution, one can adopt this estimate and one of the terminals of the interval. 
3.2  
Nonlinear systems: method of Newton and linear research 
One presents here a method of Newton which one associated a linear technique of research and 
a control of the direction of descent not to leave the field of research (terminals on 
unknown factors). 
That is to say the following nonlinear system: 
F (X, y) = 0 
xmin X xmax 
 
with 
 
éq 3.2-1 
G 
(X, y) = 0 
y 
min y ymax 
If (X, y) is a point of the field of research, then one builds a succession of points (xn yn 
, 
) which 
converge towards a solution (or at least, it is hoped for) by the following process. 
· Détermination of the direction of descent 
A direction of descent (X, y) is given by the resolution of the linear system 2 X 2: 
Fn Fn X 
N 
, X 
, y 
 
F  
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éq 3.2-2 
Gn 
Gn y = - 
N 
, X 
, y  
G 
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· Correction of the direction of descent 
The direction of descent (X, y) is corrected so that the points considered are 
in the field of research (with max the maximum length which one is authorized to describe it 
length of the direction of descent): 
 
xmin - X 
xmax - X 
if X +  
X 
max < X 
X 
min 
:= 
if X +  
X 
max > X 
X 
max 
:= 
 
 
max 
 
 
max 
y 
éq 3.2-3 
min - y 
ymax - y 
if 
y +  
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y 
max < y 
y 
min 
:= 
so y +  
y 
max > y 
y 
max 
:= 
 
 
max 
max 
· Recherche  
linear 
It any more but does not remain to minimize the quantity E = (F2 + G2)/2 in the direction of descent. 
Let us note that the standard E that one minimizes thus is a measurement of the error made in 
resolution of the system: it is null when (X, y) is solution of the system [éq 3.2-1]. For 
to minimize E, one simply will seek to cancel his derivative, i.e. to solve 
the scalar equation: 
[E (X + X, y + y)] = 0 and 0  
éq 3.2-4 
 
max 
"$$$ # 
$ $$$ % 
$ 
(FF +GG 
, X 
, X) X + (F F +G G 
, y 
, y) y 
· Critère of convergence 
One considers to have converged when the error E is lower than a prescribed size. By 
elsewhere, if the standard of the direction of descent becomes too weak (another size with 
to inform), one can think that the algorithm does not manage to converge. 
3.3 Criteria  
of stop 
Until now, values of stop and iteration counts maximum of the methods of resolution 
the preceding ones were not specified. Two cases should be distinguished. 
· When one seeks to check the conditions of coherence (scalar equation or system not 
linear according to the situation), one awaits precise results, whose relative tolerance is 
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fixed by the user in order STAT_NON_LINE under key word RESI_INTE_RELA, 
(cf [U4.32.01]). According to whether one seeks to solve F =, 
0 G = 0 or simultaneously 
F = G = 0, the criterion of stop is expressed respectively: 
F 
G 
F2 G2 
1 
 
or 
 
+ 
 
or 
 
R0 
R0 
R0 
2 
R0 limit elastic initial, provided by the user, cf [§ 1.1]. 
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In addition, the user always specifies a maximum iteration count in the order 
STAT_NON_LINE under key word ITER_INTE_MAXI, (cf [U4.32.01]). 
· When iterations of linear research are carried out, one seeks to obtain a convergence 
faster (or at least sourer). One should not therefore devoting an excessive time to it. 
This is why one fixed once for a a whole iteration count maximum equal to 3, one 
limit maximum max equal to 2 and one criterion of relative stop of 1%: 
[E (X + X, y + y)] 
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- 
 
10 2 
[E (X + X, y + y)] 
 
 
 
=0 
3.4 Stamp  
tangent  
In the optics of a resolution of the equilibrium equations (total) by a method of Newton, it is 
essential to determine the consistent matrix of the tangent behavior, (cf Simo and Al [bib4]). 
This matrix is composed classically of an elastic contribution and a plastic contribution: 
 
E 
p 
= 
- 2 µ  
éq 3.4-1 
 
 
 
One immediately deduces from it that in elastic mode (traditional or pseudo-discharge), the matrix 
tangent is reduced to the elastic matrix: 
Elastic mode: 
 
E 
= 
éq 3.4-2 
 
 
On the other hand, in plastic mode, the variation of the plastic deformation is not null any more. Rules 
of made up derivation allow to obtain: 
p 
0 
3  
p 
3  
p 
p 
3 
 
0 
 
S  
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0 
 
 
0 
0 
= 
S 
 
+ p 
 
 
S 
Id 
S 
S éq 3.4-3 
 
= 
 
+ 
- 
 
~e 
2  
~e 
~e  
2  
~e  
 
2 
 
 
 
eq 
 
 
tensorial product 
~ 
One can note that one preferred to derive compared to E, knowing that one a: 
p 
p ~e 
p 
S S 
= 
= 2 µ P 
with 
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P 
éq 3.4-4 
 
~ . 
E 
 
~ . 
: 
E 
' ~ 
S spaces symmetrical tensors 
P projector on the diverters 
Finally, it does not remain any more that to calculate the variation of p. For that, it is necessary to 
distinguish if it is about one 
traditional mode of plasticity (p = 0) or of plasticity on two surfaces. As follows: 
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Traditional plasticity: F (, ~ 
p E) = 0 
F E, ~ E 
E 
E 
E 
p 
p  
F 
,~ 
 
, p (, ~ 
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p) p 
 
= - F E p  
 
 
 
= - 
éq 3.4-5 
,~ 
( , ~ ) ~ 
( ) 
~ 
E 
F 
E 
, p (, ~ 
p) 
Plasticity on two surfaces: F (, p, ~e) 0 and G (, p 
 
, ~ 
p 
p 
E 
= 
) = 0 
F p 
F 
, 
,~ 
E 
F 
F p p 
F 
G 
E 
p 
G 
, p 
E 
, 
 
,~  
 
E 
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p 
, 
,~ 
 
 
 
 
 
 
 
 
= 
G 
G 
 
p = 
- 
éq 3.4-6 
E 
p 
G 
. ~ 
~ 
, p 
 
 
E 
F 
F 
 
,  
 
 
,~  
 
, p 
 
, p 
 
G 
G 
, p 
, p 
 
An attentive examination of the expressions [éq 2.1-5] and [éq 2.1-6] makes it possible to note that the 
variations of 
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F 
~ 
and G compared to E are not necessarily colinéaires with S °. By taking account of 
[éq 3.4-3], one from of deduces whereas the tangent matrix is in general not symmetrical in mode 
plastic. Rather than to impose the use of a nonsymmetrical solvor, much more expensive in time 
calculation, one prefers to symmetrize this matrix. 
3.5 Constraints  
plane 
The treatment of the plane constraints adds a nonlinear equation to solve, coupled with 
systems [éq 2.3-6] and [éq 2.3-8], (cf [R5-03-02]). In front of this considerable difficulty and the absence 
of expressed need, one preferred not to make it possible to force a state of plane stresses with 
level of the law of behavior. In other words, modeling C_PLAN is not available for  
law of behavior VISC_TAHERI. 
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Model of Rousselier in great deformations  
 
 
 
 
Summary  
 
One presents here the model of Rousselier which makes it possible to describe the first stages of the 
plastic growth  
cavities in a steel. The relation of behavior is elastoplastic with isotropic work hardening, allows  
the changes of plastic volume and is written in great deformations. To describe the large ones  
deformations, one uses the theory suggested by Simo and Miehe. The original formulation of Simo 
and Miehe is  
modified so, on the one hand, facilitating the numerical integration of the law of behavior and, on the 
other hand, of  
to replace the theory of Simo and Mihe within the variational framework of generalized standard 
materials.  
This model is available in order STAT_NON_LINE via the key word RELATION:  
“ROUSSELIER” or “ROUSSELIER_FO” under the key word factor COMP_INCR and with the key 
word  
DEFORMATION: “SIMO_MIEHE”.  
This model is established for three-dimensional modelings (3D), axisymmetric (Axis) and in 
deformations  
plane (D_PLAN).  
 
One presents the writing and the digital processing of this model.  
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1 Introduction  
 
The mechanisms at the origin of the ductile rupture of steels are associated the development of  
cavities within material. Three phases are generally distinguished:  
 
· germination  
: it is about the initiation of the cavities, in sites which correspond  
preferentially with the defects of material,  
· growth: it is the phase which corresponds to the development itself of the cavities,  
controlled primarily by the plastic flow of the metal matrix which surrounds these  
cavities,  
· coalescence: it is the phase which corresponds to the interaction of the cavities between them to 
create  
macroscopic cracks.  
 
In what follows, we treat only the phases of growth and coalescence.  
 
The model of Rousselier [bib1] presented here is based on microstructural assumptions which  
introduce a microstructure made up of a cavity and a plastic rigid matrix thus isochoric.  
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In this case, porosity F, definite like the relationship between the volume of the cavity C 
V and volume  
total V of representative elementary volume, is directly connected to the macroscopic deformation  
by:  
1 - F 
V C 
J = det F 
0 
= 
with F = 
 
f& = (1 - F) tr D  
éq  
1-1  
1 - F 
V 
where f0 indicates initial porosity, F the tensor gradient of the transformation, J the variation of volume  
and D the rate of deformation.  
To build the law of growth of the cavities, Rousselier takes as a starting point a phenomenologic 
analysis  
who leads it to the following ingredients:  
 
 
· great deformations figure,  
· irreversible changes of volume,  
· isotropic work hardening.  
 
These considerations leads it to write the criterion of plasticity F in the following form:  
( 
 
F, R) 
H 
=eq + D F exp 
1 
- R (p) - 
 
 
 
 
y  
éq  
1-2  
1  
where is the constraint of Kirchhoff, R isotropic work hardening function of the plastic deformation  
cumulated p and 1, D and y of the parameters of material. The presence in the criterion of plasticity of  
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hydrostatic constraint H authorizes the changes of plastic volume. One also notices  
that this model does not comprise a specific variable of damage because only information  
microstructural reserve is porosity, directly related to the macroscopic deformation by  
the equation [éq 1-1].  
 
As for the treatment of the great deformations, one adopts the theory of Simo and Miehe but in one  
slightly modified formulation. The approximations brought make it possible to make easier  
the numerical integration of the law of behavior but also to replace the theory of Simo and  
Miehe within the variational framework of generalized standard materials.  
 
Thereafter, one briefly gives some concepts of mechanics in great deformations, then one  
point out the theory of Simo and Miehe as well as the made modifications. One presents finally them  
relations of behavior of the model of Rousselier and its numerical integration.  
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2 Notations  
 
One will note by:  
 
Id  
stamp identity  
 
 
tr A  
trace tensor A  
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AT  
transposed of tensor A  
 
 
det A  
determinant of A  
 
 
~ 
With  
~ 
1 
deviatoric part of tensor A defined by A = A - (tr A) Id  
3 
 
 
H 
With  
tr A 
hydrostatic part of tensor A defined by H 
With = 
 
3 
:  
doubly contracted product: A: B = A B = tr ( 
T 
AB) 
ij ij 
 
I, J 
 
 
 
tensorial product: (A B) ijkl = ij 
With kl 
B  
 
3 
With 
~ ~ 
eq  
equivalent value of Von Mises defined by Aeq = 
: 
WITH A  
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2 
 
 
 
With 
 
With 
With = 
 
X 
 
gradient: X 
X 
 
 
 
, µ, E, K moduli of the isotropic elasticity  
 
 
y  
elastic limit  
 
 
 
thermal dilation coefficient  
 
 
T  
temperature  
 
 
Tref  
temperature of reference  
 
 
In addition, within the framework of a discretization in time, all the quantities evaluated at the 
moment  
precedent are subscripted by -, the quantities evaluated at the moment T + T  
are not subscripted and them  
increments are indicated par. One has as follows:  
 
Q = Q - Q  
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3  
Theory of Simo and Miehe  
 
3.1 Introduction  
 
We point out here specificities of the formulation suggested by SIMO J.C and MIEHE C. [bib2] for  
to treat the great deformations. This formulation was already used for models of  
thermoelastoplastic behaviour with isotropic work hardening and criterion of Von Mises, [R5.03.21]  
for a model without effect of the metallurgical transformations and [R4.04.03] for a model with effect  
metallurgical transformations.  
The kinematics choices make it possible to treat great displacements and great deformations  
but also of great rotations in an exact way.  
Specificities of these models are as follows:  
 
· just like in small deformations, one supposes the existence of a slackened configuration,  
i.e. locally free of constraint, which makes it possible to break up the total deflection into  
a thermoelastic part and a plastic part,  
· the decomposition of this deformation in parts thermoelastic and plastic is not any more  
additive as in small deformations (or for the models great deformations written in  
rate of deformation with for example a derivative of Jaumann) but multiplicative,  
· the elastic strain are measured in the current configuration (deformed) tandis  
that the plastic deformations are measured in the initial configuration,  
· as in small deformations, the constraints depend only on the deformations  
thermoelastic,  
· if the criterion of plasticity depends only on the deviatoric constraint, then deformations  
plastics are done with constant volume. The variation of volume is then only due to  
thermoelastic deformations,  
· this model led during its numerical integration to a model incrémentalement objective  
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(cf [§3.2.3]) what makes it possible to obtain the exact solution in the presence of great rotations.  
 
Thereafter, one briefly points out some concepts of mechanics in great deformations.  
 
3.2  
General information on the great deformations  
 
3.2.1 Kinematics  
 
Let us consider a solid subjected to great deformations. That is to say the 0 field occupied by the solid  
before deformation and (T) the field occupied at the moment T by the deformed solid.  
 
Initial configuration 
Current configuration deformation 
F 
0 
(T) 
 
Appear 3.2.1-a: Representation of the initial and deformed configuration  
 
In the initial configuration 0, the position of any particle of the solid is indicated by X  
(Lagrangian description). After deformation, the position at the moment T of the particle which 
occupied  
position X before deformation is given by variable X (description eulérienne).  
 
The total movement of the solid is defined, with U displacement, by:  
X = x$ (X, T) = X + U  
éq  
3.2.1-1  
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To define the change of metric in the vicinity of a point, one introduces the tensor gradient of  
transformation F:  
 
x$ 
F = 
= Id + U 
 
 
éq  
3.2.1-2  
X  
X 
 
The transformations of the element of volume and the density are worth:  
 
D = Jdo with J 
O 
= det F = éq  
3.2.1-3  
where O and are respectively the density in the configurations initial and current.  
 
Various tensors of deformations can be obtained by eliminating rotation in  
local transformation. For example, by directly calculating the variations length and angle  
(variation of the scalar product), one obtains:  
1 
E = (C - Id) with C = FTF éq  
3.2.1-4  
2 
1 
With = 
Id - b-1 
( 
) with B = FFT  
éq  
3.2.1-5  
2 
E and A are respectively the tensors of deformation of Green-Lagrange and Euler-Almansi and C  
and B, tensors of right and left Cauchy-Green respectively.  
 
In Lagrangian description, one will describe the deformation by the tensors C or E because it are  
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quantities defined on 0, and of description eulérienne by tensors B or A (definite on).  
 
3.2.2 Constraints  
 
The tensor of the constraints used in the theory of Simo and Miehe is the tensor of definite Kirchhoff  
by:  
 
J =  
 
 
 
 
 
 
 
 
 
éq 3.2.2-1  
where is the tensor eulérien of Cauchy. The tensor thus results from a “scaling” by  
variation of volume of the tensor of Cauchy.  
 
3.2.3 Objectivity  
 
When a law of behavior in great deformations is written, one must check that this law is  
objectify, i.e. invariant by any change of space reference frame of the form:  
x* = C (T) + Q (T) X éq  
3.2.3-1  
where Q is an orthogonal tensor which represent the rotation of the reference frame and C a vector 
which translates  
translation.  
More concretely, if one carries out a tensile test in the direction e1, for example, followed of one  
rotation of 90° around e3, which amounts carrying out a tensile test according to e2, then the danger  
with a nonobjective law of behavior is not to find a tensor of the constraints  
uniaxial in the direction e2 (what is in particular the case with kinematics PETIT_REAC).  
Handbook of Reference  
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3.3  
Formulation of Simo and Miehe  
 
Thereafter, one will note by F the tensor gradient which makes pass from the initial configuration 0 to  
current configuration (T), by F p the tensor gradient which makes pass from configuration 0 to  
slackened configuration R, and Fe of the configuration R with (T). The index p refers to the part  
plastic, the index E with the elastic part.  
Initial configuration 
Current configuration 
F 
 
(T) 
0 
F p 
F E 
T = Tref 
R 
= 0 
Slackened configuration 
 
Appear 3.3-a: Decomposition of the tensor gradient F in an elastic part Fe and plastic F p  
 
By composition of the movements, one obtains the following multiplicative decomposition:  
F = FeF p  
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éq 3.3-1  
The elastic strain are measured in the current configuration with the tensor eulérien of  
Left Cauchy-Green Be and plastic deformations in the initial configuration by the tensor  
G p (Lagrangian description). These two tensors are defined by:  
Be 
FeFeT 
= 
, G p 
F pTF p 
= 
- 
( 
) 1 from where Be 
FG pFT 
= 
 
éq  
3.3-2  
However, one will employ alternatively another measurement of the elastic strain E, which coincides  
with the opposite of the linearized deformations when the elastic strain are small:  
1 
E = ( 
E 
Id - b) éq 3.3-3  
2 
In the case of an isotropic material, one can show that the potential free energy depends only on  
left tensor of Cauchy-Green Be (where in our case of the tensor E) and in plasticity of the variable p  
dependent on isotropic work hardening. Moreover, one supposes that the voluminal free energy breaks 
up, all  
as in small deformations, in a hyperelastic part which depends only on the deformation  
rubber band and another related to the mechanism of work hardening:  
( , 
E p) 
el 
= (E) 
bl 
+ (p) éq  
3.3-4  
Handbook of Reference  
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If instead of using the constraint of Cauchy, one uses the constraint of Kirchhoff, the inequality of  
Clausius-Duhem is written (one forgets the thermal part):  
: D - & 0  
 
 
 
 
 
 
 
 
 
éq 3.3-5  
expression in which D represents the rate of deformation eulérien.  
 
Under the preceding assumptions, dissipation is still written:  
 
E  
1  
p T 
 
+ 
b: D + 
(&G 
F 
F) 
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: 
- 
p& 0 éq  
3.3-6  
 
E 
 
2nd 
p 
The second principle of thermodynamics then requires the following expression for the relation  
stress-strain:  
E 
= - 
B  
 
 
 
 
 
 
 
 
 
éq 3.3-7  
E 
 
One defines finally the thermodynamic forces associated with the elastic strain and the deformation  
figure cumulated in accordance with the framework of generalized standard materials:  
 
E 
S = - 
that is to say 
 
= S B  
éq  
3.3-8  
E 
 
 
= -  
With 
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éq 3.3-9  
p 
 
where thermodynamic force A is the opposite of the isotropic variable of work hardening R.  
 
It remains then for dissipation:  
1 
p T E 1 
1 
: (- 
- 
F & 
G F B 
) + A p& = S: (- 
p T 
F & 
G F) + A p& 0  
éq  
3.3-10  
2 
2 
 
3.3.1 Formulation  
original  
 
The principle of maximum dissipation applied starting from the threshold of elasticity F, function of the 
constraint of  
Kirchhoff and of thermodynamic force A makes it possible to deduce the laws of evolution from them 
from  
plastic deformation and of the cumulated plastic deformation, is:  
1 
p T E 1 
- 
 
- 
F 
FG& F B 
= & 
 
éq  
3.3.1-1  
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2 
 
 
F 
 
&p = & 
 
 
 
 
 
 
 
 
 
 
éq 3.3.1-2  
With 
 
&  
0 F  
0 F& = 0 éq  
3.3.1-3  
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Note:  
 
One can show easily that the derivative compared to the time of the variation of volume  
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plastic p 
J is written:  
p 
 
J& = 
F 
p 
& J tr 
 
éq  
3.3.1-4  
 
 
so that if the surface of load F depends only on the deviatoric part of the tensor of  
forced of Kirchhoff, then the plastic deformations are done with constant volume is:  
J p 
p 
det F 
1 from where J 
J E 
E 
= 
= 
= 
= det F = det F éq  
3.3.1-5  
 
3.3.2 Formulation  
modified  
 
The approximation introduced here on the original formulation of Simo and Miehe relates to the 
expression of  
law of flow, all the more reduced approximation as the elastic strain are small,  
since  
E 
= S B. Indeed, one henceforth expresses the threshold of elasticity like a function of the forces  
thermodynamic and either of the constraints F (S, A) 0, and it is compared to these variables that one  
apply the principle of maximum dissipation, which leads to the following laws of flow:  
1 
p T 
 
- 
F 
FG& F = & 
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éq  
3.3.2-1  
2 
S 
 
F 
 
&p = & 
 
éq  
3.3.2-2  
With 
 
&  
0 F  
0 F& = 0 éq  
3.3.2-3  
 
3.3.3 Consequences of the approximation  
 
By replacing the constraint by the thermodynamic force S associated with the elastic strain  
into the expression of the criterion of plasticity, one introduces in fact a disturbance of the border of  
field of reversibility of a factor 2nd. Compared to the initial formulation, it results from it  
obviously an influence on the elastic limit observed but also on the direction of flow:  
in particular, the derivative compared to the time of the plastic variation of volume is written then:  
p 
p 
E 1 
- 
 
J& = 
F 
& J B 
 
: 
éq  
3.3.3-1  
S 
 
so that if the criterion F depends only on the diverter of the tensor of the constraints S, one  
do not find p 
J = 1: the isochoric character of the plastic deformation is not perfectly any more  
preserved.  
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Insofar as the elastic strain remain small, results obtained with this model  
modified do not deviate significantly from those obtained with the old formulation (cf [bib3]),  
while numerical integration will be simplified by it. Indeed, it will be seen thereafter that this model 
follows  
the same diagram of integration as that of the models written in small deformations.  
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Note:  
 
This new formulation of the great deformations makes it possible to replace the theory of Simo and  
Miehe within the framework of generalized standard materials. From a numerical point of view, this  
results in to express the resolution of the law of behavior like a problem  
of minimization compared to the internal increments of variables.  
Indeed, one recalls that within the framework of generalized standard materials, the data of  
two potentials free energy (, has) and potential of dissipation D (a&), function of the tensor  
of deformation and a certain number of internal variables has, allows to define  
completely the law of behavior (one places materials in the case of independent of  
time).  
 
 
 
= 
 
 
, A = - 
D (a&)  
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éq  
3.3.3-2  
 
 
has 
 
 
where D (a&) is under differential of the potential of dissipation D.  
The laws of generalized behavior of the standard type which do not depend on time are  
characterized by a potential of dissipation positively homogeneous of degree 1, which  
translated by the following property:  
 
&  
has 
 
> 
D ( 
 
0 
a&) = D (a&  
) 
 
D 
(a&) = D (a&) éq 3.3.3-3  
 
Now if one writes the problem [éq 3.3.3-2] in form discretized in time and if one uses  
the property of under differentials [éq 3.3.3-3], one obtains the following discretized problem:  
 
 
 
= 
 
 
, A = - 
D (has 
) éq  
3.3.3-4  
 
 
has 
 
 
One can show that the equation [éq 3.3.3-4] is equivalent (cf [bib4]) to solve the problem  
of minimization compared to the internal increments of variables has 
according to:  
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- 
D (has 
) has 
= ArgMin [(A + *) 
+ D has (*) 
has]  
éq  
3.3.3-5  
has 
 
* 
has 
 
The application of the equation [éq 3.3.3-5] to the model of Rousselier in great deformations  
modified is written:  
 
( , 
E p 
D ( 
and  
 
) 
p 
D, p&  
) 
=> 
(Tr 
E +, 
E p + p 
 
D ( 
and  
 
) 
, 
E p 
) éq  
3.3.3-6  
tion 
discretized 
continuous 
 
energy 
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E 
discretized 
 
energy 
 
 
 
 
S = - 
 
 
 
 
E 
With = - 
=  
D (, 
E p 
) 
has 
 
 
 
 
- R = - 
 
éq.  
3.3.3-7  
 
p 
 
Min [(Tr 
E +, 
E p + p 
) + D (, 
E p 
)]  
E, p 
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One will find in the paragraph [§4], the relation which binds the rate of plastic deformation  
p 
D  
once discretized and the increment of elastic strain E 
, as well as the definition of Tr 
E.  
 
One sees well here whom if one takes the initial formulation of Simo and Miehe, one cannot write any 
more  
the problem of minimization [éq 3.3.3-7] with the constraint of Kirchhoff because of the term  
in E 
B in the expression:  
 
 
 
E 
= - 
B  
éq  
3.3.3-8  
E 
 
 
 
4  
Model of Rousselier  
 
We now describe the application of the great deformations to the model of Rousselier presented  
in introduction.  
 
4.1  
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Equations of the model  
 
To describe a thermoelastoplastic model with isotropic work hardening (the equivalent into small  
deformations with the model with isotropic work hardening and criterion of Von Mises), Simo and 
Miehe propose one  
elastic potential polyconvexe. By reason of simplicity, one chooses here the potential of Coming Saint 
who  
is written:  
( 
1 
, 
E p) = [K (tre) 2 
~ ~ 
+ 2µ E: E + 6K T 
tr E] p 
+ R (U) of the éq  
4.1-1  
2 
0 
In accordance with the equations [éq 3.3-8] and [éq 3.3-9], the laws of state which derive from the 
elastic potential  
above are written then:  
S = [ 
- K tr E Id + µ e~ 
2 
+ 3K T 
Id] éq  
4.1-2  
With = - R (p)  
 
 
 
 
 
 
 
éq 4.1-3  
The threshold of elasticity is given by:  
HS  
F (S, R) = S 
+ Df exp 
- R  
eq 
1 
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y  
éq  
4.1-4  
 
1  
According to the equations [éq 3.3.2-1] and [éq 3.3.2-2], the laws of flow are defined by:  
 
1 
p T 
s~ 
3 
Df 
S  
- 
G 
F & F = &  
+ 
exp H Id 
 
 
 
 
éq  
4.1-5  
2 
 
2s 
3 
eq 
1 
 
&p = &  
 
 
 
 
 
 
 
 
 
 
éq 4.1-6  
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&  
0 F  
0 F& = 0 éq  
4.1-7  
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4.2  
Treatment of the singular points  
 
In fact, the equation of flow [éq 4.1-5] translated the membership of the direction of flow to the cone  
normal on the surface of the field of elasticity. It is valid only at the regular points, characterized by:  
seq 0  
 
 
 
 
 
 
 
 
 
éq 4.2-1  
It thus remains to characterize the normal cone at the singular points, i.e. checking:  
 
~ 
S  
H 
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S = 0 
 
and 
 
D F exp 
1 
- R =  
 
 
 
 
y  
éq  
4.2-2  
 
1  
The normal cone with convex of elasticity in such a point is the whole of the directions of flow which  
carry out the problem of maximization according to:  
 
* 
(, Sr) = sup [ 
p 
S: D - R p& - (p 
D, p&)] éq  
4.2-3  
p 
D, p& 
where * 
is the indicating function of convex F and (p 
D, p&) potential of dissipation obtained by  
transform of Legendre-Fenchel of the indicating function of F:  
p 
(D, p&) = Sup [ 
p 
S: D - R p&] éq  
4.2-4  
S, R 
F (S, R) 0 
After some calculations, one obtains:  
 
D 
 
p 
p 
tr p 
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2 
(D, p&) = p& + tr D ln 
-1 + I + (tr p 
D) + I + ( 
p 
p& - D) 
y 
1 
 
 
éq  
4.2-5  
IR 
IR 
eq 
p 
Df 
 
& 
3 
 
with  
0 
if 
X 0 
I + (X) =  
 
éq  
4.2-6  
IR 
+ if not 
 
For ~ 
S = 0, * 
is worth:  
 
 
 
 
* 
 
 
p 
tr D 
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p 
p 
 
(, Sr) = Sup 
HS tr D - tr D ln 
1 
-  
 
1 - R p& - 
&  
éq  
4.2-7  
p 
 
 
p 
y  
D, p&  
D F p& 
 
 
p 
tr D 0 1 
4 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
3 
p 
 
p& 2D p  
G (tr D) 
0 
 
- 
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eq  
3 
By noticing that for tr 
p 
D 0, the function G (tr p 
D) is concave, the suprémum compared to  
trace rate of plastic deformation  
p 
D is obtained for:  
 
p 
p 
S  
G (tr D) = 0 of  
where 
tr D = D F p 
H 
& 
 
 
exp 
 
éq  
4.2-8  
1 
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Note:  
 
One finds well then for the indicating function of the threshold of elasticity F.  
 
0 
if 
F 0 
* (S, R) = Sup [F &p] =  
 
éq  
4.2-9  
p 
+  
& 
if not 
2 p 
&p Deq 0 
3 
 
In a singular point, the normal cone, together of the acceptable directions of flow,  
thus characterize by:  
 
p 
S  
tr D = D F p 
H 
& 
 
 
exp 
 
 
éq  
4.2-10  
1 
 
p& 2 peq 
D 0  
éq  
4.2-11  
3 
 
4.3  
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Expression of porosity  
 
One saw in introduction that the microscopic inspiration of the model of Rousselier is based on one  
microstructure made up of a cavity and a plastic rigid matrix, therefore isochoric. In this case,  
porosity is directly connected to the macroscopic deformation by:  
1 - F 
J = det F 
0 
= 
f& = (1 - F) tr D  
éq  
4.3-1  
1 - F 
However, on a macroscopic scale, one supposes that the material can also become deformed  
reversible elastic manner. The expression above is not thus exact any more, even if it represents  
still a good approximation as long as the elastic strain are small. Unfortunately,  
it prohibits even reasonable elastic compressions, because very quickly, porosity is cancelled and  
impose an isochoric behavior again (J = constant bus F = 0).  
 
Rousselier proposes as for him to express porosity while basing himself on the rate of plastic 
deformation  
p  
D. The relation is written in incremental form:  
f& = (1 -) 
p 
F tr D éq  
4.3-2  
That means that the variable porosity employed to parameterize the criterion of plasticity F does not 
depend  
that plastic deformation. In fact, the rate of plastic deformation is an evaluated quantity  
in the slackened configuration. Its transport in the current configuration (as D) is expressed  
still:  
 
T 
E 
p E 
1 
p T 
F D F 
= - 
G 
F & F éq  
4.3-3  
2 
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Finally, one adopts like law of evolution of porosity:  
1 
f& = (1 - F)  
p T  
tr- 
G 
F & F  
éq  
4.3-4  
2 
 
Again, this law of evolution of porosity remains close to that employed by Rousselier when  
the elastic strain are small.  
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4.4 Relation  
`ROUSSELIER `  
 
This relation of behavior is available via the argument `ROUSSELIER `of key word COMP_INCR  
under operator STAT_NON_LINE, with the argument `SIMO_MIEHE `of the key word factor 
DEFORMATION.  
 
The whole of the parameters of the model is provided under the key words factors `ROUSSELIER `or  
`ROUSSELIER_FO `and `TRACTION `(to define the traction diagram) order  
DEFI_MATERIAU ([U4.43.01]).  

file:///Z|/process/refer/refer/p1740.htm (23 of 33)10/2/2006 2:53:49 PM



file:///Z|/process/refer/refer/p1740.htm

 
Note:  
 
The user must make sure well that the “experimental” traction diagram used, is  
directly, that is to say to deduce the slope from it from work hardening is well given in the plan  
rational constraint = F/S - deformation logarithmic curve ln (1+ L/L) 
0 where l0 is  
initial length of the useful part of the test-tube, L variation length afterwards  
deformation, F the force applied and S current surface.  
 
4.5  
Internal constraints and variables  
 
The constraints are the constraints of Cauchy, thus calculated on the current configuration (six  
components in 3D, four in 2D).  
 
The internal variables produced in Code_Aster are:  
 
· V1, cumulated plastic deformation p,  
· V2, porosity F,  
· V3 in V8, the tensor of elastic strain E,  
· V9, the indicator of plasticity (0 if the last calculated increment is elastic, 1 if solution  
figure regular, 2 if singular plastic solution).  
 
Note:  
 
If the user wants to possibly recover deformations in postprocessing of sound  
calculation, it is necessary to trace the deformations of Green-Lagrange E, which represents a 
measurement of  
deformations in great deformations. The traditional linearized deformations measure  
deformations under the assumption of the small deformations and do not have a direction into large  
deformations.  
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5 Formulation  
numerical  
 
For the variational formulation, it is about same as that given in the note [R5.03.21] and which  
refers to the law of behavior with isotropic work hardening and criterion of Von Mises into large  
deformations. We recall only that it is about a eulérienne formulation, with  
reactualization of the geometry to each increment and each iteration, and which one takes account of  
rigidity of behavior and geometrical rigidity.  
We now present the numerical integration of the law of behavior and give  
the form of the tangent matrix (options FULL_MECA and RIGI_MECA_TANG).  
 
5.1  
Expression of the discretized model  
 
Knowing the constraint - 
, cumulated plastic deformation p, elastic strain - 
E,  
displacements U and U, one seeks to determine (, p, E).  
Displacements being known, gradients of the transformation of 0 with -, noted F, and of -  
with, noted F, are known.  
 
To integrate this model of behavior, one does not choose a purely implicit algorithm because,  
on the one hand, that led to the resolution of a rather complex nonlinear system, and on the other 
hand,  
allows more to express the problem like the minimization of a functional calculus. This is why one  
prefer to treat in an explicit way the variation according to porosity in the threshold of elasticity. For  
other terms, one employs a diagram of implicit Euler.  
 
Once discretized, the following system then is obtained:  
 
- 
F = FF  
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éq 5.1-1  
J = det F  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
éq 5.1-2  
 
J =  
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éq 5.1-3  
E 
= S B  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
éq 5.1-4  
Be = Id - E 
2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
éq 5.1-5  
 
· Equations of state:  
S 
[- 
= µe~ 
2 
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+ K tr E Id + 3K T 
Id]  
 
 
 
 
 
 
 
 
 
 
 
éq. 5.1-6  
With - 
= R (p)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
éq 5.1-7  
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Thereafter, one expresses the laws of flow and the criterion of plasticity directly according to  
tensor of the elastic strain E.  
 
· Lois of flow  
 
 
p 
1 
p T 
1 
p T 
- p T 
- 
T 
D - FG& F = - 
FG F - FF G F F  
2 
2 T 
4 
1 4 
23 
4 
1 
4 
2 3 
 
E 
E 
 
- 
B 
B 
 
= - 1 
 
[Id-2nd-F {Id- - 
2nd} T 
F] 
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éq  
5.1-8  
2 T 
 
= 
E - 1 
( 
[Id-F {Id- - 
2nd} T 
F])/T 
Tr 
= (E - E)/T 
 
2 
1 
4 
4 
4 
4 
2 
4 
4 
4 
4 
3 
Tr 
E 
By taking the parts traces and deviatoric of the equation [éq 4.1-5], one obtains:  
Tr 
- 
3K T 
 
K tr E 
tr E - tr E 
p 
 
= Df exp (- 
) exp (- 
)  
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éq 5.1-9  
1 
 
1 
 
 
 
~ 
Tr - 3 
~ 
E 
E 
p 
 
regular 
 
solution 
 
if 
~  
2 
E 
E =  
eq 
 
 
 
 
 
 
éq 5.1-10  
 
2 ~ ~Tr 
0 
 
 
and 
 
p (E - E)  
singular 
 
solution 
 
if 
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eq 
3 
· Conditions of coherence  
 
3 
- 
KT 
K tr E 
2µ 
+ D F exp (- 
) exp (- 
) - R  
regular 
solution  
 
if 
 
eq 
E 
1 
 
 
y 
1 
 
1 
 
F =  
3 
- 
KT 
K tr 
 
E 
éq  
5.1-11  
D F 
exp (- 
) exp (- 
) - R  
singular 
solution  
 
if 
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1 
 
 
y 
1 
 
1 
 
 
with F 
 
0 p  
F 
 
0 
p = 0 
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5.2  
Resolution of the nonlinear system  
 
The integration of the law of behavior is thus summarized to solve the system [éq 5.1-9], [éq 5.1-10]  
and [éq 5.1-11]. We will see that this resolution is brought back to that of only one scalar equation, of 
which  
unknown factor X is the increment of the trace of the elastic strain:  
Tr 
X = tr E - tr E  
 
 
 
 
 
 
 
éq 5.2-1  
Thanks to this choice, that the solution is elastic or plastic, attack in a singular point or not,  
the equation [éq 5.1-9] bearing on the trace of the elastic increment is always valid and allows  
to express the increment of cumulated plastic deformation:  
 
K tr Tr  
 
 
Tr 
E 
3K 
- 
T 
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K (tr E - tr Tr 
E) 
tr E - tr E = p 
D F exp 
 
- 
exp (- 
) exp 
 
- 
 
 
 
 
 
 
1 
 
 
1 
 
 
1 
 
 
1 
4 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
3 
G 
éq  
5.2-2  
K X 
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(X) 1 
p 
= X exp 
G 
1 
 
This equation shows us that one can seek X 0 to guarantee a plastic deformation  
cumulated positive and that the elastic solution is obtained for X = 0. It is also noticed that  
the increment of cumulated plastic deformation is a continuous and strictly increasing function X.  
With the help of these remarks, if one notes by S the term [éq 5.2-3] in the criterion of plasticity, it acts  
then, there too, of a continuous and strictly increasing function of X:  
Kx  
F = 2 eq 
µe - ( 
S X) with 
 
S ( 
X) = - G exp 
1 
- 
+ 
 
 
 
R (p (X))+ y éq  
5.2-3  
 
 
1  
This stage, the step of resolution breaks up into two times.  
 
5.2.1 Examination of the singular points  
 
Such a singular point is characterized by [éq 5.1-10] (low) and [éq 5.1-11] (low), therefore in 
particular by  
(Sx) = 0. Because of the properties of S, this equation admits with more the one positive solution, say S 
X  
who exists if and only if ( 
S 0) 0. The knowledge of S 
X makes it possible to deduce the tensor from it from  
elastic strain E, cumulated plastic deformation p as well as the thermodynamic forces  
S and R.  
Finally, this singular point will be solution if the inequality in [éq 5.1-11] (low) is checked, i.e.  
if:  
S 
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2 ~s ~Tr 
p 
(E - E) eq éq  
5.2.1-1  
3 
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5.2.2 Solution  
regular  
 
The equation of flow [éq 5.1-10] (high) which determines the deviatoric part of the tensor of  
elastic strain makes it possible to deduce a scalar equation from it function from the increment from  
cumulated plastic deformation:  
 
Tr 
3 
~ 
eq 
E = eq 
E - p 
~ ~ 
3 
2 
Tr 
E 
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E - E 
- 
= 
p 
 
 
 
 
E 
 
éq  
5.2.2-1  
2 
eq 
E 
e~= eq ~Tr 
E 
 
Tr  
 
eq 
E 
One notes that because of the positivity of eq 
E, the value sells by auction p 
is limited:  
2 Tr 
p 
 
eq 
E  
 
 
 
 
 
 
 
 
 
éq 5.2.2-2  
3 
The condition of coherence determines X now:  
F = 2µeTr 
eq - S (X) - 3  
µ p 0  
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éq  
5.2.2-3  
Being given this expression, the increase of the licit value of p 
is reduced to the only condition  
(Sx) 0 or, in an equivalent way, with  
S 
X X.  
 
The elastic solution is obtained for X = 0. It is the solution of the problem if and only if:  
F () 
0 = 2µ eTr 
eq - S (0 < 
) 0 éq  
5.2.2-4  
In the contrary case, one must then solve:  
3µ 
Kx 
 
X > xs 
Tr 
xs 
F (X) = 2µeeq - S (X) - 
X exp ( 
) = 
 
if 
exist 
0 with 
 
 
 
éq  
5.2.2-5  
G 
1 
 
 
X > 0 
if not 
 
This function is continuous and strictly decreasing and tends towards - with X. It thus admits with  
more one solution. The demonstration of the existence of this solution is immediate. Indeed, it is 
enough to  
to prove that F is positive on the lower limit of the interval of research.  
When S 
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X does not exist, ( 
F) 
0 > 0 since the solution is not elastic.  
When S 
X exists, the function is worth:  
S 
Tr 
S 
S 
2 Tr 
F (X) = 2µ eq 
E - 3 p 
 
µ 
> 0 p 
< 
eq 
E éq  
5.2.2-6  
3 
This condition is checked since the singular solution was rejected.  
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5.3  
Course of calculation  
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The step to solve the whole of the equations of the model is as follows:  
 
1) One seeks if the solution is elastic  
· calculation of F () 
0  
· if F () 
0 < 0, the solution of the problem are the elastic solution Sol 
X 
= 0  
· if not one passes into 2)  
2) If  
S () 
0 > 0, the solution are plastic and regular  
· one passes into 4)  
3) If  
S () 
0 < 0, one seek if the solution is singular  
· one solves S (S 
X) = 0  
2 
· if S 
X checks the inequality  
S 
~s ~Tr 
p 
(E - E) 
Ground 
eq, then the solution is singular  
S 
X 
= X  
3 
· if not, S 
X is a lower limit to solve F (X) = 0, one passes into 4)  
4) The solution is plastic and regular  
· one solves F (X) = 0  
 
5.4 Resolution  
 
To solve the two equations S (X) = 0 and F (X) = 0, one employs a method of Newton with  
controlled terminals coupled to dichothomy when Newton gives a solution apart from  
the interval of the two terminals. One now presents the determination of the terminals for each case  
precedents (items 2) 3) and 4) of the preceding paragraph).  
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5.4.1 Hight delimiters and lower if the function S is strictly  
positive at the origin  
 
One solves:  
 
µ 
Kx 
2 Tr 
eq  
µe - S (X = 3 
) 
X exp ( 
) 
F (X) = 0 
 
4 
42 
1 
4 
43 
G 
 
 
 
 
 
1 
 
F 
1 4 
4 2 4 
4 3  
éq  
5.4.1-1  
F () 
0 > 0 
1 
 
3µ p 
 
F () 
0 
1 
> 0 
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where the function p (X) is continuous, strictly increasing and null at the origin and the function F () 
1 X is  
continue, strictly decreasing and strictly positive at the origin (see [Figure 5.4.1-a]).  
One poses:  
Tr 
Kx 
F = 2µeeq - R (X) - y + G exp (- 
) then F 
(X) < F (X) 
 
X 0 
1 
1 
2 
1 
 
éq 5.4.1-2  
1 4 
4 
4 2 
4 
4 
4 3 
1 
 
f2 
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: 20/28  
 
 
where the function F () 
2 X are continuous, strictly decreasing. In this case, the resolution of the equations:  
inf 
inf 
inf 
Kx 
F (p 
inf 
2  
) = 3µ p 
 
and  
inf 
X 
exp ( 
) = G p 
 
éq  
5.4.1-3  
1 
to deduce p successively from it 
then X gives a lower limit Inf 
X 
who corresponds to  
solution of the model with isotropic work hardening and criterion of Von Mises. If F (0) 
0 
2 
<, the lower limit  
is taken equalizes to zero: inf 
X 
= 0 .  
The upper limit Sup 
X 
is such as:  
 
KxSup 
Sup 
G 
X 
exp ( 
) = 

file:///Z|/process/refer/refer/p1750.htm (11 of 36)10/2/2006 2:53:50 PM



file:///Z|/process/refer/refer/p1750.htm

F (xInf)  
éq  
5.4.1-4  
 
3 1 
1 
µ 
Kx 
The equation of type X exp ( 
) = constant is solved by a method of Newton.  
1 
3µ p (X) 
f1 
3µ p (sup 
X 
) = F 
inf 
1 (X 
) 
F 2 
3µ p (inf 
X 
) = F 
inf 
2 (X 
) 
X 
Ground 
inf 
Sup 
X 
X 
X 
 
Appear 5.4.1-a: chart of the hight delimiters and lower  
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5.4.2 Hight delimiters and lower if the function S is negative or  
null at the origin  
 
The system to be solved is as follows:  
 
X 
Kx  
- 
Kx 
S (X) = 0 
R p + exp ( 
) + y = G exp ( 
1 
- 
 
 
 
 
) 
 
 
G 
1 
 
1 
 
 
éq  
5.4.2-1  
S (0) < 0 
 
- 
R (p) + y < G 
1 
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The part of left is a continuous, strictly increasing X and strictly positive function with  
the origin, the part of right-hand side is a continuous, strictly decreasing function X and strictly  
positive at the origin. Using the properties of these two functions, a chart  
(cf [Figure 5.4.2-a]) of these functions shows that the upper limit Sup 
X 
is such as:  
Sup 
G exp ( 
1 
- Kx 
G 
 
) = R (- 
p) 
 
 
Sup 
1 
 
+ 
 
 
1 
y 
 
X 
= 
log 
 
éq  
5.4.2-2  
 
K 
 
- 
1 
R (p) 
 
 
+ y  
The lower limit Inf 
X 
is such as:  
Inf 
Kx 
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Sup 
Sup 
- 
X 
Kx 
 
G exp ( 
1 
- 
) = R p + 
exp ( 
) + 
 
y 
1 
 
G 
1 
 
+ 
 
 
 
 
 
éq  
5.4.2-3  
 
 
Inf 
G 
X 
=  
 
1 log 
1 
 
K 
 
Sup 
Sup 
- 
X 
Kx 
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R p + 
exp ( 
) + 
 
y  
 
G 
1 
 
 
R (X) 
1 G 
+ y 
Kx 
1 G exp (- 
) 
R (p -)  
+ 
1 
y 
X 
Inf 
Ground 
Sup 
X 
X 
X 
 
Appear 5.4.2-a: chart of the hight delimiters and lower  
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5.4.3 Hight delimiters and lower if the function S is strictly  
negative at the origin and xs not solution  
 
The following system is solved:  
 
Tr 
3µ 
Kx 
2µeeq - S (X) = 
X exp ( 
) 
4 
42 
1 
4 
43 
G 
1 
 
 
1 4 
4 2 4 
4 3 
F (X) = 0 
 
f1 
3µ  
 
p 
 
S (0) < 0 
 
 
 
F (0) 
1 
> 0 
 
éq  
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5.4.3-1  
 
S 
 
S (X) = 0 
S 
 
Tr 
µ S 
Kx 
2µeeq = 3 
 
X exp ( 
) 
G 
 
 
1 
 
The solution Ground 
X 
is such as S (Ground 
X 
) > 0 .  
For the lower limit, one takes Inf 
S 
X 
= X. Being given properties of the functions 1f  
(strictly decreasing) and 3µ p (X) (strictly increasing), the upper limit Sup 
X 
is such  
that (cf [Figure 5.4.3-a]):  
Sup 
Sup 
Kx 
2G Tr 
X 
exp ( 
) = 
eq 
E  
éq  
5.4.3-2  
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3 
1 
This equation is solved by a method of Newton.  
S (X) < 0 S (X) > 0 
2µeTr 
eq - S (0) 
S (X) = 0 
3µ 
Kx 
Tr 
X exp ( 
) 
2µeeq 
G 
1 
 
X 
Inf 
S 
Ground Sup 
X 
= X X X 
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5.5  
Integration of porosity  
 
This stage, it any more but does not remain to integrate the law of evolution of porosity. According to 
the equations [éq 4.3- 
4] and [éq 5.1-8], it is still expressed using unknown factor X:  
 
f& 
X 
= 
 
 
 
 
 
 
 
 
éq 5.5-1  
1 - F 
T 
 
maybe while integrating:  
 
F df 
X T 
 
 
 
= 
dt  
 
F =1- 1 
(- F) exp (-)  
X  
éq  
5.5-2  
1 - F 
T 
0 
 
F 
0 
0 
where one carried out an exact temporal integration by supposing X constant lasting the step of time. It  
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choice makes it possible to ensure that F is increasing and remains lower than 1, whatever the step of 
time.  
 
5.6  
Form of the tangent matrix of the behavior  
 
One gives the form of the tangent matrix here (option FULL_MECA during iterations of  
Newton, option RIGI_MECA_TANG for the first iteration).  
For the option FULL_MECA, this one is obtained by linearizing the system of equations which governs 
the law of  
behavior. We give hereafter the broad outline of this linearization.  
For option RIGI_MECA_TANG, they are the same expressions as those given for  
FULL_MECA but with p = 0. In particular, there will be F 
= Id.  
 
The law of behavior can be put in the following general form:  
= (, F 
)  
 
 
 
 
 
 
 
éq 5.6-1  
= (E)  
 
 
 
 
 
 
 
 
 
éq 5.6-2  
E = E (Tr 
E) éq 5.6-3  
eTr = eTr (F 
)  
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éq 5.6-4  
The linearization of this system gives:  
 
 
 
 
E 
 
E 
Tr 
 
 
=  
: 
: 
: 
+ 
: F 
= H: F 
 
 
 
éq  
5.6-5  
 
 
E 
 
E 
Tr 
F 
 
 
F  
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where H is the tangent matrix. Thereafter, the five terms of the equation are separately determined  
the preceding one.  
In the linearization of the system, one will often use the tensor C defined below and both  
following equations:  
1 
has 
ij = (ik jl + jkil) has 
kl  
éq  
5.6-6  
2 
app = K has 
L 
kl  
 
 
 
 
 
 
 
 
 
éq 5.5-7  
1 
ijkl 
C 
= (ik jl + jkil) éq  
5.6-8  
2 
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· Calcul of  
and of  
 
 
 
F 
 
 
 
Linearization of the relation which binds the constraint of Cauchy and the constraint of Kirchhoff  
give:  
1 
 
J  
J  
=  
 
 
= -  
: F 
éq  
5.6-9  
J 
J 
F 
 
 
 
 
 
By using the relation [éq 5.6-6], one obtains for  
:  
 
 
 
= C éq 5.6-10  
 
 
 
 
and for  
:  
F 
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= - J  
éq  
5.6-11  
F 
 
 
J 
F 
 
 
with  
J 
= 22  
F 33 
F - 23 
F 32 
F 
11 
F 
J 
= 11 
F 33 
F - 13 
F 31 
F 
22 
F 
J 
= 11 
F 22 
F - 12 
F 21 
F 
33 
F 
 
éq  
5.6-12  
J 
 
J 
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= 31 
F 23 
F - 33 
F 21 
F  
= 13 
F 32 
F - 33 
F 12 
F 
12 
F 
21 
F 
J 
 
J 
 
= 21 
F 32 
F - 22 
F 31 
F  
= 12 
F 23 
F - 22 
F 13 
F 
13 
F 
31 
F 
J 
 
J 
 
= 31 
F 12 
F - 11 
F 32 
F  
= 13 
F 21 
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F - 11 
F 23 
F 
23 
F 
32 
F 
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· Calcul of  
 
E 
 
 
The relation which binds the constraint of Kirchhoff and the tensor of elastic strain E is given  
by:  
= S B 
E = -2µ E - Tr E Id 
+ 4µ E E 
+ 2 (tr E E 
) éq  
5.6-13  
- 
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3K T 
Id + 6K T 
E  
One obtains after linearization:  
= ( 
2 tr E - µ + 3KT) E + (E 
2 - Id) Tr E + 4µ (E E 
+ E E)  
éq  
5.6-14  
from where  
 
ij = (2 tre-µ+3KT) Cijkl + (e2ij-ij) kl +2µ (ikelj+ilekj+eilkj+eikjl)  
kl 
E 
éq 5.6-15  
 
E 
Tr 
· Calcul of  
 
F 
 
 
 
The relation between the tensor of elastic strain Tr 
E and the increment of the gradient of  
transformation F 
is written:  
Tr 
1 
E = ( 
E 
T 
Id -  
F B F) éq  
5.6-16  
2 
Its linearization gives:  
Tr 
ij 
E 
= - 1 ( 
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E 
E 
ik F 
jpbpl + IP 
F bpl jk) éq  
5.6-17  
 
kl 
F 
2 
 
E 
 
· Calcul of  
 
Tr 
E 
 
 
Elastic case  
 
E 
 
In the elastic case, the calculation of  
is immediate since  
Tr 
E 
= E 
 
from where  
Tr 
E 
 
E 
= C éq 5.6-18  
E 
Tr 
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Plastic case regular Solution  
 
E 
 
To determine  
, one operates in two stages. By the law of flow discretized, one calculates  
Tr 
E 
 
in first E 
according to Tr 
E 
 
and  
p 
 
. Then the condition of coherence makes it possible to deduce some  
p 
 
according to Tr 
E 
 
. These two stages are thereafter detailed.  
The deviatoric part of the law of flow discretized is written:  
~ 
~ ~Tr 
3 
E 
E - E = - 
p 
 
éq  
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5.6-19  
2 
eq 
E 
One obtains after linearization:  
3 p 
~ 
~Tr 
3e~ 
9 
e~ 
1 
( + 
)  
E = E - 
 
p + p 
(e~ e~ 
: 
) éq  
5.6-20  
2nd 
2nd 
4 
3 
eq 
eq 
eq 
E 
4 
1 
4 
2 3 
1/  
To determine E 
~ e~ 
: 
, one contracts the equation [éq 5.6-20] with E 
~ what gives:  
~ 
~ ~ 
~Tr 
E: E = E: E - E 
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p 
eq  
 
éq  
5.6-21  
from where  
 
~ 
9 p 
 
 
~ 
~ ~ 
~Tr 
E =  
E E + C 
E 
: E - 3 
p 
 
 
éq  
5.6-22  
E 
4 3 
 
2nd 
eq 
eq 
 
1 
4 
4 
4 2 
4 
4 
4 3 
3 
2 
1A 
With 
2 
1 
For the part law of flow traces discretized, one a:  
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Tr 
3KT  
K 
 
Tr E - Tr E = Df p  
 
 
exp 
 
 
 
 
exp - 
Tr E éq  
5.6-23  
 
1 
 
 
1 
 
 
what gives:  
1 
Tr E = 
Tr 
Tr 
E 
DfK p 
3KT  
K 
 
1+ 
exp 
exp - 
Tr 
 
 
 
 
 
 
E 
1 
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1 
 
 
1 
 
 
1 
4 
4 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
4 
3 
1 
 
K 
 
3KT  
 
éq  
5.6-24  
Df exp - 
Tr E exp 
 
 
 
 
 
 
 
 
 
 
 
1 
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1 
 
+ 
p 
 
 
DfK p 
3KT  
K 
 
1+ 
exp 
exp - 
Tr 
 
 
 
 
 
 
E 
1 
 
 
1 
 
 
1 
 
 
1 
4 
4 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
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4 
3 
2 
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In the plastic case, the condition of coherence is worth:  
3KT  
K 
 
2 eq 
µe + Df exp - 
exp - 
Tr E - R -  
0 
1 
y = 
 
 
 
 
 
 
 
 
 
éq  
5.6-25  
 
1 
 
 
1 
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from where  
3µ (~ ~ 
E: E) 
3KT  
K 
 
- DfK exp - 
exp - 
Tr E Tr E - HP = 0 
 
 
 
 
 
 
 
 
 
éq  
5.6-26  
eeq 
 
1 
 
 
1 
 
 
By injecting the relation [éq 5.6-21] in the equation above, one obtains then:  
3µ 
1 
~ ~Tr 
p 
= 
E: E 
eq 
E 
 
3K T 
 
K 
 
3µ + H + DfK exp - 
exp (- 
Tr) 
E 
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1 
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4 
4 
4 
4 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
3 
3 
3K T 
 
K 
 
éq 5.6-27  
DfK exp - 
exp (- 
Tr) 
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E 
1 
 
 
 
 
 
 
 
1 
 
1 
Tr 
- 
Tr E 
 
3K T 
 
K 
 
3µ + H + DfK exp - 
exp (- 
Tr) 
E 
2 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
1 
1 
4 
4 
4 
4 
4 
4 
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4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
3 
4 
While replacing  
p 
 
by its value obtained above in the equations [éq 5.622] and [éq 5.6- 
24], one obtains:  
 
 
 
 
1 
 
µ 
3 
3 ~ 
Tr 
1 
~ 
 
1 
 
Tr 
E 
= A1 + A2 + Id 
 
3 
 
E: E + 
Id 
1 
+ 4A2 + Id 
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2 
Tr E 
 
 
 
 
3 
 
 
 
eq 
E 
 
3 
 
3 
 
 
 
1 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
3 
1 
4 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
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4 
3 
D etr 
ddvetr 
tr 
éq 5.6-28  
from where  
E 
 
 
1 
 
= ddvetr + dtretr - ddvetr: Id Id éq  
5.6-29  
E 
Tr 
 
3 
 
 
Plastic case singular Solution  
 
The step is identical to that used previously.  
One obtains for the law of flow discretized:  
~ 
~ 
E = 0  
 
 
E = 0  
éq  
5.6-30  
for the deviatoric part and the part traces, the relation is identical to that found for  
regular solution.  
Tr 
Tre = 1Tre +  
p 
2  
 
 
éq  
5.6-31  
where 1 
and 2 have the same definitions as in the preceding paragraph.  
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The condition of coherence then makes it possible to find  
p 
 
according to Tr 
E 
 
.  
3KT  
K 
 
Df exp 
exp - 
Tr E - R -  
0 
1 
y = 
 
 
 
 
 
 
 
 
 
éq  
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5.6-32  
 
1 
 
 
1 
 
 
maybe after linearization:  
3K T 
 
K 
DfK exp 
exp (- 
Tr) 
E 
1 
 
 
 
 
 
 
 
1 
 
1 
Tr 
p 
= - 
Tr E 
 
éq  
5.6-33  
 
3K T 
 
K 
 
H + DfK exp 
exp (- 
Tr) 
E 
 
 
2 
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1 
 
1 
 
1 
4 
4 
4 
4 
4 
4 
4 
4 
2 
4 
4 
4 
4 
4 
4 
4 
4 
3 
4 
that is to say finally:  
1 
E = [1 +  
4 2 ] 
Tr 
 
Id Tr E éq  
5.6-34  
31 4 
4 2 4 
4 3 
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dtretr 
from where  
E 
= dtretrId  
éq  
5.6-35  
E 
Tr 
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Model of Rousselier for the ductile rupture  
 
 
 
 
Summary  
 
The model of Rousselier describes the damage due to the plastic growth of cavities in a metal. It  
allows to model cracking and the ductile rupture. The relation of behavior is elastoplastic or  
viscoplastic with isotropic work hardening. It allows the changes of plastic volume and is written in  
small deformations. The writing in great deformations with a formulation of Simo and Miehe 
modified, in  
the elastoplastic case only, is described in [R5.03.06].  
This model is available in order STAT_NON_LINE via the key word RELATION =  
“ROUSS_PR” or “ROUSS_VISC” under the key word factor COMP_INCR and with the key word 
DEFORMATION =  
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“PETIT_REAC”.  
This model is established for modelings three-dimensional (3D), axisymmetric (AXIS), in constraints  
plane and in plane deformations (C_PLAN, D_PLAN).  
 
One presents the writing and the digital processing of this model.  
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1 Introduction  
 
The mechanisms at the origin of the ductile rupture of metals are associated the development of  
cavities within material. Three phases are generally distinguished:  
 
· germination: it is about starting or nucleation of the cavities, in sites which correspond  
preferentially with the particles of second phase present in material,  
· growth: it is the phase which corresponds to the development itself of the cavities,  
controlled primarily by the plastic flow of the metal matrix which surrounds these  
cavities,  
· coalescence: it is the phase which corresponds to the localization of the deformation between the 
cavities  
to create macroscopic cracks.  
 
The model of Rousselier [bib1], [bib2], [bib3] presented here is based on assumptions  
microstructural which introduces a microstructure made up of cavities and of a matrix of which them  
elastic strain negligible are compared with the plastic deformations. In this case, and in  
the absence of nucleation of new cavities, porosity F, definite like the relationship between volume  
cavity C 
V and total volume V of representative elementary volume, is directly connected to  
macroscopic plastic deformation by:  
C 
 
1 - F 
0 
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0 
V 
= 
 
 
with F = 
 
f& = (1 - F)  
p 
tr &  
éq  
1-1  
 
1 - F 
V 
where f0 indicates initial porosity, and are respectively the density in  
O 
configurations initial and current (one takes in the continuation = 1) and p 
 
O 
& the rate of deformation  
plastic of total volume V.  
The construction of the model rests on a thermodynamic and phenomenologic analysis which brings  
to write the plastic potential F in the following form:  
( 
 
F, p, F) = + D F exp m - R (p) éq  
1-2  
eq 
1 
1 
 
 
 
 
1  
where =/is the constraint of Kirchhoff, is the constraint of Cauchy, R isotropic work hardening  
function of the cumulated plastic deformation p, and D of the parameters of material. The presence  
1 
1 
in the plastic potential of the hydrostatic constraint authorizes the changes of volume  
m 
plastic.  
In the event of nucleation of new cavities, one considers that the voluminal fraction created is  
proportional to the cumulated plastic deformation. It is thus enough to replace F by F + A p in  
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N 
equations of the model. A is a parameter of material. The equation [éq 1-1] is not modified.  
N 
In the viscoplastic case, one writes the viscoplastic potential vp 
F like a function of the potential  
plastic F:  
vp 
F = (, 
F p, F)  
 
 
 
 
 
 
 
 
 
éq 1-3  
One will considèrera only the particular case such as:  
m 
 
 
F  
p& = 
= & 
 
 
 
 
 
 
 
éq 1-4  
0 HS 
 
 
F 
0  
who is reduced to a function power (law of the Norton type) when two parameters of material  
& and are very large.  
0 
0 
Thereafter, one presents the relations of behavior of the model of Rousselier and his integration  
numerical.  
Handbook of Reference  
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2 Notations  
 
One will note by:  
 
Id  
tensor second-order identity  
 
II  
tensor identity of the fourth order  
 
tr A  
trace second-order tensor A  
 
~ 
~ 
1 
With 
With = A - (tr A) 
 
deviatoric part of tensor A defined by  
Id  
3 
 
 
tr A 

file:///Z|/process/refer/refer/p1760.htm (17 of 36)10/2/2006 2:53:51 PM



file:///Z|/process/refer/refer/p1760.htm

With 
With = 
 
hydrostatic part of tensor A defined by  
 
m 
m 
3 
 
 
3 
With 
~ ~ 
eq  
equivalent value of von Mises defined by Aeq = 
: 
WITH A  
2 
 
T 
:  
doubly contracted product: A: B = A B = tr (AB) 
ij ij 
 
 
I, J 
 
tensorial product: (A B) 
= 
ijkl 
ij 
With kl 
B  
 
, µ, E, K  
moduli of the isotropic elasticity  
 
 
2 
p& 
~ 
~ 
 
speed of equivalent plastic deformation  
p 
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p 
p = 
& 
& 
: &  
3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, within the framework of a discretization in time, all the quantities Q evaluated at the 
moment  
precedent are subscripted by -, quantities evaluated at the moment T = T - + T 
are not subscripted and  
the increments are indicated par. One has as follows:  
 
Q = Q + Q 
 
 
The numerical resolution is carried out by one - method, with 0 1. For all the quantities,  
one defines:  
 
Q = Q + Q 
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3  
Model of Rousselier  
 
We now describe the derivation of the equations of the model of Rousselier presented in  
introduction.  
 
3.1  
Derivation of the equations of the model  
 
It is supposed that the specific free energy breaks up into three parts: a hyperelastic part  
who depends only on the elastic strain, a part related to the mechanism of work hardening and one  
part related to the damage:  
(E 
, p, F) = E (E 
) + p (p) 
F 
+ (F)  
éq  
3.1-1  
 
The inequality of Clausius-Duhem is written (one does not consider the thermal part):  
: & - & 0  
 
 
 
 
 
 
 
 
éq 3.1-2  
expression in which  
E 
p 
& = & + & the rate of deformation represents.  
 
Dissipation is still written:  
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E 
p 
 
 
- 
: & +: & - 
p& - 
f& 0 éq  
3.1-3  
 
E 
 
p 
F 
The second principle of thermodynamics then requires the following expression for the relation  
elastic stress-strain:  
 
=  
 
 
 
 
 
 
 
 
 
 
éq 3.1-4  
E 
 
 
One defines the thermodynamic forces associated with the elastic strain, with the deformation  
figure cumulated and with porosity in accordance with the framework of generalized standard 
materials:  
 
(E 
) =  
 
 
 
 
 
 
 
 
 
éq 3.1-5  
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E 
 
 
( 
 
p) =  
With 
 
 
 
 
 
 
 
 
 
 
éq 3.1-6  
p 
 
( 
 
F) =  
B 
 
 
 
 
 
 
 
 
 
 
éq 3.1-7  
F 
 
It remains then for dissipation:  
: p 
& - A p& -  
B f& 0  
éq  
3.1-8  
The principle of maximum dissipation applied starting from the viscoplastic potential Fvp (, A, B) allows  
to deduce the laws of evolution from them from the plastic deformation, the plastic deformation 
cumulated and of  
porosity, is:  
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p 
vp 
F 
& = 
 
 
 
 
 
 
 
 
 
éq 3.1-9  
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F 
vp 
p& = - 
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éq 3.1-10  
With 
F 
vp 
f& = - 
 
 
 
 
 
 
 
 
 
éq 3.1-11  
B 
It is supposed that Fvp (, A, B) is a function of the plastic potential F (, A, B) and that this last  
break up into two terms depending respectively on the second invariant on coupled to A and on  
first invariant of coupled to b:  
Fvp = (F) = (F  
+ 
 
 
éq  
3.1-12  
VM ( 
, A 
eq 
) Fm (, B 
m 
) 
By assumption, the first term breaks up in an additive way like the potential of von Mises:  
F 
= - 
- 
= - 
éq  
3.1-13  
VM (  
, A 
eq 
) 
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With 
eq 
(p) R 
R (p) 
0 
eq 
Not to obtain a commonplace result, the decomposition of the second term must be multiplicative:  
F  
=  
 
éq  
3.1-14  
m ( 
, B 
m 
) G (m) H (B) 
Taking into account the equation [éq 1-1], the laws of evolution for  
p 
tr & and f& lead to the equality:  
g' ( 
-1 B 
m) 
H ((F) 
= 
 
éq  
3.1-15  
G ( 
 
 
 
1 
 
 
- B 
m) 
F H ((F) 
The two members of this equation are functions of the two independent variables and F,  
m 
thus they is equal to a constant of dimension the reverse of a constraint, it is the parameter of  
material 1. The parameter without dimension D appears in the integration of G/G:  
1 
1 
G () 
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= D exp m  
éq  
3.1-16  
m 
1 
1 
 
 
 
 
1  
The function ( 
B F) and the function reverses F = H (B are unknown. The simplest choice and more  
1 
) 
naturalness is to take H H, which gives:  
1 
H (B) H 
 
 
 
 
 
 
 
 
 
 
éq 3.1-17  
1 (B) = F 
(B) 
F 
D 
1 
H 
= 
= - 
F (1 - F)  
éq  
3.1-18  
dB 
1 
The plastic potential is written finally:  
 
F = + D F exp m - R (p) éq  
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3.1-19  
eq 
1 
1 
 
 
 
 
1  
 
The law of evolution for p& gives:  
D (F) 
p& = 
= V (F)  
 
 
 
 
 
 
 
 
éq 3.1-20  
dF 
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as:  
m 
F  
V (F) = & 
éq  
3.1-21  
0 HS 
 
 
0  
who is reduced to a function power (law of the Norton type) when two parameters of material  
& and are very large. Conversely one a:  
0 
0 
F - S (p&) = 0  
 
 
 
 
 
 
 
 
 
éq 3.1-22  
 
1  
1  
m 
p& 
 
S (p&) = 
- 
HS 
 
éq  
3.1-23  
0 
 
 
 
 
 
&0  
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In the case of plasticity independent of time, the preceding equation becomes F = 0 (criterion or  
threshold of plasticity) and p& is given by the equation of F& consistency = 0 if F = 0 and p& = 0 if F 
< 0.  
 
The equations of the model are now completely defined, in the case without nucleation of  
new cavities. In the event of nucleation of new cavities, one considers that the voluminal fraction  
created is proportional to the cumulated plastic deformation. It is thus enough to replace F by  
F + A p in the equations of the model. A is a parameter of material. The equation [éq 1-1] is not  
N 
N 
not modified.  
 
3.2  
Equations of the model  
 
One summarizes the equations of the model deduced from the thermodynamic and phenomenologic 
analysis which  
precede:  
1 
 
 
 
m 
p 
m 
-  
 
& 
 
= + D F + A p 
- R p - HS 
=  
 
 
éq 3.2-1  
vp 
eq 
1  
1 ( 
N 
) exp 
( ) 
1 
0 
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0 
 
 
 
 
 
 
1  
&0 
 
 
 
 
 
 
= 
= [(Id Id) + 2µII] E 
:  
éq  
3.2-2  
 
1 - F - A p 
N 
= 
 
 
 
 
 
 
 
 
 
 
 
éq 3.2-3  
1 - f0 
~ 
~ 
~ p 
3 
3 
& = p& 
= p 
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éq 3.2-4  
 
& 
2 
 
2 
eq 
eq 
p 
 
tr & = p&D F A p exp m  
éq  
3.2-5  
1 ( 
+ N) 
 
 
 
 
 
 
1  
f& = A (1 
 
 
 
 
 
 
 
 
 
éq 3.2-6  
1 
) p 
F tr & 
with A = 1, this parameter being introduced only for numerical reasons.  
1 
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4 Formulation  
numerical  
 
4.1  
Key words, given internal material and variables  
 
For the foreseeable applications, the model was established under two distinct key words:  
`ROUSSELIER_PR `for the plastic model with nucleation of cavities or `ROUSSELIER_VISC `for  
the viscoplastic model without nucleation. That makes it possible to avoid useless numerical 
calculations.  
corresponding simplified equations are obtained starting from the general equations while posing  
respectively = 0 or A = 0.  
0 
N 
 
The whole of the parameters of the model is provided under the key words factors `ROUSSELIER `or  
`ROUSSELIER_FO `and `TRACTION `(to define the traction diagram) order  
DEFI_MATERIAU ([U4.43.01]). Parameters of the viscoplastic model (,  
0 
& and m) are provided  
0 
by the key word `ROUSSELIER_VISC `.  
 
The internal variables produced in Code_Aster are:  
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·  
V1, cumulated plastic deformation p,  
·  
V2, porosity F,  
·  
V3 with V8, the tensor of elastic strain E 
,  
·  
V9, the indicator of plasticity (0 if the last calculated increment is elastic, 1 if solution  
figure regular, 2 if singular plastic solution).  
 
We now present the numerical integration of the law of behavior and give  
the form of the tangent matrix (options FULL_MECA and RIGI_MECA_TANG).  
 
4.2  
Expression of the discretized model  
 
The numerical resolution is carried out by one - method, with 0 1. For all the quantities  
Q, one defines:  
Q = Q + Q 
 
Q = Q + Q 
 
The system of equations discretized is:  
~ 
~e 
= 2µ = 2µ (~ 
~ p 
-) éq  
4.2-1  
E 
= Ktr  
= K tr  
- tr  
 
éq  
4.2-2  
m 
( 
p) 
~ 
p 
3 
~ 
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= p 
 
 
 
 
 
 
 
 
 
 
 
éq 4.2-3  
 
 
2 eq 
p 
 
 
 
 
tr = Pd F 
With p exp m 
éq  
4.2-4  
1 ( 
+ N) 
 
 
 
 
 
 
1  
F 
= A 
 
 
 
 
 
 
 
 
 
éq 4.2-5  
1 (1 - 
) 
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p 
F 
tr  
 
1 
 
 
 
 
 
 
 
 
 
m 
 
p 
m 
-  
 
 
=  
+ D F + A p 
 
- R p - HS 
= éq 4.2-6  
vp 
eq 
1 
1 ( 
N 
) exp 
( 
) 
1 
0 
0 
 
 
 
 
 
 
&  
 
 
T 
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This system is reduced to the solution of only one equation scalar for the unknown factor F 
, knowing  
 
, T 
and quantities - 
Q. It is noted that does not intervene in the algorithm, on the other hand it  
will intervene in the calculation of the coherent tangent matrix. One calculates successively:  
 
 
F 
 
 
= 
- 
 
+ K tr  
 
éq  
4.2-7  
m 
m 
 
- 
 
A1 (1 -  
F) 
p 
is the positive root of the quadratic equation:  
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With  
F 
p 
F 
With p 
p 
 
éq  
4.2-8  
N 
( )2 + ( + 
- 
N 
) 
 
1 
- 
= 
With -  
F 
D 
 
1 (1 
) exp 
1 
(m 1) 0 
/ 
 
 
3  
µ 
 
p 
~ = 1 
- 
- [ 
~ 
~ 
+ 2  
µ 
 
éq  
4.2-9  
~- + 
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µ ~ 
2 
] ( 
) 
 
 
eq  
= ~- 
+ 
 
µ ~ 
2 
 
- 3  
µ 
 
éq  
4.2-10  
eq 
[ 
] 
p 
eq 
The scalar equation for F 
is the equation [éq 4.2-6] = 0.  
vp 
 
Notice 1:  
 
Like F 
is very weak in most of the structure, it would be preferable  
to use  
p 
like principal unknown factor. But in this case it is not possible  
to bring back to a scalar equation, which makes more difficult the use of a method of the type  
Newton. It is also one of the reasons why the equations [éq 1-1], [éq 3.2-6] and  
[éq 4.2-5] were not modified by the introduction of the nucleation of the cavities.  
 
Notice 2:  
 
The equation [éq 3.2-6] can be integrated exactly:  
1 
1 
p 
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- F  
tr = 
ln 
0  
A1 1 - F  
from where:  
1 
 
p 
1 - - 
F  
tr = 
ln 
 
 
With  
1 
1 - F  
As numerical parameter A can be modified in a discontinuous way, the derived form  
1 
[éq 4.2-5] was preserved, including in the calculation of the coherent tangent matrix. If  
the use of parameter A was to be abandoned in a later version, it would be necessary  
1 
to consider the use of the integrated form.  
 
Notice 3:  
 
The integrated form = 0 is used, including in plasticity instead of the relation of  
vp 
F& consistency = 0 which gives p&. The coherent tangent matrix is calculated with this  
form integrated.  
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4.3  
Resolution of the nonlinear scalar equation  
 
 
The resolution of the equation  
(F 
be carried out by an algorithm of Newton on controlled terminals  
vp 
) = 0 
in routine LCROUS. (F 
and its derivative compared to F 
are calculated in the routine  
vp 
) 
RSLPHI called by LCROUS. The initial values of the terminals are:  
 
· limits lower: F = 0 since  
(it was checked as a preliminary that the branch  
vp (0) < 0 
1 
rubber band (negative threshold) is not solution),  
· limits higher: F 
such as  
sought by dichotomy between 0 and  
- 
1 - F  
vp (0) > 0 
2 
1 
- 
- F 
(first value for this research:  
).  
2 
 
The algorithm of Newton begins with the value F = 0. Whatever the value found for F 
one  
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thus note for the continuation that the function (F 
and its derivative compared to F 
are at least  
vp 
) 
1 
- 
- F 
calculated for F = 0 and  
.  
2 
The developments carried out to improve convergence and the robustness of the algorithm are  
described in [bib5].  
 
4.4  
Form of the tangent matrix of the behavior  
 
One gives the form of the tangent matrix here (option FULL_MECA during iterations of  
Newton, option RIGI_MECA_TANG for the first iteration).  
For option RIGI_MECA_TANG, the tangent operator is the same one as that which connects E 
with in  
[éq 3.2-2].  
For option FULL_MECA, the tangent matrix is obtained by linearizing the system of equations which  
governs the law of behavior: [éq 4.2-1] with [éq 4.2-6]. It is thus about a coherent tangent matrix.  
To simplify the expressions, one notes in this paragraph [§4.5]: Q for  
Q, quantities being  
all expressed at the moment T = T - + T 
. The coherent tangent matrix is:  
 
 
has - has 
has 
has 
y 
1 
3 
~ ~ 
~ 
5 
 
1 
 
 
= II + Id has  
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has 
has 
y 
 
3 
 
Id + 
 
2 
+ + 
Id 
4 
+  
5 ~ 
 
4 
-  
1 Id + 
 
 
 
 
3 
 
 
3 
 
3K 
 
K  
éq 4.4-1  
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This operator is calculated in routine RSLJPL. The coefficients are calculated as follows:  
= 3K has + y K (Z + Z p 
)  
éq  
4.4-2  
1 
1 
eq 
7 
2 
= µ has (y + y)  
 
 
 
 
 
 
 
 
 
éq 4.4-3  
2 
1 
3 
1 
2µ 
has 
eq 
= 
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éq 4.4-4  
3 
z5 
= 3µy X has  
 
 
 
 
 
 
 
 
 
 
 
éq 4.4-5  
4 
2 2 
= 3µy has  
 
 
 
 
 
 
 
 
 
 
 
éq 4.4-6  
5 
1 
1 
= 3µK p has 
- has  
 
 
 
 
 
 
 
 
éq 4.4-7  
6 
2 eq 
1 
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3Kz Z (F + A p) 
6 1 
N 
y = - 
 
 
 
 
 
 
 
 
 
éq 4.4-8  
1 
X  
1 eq 
3µ 
y = - 
 
 
 
 
 
 
 
 
 
 
 
éq 4.4-9  
2 
2 
X Z  
1 5 eq 
3Kz Z A p 
 
6 1 
N 
y = - 
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éq 4.4-10  
3 
X  
1 eq 
With Z 
Z  
y = 1 8 + 
9 
1 
 
 
 
 
 
 
 
 
 
éq 4.4-11  
4 
Z 
Z + Z p 
 
1 
7 
2 
A to Z 
Z has 
1 2 8 
9 6 
y = 
- 
 
éq  
4.4-12  
5 
Z 
(Z + Z p 
) 
1 
eq 
7 
2 
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Z = 1+ A  
Pd (F + A p) exp m  
éq  
4.4-13  
1 
1 
1 
N 
 
 
 
 
1  
Z = µ 
3 + R  
 
 
 
 
 
 
 
 
 
 
éq 4.4-14  
2 
vp 
Z = K (F + A p) Z - A 1 
(- F) éq  
4.4-15  
3 
N 
1 
1 
1 
Z = R p 
-  
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éq 4.4-16  
4 
vp 
eq 
Z = + µ 
3 
p 
 
 
 
 
 
 
 
 
 
 
éq 4.4-17  
5 
eq 
 
Z = 
exp m 
D 
 
 
 
 
 
 
 
 
 
 
 
éq 4.4-18  
6 
1 
 
 
 
 
1  
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Z = Z (F + A p)  
 
 
 
 
 
 
 
 
éq 4.4-19  
7 
6 
1 
N 
1 - F 
Z = 
 
 
 
 
 
 
 
 
 
 
 
 
éq 4.4-20  
8 
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1 - F - A p 
N 
With 
Z 
N 
= 
 
 
 
 
 
 
 
 
 
 
 
 
éq 4.4-21  
9 
1 - F - A p 
N 
X = Z Z (Z + Z p 
) + Z Z - X  
éq  
4.4-22  
1 
3 6 
7 
2 
1 2 
1 
3 
X = - Z Z p 
(Z + Z) - Z Z + X p 
éq  
4.4-23  
2 
3 6 
4 
7 
1 4 
1 
3 
2 
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X = A Z Z  
 
 
 
 
 
 
 
 
 
 
 
éq 4.4-24  
3 
N 1 6 
1 
Dr. (p) 
1 dS (p 
/T 
) 
R = 
+ 
 
éq  
4.4-25  
vp 
dp 
T 
 
p 
d& 
 
For the plastic model with nucleation of cavities `ROUSSELIER_PR `and for the model  
viscoplastic without nucleation `ROUSSELIER_VISC `, the corresponding simplified equations are  
obtained starting from the equations above by posing R respectively = Dr. (p)/dp and A = 0.  
vp 
N 
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Summary 
This document describes the viscoelastic behaviors in the case of the ingredients necessary to the 
setting in 
work of non-linear algorithm STAT_NON_LINE described in [R5.03.01]. Data input of all them 
viscoelastic relations of behavior integrated in Aster have in a general way the same form. Only 
the way of introducing the principal data (the function speed of viscous deformation) varies: it is 
presented 
according to the various key words which make it possible the user to choose the relation of behavior 
wished. 
These quantities are calculated by a method of integration semi-implicit. From the initial state, or 
from 
the moment of preceding calculation, one calculates the stress field resulting from an increment of 
deformation. 
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1 Introduction 
The tubes of sheath in Zircaloy of the fuel pin of the power stations REFERENCE MARK present a 
behavior 
strongly viscous mechanics. 
Within the framework of the chaining enters Code_Aster and the code of the fuel pin CYRANO3, two  
non-linear viscoelastic models specific to Zircaloy were introduced into Code_Aster. 
One of them is the model used in Cyrano2 and Cyrano3. Other was developed by the EPRI. 
In addition, a model much more general and correspondent with other materials that Zircaloy has 
also introduced summer. It is about the non-linear viscoelasticity of Lemaître, which can be brought 
back for 
certain particular values of the parameters to a relation of viscoelastic behavior of 
Norton. 
For these three models, one supposes that the material is isotropic. They can be used in 3D, in 
plane deformations (D_PLAN) and into axisymmetric (AXIS). 
One presents in this note the equations constitutive of the models and their establishment in 
Code_Aster. 
2 Relation  
continuous 
One places oneself on the assumption of the small disturbances and one divides the tensor of the 
deformations into 
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an elastic part, a thermal part, a anelastic part (known) and a viscous part.  
equations are then: 
early = E + HT + has + v 
= A (T) E 
3 ~ 
! v = ( 
G eq, T) 2 eq 
with: 
2 
: cumulated viscous deformation! = 
! : 
v! 
3 
v 
~ 
1 
: diverter of the constraints ~ = - Tr () I 
3 
3 
 
~ ~ 
eq: equivalent constraint eq = 
: 
2 
WITH (T): tensor of elasticity 
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Nature of the function G for each relation of 
behavior 
3.1 Relation  
LEMAITRE 
In this case, G is expressed explicitly (is a scalar here): 
N 
( 
1  
1 
1 
G, T) =  
with 
, 
0 
, 
0 N 0 
/ 
 
K 1 m 
 
 
> 
K 
m 
The data of the material characteristics are those provided under the key words factors 
LEMAITRE or LEMAITRE_FO of operator DEFI_MATERIAU. 
 
1 
1 
/LEMAITRE: 
NR:  
N UN_ SUR_ K: UN_ SUR_ M: 
 
 
 
K 
m 
The Young modulus E and the Poisson's ratio are those provided under the key words factors 
ELAS or ELAS_FO. 
3.2 Relations  
ZIRC_CYRA2 and ZIRC_EPRI 
For these relations, G is not expressed explicitly. The behavior is represented by one 
unidimensional creep test, with constant constraint, which utilizes time passed since 
the moment when the constraint is applied. The relation of behavior is defined here by the data of 
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four functions F, G, F, G 
1 
1 2 
2 describing the evolution of the viscous deformation in the course of time: 
v = = f1 (T) g1 (, T) + f2 (T) g2 (, T) 
éq 3.2-1 
The function G is calculated then numerically by eliminating time T in the following way: 
1) for a given triplet (, T), one solves in T the equation [éq 3.2-1] by the method of 
Newton (see [bib2]). An approximation of the solution T is found (, T), 
2) one obtains the value of the function G in (, T) by deriving compared to time the equation 
[éq 3.2-1] (see [bib1]): 
! = ! 
v 
= ( 
G, T) = F “1 (T) g1 (, T) + F” 
 
 
 
 
2 (T) g2 (, T) 
and in substituent in this new equation the value of T (, T) found previously. 
One finds the formulation uniaxial following: 
! = ! 
v  
= ( 
G, T) = F “1 (T (, T) g1 (, T) + F” 
 
 
 
 
 
2 (T (, T) g2 (, T) 
For each of two relations ZIRC_CYRA2 and ZIRC_EPRI, the form of the four functions 
F, G, F, G 
1 
1 2 
2 is preset and the user introduces only some parameters into the file of 
order. 
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Thus, for ZIRC_CYRA2, one a: 
F 
- T 
 
1 (T) = [Cth fab (1 - E 
) +t] Frec 
(0,00266 -0,413) 
2 
2nd 
 
g1 (, T) = 
With ex 
HT 
(p K/(T +, 
273 ) 
15 
3 
 
3 
F 
- K T 
irr 
2 (T) = [Cirr fab (1 - E 
) +t] Frec 
4 
g2 (, T) = A  
3 irr 
with: C = 4450 
HT 
= 4, 
-3 
1 
5 10 H 
To = 9, 
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17 
529 10 
HT 
K = 39000° K 
F 
= , 
-4 
1.816 10 ex 
rec 
(p6400/(T +, 
273 
rec 
) 
15 
C 
= 4000 
irr 
-3 
1 
K 
= 3 10 H 
irr 
Airr = 
- 
1 2 10 22 
, 
Positive parameters fab, R 
T EC. and are those provided under the key word factor ZIRC_CYRA2 of 
operator DEFI_MATERIAU: 
/ZIRC_ CYRA2: (EPSI_ FAB: TEMP_ REHEATED: T  
FLUX_ PHI: 
fab 
rec 
) 
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In the same way, for ZIRC_EPRI, one a: 
F 
5 
With 
1 (T) = T 
With 
G 
A3 
4 
A6 - A7 T+273 15 
1 (, T) = A ( 
1 S ( 
H2 
With) 
/( 
, ) 
R E 
p 
F 
B2 
2 (T) = T 
B 
G 
B3 B4 - B5 T+273 15 
B6 
7 
2 (, T) 
/( 
, ) 
= 1 
B E 
RP (cos max 
 
) 
with: 
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1 
With =, 
8 
1.603 10 
2 
To = 4, 
5 
567 10- 
3 
To = 2,28 
4 
With =, 
0 997 
5 
With =, 
0 77 
6 
With =, 
0 956 
7 
To = 2, 
4 
3 10 
1 
B =, 
-21 
3.296 10 
B2 =, 
0 811 
B3 =, 
0 595 
B4 = 1 352 
, 
5 
B = 22 9 
, 1 
B6 = 1 5 
, 8 
B7 = 2 228 
, 
 
 
Positive parameters, RP and max 0 max  
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2 are those provided under the key word factor  
ZIRC_EPRI of operator DEFI_MATERIAU: 
/ZIRC_ EPRI: (FLUX_ PHI:  
R_ P: R THETA_ MAX: 
p 
max 
 
) 
It will be noted that, for the two relations of behavior and all the functions: 
T is expressed in hours 
T is expressed in °C 
express yourself in MPa 
The document of Young E and the Poisson's ratio are those provided under the key words factors 
ELAS or ELAS_FO. 
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4  
Integration of the relation of behavior 
4.1 Establishment of the scalar equation for the implicit scheme and 
with constant elastic coefficients 
One indicates by early the total deflection at the moment T + T 
and by early the variation of deformation 
total during the step of current time. One calls O the deformation imposed at the moment T + T 
and 
O variation of deformation imposed during the step of current time. 
This imposed deformation results from thermal dilation and the anelastic deformations. One has 
thus: 
O = (T + T) 
[ 
((Tt+t) - rTef) - (T) ((Tt) - rTef)]I3+a (t+t) - has (T) 
where I3 is the tensor identity of order 2 in dimension 3. 
One poses = early - O 
As it is supposed here that µ is constant, one with the following relation between the diverters of 
and: 
~ = 2µ (~ 
 
- v) 
éq 4.1-1 
However, the law of flow is written, an implicit way: 
 
~ 
v 
3  
- 
 
= G eq, + 
, 
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éq 4.1-2 
2  
(v) T 
 
eq 
T 
 
eq 
One thus has, by eliminating v between [éq 4.1-1] and [éq 4.1-2]: 
~ 
 
- 
 
2µ~ = ~ + 3µt G, 
eq + 
 
 
(v), T 
eq 
 
eq 
 
- 
 
G 
 
, 
éq 4.1-3 
eq + 
 
 
 
(v) 
( 
, T  
~ 
eq 
 
 
- + 2µ~) = 1+ 3µ 
~ 
T 
 
 
eq 
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By posing ~e 
~- 
~ 
= + 2µ, one thus has: 
E 
 
- 
 
eq = 3µ T 
G eq, + 
 
 
(v), T  
éq 4.1-4 
eq 
eq 
 
+ 
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However, one has according to [éq 4.1-2]: 
( 
 
- 
 
v) 
= T G, + 
, T 
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eq 
eq 
 
 
(v) eq  
From where: 
eeq = 3µ (v) +  
eq 
eq 
( 
1 
 
E 
v) 
= 
- 
eq 
3 (eq eq) 
µ 
In substituent this last expression in [éq 4.1-4], one a: 
 
1 
 
E 
- 
E 
eq = 3µ T 
 
G eq, + 
, 
3 (eq - eq) T + eq 
 
µ 
 
If one poses, eeq, -, T and T 
being known: 
 
1 
 
F (X) 
µ T 
G X, - 
3 
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3 (E - X), T + X 
E 
= 
+ 
eq 
- eq 
 
µ 
 
one can then calculate the quantity  
- 
eq = (+) as being the solution of the scalar equation: 
eq 
F (X) = 0 where X = eq, convention adopted for the following paragraphs. 
4.2  
Resolution of the scalar equation: principle of routine ZEROF2 
One easily shows that, if the requirements in the paragraph [§3] on the characteristics of 
materials are checked, the function F is strictly increasing and the equation F (X) = 0 admits one 
single solution. 
If E 
E  
eq = 0, then the solution is X = 0. If not, one a: F () 
0 = - eq < 0 
The problem thus consists in finding for a function F unspecified the solution of the equation 
F (X) = 0 knowing that this solution exists, that F () 
0 < 0 and that F is strictly increasing. 
The algorithm adopted in ZEROF2 is as follows: 
· one leaves A = 0 and B = X 
where X 
0 
0 
ap 
ap is an approximation of the solution. If it is 
necessary (i.e. if F (b0) < 0), one brings back oneself by the method of the secants 
year F (bn) - bn F (year) 
(Zn = 
then has 1 = B and B 1 = Z) in one or more iterations with the case 
F (B 
n+ 
N 
n+ 
N 
N) - F (year) 
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where F (has) < 0 and F (b) > 0: 
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F (b1) 
= B has 
1 
0 
0 
b1 
F (b0) 
F () 
0 
(In the case of the figure above, this first sentence was done in an iteration: 
has = B and F (B 
1 
0 
1) > 0 ). 
· one  
calculate  
Nd = left whole (Nmax) or Nmax is the maximum number of iterations that 
one was given. One then solves the equation by the method of the secants while using however 
method of dichotomy with each time N is multiple of Nd: 
1) 
If Nd divides N 
+ B has 
Z 
N 
N 
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N = 
2 
if not 
year F (bn) - bn F (year) 
Zn = 
F (bn) - F (year) 
finsi 
N = N + 1 
if F (Z) >  
if F (Z) < 0 
1 = Z has 
B 1 = B 
n+ 
N 
n+ 
N 
if not 
has 1 = has 
B 1 = Z 
n+ 
N 
n+ 
N 
finsi 
to go into 1) 
if not 
The solution is: X = Z FINE 
N 
finsi 
This second part of the algorithm makes it possible to treat in a reasonable iteration count the cases 
where F is very strongly non-linear, whereas the method of the secants would have converged too much 
slowly. These cases of strong non-linearity meet in particular with the law of LEMAITRE, for 
N 
values of  
large. 
m 
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4.3  
Calculation of the constraint at the end of the step of current time 
According to [éq 4.1-3], if X is the solution of the scalar equation, while posing: 
( 
1 
X 
B X, E 
eq) = 
= E 
 
1 
 
- 
 
G X, + 3 (E 
- X 
eq 
eq 
), T 
 
µ 
 
1 + 3µ T 
 
X 
one a: 
~ = B (X, E E  
eq) ~ 
 
 
éq 4.3-1 
If eeq = 0, which is equivalent according to the scalar equation to X = 0, one prolongs B by 
1 
continuity. For that, one poses ( 
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y X) 
- 
 
(E 
= 
+ 
- X 
G X = G (X, there X, T) 
eq 
) 
µ 
and () 
(). The derivative of G 
3 
express yourself according to the derivative partial of G at the point (X ( 
, there X), T): 
G 
1 G 
G' (X) = 
(X ( 
, there X), T) - 
(X ( 
, there X), T) 
X 
µ 
3 y 
The prolongation of B by continuity gives then: 
( 
1 
B, 
0 ) 
0 = 1+ 3µtG' () 0 
and one has, always if E 
~ 
eq = 0, = 0. 
Once one calculated ~ 
, one obtains by the relation (K is supposed to be constant here): 
= - + = ~ 
1 
+ Tr (- 
 
) + KTr () 
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I 
éq 4.3-2 
3 
 
3 
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4.4 Diagram  
semi-implicit 
With an implicit numerical diagram [éq 4.1-2], in the case, for example, where G does not depend on, 
only intervenes by the calculation of the v value of the constraint at the end of the step of time. It can in 
to result from the important numerical errors if the constraint strongly varies in the course of time (see 
[bib2]). 
To cure that and to improve the resolution, one discretizes the law of flow in way 
semi-implicit: 
 
~ 
~- 
 
 
 
+ 
v 
3  
 
- 
(v) eq 
 
 
T 
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2  
= G + 
- 
, 
, T - 
 
 
éq 4.4-1 
T 
2  
 
2  
+ 
+ 
2 
2 -  
eq 
 
+ 
 
 
 
2 eq 
To transform in the most economic way what was programmed previously (while following 
implicit formulation [éq 4.1-2]), it is enough to divide each member of the equation [éq 4.4-1] by 2: 
 
 
-  
(v) eq 
- 
- 
T 
G + 
, 
, T 
- ~ 
~ 
( 
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2  
+ 
+ 
2 
2 
+ 
v/2) 
 
eq 
3  
 
 
2  
= 
T 
2 
2 
-  
+ 
 
 
 
2 eq 
and to make the same thing with the relation [éq 4.1-1]: 
~ 
~ 
 
 
= 2µ 
- 
v 
2 
 
 
 
2 
2  
It is noted that this system is same form as that consisted the equations [éq 4.1-1] and 
 
 
 
[éq 4.1-2], the data being  
instead of, unknown factors being respectively  
and 
v with 
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2 
2 
2 
G 
place of and v and the function replacing the function G. 
2 
One can thus use the resolution of the paragraphs [§4.1] with [§4.3] as well as the corresponding 
algorithm 
 
while introducing  
and by dividing the function G by 2. It then remains to multiply the results 
2 
 
 
 
 
and 
v 
by 2 to obtain the increments of calculated constraint and viscous deformation 
2  
 
 
 
 
2  
by the semi-implicit diagram (it and the v of the equation [éq 4.4-1]). 
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It will be noticed that the calculation of the tangent operator is not affected by this modification of the 
diagram 
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numerical. Indeed, one has obviously: 
() 
 
 
 
2 
 
= 
 
 
 
2  
4.5 Taking into account of the variation of the elastic coefficients in 
function of the temperature 
One has, if A is the tensor of elasticity: 
= + (-1 
v 
With) 
with: 
(A-1) A-1 (- 
T 
T) (-) A-1 
 
 
 
(- T) - 
= 
+ 
+ 
- 
 
This is translated in the equations of [§4.4] by: 
 
 
-  
(v) 
- 
eq 
- 
T 
G + 
, 
, 
 
T 
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-  
~ 
 
~ 
~ 
 
 
2  
+ 
+ 
2 
2  
+ 
 
 
 
eq 
- 
- 
 
 
 
 
 
2  
2µ + 2µ 
2µ 
~ 
 
3µ 
~- 
T 
 
 
 
 
 
- 
2 - 
+ 
 
 
 
2 = 
2 
 
- 
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- 
 
4µ 
+ 
 
 
 
 
2 eq 
While posing: 
- 
~ 
~ 
2µ 
2µ  
E 
+ 
~ 
 
- 
=  
+  
2µ 
 
- 
4µ 
 
 
 
 
2  
and 
3K- + 3K 
 
- 
Tr (E 
) =  
Tr 
- 
( )+ 
 
3K Tr 
6K 
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2  
one is reduced exactly to the preceding case [§4.4]. 
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5  
Calculation of the tangent operator 
If eeq = 0 and X = 0, one take the tensor of elasticity as tangent operator. 
If not, one obtains this operator by deriving the equation [éq 4.3-1] compared to: 
~ 
~ 
( 
B X, E 
E 
eq) 
~ 
 
~e 
E 
 
= 
= 
+ ( 
B X, eq) 
 
 
 
then while also deriving [éq 4.3-2] compared to: 
~ 
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Tr () ~ 
 
= 
+ K 3 
= 
+ K T 
I 
I I 
 
 
 
 
3 3 
It will be noted that, in these equations, the tensors of order 2 and order 4 are respectively compared to 
vectors and with matrices. I3 is here a tensor of a nature 2, compared to a vector: 
T I3 = (11,1,0, 0,) 
0 
One has moreover: 
(bx, E 
E 
eq) B 
X 
 
= 
X E 
 
+ 
X E 
eq 
 
 
X ( 
B 
, eq)  
 
E (, eq) 
 
 
 
 
eq 
X 
It is thus necessary to calculate. For that, one derives the scalar equation implicitly compared to. 
To simplify, one will omit thereafter in the writing of G and his derivative the parameter T. 
One has then: 
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E 
E 
[ 
X 
G 
eq  
3µt G (X) +] 
1 
+ T 
(X, y) 
eq 
= 
 
y 
 
 
From where: 
G 
1 - T 
 
(X, y) 
X 
y 
E 
eq 
= 
 
1+ µ 
3 
T 
G (X)  
G 
1 - T 
 
(X, y) 
X 
y 
µ 
3 T ~e 
= 
 
 
1+ µ 
3 
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T 
G (X) E 
eq 
with the expression of G' (X) obtained with [§4.3]. 
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One obtains finally the following expression of the tangent operator: 
= K T 
I I 
~ 
~ 
3 
3 + 2µ E T E + B X, E 
With 
 
[ 
(eq)] 
with: 
~ 
1 
With = 
= J6 - 
T 
I I where J is the matrix identity of row 6. 
 
3 
3 
6 
3 
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G 
1 -  
 
, 
3 
 
T 
(X y)  
 
E 
 
= 
y 
( 
 
3 
eq 
- X 
2nd 
1 3 
G 
eq)  
+ µt (X) 
 
 
 
 
 
Note: 
In the case of laws ZIRC_CYRA2 and ZIRC_EPRI, it is checked easily that: 
1 
2 
2 
G (X) = 
 
'  
G G F ' 
1 1 1 - 
' 
' ' 
' 
' 
' ' 
' 
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' 
' 
 
 
 
F F 
1 1 + G G F 
2 2 
2 - 
 
 
 
F F 
2 2 + G G 
1 2 (F F 
1 2 - F F 
1 2 ) 
F G 
1 1+ F G  
2 2 
' 
' ' 
' 
1 
' 
' 
 
+ G G 
2 1 (F F 
1 2 - F F 
1 2 ) - 
(F g11+f g22) 
3µ 
 
G ( 
F '' G 
F 'G 
X, y, T) 
1 1+ 
= 
2 2 
 
F 'G 
1 1+ F '2 g2 
where F, F “F '' F, F” F ' 
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1 
, 
1 
, 
1 2 2, 2 indicate the values of F and F 
1 
2 and of their derivative at the point T (X, y, T) and 
where G, g', G, g' 
1 
1 
2 
2 indicate the values of G and G 
1 
2 and of their derivative compared to at the point 
(X, T) (see [bib1]). 
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Handbook of Reference  
R5.03 booklet: Nonlinear mechanics  
Document: R5.03.09  
 
 
 
 
Nonlinear relations of behavior 1D  
 
 
Summary:  
 
This document describes the quantities calculated by operator STAT_NON_LINE necessary to the 
implementation of  
the quasi static nonlinear algorithm describes in [R5.03.01] in the case of the elastoplastic behaviors 
or  
viscoplastic monodimensional. These behaviors are applicable to the elements of BAR, with  
elements of beam and beams multifibre (direction axial only) and to the elements of concrete 
reinforcement  
(modeling ROASTS).  
 
The behaviors described in this document are:  
 
· the behavior of Von Mises with linear isotropic work hardening: VMIS_ISOT_LINE, and 
unspecified  
VMIS_ISOT_TRAC,  
· the behavior of Von Mises with linear kinematic work hardening: VMIS_CINE_LINE,  
· the behavior of Von Mises with linear, nonsymmetrical work hardening in traction and 
compression:  
with restoration of the center of the elastic range: VMIS_ASYM_LINE. This last was developed  
to model the action of the ground on the Cables with Gas Insulation,  
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· the behavior of PINTO-MENEGOTTO which makes it possible to represent the elastoplastic 
behavior  
uniaxial of the reinforcements of the reinforced concrete. This model translates nonthe linearity of 
the work hardening of the bars  
under cyclic loading and takes into account the Bauschinger effect. It makes it possible of more than 
simulate it  
buckling of the reinforcements in compression. This relation is available in Code_Aster for  
elements of bar and elements of grid,  
· viscoplastic behaviors of the LMA-RC and J.Lemaître, usable by ASSE_COMBU in  
axial direction of the elements of beam.  
 
The resolution is made in all the cases by a method of integration implicit as from the moment of 
calculation  
precedent, one calculates the stress field resulting from an increment of deformation, and the behavior  
tangent which makes it possible to build the tangent matrices.  
 
One describes finally a method, similar to the method due of Borst [R5.0303] allowing to use all them  
behaviors available in 3D in the elements 1D.  
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1  
Use of the relations of behavior 1D  
 
1.1  
Relations of behavior 1D in Code_Aster  
 
The relations treated in this document are:  
 
VMIS_ISOT_LINE:  
Von Mises with symmetrical linear isotropic work hardening  
VMIS_ISOT_TRAC:  
Von Mises with unspecified isotropic work hardening  
GRILLE_ISOT_LINE:  
Von Mises with symmetrical linear isotropic work hardening  
VMIS_CINE_LINE:  
Von Mises with symmetrical linear kinematic work hardening  
GRILLE_CINE_LINE  
Von Mises with symmetrical linear kinematic work hardening  
VMIS_ASYM_LINE:  
Von Mises with asymmetrical linear work hardening and restoration  
PINTO_MENEGOTTO:  
Behavior of the reinforced concrete reinforcements  
GRILLE_PINTO_MEN:  
Behavior of the reinforced concrete reinforcements  
ASSE_COMBU  
Viscoplastic behaviour of the fuel assemblies:  
Model of LEMAITRE or the LMA-RC  
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These relations of behavior (incremental) are given in operator STAT_NON_LINE  
[U4.51.03] under the key word factor COMP_INCR, by the key word RELATION [U4.51.03]. They are 
not  
valid that in small deformations.  
 
One describes for each relation of behavior the calculation of the stress field from one  
increment of deformation given (cf algorithm of Newton [R5.03.01]), the calculation of the nodal forces  
R and of the tangent matrix K nor.  
 
1.2 Notations  
general  
 
All the quantities evaluated at the previous moment are subscripted by -.  
Quantities evaluated at the moment T + T 
are not subscripted.  
The increments are indicated par. One has as follows:  
 
Q = 
( 
Q +) = Q () + Q = Q 
T 
T 
T 
+ Q 
.  
 
 
tensor of the constraints (in 1D, one is interested only in the single component  
nonnull uniaxial).  
~ 
1 
 
deviative operator: ~ 
ij = ij - kk ij.  
3 
( ) 
 
 
equivalent value of Von Mises, equalizes in 1D with the absolute value  
eq 
 
 
increment of deformation.  
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With  
tensor of elasticity, equal in 1D to the Young modulus E  
 
, µ, E, K  
moduli of the isotropic elasticity.  
 
 
thermal dilation coefficient secant.  
 
T  
temperature.  
 
( ) 
 
positive part.  
+  
p  
cumulated plastic deformation  
p 
 
plastic deformation  
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1.3  
Change of variables  

file:///Z|/process/refer/refer/p1790.htm (3 of 28)10/2/2006 2:53:53 PM



file:///Z|/process/refer/refer/p1790.htm

 
Whatever the type D `finite element referring to a law of behavior 1D, it is necessary to carry out one  
change of variables to pass from the elementary quantities (efforts, displacements) to  
constraints and deformations.  
 
1.3.1 Calculation of the deformations (small deformations)  
 
For each finite element of Code_Aster, in STAT_NON_LINE, the total algorithm (Newton)  
provides to the elementary routine, which integrates the behavior, an increase in field in  
displacement.  
 
For the elements of bar, one calculates the deformation (only one axial component) by:  
 
( 
U L) - ( 
U) 
0 
= 
,  
L 
 
and the increase in deformation by:  
 
( 
U L) - ( 
U) 
0 
= 
,  
L 
 
For the elements of grid (modelings ROASTS and GRILLE_MEMBRANE), one calculates the 
deformation  
membrane as for the elements of hulls DKT. Simply, only one direction corresponds  
physically with the directions of reinforcements. One thus finds oneself in the presence of a behavior 1D.  
 
In addition, in small deformations, for all the models described in this document, one writes for  
any moment the partition of the deformations in the form of an elastic contribution, dilation  
thermics, and of plastic deformation:  
 
(T) 
= E (T) + HT (T) + p (T), with 
E ( 
1 
T) = 
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- 
To 1 (T (T) (T) = 
T  
E (T) () 
HT (T) = (T (T) (T (T) - Tref) Id 
 
1.3.2 Calculation of the generalized efforts (forced integrated)  
 
For integration of the behavior 1D, it is necessary to integrate the component of constraints obtained, 
for  
to provide to the total algorithm (Newton) a vector containing the generalized efforts.  
 
For the elements of bar, one calculates the effort (uniform in the element, by supposing that the 
section  
is constant) by:  
NR = S.,  
 
and the vector forces nodal equivalent (as for the elements of beam, [R3.08.01]) by:  
 
- NR  
F = NR  
 
 
 
For the elements of GRID, one calculates the efforts as for the elements of hulls DKT (efforts  
membrane) by integration of the constraints in the thickness (only one layer and only one point  
of integration).  
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: 5/36  
 
 
2  
Relation of behavior of Von Mises with work hardening  
isotropic linear  
: VMIS_ISOT_LINE or unspecified  
:  
VMIS_ISOT_TRAC  
 
2.1  
Equations of model VMIS_ISOT_LINE  
 
They are the restriction of the behavior 3D [R5.03.02] on the uniaxial case:  
 
 
~ 
p 
3 
 
 
& = 
p& 
= p& 
 
2 
eq 
 
 
= - p 
- HT 
 
E 
 
eq - R (p) = - R (p) 
 
0 
p& = 0 if eq - R (p) < 0 
 
p& 0 if eq - R (p) 
 
= 0 
with:  
 
 
·  
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&p:  
speed of plastic deformation,  
·  
p:  
cumulated plastic deformation,  
 
·  
HT = (T - 
thermal deformation,  
Re 
T F):  
E.E 
 
·  
R (p) 
T 
= 
. p +:  
E - E 
y 
function of linear work hardening isotropic, or R (p) refines by  
T 
pieces, deduced from the traction diagram.  
 
In case VMIS_ISOT_LINE, the data of the material characteristics are those provided  
under the key word factor ECRO_LINE or ECRO_LINE_FO of operator DEFI_MATERIAU 
[U4.43.01].  
 
/ECRO_LINE = (D_SIGM_EPSI = AND, SY = y)  
/ECRO_LINE_FO = (D_SIGM_EPSI = AND, SY = y)  
 
In case VMIS_ISOT_TRAC, the data of the characteristics of materials are provided under  
key word factor TRACTION of operator DEFI_MATERIAU [U4.43.01].  
 
TRACTION = _F (SIGM = courbe_traction)  
 
courbe_traction represents the traction diagram, point by point. The first point allows  
to define the elastic limit y and the Young modulus E [R5.03.02].  
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ECRO_LINE_FO corresponds if AND and y depend on the temperature and are then calculated  
for the temperature of the point of current Gauss. The Young modulus E and the Poisson's ratio  
are those provided under the key words factors ELAS or ELAS_FO. In this case the traction diagram 
is  
the following one:  
 
L 
 
 
E 
 
T 
 
y 
 
 
 
 
 
E  
L 
 
 
 
 
 
 
y 
L = E L 
if L < 
 
E 
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.  
y  
 
 
y 
L = y + LTE - if L  
 
 
E  
E 
 
 
When the criterion is reached one a:  
 
 
 
L  
L - R (p) 
= 0, therefore L - R L - 
 
 
E = 0, from where:  
E E 
R (p) 
T 
= 
p + = H. p +  
E - E 
y 
y 
T 
 
In the case of a traction diagram, the step is identical to [R5.03.01].  
 
2.2  
Integration of relation VMIS_ISOT_LINE  
 
By direct implicit discretization of the relations of behavior, a way similar to integration 3D  
[R5.03.02] one obtains:  
 
- 
+ - R (- 
p +p) 0 
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- 
 
 
HT 
E 
+ 
E (-) - (- 
+ )+ 
- 
= Ep 
 
- 
- 
E 
+ 
 
 
p  
- 
0 if + = R (- 
p +p) 
 
p = 
- 
0 if + < R (- 
p +p) 
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Two cases arise:  
 
HT 
 
·  
- 
 
 
R (- 
+ 
< 
p + p) in this case p = 0 is = ( 
- ) 
- 
+ 
 
- 
 
 
thus  
- 
 
+ ( 
- HT 
) <R (- 
p 
 
- 
), 
 
·  
- 
 
 
R (- 
+ 
= 
p + p) in this case p 0  
- 
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thus  
+ ( 
- HT 
) R (- 
p  
- 
). 
 
 
One deduces the algorithm from it from resolution:  
- 
let us pose E 
= 
+ 
 
- 
( 
HT 
 
-  
) 
 
if E R (p) then 
p 
 
= 0 and = (- HT)  
if E > R (p) then it is necessary to solve:  
- 
E 
- 
+  
 
 
= +  
+ E p 
- 
 
+  
 
 
 
 
E 
E p 
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= 1 + 
 
- 
 
 
- 
( + )  
 
+  
 
 
thus by taking the absolute value:  
 
 
 
 
E 
E p 
= + 
- 
1 
 
 
 
 
+  
 
+ 
- 
maybe, while using - 
 
 
R (- 
+ 
= 
p + p).  
 
E 
= R (p 
 
+ p 
) +E p 
 
 
One thus deduces some:  
E 
- (+ HP 
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y 
) 
· in the case of a linear work hardening: p 
= 
 
E + H 
· and in the case of an unspecified work hardening, the curve R (p) being refined per pieces, one  
solves the equation out of p directly 
:  
p 
+ R (p 
E 
+ ) 
E 
p = in the same way that in  
3D [R5.03.02].  
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Let us notice in the passing that:  
E 
 
= 
 
E 
R (p) 
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then  
E 
E 
= (- +  
) = 
R (p) = 
 
E  
E p 
1 + R (p) 
 
Moreover, the option  
N 
FULL_MECA makes it possible to calculate the tangent matrix Ki with each iteration.  
The tangent operator who is used for building it is calculated directly on the preceding discretized 
system.  
One obtains directly:  
 
E 
- 
 
if > R (p) 
= AND 
 
 
if not 
= E 
 
Note:  
 
The option  
0 
RIGI_MECA_TANG which makes it possible to calculate the tangent matrix K I used in  
phase of prediction of the algorithm of Newton, takes account of the indicator of plasticity with  
the previous moment:  
 
 
· if = 1 
= T 
E  
 
 
· if = 0 
= E  
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2.3 Variables  
interns  
 
The relation of behavior VMIS_ISOT_LINE produces two internal variables: p and.  
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3  
Relation of behavior of Von Mises, work hardening  
linear kinematics 1D: VMIS_CINE_LINE  
 
3.1  
Equations of model VMIS_CINE_LINE  
 
They are the restriction of the behavior 3D ([R5.03.02] and [R5.03.16]) on the uniaxial case.  
behavior 3D is written:  
 
= K (- p - HT) with K operator of elasticity  
X 
p 
= C  
( 
3 ~ ~ 
F, R, X) = (~ - X) -  
with 
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With 
= 
WITH A 
eq 
y 
eq 
 
2 
F 
~ 
p 
3 
- X 
& = &p 
= &p 
 
 
 
2 
(~ - X) eq 
if 
 
F<0 
&p = 0 
 
 
if 
F 
 
= 0 
&p 0 
 
In the uniaxial case, the tensors are written:  
 
2 3 
 
~ 
3 
= D 
X = 
D 
p 
X 
= p D 
with 
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D =  
- 
 
 
1 3 
 
2 
 
 
- 1  
3 
 
As long as the loading is monotonous, the following relations immediately are obtained:  
 
3 
3 
E.E 
p 
p 
=  
X = C p 
 
= C p 
+  
T 
y = F () = y + 
p  
2 
2 
E - AND 
 
2 EET 
EE 
3 
C is determined by: C = 
. One poses: H 
T 
= 
= C  
3rd - AND 
E - AND 
2 
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The relation of behavior 1D is written then:  
 
p 
- X 
& = p& 
 
- X 
 
= (- HT 
- p 
) 
E 
 
3 
X = 
p 
C = 
p 
H 
 
2 
- X - y 0 
 
p& = 0 if - X - y< 0 
 
p& 0 if - X - y = 0  
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The data of the material characteristics are those provided under the key word factor  
ECRO_LINE or ECRO_LINE_FO of operator DEFI_MATERIAU [U4.43.01]:  
 
/ECRO_LINE = (D_SIGM_EPSI = AND, SY = y)  
/ECRO_LINE_FO = (D_SIGM_EPSI = AND, SY = y)  
 
3.2  
Integration of relation VMIS_CINE_LINE  
 
By direct implicit discretization of the relations of behavior, a way similar to integration 3D  
([R5.03.02] and [R5.03.16]) one obtains:  
 
 
 
 
- 
+ - - 
X - X - y 0 
 
E p 
= E (- HT 
)- ( - 
+) E - 
 
+ 
 
- 
 
E 
 
- 
+ - - 
X - X 
p 
= p 
 
 
- 
+ - - 
X - X 
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- 
X 
X 
 
- 
= p 
 
 
- 
H 
H 
 
- 
- 
p 0 if + - X - X = y 
 
- 
- 
p = 0 if + - X - X < y 
 
with  
HT 
= (T - 
- 
- 
ref. 
T 
) - (T - ref. 
T 
)  
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Two cases arise:  
 
·  
- 
 
- 
+ - X - X < y in this case p = 0 is  
= (- HT 
) E - H - 
+ 
- 
X  
- 
- 
E 
H 
E 
H 
thus  
- 
- 
 
- X 
+ - HT 
 
< R p  
- 
( 
) ( - 
- 
), 
E 
H 
 
· if not p 0.  
 

file:///Z|/process/refer/refer/p1790.htm (22 of 28)10/2/2006 2:53:53 PM



file:///Z|/process/refer/refer/p1790.htm

E 
- 
H 
To simplify the writings one will pose: E 
= 
- 
X - + E 
.  
- 
- 
( 
HT 
 
-  
 
) 
E 
H 
 
One deduces the algorithm from it from resolution:  
 
E 
H 
HT 
E 
· if  
y then p =, 
0 
- 
X = X 
, = E -  
+ 
 
- 
( 
) 
- . 
- 
H 
E 
· if not it is necessary to solve:  
 
 
p 
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HT 
E 
- 
- H 
E = E (-) - = - (+) + X 
- 
 
H 
 
- 
+ - - 
X - X 
p 
- X 
= p 
= p 
 
- 
+ - - 
X - X 
- X 
 
 
H 
- 
p 
 
X - 
X =  
H  
- 
 
H 
- 
+ - - 
X - X - y = 0 
 
 
 
 
 
H 
Let us notice that:  
- 
p 
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X = X - H  
 
. One deduces then from the first equation:  
H - 
E 
p 
= - X + (E + H)  
 
 
One thus obtains, while eliminating - X from the second equation:  
 
p 
E 
p 
= ( 
 
E + H) p + y 
 
By replacing p in the relation between E and - X, one obtains:  
 
 
 
 
- 
y 
X = E  
 
 
(E + H) p 
+ y  
 
By taking the absolute value of the two members of the preceding equation, one finds p:  
 
(E H) p 
E 
+ 
+ y =  
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Once p determined, one can calculate:  
 
E 
p 
 
= p 
 
E 
- 
E 
- 
HX 
 
X = X + X 
= 
+ H p 
 
- 
 
E 
H 
 
 
- X 
E 
and while using: = 
, one obtains directly:  
E 
y 
 
E 
= y 
+ X  
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E 
 
Moreover, the option  
N 
FULL_MECA makes it possible to calculate the tangent matrix K I with each iteration.  
The tangent operator who is used for building it is calculated directly on the preceding discretized 
system.  
One obtains directly:  
 
E 
- 
 
if > R (p) 
= AND 
 
 
if not 
= E 
 
The option  
0 
RIGI_MECA_TANG which makes it possible to calculate the tangent matrix K I used in the phase of  
prediction of the algorithm of Newton is obtained using the indicator of plasticity - 
moment  
precedent:  
 
 
· if - 
=1 then 
= T 
E 
 
 
 
· if - 
= 0 then 
= E 
 
 
 
 
3.3 Variables  
interns  
 
The relation of behavior VMIS_CINE_LINE produces two internal variables: X and.  
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4  
Relation of behavior of Von Mises with work hardening  
linear asymmetrical: VMIS_ASYM_LINE  
 
4.1  
Equations of model VMIS_ASYM_LINE  
 
4.1.1 Behavior  
asymmetrical  
in traction and compression  
 
It is a behavior uncoupled in traction and compression, built starting from VMIS_ASYM_LINE,  
but with elastic limits and different modules of work hardening in traction and in  
compression. We adopt an index T for traction and C for compression. The behavior  
rubber band in traction and compression identical and is characterized by the same Young modulus. 
There is  
two fields of isotropic work hardening defined by RT and RC. The two fields are independent one  
other.  
 
YT  
elastic limit in traction. In absolute value.  
YC  
elastic limit in compression. In absolute value.  
Pt  
Variable interns in traction. Algebraic value.  
PC  
Variable interns in compression. Algebraic value.  
ETT  
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Slope of work hardening in traction.  
Etc  
Slope D `work hardening in compression.  
 
The equations of the model of behavior are:  
 
 
· 
678 
&p = & - - 
 
1 
- &th 
 
&p = &p p 
C + & 
T 
 
p 
 
&C = &pC 
 
 
p 
 
&T = &pT 
 
 
- T 
R (Pt) 0 
 
 
- - RC (PC) 0 
 
with 
 
&pC = 0 if - - C 
R (PC) < 
 
0 
 
&pC 0 if - = C 
R (PC) 
 
 
&pT = 0 if - T 
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R 
0 
 
(Pt) < 
 
&pT 0 if = RT (Pt) 
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& p: speed of plastic deformation in compression, p 
C 
&: 
T speed of plastic deformation in traction, 
HT: thermal deformation of origin: HT = (T - Re 
T F). 
 
It is noticed that one cannot have simultaneously plasticization in traction and compression: that is to 
say  
&pC = 0, either &pT = 0, or both is null.  
 
The data of the material characteristics are those provided under the key word factor  
ECRO_ASYM_LINE of operator DEFI_MATERIAU [U4.43.01].  
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ECRO_ASYM_LINE = _F (DT_SIGM_EPSI = HT, ETT,  
SY_T = yT,  
DC_SIGM_EPSI = HC, ETC,  
SY_C = yC,)  
 
The Young modulus E is provided under the key words factors ELAS or ELAS_FO.  
 
One calculates the functions of work hardening by:  
 
E 
E 
R (p) 
TT 
= 
p +  
= H. p 
T 
+  
E - E 
T 
yT 
T 
T 
yT 
TT 
E 
E 
R (p) 
TC 
= 
p +  
= H. p 
C 
+  
E - E 
C 
yC 
C 
C 
yC 
TC 
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4.2  
Integration of behavior VMIS_ASYM_LINE  
 
By direct implicit discretization of the asymmetrical relation of behavior, a way similar to  
the preceding one, one obtains:  
 
 
 
 
p = p 
p 
T + C 
 
p 
HT 
 
= - - E 
 
 
- +  
Pt = Pt 
 
- +  
(- +  
 
)- 
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- 
- 
T 
R (Pt + Pt) 0 
p 0 
if  
- 
- 
- 
T 
(+) - TR (Pt + Pt) = 0 
 
p = 0 
if  
- 
- 
- 
T 
 
(+) - TR (Pt + Pt) < 0 
 
 
 
- +  
PC = PC 
 
- +  
 
- ( - + ) - 
- 
- 
C 
R (PC + PC) 0 
 
p 
0 
if - (- +  
) - RC (- 
PC + 
- 
PC) 
C  
= 0 
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PC = 0 
if - (- +  
) - RC (- 
PC + 
- 
PC) < 0 
 
 
 
 
Integration is similar to that of VMIS_ISOT_LINE for each direction of traction and of  
compression. It should well be seen that the centers of the fields of elasticity are data (calculated  
explicitly with the preceding step) for the incremental problem to solve.  
 
Four cases arise:  
 
· - HT > 0:  
E is posed 
- 
HT 
T =  
+ E (  
-  
 
)  
 
-  
E 
E 
T < 
- 
T 
R (Pt) in this case Pt = 0 thus = T and = E  
- if not  
:  
E 
- 
T - (+ H p 
yT 
T T) 
p = 
, p 
T 
= 0  
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E 
E 
T 
 
= 
= T R p 
E p 
 
 
E 
T (T) 
T 
 
1 + 
T 
T 
R (Pt) 
 
= ETT  
 
· - HT < 0  
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E is posed 
- 
HT 
C =  
+ E (  
-  
 
)  
 
-  
- E < 
E 
C 
R (- 
C 
PC) in this case PC = 0 thus = C and = E  
- if not  
:  
E 
- 
C - (+ H p 
yC 
C C) 
p = 
, p 
C 
= 0  
E + H 
T 
C 
E 
E 
C 
 
= 
= C R p 
E p 
 
 
E 
C (C) 
C 
 
1 + 
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C 
C 
R (PC) 
 
= etc  
 
Note:  
 
The initial tangent matrix (option RIGI_MECA_TANG) is taken equal to the elastic matrix.  
 
 
4.3 Variables  
interns  
 
The relation of behavior VMIS_ASYM_LINE produces 2 internal variables: PC Pt.  
 
It is not usable for the elements of grid  
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5 Model  
of  
PINTO_MENEGOTTO  
 
The model presented in this chapter describes the behavior 1D reinforcing steels of the concrete  
armed [bib1]. The law constitutive of these steels is made up of two distinct parts: the loading  
monotonous composed of three successive zones (linear elasticity, plastic stage and work hardening) 
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and  
the cyclic loading whose analytical formulation was proposed by A. Giuffré and P. Pinto in 1973  
[bib2] and was then developed by Mr. Menegotto [bib3].  
 
During cycles, the way of loading between two points of inversion (semi-cycle) is described by  
an analytical curve of expression of the type = F (). The interest of this formulation is that the same one  
equation controls the discharge and load diagrams (see for example the figures [Figure 5.1.1-a] and  
[Figure 5.1.1-b]). The parameters attached to the function F are reactualized after each inversion  
of loading. The reactualization of these parameters depends on the way carried out in the plastic zone  
during the preceding semi-cycle.  
 
In addition, this model can treat the inelastic buckling of the bars (G. Monti and C. Nuti [bib4]).  
The introduction of new parameters into the equation of the curves then makes it possible to simulate  
the softening of the answer stress-strain in compression.  
 
 
5.1  
Formulation of the model  
 
5.1.1 Loading  
monotonous  
 
This chapter describes the first loading which the bar undergoes, i.e. the part preceding activation  
curve of Giuffré [Figure 5.1.1-a].  
The monotonous traction diagram of steel is typically described by the three successive zones  
following:  
 
· The linear elasticity, defined by the Young modulus elastic Y.E and limit.  
 
=  
E (zone 1, [Figure 5.1.1-a])  
 
· The plastic stage, ranging between the elastic strain limits 0y and the deformation  
of work hardening H, higher plate in deformation limits. During the stage  
constraint remains constant.  
 
= 0y (zone 2, [Figure 5.1.1-a])  
 
· Work hardening, describing the traction diagram up to the ultimate point of constraint and of  
deformation, (U, U). This part is represented by a polynomial of the fourth degree:  
 
 
4 
0 
U -  
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= - ( - ) 
 
U 
U 
y 
(zone 2, [Figure 5.1.1-a])  
U - H  
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The slope of work hardening (used thereafter, for the cyclic behavior) is defined here by:  
 
0 
U - y 
Eh =  
0. It is the average slope of zones 2 and 3 of the following figure.  
U - y 
 
U 
0y 
zone 3 
zone 2 
zone 1 
0 
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y 
H 
U 
 
Appear 5.1.1-a  
 
 
5.1.2 Loading  
cyclic  
 
One places oneself now if the bar undergoes a consecutive discharge with the first  
loading. Two cases arise then:  
 
· the starting position is located in the elastic zone. The discharge remains in this case  
rubber band,  
· the starting position is located in the plastic zone (0y). The answer is first of all  
rubber band, then, for a certain value of the deformation, the discharge becomes nonlinear  
[Figure 5.1.2-a] (this is true for a discharge starting from zone 2 or of zone 3).  
 
The relation which the deformation must satisfy so that the curve of Giuffré is activated is as follows:  
 
0 
max - > y, with  
. 
3 0  
max maximum deformation reached in load.  
 
As soon as one crossed this limit with the first discharge, it is the cyclic behavior (curve of  
Giuffré [Figure 5.1.2-a]) which is activated.  
Handbook of Reference  
R5.03 booklet: Nonlinear mechanics  
HT-66/05/002/A  

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Relations of behavior 1D  
 
 
Date:  
02/05/05  
Author (S):  

file:///Z|/process/refer/refer/p1800.htm (13 of 21)10/2/2006 2:53:54 PM



file:///Z|/process/refer/refer/p1800.htm

J.M. PROIX, B. QUINNEZ, C. CHAVANT Key  
:  
R5.03.09-B Page  
: 19/36  
 
 
 
discharge elastic 
0y 
3 
 
max 
nonlinear discharge: 
activation of the curve of 
Giuffré 
 
Appear 5.1.2-a  
 
 
5.1.2.1 Presentation of the nth semi-cycle  
 
The shape of the curve of the nth semi-cycle depends on the plastic excursion carried out during  
preceding semi-cycle. The following quantities are defined [5.1.2.1 Figure - has]:  
 
ny: Elastic limit of the nth semi-cycle. (Calculation clarified with [§ 5.1.2.2])  
n-1 
R 
: Constraint at the last point of inversion (forced maximum attack with the n-1ième semi-cycle).  
n-1 
R 
: Deformation at the last point of inversion (maximum deformation attack with the n-1ième semi-
cycle).  
N - n-1 
N 
N 
N 
N 
y 
R 
-1 
y: Deformation corresponding to y: y = R 
+ 
 
E 
F (T): Plastic excursion of the nth cycle  
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n-1 
p 
 
n-1 
n-1 
(N, 1 n-1 
( , 
R 
) 
R 
n-1 
y) 
y 
n-1 
Eh 
n+1 
 
N 
Eh 
(N, N 
y  
) 
y 
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(N, N 
R) 
R 
Np 
 
Appear 5.1.2.1 - has  
 
5.1.2.2 Law  
of work hardening  
 
The model is based on a kinematic law of work hardening. The branches of the semi-cycles are  
included/understood between two asymptotes of slope Eh (asymptotic slope of work hardening).  
N is thus determined 
N 
n-1 
n-1 
n-1 
y in the following way: y = y 
. 
( 
sign - p) +  
 
where the function  
( 
sign X) = 1 if x<0 and 1 if x>0 and where n-1 is the plastic increment of constraint of the semi-cycle  
precedent [5.1.2.1 Figure - has] which is defined by: n-1 
N 
E 
- 
= 
1 
H p 
.  
For each semi-cycle one thus determines N 
n-1 
n-1 
N 
y according to y 
and p, one deduces y from them, then  
the following semi-cycle is calculated (by the law of behavior below). Maximum deformation (in  
absolute value) attack before changing direction will make it possible to calculate the plastic 
excursion  
N 
N 
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Analytical 5.1.2.3 Description of the curves = F ()  
 
The expression chosen in the model to follow the curves of loading is as follows:  
 
 
 
 
1 - 
 
B 
 
* = B * + 
1 R  
 
 
( 
* 
1 + ( ) 
/ 
* R)  
 
E 
With B 
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H 
= 
report/ratio of the slope of work hardening on the slope of elasticity.  
E 
 
- n-1 
* = 
R 
N 
N 1 
y - - 
R 
- n-1 
* = 
R 
 
N 
N 1 
y - - 
R 
n-1 
N 
p 
1 
p 
= N N 1 
y - - 
R 
 
The size R makes it possible to describe the pace of the curve of the branches. It is a function of the 
way  
plastic carried out during the preceding semi-cycle:  
 
A1. 
R () = R0 - G () where G () = 
 
A2 +  
 
Parameters R, A and A 
0 
1 
2 are constants without unit depending on the mechanical properties  
steel. Their values are obtained in experiments and Menegotto [bib3] proposes:  
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R = 20 0 
. 
To = 18 5 
. 
With 
0 
1 
2 = 0 1 
. 5  
 
5.1.3 Case of inelastic buckling  
 
Monti and Nuti [bib4] show that for a relationship between the length L and the diameter D of the bar  
lower than 5, the curve of compression is identical to that of traction. On the other hand, when L/D > 
5  
a buckling of the bar is observed. In this case the curve of compression in the plastic zone  
has a lenitive behavior. The model available in Code_Aster makes it possible to describe  
also this phenomenon.  
 
The following variables are defined [Figure 5.1.3-a]:  
 
E0: Initial elastic Young modulus (correspondent with E without buckling).  
bc: Report/ratio of the slope of work hardening on the elastic slope in compression.  
LT: Report/ratio of the slope of work hardening on the elastic slope in traction (refill after 
compression  
with buckling).  
Er: Modulus Young reduced in traction (slope of the curve of refill after compression with  
buckling).  
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S 
E 
 
B × E 
C 
5 
ny 
B × E 
E 
 
R 
S 
 
Appear 5.1.3-a  
 
5.1.3.1 Compression  
 
One introduces a negative slope B 
E 
C × 
, where bc is defined by:  
 
 
E 
 
B 
 
'0 
 
 
B = has (5 0 
. - 
 
- 
L/D) E 
y 
 
C 
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0y 
With  
N 
= 4 0 
. 
and '= max 
the greatest plastic way carried out during  
L/D 
(p) 
loading.  
 
It is necessary then, as in the model without buckling, to determine ny. The method is identical, but  
one adds a complementary constraint *s in order to position the curve correctly compared to  
the asymptote [Figure 5.1.3-a].  
 
- 
 
B 
* 
C 
B 
. 
110 - L/D 
S = S B E 
where S is given by: S = 
 
Cl D 
1 - C 
B 
( 
10th 
- .1) 0 
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And one thus has: N 
N 
* 
y = (y) 
+  
without buckling 
S 
N - n-1 
R 
This modifies also the value of N 
N 
y 
-1 
y = R 
+ 
 
E 
 
5.1.3.2 Traction  
 
At the time of the semi-cycle in traction according to one adopts a reduced Young modulus defines by:  
 
 
- has 2 
 
E = E has 
6 
0 
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5 + (10 
. - a5) ( 
p) 
E 
with a5 10 
. 
(50. L/D 
R 
) 
 
 
 
 
= 
+ 
- 
/7 5 
.  
 
Note:  
 
The parameters has, C and a6 is constants (without unit) depend on the properties  
mechanics of steel and is in experiments given. Values adopted by  
Monti and Nuti [bib4] are:  
has = 0 006 
. 
C = 0 500 
. 
= 620 0 have 
6 
.  
 
5.2  
Establishment in Code_Aster  
 
This model is accessible in Code_Aster starting from key word COMP_INCR  
(RELATION = “PINTO_MENEGOTTO”) or (RELATION = “GRILLE_PINTO_MEN”) of the order  
STAT_NON_LINE [U4.51.03]. The whole of the parameters of the model are given via the order  
DEFI_MATERIAU (key word factor PINTO_MENEGOTTO) [U4.43.01]. The parameters here are 
indexed  
intervening in the model:  
 
Parameter of the model  
Intervenes in  
value adopted by defect in Aster  
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0  
First loading  
_  
y 
 
First loading  
_  
U 
 
First loading  
_  
U 
 
First loading  
_  
H 
E 
Cycles  
If no value entered one takes  
B 
H 
= 
 
computed value with the first loading  
E 
R  
Cycles 20  
0 
has  
Cycles 18.5  
1 
has  
Cycles 0.15  
2 
L/D  
Cycles with buckling  
4 (to be by defect except buckling)  
(if L/D >5)  
has  
Buckling 620  
6 
C Buckling  
0.5  
flambage has  
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The parameters R, has, has, has, C and has 
0 
1 
2 
6 
depend on the mechanical properties of steel and are  
determined in experiments. The values adopted by defect in Code_Aster are those  
proposed in the literature [bib1].  
E 
One gives in [Figure 5.2-a] a comparison of the model following the value of B 
H 
= 
for two  
E 
values: B = 0 0 
. 1 and B = 0 001 
. 
.  
 
EDF 
Mechanical department and Digital Models 
Electricity 
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One gives in [Figure 5.2-b] a comparison of the model without buckling and the model and buckling.  
 
EDF 
Mechanical department and Digital Models 
Electricity 
CYCLIC TEST TRACTION AND COMPRESSION ON A BAR (MECA_BARRE) 
from France 
X 
4 
10 
10 
MODEL PINTO-MENEGOTTO 
COMPARISON OF THE MODEL WITHOUT BUCKLING 
AND OF THE MODEL WITH BUCKLING. 
5 
) 
NR 
( 
BADLY 
NOR 
T 
0 
TOKEN ENTRY WITH BUCKLING 
FFOR 
TOKEN ENTRY WITHOUT BUCKLING 
E 
-5 
-2 
-1 
0 
1 
2 
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3 
4x10-3 
THERMAL DEFORMATION (- ALPHA*DT) 
agraf 29/06/98 (c) EDF/DER 1992-1998 
 
Appear 5.2-b  
 
5.3 Variables  
interns  
 
They 8, and are defined by:  
 
V1 = 
n-1 
R 
V 2 = 
N 
R 
V 3 = 
N 
R 
V 4 = 
- 
+ - (T - - 
T) 
V 5 = - (T - - 
T) 
 
V 6 = cycl 
= 0 
comporteme 
 
 
 
if 
 
 
cyclic 
 
NT 
activ 
 
not 
 
is 
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é 
= 1 
opposite 
 
case 
 
 
 
in 
V 7 =  
= 0 
flax 
 
evolution 
 
one 
 
with 
 
corresponds 
 
time 
 
of 
 
not 
 
 
 
if 
éaire 
= 1 
(indicateu 
 
opposite 
 
case 
 
 
 
in 
R 
plasticity 
 
of 
 
) 
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6  
Relation of behavior of LEMAITRE (ASSE_COMBU)  
 
The model presented in this chapter describes the nonlinear viscoelastic behavior 1D of  
J. Lemaître developed for the modeling of the fuel assemblies, and applicable to  
elements of beams, in the axial direction, with behavior ASSE_COMBU [bib6].  
 
6.1  
Formulation of the model  
 
The equations are as follows:  
 
 
vp 
 
 
& = p&  
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N 
 
 
Q  
 
- 
 
 
 
& 
RT  
 
 
p& = 
. E 
. 
 
 
+ L 
1 1 
Q 
1 
 
 
 
 
 
K 
, N >, 
0 
, 
, 
0 
0 
 
 
 
 
0 
 
 
m 
 
 
p  
K m 
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R 
 
 
}· 
 
vp 
G 
HT 
= & - & - & -  
 
& 
E 
 
The coefficients are provided under key word LEMAITRE of DEFI_MATERIAU and  
& is flow  
neutronics (derivative of the fluence compared to time).  
 
G 
(T) = (At + b). ((X, y, Z) S 
).  
 
Note:  
 
20 
2  
· The neutron flux & (X, y, Z) is expressed obligatorily into 10 n/cm /s. This implies  
that the units of the other sizes are fixed:  
-  
E, K, are in MPa,  
-  
times are in seconds,  
-  
co-ordinates in mm  
-  
Q 
T, 
in Kelvin  
R 
 
Two types of integrations are available according to the value of key word PARM_THETA:  
 
· purely implicit integration, if PARM_THETA =1.0 (default value)  
· implicit semi integration, if PARM_THETA =0.5  
 
Only these two values are authorized.  
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6.2 Integration  
implicit  
 
By direct implicit discretization of the relations of behavior, one obtains:  
 
 
- 
vp 
+  
=p 
 
- 
+  
 
 
 
N 
- 
 
Q 
 
 
+  
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RT  
- 
- 
p= 
. E 
( - ) 
 
+ L 
 
.  
 
1  
 
 
 
T 
K0t 
 
 
( - 
p + p) m  
 
 
 
 
 
 
 
- 
 
- 
= - vp 
- G 
- HT 
 
 
 
- 
E 
E 
with 
HT 
- 
- 
= T 
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() (T - Tref) - T 
( 
) (T - Tref) 
 
S 
G 
= ( + 
At + b) () S 
. - (- ). ( - 
At + b) 
 
 
 
 
 
One can still bring back oneself there to only one nonlinear scalar equation out of p, while posing:  
 
E 
E 
= 
- + E 
- 
(- G 
- HT 
)  
E 
then the system is reduced to:  
 
 
 
N 
 
 
Q  
 
1 
 
 
 
- 
 
RT  
 
 
p= 
. E 
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+ L.  
 
1  
 
 
 
T 
 
 
K 
- 
K0t 
 
 
m  
 
(p + p) 
 
 
 
 
 
 
 
 
E 
vp 
 
 
 
E p  
= +  
E = +  
E p 
= 1+ 
 
 
 
 
 
 
 
 
 
and by taking the absolute value of the two members of the last equation, one obtains:  
E = + E p 
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what results in solving the equation:  
 
N 
 
E 
 
- E p 
Q 
 
 
 
 
1 
 
- 
 
 
 
 
 
p 
= 
. E RT 
+ L. T 
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K 
1 
 
0 
( 
 
 
 
 
- 
 
 
p + p 
) 
K 
T 
m  
 
 
 
 
Once this solved equation (by a method of search for zero of function scalar), one  
E 
 
E p  
 
obtains the constraints by: = 
= E 1 
 
 
 
1 
 
 
E 
E p 
 
+ 
 
E - E p 
 
 
6.3 integration  
semi-implicit  
 
In fact, in elastoplasticity, one uses the implicit integration of the models of behavior, because  
convergence towards the solution of the problem continuous in time, excellent, and is led moreover to  
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unconditionally stable diagrams.  
 
For viscoelastic or viscoplastic behaviors, utilizing explicitly time  
physics, the implicit discretization always leads to unconditionally stable diagrams, but  
convergence towards the solution is not also any more fast. It is preferable to use an integration then  
semi-implicit. It is the choice which we made here, following in that the integration of the model of  
Lemaître in Aster and Cyrano3 [bib5]. The method implemented here is not one  
general theta-method: it functions only for theta=0.5. It makes it possible however to obtain  
correct results. For more general information, it would be necessary to use more sophisticated 
method, by  
example method of RUNGE KUTTA of order 2 or 4.  
 
Here, one writes simply:  
 
 
- 
 
 
+ 
vp 
=p 
2 
 
- 
 
+  
 
 
2 
 
N 
 
 
 
Q 
 
 
 
- 
- 
 
 
T  
+ 
 
 
1 
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2 
RT + 
 
2 
 
 
 
 
 
p=  
 
E 
. 
+ L.  
1 
 
 
T 
 
 
 
 
 
 
K 
 
p 
0 
m 
 
K T 
 
 
-  
p + 
 
 
 
 
 
 
 
 
2  
 
 
1  
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HT 
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- 
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2nd E  
2 
2 
2 
2 
HT = T 
() (T - Tref) - 
- 
T 
( 
)( - 
T - Tref) 
 
= (At +b) () S 
G 
. - () S 
. . ( - 
At + b) 
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- 
 
 
One seeks to calculate + 
. One can write:  
2 
- 
 
E - 
 
E  
 
E  
vp 
 
G 
 
HT 
= 
+ 
= 
+ 
- 
- E 
- E 
 
2 
2 
2 
- 
E 
2 
2 
2 
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2 
2 
thus  
- 
- 
 
E 
 
G HT  
v 
- 
 
 
 
 
 
E  
 
+ 
= 
+ 
E 
 
- 
+ 
- 
- 
- 
 
2 
2 
E 
2 
2 
2 
2  
2 
 
As previously, one solves while posing:  
 
- 
- 
G 
HT 
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E 
E  
 
 
 
 
= 
+ 
+ E 
- 
- 
 
E - 2 
2 
2 
2 
2  
then the system is reduced to:  
 
N 
 
 
Q 
 
 
 
- 
- 
 
 
T 
 
+ 
 
p 
 
1 
2 
RT 
 
+ 
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T 
 
=  
. 
2 
E 
+ L. 
 
2 
1 
K 
 
K T 
 
 
 
2 
 
 
 
0 
- 
p 
 
 
 
 
 
 
p 
m 
+ 
 
 
 
 
2 
 
 
 
 
 
 
- 
 
 
p 
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p 
+ 
E 
2 
 
- 
- 
 
E 
 
 
 
= + 
+ 
 
 
E 
1 
2 
 
2 
2 
 
2 
 
- 
= + 
 
 
 
+ 
 
- 
 
+ 
 
+ 
 
2 
 
2 
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from where:  
 
p 
E 
- 
 
= + 
+ E 
 
2 
2 
 
The equation to be solved is exactly same form as the implicit equation:  
 
N 
 
 
Q 
 
 
 
- 
E 
p 
 
 
T 
 
 
p 
 
1 - E 
RT + 
2  
 
 
 
 
 
T 
 
=  
. 
2 
E 
+ L. 
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Once this solved equation, one obtains the internal variables while multiplying by 2 the value 
obtained  
and constraints by:  
 
 
E p  
- 
 
 
E 
 
+ 
= 1- 
 
2 
 
 
E  
 
- 
- 
 
 
+  
= 2 + 
- 
 
 
 
2 - 
 
One can thus use the same routines of resolution as in the implicit case, while calculating  
G HT 
simply E in  
,  
,  
.  
2 
2 
2 
 
On an elementary test of creep (test SSNL109A), one obtains by the semi-implicit method one  
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correct result (to 0.02% of the analytical solution) if one uses 2 steps of time (instead of 100 steps of  
times required to have a correct solution with implicit integration).  
 
 
6.4 Variables  
interns  
 
Two variables intern are calculated in this model: p and neutron fluence calculated with the step  
current time.  
 
 
6.5  
Identification of the parameters of the model  
 
It is done starting from creep tests (uniaxial test with constant constraint imposed under flow  
neutronics constant). By integration of the equations of the model, one obtains then:  
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7  
Relation of behavior of LMA-RC (ASSE_COMBU)  
 
The model presented in this chapter describes the viscoplastic behavior 1D LMA-RC  
(Laboratory of Mechanics Applied R.Chaléat of Besancon) developed for the modeling of  
fuel assemblies, and applicable to the elements of beams, in the axial direction, with  
behavior ASSE_COMBU [bib6].  
 
7.1  
Formulation of the model  
 
The élasto-viscoplastic model developed with the LMA-RC to describe the orthotropic behavior of  
tubes of sheaths of the fuel pin [R5.03.10] is written in 1D isotropic:  
 
} 
 
= & - v p 
& 
- G 
& - HT 
& 
E 
v p 
& 
= p&. 
 
(- X) 
= 
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( ) 
X& 1 = q1 (Y (p) v p 
() 1 
(2) 
& 
- (X - X) p&) 
(2) 
 
X& 
= Q Y 
2 
(p) v p 
(2) 
(& - X p&) 
with: Y () Y (Y 
Y 
0 
) ebp 
v = 
+ 
- 
 
 
The coefficients, as in 3D, are provided by key word LMARC (one does not use the coefficients here  
dependent on the anisotropy) (Q, Q, Q 
1 
2 correspond respectively to the parameters p, p, p 
1 
2 of the key word  
LMARC).  
 
The law of growth is identical to that used for the model of Lemaitre:  
G 
(T) = (At + b) ((X, y, Z) S  
 
The neutron flux is the product of a function of X (clevis pin, having to be confused  
with one of the axes of the total reference mark) and a function of y and Z.  
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Note:  
 
· The fluence is worth (X, y, Z).  
· Only one diagram of integration is available: a purely implicit diagram.  
20 
2  
· The neutron flux (X, y, Z) is expressed obligatorily into 10 n/cm /s. This implies that  
the units of the other sizes are fixed:  
-  
E, K, are in MPa,  
-  
times are in seconds,  
-  
co-ordinates in Misters.  
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7.2 Integration  
implicit  
 
To integrate these relations of behavior, while bringing back itself if possible to only one equation to  
(- X) 
to solve, it is necessary to make an assumption on =  
. Indeed, it can take only two values:  
- X 
(- - - 
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X) 
+1 or -1. One thus supposes this known sign (initialized by = 
). If one cannot solve  
- - - 
X 
the equation obtained with this assumption, one takes the opposite sign. The remainder of the 
equations can  
to be integrated in a purely implicit way. The system is written:  
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There is thus a system of 5 equations to 5 unknown factors:  
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The second equation is also written:  
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By using the first equation, one can express X according to p:  
 
- X =  
p 
E - 
 
E 
X = - X 
 
1 
2  
p N 
p N  
X = F ( 
log 
1 
1 p) =  
p 
E - 
 
- 
E 
X - K 
 
+ 
+  
 
 
0& T 
0& T 
 
 
 
Handbook of Reference  
R5.03 booklet: Nonlinear mechanics  
HT-66/05/002/A  

file:///Z|/process/refer/refer/p1810.htm (37 of 37)10/2/2006 2:53:54 PM



file:///Z|/process/refer/refer/p1820.htm

Code_Aster ®  
Version  
7.4  
 
Titrate:  
Relations of behavior 1D  
 
 
Date:  
02/05/05  
Author (S):  
J.M. PROIX, B. QUINNEZ, C. CHAVANT Key  
:  
R5.03.09-B Page  
: 33/36  
 
 
In addition, by integration successive of the functions f2 and f1 one can also bring back oneself to one  
equation utilizing only X and p:  
 
Q Y (p) 
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1+ Q p 
2  
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1 
1 
(Y (p) () () 
( ) 
(X X X) 
( ) 
X = 
 
1+ Q p 
1 
 
( ) 
( ) 
like X = F (p, X, X 1), and X 1 = G (p) according to the preceding expressions one can  
to write: X = F2 (p) = F1 (p). The equation to solve to find p is thus:  
 
F (p) = F 
0  
2 (p) - F1 (p) = 
 
Once calculated p, one obtains the constraints by: =  
E p  
E - 
 
 
 
7.3 Variables  
interns  
 
They are 5:  
V1 = p 
V 2 = X (1) 
V 3 = X (2) 
V 4 = X 
 
In Code_Aster, one adds a last internal variable: V 5 = neutron fluence calculated with  
no current time.  
 
 
7.4  
Identification of the parameters of the model  
 
The identification of the parameters is carried out in the reference [bib7]. It relates to the ZIRCALOY 4 
with  
350°C.  
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8  
Method to use in 1D all the behaviors 3D  
 
As for the treatment of the plane constraints [R5.03.03], it is possible to profit for  
modelings 1D of the behaviors available in 3D. One extends for that the method due to R. of  
Borst with the case 1D, by treating this condition (unidimensional stress field) not with the level  
law of behavior but on the level of balance. One obtains thus during iterations of  
the algorithm of STAT_NON_LINE of the stress fields which tend towards a field  
one-way. It is checked, with convergence of the total iterations of Newton, that the fields of  
constraints are indeed one-way, except for a precision, if not the iterations are continued.  
The method consists in breaking up the fields of strains and stresses into a part  
purely one-way (direction X) and a part relating to the other directions, and to carry out one  
static condensation by writing that components of the constraints relating to the other directions  
are null. One does not consider in the tensors (order 2) only the diagonal terms, written under  
form vectors with 3 components. Direction X corresponds to the direction of the element (bars,  
multifibre beam) or with the direction of the reinforcements of grid. At one unspecified moment of the 
resolution of  
incremental behavior, the tangent operator D connects the increase in constraints to  
 
 
the increase in deformation by:  
D = 
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D = 
 
Dd 
 
that one rewrites:  
 
 
 
D  
X 
D 
D 
D 
11 
12 
13 D  
 
 
X 
 
 
 
D y = 
 
D 
D 
D 
21 
22 
23 D Y. By writing these increases like the difference between  
 
 
D 
D 
D 
D  
 
 
Z  
31 
32 
33 D Z  
iterations N and N + 1 of Newton, one obtains:  
 
n+1  
N 
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n+1 
N 
n+1 
N 
D =  
- =  
 
-  
 
, D =  
 
-  
 
 
With convergence, this variation must tend towards zero.  
 
By introducing the conditions  
N 1 
+ 
N 1 
: y = 0 
+ 
and 2 (one-way behavior), one obtains,  
for the iteration N + 1:  
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Z  
 
 
Z 
 
 
The two last equations make it possible to express D y and D Z according to D X:  
 
 
1 
D y = 
(N 
- - D 
y 
21d 
- D 
X 
23d Z) 
 
 
D22 
 
1 
D Z 
 
= 
(N 
- Z - 31 
D D X - 32 
D D y) 
 
D33 
1 
 
that is to say 
D y = ( 
N 
N 
- 33 
D + D 
y 
23 
+ D D 
Z 
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y X) 
 
1 
D Z = ( 
N 
N 
- 32 
D - D 
y 
22 
+ D D 
Z 
Z X) 
 
with 
= 33 
D D22 - D23 32 
D, D = D 
y 
23 31 
D - D21 33 
D, Dz = 32 
D D21 - 31 
D D22 
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by deferring these expressions in the first equation, one obtains:  
 
 
D D 
1 
12 
+ D D 
13 
 
n+ 
N 
y 
Z 
D D 
12 
23 - D 
D 
22 13 
N 
D D 
12 32 - D D 
12 33 
N 
X = X + D11 + 
D X + 
Z + 
y 
 
 
 
 
 
 
 
 
 
 
 
Balance with the iteration N + 1 is written:  
 
D D 
T 
N 1 
T 
N 1 
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D D 
12 32 - D D  
12 33 
N  
B X + 
Z + 
y FD 
 
 
 
 
 
It is thus noted that the taking into account of the unidimensional behavior intervenes to two  
levels:  
 
· in the tangent matrix, by the corrective term:  
 
D D 
12 
+ D D 
BT 
y 
Z B FD 
 
13 
 
 
 
· in the writing of the second member, by the corrective term:  
BT 
 
((D D - D D 
12 
23 
22 13) N 
Z + (D D - D D 
12 32 
12 33) N 
y) FD  
 
 
To implement this method, it is enough to calculate these corrective terms and to add them to  
constraints and tangent matrix obtained of the resolution 3D of the behavior. For that it is  
necessary to store information of an iteration of Newton to the other, by the means of 4 variables  
additional interns. The stages of the resolution are:  
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1) with  
the iteration N + 1, the data is:  
n+1 
- 
- 
U 
, and the 4 variables intern (calculated with  
1 
D 
V1 = N 
y + ( 
N 
D23 Z - 
N 
D33 y - Dy N 
X), V 2 = y, 
 
 
iteration N):  
,  
1 
V 3 = N 
D 
Z + ( 
N 
D32 y - 
N 
D22 Z - Dz N 
X), V 4 = Z 
 
 
2) before carrying out the integration of the behavior (carried out into axisymmetric) one calculates  
n+1 
N 
 
 
1 
y 
=  
y + ( 
N 
N 
- D  
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33 y + D  
23 Z + Dy D X) 
 
,  
n+1 
N 
 
 
1 
Z 
=  
Z + ( 
N 
N 
- D  
32 y - D  
22 Z + Dz D X) 
 
3) the integration of the behavior provides constraints N 1 
+ 
 
and the tangent operator D,  
4) one modifies the second member and the tangent matrix as indicated above,  
5) one stores the new variables intern and one checks if  
n+ 
1 
Z 
< 
n+ 
and 1 
y 
<, with = 
n+ 
1 , 
X 
= 
RELA 
RESI_INTE_ 
.  
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behavior 
anisotropic and strongly viscous mechanics. A phenomenologic model was developed with 
LMA-RC of Besancon [bib1] to obtain a fine description of the behavior of material in sight 
to evaluate realistic states of stresses in situation of Pellet-sheath Interaction (IPG). 
Being given the crystallographic texture of the tubes, one makes the assumption of orthotropism. The 
model was 
confronted with the experimental results on tubes of sheath in Zircaloy 4 in various states 
metallurgical and subjected to loadings plain and multiaxés [bib1], [bib2], [bib3]. The model is 
initially intended to be used within the framework of the coupling between Code_Aster and the code of 
fuel pin CYRANO3. It could however be used for other metallic materials 
presenting an orthotropic viscoplastic mechanical behavior. 
The model is introduced into Code_Aster in 3D, plane deformations (D_PLAN), and axisymetry 
(AXIS) under the name of LMARC. It is about a unified viscoplastic model with internal variables:  
cumulated viscoplastic deformation and three variables of kinematic work hardening. 
The taking into account of the anisotropy is carried out by four tensors of a nature 4 affecting the sizes 
equivalent mechanics but also laws of evolution of the internal variables. 
One presents in this note the equations constitutive of the model and his establishment in 
Code_Aster. 
2  
Formulation of the model 
2.1 Tally  
theoretical 
The model of behavior developed to the LMA-RC lies within the scope of the thermodynamics of 
irreversible processes and of the mechanics of the continuous mediums. It is about a model 
elastoviscoplastic unified, i.e. dependent inelastic deformations or 
independent of time are gathered in only one term. By considering the assumption of small 
disturbances, one divides the tensor of the deformations into an elastic part, a thermal part and 
a viscoplastic part: 
= E + HT + vp 
The elastic part is given by the law of Hooke, the anisotropy of behavior which can be neglected 
in this case. The concept of surface of load used in plasticity is replaced by a family of 
equipotential surfaces: they are surfaces of the space of the constraints in each point of which 
the module the speed of deformation is the same one (dissipation is the same one) [bib4]. Being given 
texture tubes of sheath of the fuel pin, one can make the assumption of orthotropism of 
mechanical behavior and one use a formulation of the Hill type to describe surfaces 
equipotential: 
3 
F = 
ij 
ij 
ijkl kl 
kl 
R 
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R 
2 (~ - X) M 
(~ - X) - 0 = - X - 0 
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where 
~ 
1 
= - tr () I D 
is the deviatoric part of the tensor of the constraints. 
3 
X 
a kinematic variable of work hardening (tensorial). 
M 
tensor of order 4 for the description of the anisotropy 
(with the formulation of Hill, only 6 coefficients are independent). 
0 
R 
initial elastic limit. 
The direction of evolution of the viscoplastic tensor of deformation is given by the rule of normality 
on equipotential surfaces: 
vp  
F 
! ij =! v ij 
where v represent the cumulated viscoplastic deformation, obtained starting from the equation of state 
of which 
formulation was established in experiments with the LMA-RC [bib1]: 
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N 
 
F  
! v =! sinh 
0  
 
 
 
K  
 
 
with S 
X = 0 I X 0 and X = X if X 0 
To entirely define the model, it remains to give the equations of evolution of the variables 
of work hardening representing the state of internal stress of the material which is opposed to the 
deformation 
(constraints induced by the interactions on various scales between mobile dislocations and 
substructure). The kinematic work hardening of nature is described in the model via 
three nonlinear variables. 
 
m 
 
 
 
 
2 
vp 
1 
 
X  
X 
! X 
mn 
 
 
 
 
ij = p 
Y (v) 
( ) 
Nijkl! - Q 
kl 
ijkl 
 
3 
(X - X 
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kl 
kl)! v 
R sinh  
NR R 
m 
ijkl 
klmn 
 
 
 
- 
 
X0  
X 
 
 
 
 
 
( ) 
2 
! 1 
 
1 
2 
 
X 
vp 
ij = p 
Y 
1 
(v) 
( ) 
( ) 
Nijkl! - Q 
kl 
ijkl 
3 
(X - X 
kl 
kl)! v 
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(2) 
2 
! 
 
2 
 
X 
vp 
ij 
= p 
Y 
2 
(v) 
( ) 
Nijkl! - Q 
X 
kl 
ijkl 
kl 
 
! v 
 
3 
 
 
 
 
3 
with 
X = 
X R 
X 
2 
ij 
ijkl 
kl 
Xij () 
( ) 
0 = X 1 
ij () 
(2) 
0 = Xij () 
0 = 0 
( 
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Y) = Y 
- v 
v 
+ (Y0 - Y) E B 
( 
Y v) makes it possible to describe hardening or softening under cyclic loading. 
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These equations comprise for each variable of kinematic work hardening a first term 
of linear kinematic work hardening compared to the deformation and a second term of restoration 
dynamics. Lastly, the first equation comprises a third static term of restoration for 
to take into account the effects dependent on time. 
For the description of the anisotropy, one distinguishes an intrinsic anisotropy with the structure of 
material 
(form of equipotential) and an additional anisotropy induced by the viscoplastic flow. 
The anisotropy is introduced into the model of the LMA-RC by the means of tensors of order 4 in 
relations between the various tensorial variables. Anisotropy induced by the flow 
viscoplastic is translated in the laws of evolution of the variables of work hardening. Terms of these 
equations are connected to different mechanisms of deformation in material: work hardening 
linear kinematics, dynamic and static restorations. The taking into account of the induced anisotropy 
by the viscoplastic deformation is thus made by the introduction of three distinct tensors NR, Q and R. 
Bene foot-note: 
The model suggested by the LMA-RC [bib2] is without threshold. The initial elastic limit R0 was 
added during integration in Code_Aster to widen the possibilities of the model. It is enough  
to consider a zero value to work with a model without threshold. 
2.2  
Description of the tensors of anisotropy 
To simplify the writings, thereafter a matric notation, image of the notation are used 
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tensorial intrinsic in a orthonormé reference mark. Moreover, one uses notations of a lower order 
(tensor 2 = vector, tensor 4 = matrix), in order to be identified with what is in the code. Because of 
symmetry of the handled tensors of order 2, one reduces them to vectors (1 X 6) by multiplying them 
components of shearing by root of 2. 
T = [1 = 11, 2 = 22, 3 = 33, 4 = 2 12, 5 = 2 13, 6 = 2 23] 
T = [1 = 11, 2 = 22, 3 = 33, 4 = 2 12, 5 = 2 13, 6 = 2 23] 
According to cylindrical co-ordinates' related to the tube, one considers thereafter 11 = rr, 22 =, 33 = 
zz. 
As we mentioned in the first chapter, being given the crystallographic texture of 
tubes, one can make the assumption of orthotropism and confuse the axes of anisotropy with the axes 
materials. The conditions of symmetry which result from it lead to nine independent components 
for each tensor of anisotropy. The incompressibility of the viscoplastic flow is translated 
by three additional relations and the component count independent is tiny room to six [bib1]. 
With the matric notation, each of the four tensors takes a form identical to that of M is: 
M 
M 
M 
11 
12 
13 
0 
0 
0 
 
M 
M 
M 
 
12 
22 
23 
0 
0 
0 
 
M11+ M12 + M 
 
13 = 0 
M 
M 
M 
13 
23 
33 

file:///Z|/process/refer/refer/p1820.htm (23 of 29)10/2/2006 2:53:55 PM



file:///Z|/process/refer/refer/p1820.htm

0 
0 
0 
 
 
M =  
with M12 + M22 + M23 = 0 
0 
0 
0 
M 
 
44 
0 
0 
 
M13+ M23+ M 
 
33 = 0 
0 
0 
0 
0 
M 
0 
 
 
 
55 
 
0 
0 
0 
0 
0 
M 
 
6  
6 
Handbook of Reference 
R5.03 booklet: Nonlinear mechanics 
HT-B2/96/026/A 

Code_Aster ® 
Version 

file:///Z|/process/refer/refer/p1820.htm (24 of 29)10/2/2006 2:53:55 PM



file:///Z|/process/refer/refer/p1820.htm

3.0 
Titrate:  
Élasto-viscoplastic relation of behavior of the LMARC 
Date:  
11/07/96 
Author (S): 
P. GEYER 
Key: 
R5.03.10-A 
Page: 
6/18 
To find the isotropic version of the model, it is necessary to take the following values for the four 
tensors: 
2 
1 
M 
= M = M =, M = M = M = - and M = M = M =. 
11 
22 
33 
12 
13 
23 
44 
55 
66 
1 
3 
3 
In experiments, one cannot reach in our study the components 44, 55 and 66 which 
correspond to shear tests. Within the framework of the work of thesis realized to the LMA-RC, 
only component 66 was determined by tests of traction-torsion, the two last (R and 
rz) not being able to be reached because the low thickness of the tubes. 
Being given the preceding considerations, only components 11, 22, 33 and 66 are put in 
reading of the command file, the other components being is given starting from the equations 
had with the plastic incompressibility, is taken equal to the isotropic values for the components of 
shearing. 
Bene foot-note: 
The matric notations used in the references [bib 1, 2 and 3] are those of Voight. 
Only the terms of shearing are influenced; conversion to work with 
notations of Code_Aster is obtained using the following formulas (I = 4,5,6): 
1 
1 
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M = 
MVoight, Q = QVoight, NR = 2 NVoight and R = 
RVoight 
II 
II 
II 
II 
II  
II 
II 
II 
2 
2 
2.3  
Equations of the model 
= E + HT + vp 
= A (T) E 
3 
F = 
(~ - X) T M (~ - X) - R0 = ~ - X - R 
2 
0 
~ 
vp 
F 
3 
M (- X) 
! = v! 
= 
v 
 
! 
2 
~ - X 
if F, 
0 
( ) 
1 
(2) 
v! =, 
0! X =! X 
=! X 
= 0 
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if F >, 
0 
N 
2 
vp T 
-1 vp 
 
F  
v! =! 0 
(! ) M! =  
 
! 0 sinh 
3 
 
 
K  
 
 
 
 
 
X m 
! 
2 
 
 
X 
X = 
 
p 
Y (v) 
vp 
( ) 
NR! - Q 
1 
rm sinh  
 
NR R 
3 
(X-X) v! 
 
 
 
- 
 
X0  
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X 
( ) 
! 
2 
2 
X 1 = 
 
p 
Y 
1 
2 
2 
2 
1 
(v) 
vp 
( ) 
( ) 
NR! - Q 
 
3 
(X - X) ()  
v 
p 
Y 
! 
! X 
2 
(v) 
vp 
( )  
NR! 
Q X 
v! 
 
 
 
 
= 
- 
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3 
 
 
with 
( 
3 
Y v) = 
- bv 
T 
 
Y + (Y0 -  
Y) E 
X = 
X R X 
2 
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Bene foot-note: 
In Code_Aster, the whole of the parameters of the model 
R! , K, N, Y, B X, R, m, p, p, p 
0 
0 
 
0 
1 
2, M, NR, Q, R (I 
m 
II 
II 
II 
II 
= 1, 2, 3, ) 
6 can 
to be a function of the temperature. 
2.4 Relation  
LMARC 
The model is accessible in Code_Aster in 3D, plane deformations (D_PLAN), and axisymetry 
(AXIS) starting from key word COMP_INCR of order STAT_NON_LINE. The whole of 
parameters of the model is provided under the key word factor LMARC or LMARC_FO of the order 
DEFI_MATERIAU [U4.23.01]. 
/ 
LMARC: ( 
R_0 
: 
R0 
DE_O 
: 
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0 
NR 
: 
N 
K 
: 
K 
y_0 
: 
yo 
y_I 
: 
y 
B 
: 
B 
A_0 
: 
X0 
RM 
: 
rm 
M 
: 
m 
P 
: 
p 
P1 
: 
p1 
P2 
: 
p2 
M11 
: 
M11 
N11 
: 
N11 
M22 
: 
M22 
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N22 
: 
N22 
M33 
: 
M33 
N33 
: 
N33 
M66 
: 
M66 
N66 
: 
N66 
Q11 
: 
Q11 
R11 
: 
R11 
Q22 
: 
Q22 
R22 
: 
R22 
Q33 
: 
Q33 
R33 
: 
R33 
Q66 
: 
Q66 
R66 
: 
R66 
) 
3  
Establishment of the model in Code_Aster 
3.1  
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Algorithm of resolution of the quasi-static problem 
One seeks to check the balance of the structure at every moment. In incremental form, it is about one 
nonlinear problem whose variational formulation in the case of the small deformations can 
to put in the form: 
To find U such as: 
 
kinematically 
 
((U + U 
), T) () D = L (T) 
 
acceptable and T 
Drunk = ud 
 
 
(T) 
where U indicates the field of displacement, Bu 
ud 
= 
(T) corresponds to the boundary conditions in 
displacement and L (T) are the loading at the moment T. 
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One is thus led to solve, for each increment of time T: 
Ft+t (U + U 
T 
) = 0 on the basis of a state with balance F 
 
= 0 
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0 
U 
being the increment of the solution U on T 
, C being known 
The diagram general adopted by Aster to solve this discretized total system is a method of 
Newton [bib5] which is written, K being an indication of iteration: 
F D 
 
(U 
K) = - F (U 
K) 
U 
K 
 
U 
+1 = U 
+ D 
K 
K 
(U 
K) 
This diagram requires, starting from the estimate of displacements to the iteration K, to calculate in each 
not Gauss: 
T T 
+ which checks the law of behavior 
 
MCt+ T =  
 
the operator of tangent behavior 
t+t 
 
 
F 
 
T  
 
= K = K with K = 
 
B 
Data base  
 
 
 
U 
E 
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3.2 Environment  
PLASTI 
It is thus necessary, with each total iteration and in each point of Gauss, to integrate the equations 
model described in [§2.3] for the calculation of t+t and to calculate the operator of behavior 
tangent. 
An environment was created in Code_Aster with an aim of parameterizing the establishment of models 
elastoviscoplastic presenting a function threshold (field of elasticity). 
This algorithm: 
· manages the choices of integration elastic or (visco) plastic, 
· proposes various routines to contribute to the resolution of the nonlinear system (local) formed 
by the equations of the model, 
· updates the variables at the end of the increment, 
· calls the routines user for the calculation of the operator of tangent behavior. 
The step to establish a new model can be schematized in the following way: 
Writing of the equations of the model of speed 
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! y = F (y, T) 
Choice of a diagram of integration 
Writing of the system discretized R  
(y) = 0 
Writing of the routines specific to the model:  
 
· recovery of the data materials,  
 
· evaluation of the function threshold,  
 
· evaluation of the operator of tangent behavior 
· routine for the resolution of the system R  
(y) = 0 
(the algorithm proposes a method of Newton for one  
implicit nonlinear system). 
+ Modification of the routines of shunting of the algorithm 
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3.3  
Discretization of the equations of the model 
If the increment of time corresponds to a loading elastoviscoplastic, a diagram is used 
implicit of Euler whom one solves by a method of Newton. 
In discretized form, the system of equations is written: 
( 
 
F 
 
G) - H 
-  
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v 
 
= 0 
t+t 
 
 
 
 
 
t+t  
( 
2 
F 
 
L) X 
 
p 
Y (v) NR 
( 
Q X X1) 
v 
 
 
 
3 
 
 
 
- 
- 
 
 
T +t 
 
m 
 
 
 
 
X  
X 
 
+ R 
sinh  
 
NR R 
T 
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m 
= 0 
 
X0  
 
 
 
 
 
X 
T 
 
+t 
( 
2 
F 
 
I) X1- 
 
p 
Y 
1 
(v) NR 
Q (X X 
1 
2 ) 
v 
= 
 
 
0 
3 
 
 
 
- 
- 
 
 
 
t+ T 
 
( 
2 
F 
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J) X2- 
 
p 
Y 
2 
(v) NR 
Q X 
v 
 
2 
 
 
 
0 
3 
 
 
 
- 
 
 
= 
T + T 
 
 
N 
( 
 
F  
K) v 
- 
 
0! sinh 
 
T 
 
 
= 0 
K  
 
 
 
with Y (v) = Y 
- 
+ (Y0 - Y) E bv 
 
3 
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T  
X = 
X R X 
2 
In more contracted way, one poses: 
G (y 
) 
 
 
 
 
 
L 
(y 
) 
 
 
X  
F L (y 
) = 0 = I (y 
)  
with 
y 
= X  
 
 
 
1  
J 
(y 
) 
 
 
X2 
 
 
 
K 
(y 
) 
v 
 
 
 
One solves this system by the method of Newton proposed in environment PLASTI, that is to say: 
Fl 
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D (y 
L 
K) = - F (y 
K) 
y 
K 
y 
+1 = y 
+ D 
K 
K 
(y 
K) 
While reiterating in K until convergence. 
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The resolution requires the calculation of Jacobien of the local system F L. His general expression is 
given 
hereafter; analytical calculations block per block are given in appendix (cf [§An1]). 
G 
G 
G 
G 
G  
 
 
X X 
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1 
X2 v 
 
 
 
 
L 
L 
L 
L 
L 
 
 
 
 
X X1 X2 v 
 
I 
I 
I 
I 
I  
J =  
 
 
X X1 X2 v 
 
 
J 
J 
J 
J 
J  
 
 
X X 
 
1 
X2 v 
 
 
kT 
kT 
kT 
kT 
K  
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X X 
 
1 
X2 v 
 
 
3.4  
Operator of tangent behavior 
The formed system of the equations of the model written in discretized form (Fl (y 
) = ) 
0 are checked in 
end of increment. For a small variation of F L, by regarding this time as variable and not 
like parameter, the system remains with balance and one checks dF L = 0, i.e.: 
Fl 
Fl 
Fl 
Fl 
Fl 
Fl 
 
+ 
 
+ 
X+ 
X1+ 
X2 + 
v 
 
= 0 
 
 
 
X 
 
X1 
X2 
v 
 
This system can be still written: 
 
 
 
 
H  

file:///Z|/process/refer/refer/p1830.htm (14 of 36)10/2/2006 2:53:56 PM



file:///Z|/process/refer/refer/p1830.htm

 
 
 
 
X 
0 
F L 
 
 
 
 
(y 
) = X, with y 
= X and 
1 
X = 0  
y 
 
 
 
 
X2  
0  
v 
 
 
 
 
0  
By successive substitution and elimination (cf [§An2]), one deduces from it that: 
K = H  
from where the required tangent operator: 
 
 
 
C 
-1 
 
 
 
 
M 
K H 
 
 
 
= 
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= 
t+t 
The preceding equations show that one is led to re-use the same matrix jacobienne J 
that previously to evaluate the tangent operator. This operator is known as coherent (insinuation 
with the system of integration) and still noted MC. 
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In the case of the elastoplastic models, one can also calculate the tangent operator said of speed 
(MV) starting from the equations of the model of speed [bib7]. 
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Appendix  
1  
Expression of Jacobien of the equations 
elastoviscoplastic integrated 
That is to say thus to evaluate the terms of the hypermatrice jacobienne J at the moment T + T 
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